WO2013108782A1 - Oxynitride-based phosphor and light emitting device using same - Google Patents

Oxynitride-based phosphor and light emitting device using same Download PDF

Info

Publication number
WO2013108782A1
WO2013108782A1 PCT/JP2013/050668 JP2013050668W WO2013108782A1 WO 2013108782 A1 WO2013108782 A1 WO 2013108782A1 JP 2013050668 W JP2013050668 W JP 2013050668W WO 2013108782 A1 WO2013108782 A1 WO 2013108782A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
less
emitting device
phosphors
Prior art date
Application number
PCT/JP2013/050668
Other languages
French (fr)
Japanese (ja)
Inventor
文孝 吉村
岳史 田原
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2013108782A1 publication Critical patent/WO2013108782A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to an oxynitride phosphor and a light-emitting device using the same.
  • Fluorescent substances are used in fluorescent display tubes (VFD), field emission displays (FED), plasma display panels (PDP), cold cathode tubes (CRT), light emitting devices (LEDs), and the like.
  • VFD fluorescent display tubes
  • FED field emission displays
  • PDP plasma display panels
  • CRT cold cathode tubes
  • LEDs light emitting devices
  • the phosphor is excited by an excitation source having high energy such as vacuum ultraviolet rays, ultraviolet rays, electron beams, blue light, and emits visible light.
  • Sr 2 Al 3 Si 7 ON 13 Eu
  • SrAl 1.25 Si 3.75 O 0.25 N 6.75 Eu
  • SrAlSi 4 N are one of the oxynitride phosphors that are attracting attention.
  • 7 Phosphors having a composition typified by Eu have been reported (Patent Documents 1 to 4).
  • JP 2010-106127 A International Publication No. 2007/037059 Pamphlet Special table 2010-518194 gazette JP 2011-195688 A
  • Patent Document 1 Although the crystal structure of the phosphor described in Patent Document 1 is disclosed, no study has been made on the size of the crystal lattice and the effect of element substitution, and high emission intensity can be obtained. Therefore, further improvement in emission intensity is required for practical use.
  • the phosphor described in Patent Document 2 discloses a specific example in which the Sr site is replaced with Ba, but the effect has not been sufficiently studied, and the relationship with the crystal structure has not been studied at all.
  • Patent Document 3 discloses that the emission wavelength can be lengthened by substituting the Sr site with Ca, there is no disclosure of specific examples of substituting with Ca, and the size of the crystal lattice due to Ca substitution. There is no suggestion of any change in light emission or improvement in emission intensity.
  • the phosphor described in Patent Document 4 described above has improved the emission intensity, it is still insufficient in practical use, and repeated firing is required to obtain a single phase. The manufacturing cost may be high.
  • the phosphors described in Patent Documents 1 to 4 that is, phosphors having a skeletal structure composed of Si, Al, N, and O and having a crystal structure in which Sr sites exist in the voids.
  • the improvement of the emission intensity was desired.
  • An object of the present invention is to improve the emission intensity of a phosphor having a skeleton structure composed of Si, Al, N, and O and having a crystal structure in which Sr sites exist in the voids.
  • the inventors of the present invention are excellent in terms of emission intensity of oxynitride phosphors whose unit cell volume of the crystal phase is in a specific range.
  • the general formula [1] it has been found that when Ca is essential among the alkaline earth metal elements, the emission intensity is further improved.
  • the present invention has been accomplished based on these findings.
  • the gist of the present invention includes the phosphor of the following first embodiment.
  • A represents an alkaline earth metal element essential for Sr and Ca
  • D represents a tetravalent metal element essential for Si
  • E represents a trivalent metal essential for Al.
  • x represents a number satisfying 0.0001 ⁇ x ⁇ 0.20
  • a, b, c, d, and e represent 0.7 ⁇ a ⁇ 1.3 and 2.8 ⁇ b ⁇ , respectively.
  • the crystal phase of the crystal phase is orthorhombic or monoclinic, and the emission peak is An oxynitride phosphor having a wavelength in the range of 581 nm to 650 nm.
  • the gist of the present invention includes the phosphor of the following third embodiment. [8] The following formula [2]: (A 1-x , Eu x ) a D b E c N d O e [2] (In the formula [2], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al.
  • x represents a number satisfying 0.0001 ⁇ x ⁇ 0.20
  • a, b, c, d, and e represent 0.7 ⁇ a ⁇ 1.3 and 2.8 ⁇ b ⁇ , respectively.
  • 3.6 1.0 ⁇ c ⁇ 3.0, 4.0 ⁇ (b + c) /a ⁇ 6.0, 5.0 ⁇ d ⁇ 7.0, 0 ⁇ e ⁇ 2.0, 6.5 ⁇ (D + e) /a ⁇ 7.3 is included.
  • the ratio of Ca to element A in the above [2] is 0.001 mol% or more and 80 mol% or less.
  • the crystal system of the crystal phase is orthorhombic or monoclinic.
  • the gist of the present invention includes the phosphor-containing composition, the light emitting device, the lighting device, and the image display device of the following embodiment.
  • a light-emitting device having a first light emitter (excitation light source) and a second light emitter capable of emitting visible light by converting light from the first light emitter,
  • the second light emitter contains at least one of the phosphors according to any one of [1] to [11] as the first phosphor, or the second light emitter according to [12]
  • a light emitting device comprising the phosphor-containing composition described above.
  • the second phosphor includes at least one phosphor having a light emission peak wavelength different from that of the first phosphor as the second phosphor. apparatus.
  • the present invention it is possible to improve the light emission intensity of a phosphor having a skeletal structure composed of Si, Al, N, and O and having a crystal structure in which Sr sites exist in the voids. Furthermore, the phosphor of the present invention hardly produces an impurity phase and can be easily manufactured. In addition, when the phosphor of the present invention is combined with an LED or the like, a light emitting device having excellent light emission characteristics can be provided.
  • FIG. 2A shows a bullet-type light emitting device
  • FIG. 2B shows a surface-mounted light-emitting device.
  • FIG. 2C shows typically the one aspect
  • 3 is an emission spectrum of the phosphors of Examples 2, 3, 6 to 9, 13 and Comparative Example 1.
  • 3 is an excitation spectrum of the phosphor of Example 2.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • each composition formula is delimited by a punctuation mark (,).
  • commas when a plurality of elements are listed separated by commas (,), one or two or more of the listed elements may be included in any combination and composition.
  • composition formula “(Ca, Sr, Ba) Al 2 O 4 : Eu” has “CaAl 2 O 4 : Eu”, “SrAl 2 O 4 : Eu”, and “BaAl 2 O 4 : Eu”. “Ca 1-x Sr x Al 2 O 4 : Eu”, “Sr 1-x Ba x Al 2 O 4 : Eu”, “Ca 1-x Ba x Al 2 O 4 : Eu”, “Ca 1-x-y Sr x Ba y Al 2 O 4: Eu " (. in the formula, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ a x + y ⁇ 1) all the comprehensive It shall be shown in the formula, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ a x + y ⁇ 1) all the comprehensive It shall be shown in
  • the phosphors of the first to third embodiments of the present invention have a skeletal structure composed of Si, Al, N, and O, and have a crystal structure in which Sr sites exist in the voids.
  • Crystal system The crystal system of the crystal phase contained in the phosphor according to the first to third embodiments of the present invention is orthorhombic or monoclinic, and is preferably orthorhombic.
  • the phosphors according to the first to third embodiments of the present invention preferably have a crystal structure similar to that of SrAlSi 4 N 7, and the crystal phase space group is “International Tables for Crystallography (Third, revised edition)”. No. 62 [Pnma], 33 [Pna2 1 ], 19 [P2 1 2 1 2 1 ], 7 [Pc], or 4 [P2 1 ] based on “Volume A Space-Group Symmetry” And those belonging to No. 33 [Pna2 1 ] are most preferred.
  • the space group can be uniquely determined by electron diffraction or convergent electron diffraction.
  • the phosphor according to the first embodiment of the present invention contains a crystal phase whose unit cell volume (V) calculated from the lattice constant is 1220 ⁇ 10 6 pm 3 or more and 1246 ⁇ 10 6 pm 3 or less.
  • V unit cell volume
  • the unit cell volume (10 6 pm 3 ) calculated from the lattice constant of the crystal phase contained in the phosphor of the first embodiment of the present invention is usually 1220 or more and 1246 or less, preferably It is 1224 or more, more preferably 1228 or more, further preferably 1232 or more, further preferably 1236 or more, particularly preferably 1240 or more, and preferably 1245 or less, more preferably 1244 or less.
  • the unit cell volume is too large, the emission intensity will decrease. Conversely, if the unit cell volume is too small, the skeletal structure will become unstable and impurities of another structure will be produced as a by-product. It tends to cause a decline.
  • the means for realizing the unit cell volume of the crystal phase contained in the phosphor according to the first embodiment of the present invention is that Sr and Ca are contained in the voids (Sr sites) formed by the open holes in the planar skeleton structure. It is preferable to introduce at a constant ratio, but other atoms having an ionic radius smaller than Sr, such as Mg and Li, may be introduced in addition to Sr and Ca. It is also preferable to adjust the unit cell volume by leaving defects at the Sr site. It is also possible to construct an appropriate skeleton structure by introducing both small atoms or defects such as Li that have a large effect on reducing the skeletal structure and large atoms such as Ba that have the effect of increasing the skeleton structure. is there.
  • the phosphors of the second to third embodiments of the present invention preferably satisfy the requirements for the unit cell volume (V).
  • the a-axis is usually 1162 or more, preferably 1164 or more, more preferably 1166 or more, and usually 1178. Hereinafter, it is preferably 1172 or less, more preferably 1168 or less. Further, the b-axis is usually 2115 or more, preferably 2125 or more, more preferably 2135 or more, particularly preferably 2137.5 or more, and usually 2165 or less, preferably 2155 or less, more preferably 2145 or less.
  • the phosphor according to the first to third embodiments of the present invention has a planar skeletal structure with a hole extending on a plane including the a-axis and the b-axis, and the planar skeletal structure is c-axis.
  • a skeletal structure is formed by stacking in the direction. Therefore, when the lattice constants of the a axis and the b axis are the above values, particularly the distortion of the planar skeleton structure can be suppressed, and the emission intensity is improved.
  • the c-axis is not particularly limited, but is usually 494 or more, preferably 494.5 or more, more preferably 495.5 or more, particularly preferably 496.5 or more, usually 499.5 or less, preferably 498.5 or more, More preferably, it is 497.5 or less.
  • the phosphors of the first to third embodiments of the present invention preferably contain a crystal phase exhibiting the following powder X-ray diffraction (XRD) pattern.
  • the crystal phase of the phosphor of the first to third embodiments of the present invention has a diffraction angle (2 ⁇ ) in the range of 31.0 ° to 31.9 ° (R0) in X-ray diffraction measurement using a CuK ⁇ X-ray source.
  • P0 reference diffraction peak
  • ⁇ 0 Bragg angle
  • the intensity of P0 is usually 20% or more, preferably 30% or more, more preferably 40% or more, particularly preferably 50% or more in terms of diffraction peak height ratio with respect to the height of the highest diffraction peak.
  • the diffraction peak height is the highest among the P1, P2, P3, P4, and P5.
  • a peak intensity of at least one or more is a diffraction peak height ratio, usually 5% or more, preferably 10% or more, more preferably 15% or more, and particularly preferably 20% or more of a crystal phase, P1, P2, P3 , P4 Is 5% or more crystalline phases at least one or more peak intensity diffraction peak height ratio of P5.
  • R1s, R2s, R3s, R4s, and R5s are the start angles of R1, R2, R3, R4, and R5, and R1e, R2e, R3e, R4e, and R5e are R1, R2, R3, R4, and R5, respectively.
  • the end angle is shown, and the following angles are shown.
  • R1s 2 ⁇ arcsin ⁇ sin ( ⁇ 0) / (1.268 ⁇ 1.015) ⁇
  • R1e 2 ⁇ arcsin ⁇ sin ( ⁇ 0) / (1.268 ⁇ 0.985) ⁇
  • R2s 2 ⁇ arcsin ⁇ sin ( ⁇ 0) / (1.037 ⁇ 1.015) ⁇
  • R2e 2 ⁇ arcsin ⁇ sin ( ⁇ 0) / (1.037 ⁇ 0.985) ⁇
  • R3s 2 ⁇ arcsin ⁇ sin ( ⁇ 0) / (1.023 ⁇ 1.015) ⁇
  • R3e 2 ⁇ arcsin ⁇ sin ( ⁇ 0) / (1.023 ⁇ 0.985) ⁇
  • R4s 2 ⁇ arcsin ⁇ sin ( ⁇ 0) / (0.882 ⁇ 1.015) ⁇
  • R4e 2 ⁇ arcsin ⁇ sin ( ⁇ 0) / (0.882 ⁇ 1.015) ⁇
  • the phosphor of the present invention includes a phosphor having a yellow to red emission color (first embodiment), a phosphor having an orange to red emission color (second embodiment), which will be described below. And a phosphor having a light emission color of yellow to orange (third embodiment).
  • the phosphor according to the first embodiment of the present invention has the following formula [1]: (A 1-x , Eu x ) a D b E c N d O e [1]
  • A represents an alkaline earth metal element essential for Sr and Ca
  • D represents a tetravalent metal element essential for Si
  • E represents a trivalent metal essential for Al.
  • x represents a number satisfying 0.0001 ⁇ x ⁇ 0.20
  • a, b, c, d, and e represent 0.7 ⁇ a ⁇ 1.3 and 2.8 ⁇ b ⁇ , respectively.
  • A represents an alkaline earth metal element in which Sr and Ca are essential.
  • the ratio of Sr and Ca to the entire A element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more.
  • the element A may contain an alkaline earth metal element such as barium (Ba).
  • the ratio of Ca with respect to the entire element A is a number that usually satisfies 0.001 mol% or more and 80 mol% or less, preferably 0.01 mol% or more, more preferably 1 mol% or more, More preferably 5 mol% or more, particularly preferably 7 mol% or more, most preferably 9 mol% or more, preferably 65 mol% or less, more preferably 50 mol% or less, more preferably 35 mol% or less. Especially preferably, it is 20 mol% or less.
  • the proportion of Ca is in the above range, the lattice volume becomes a more appropriate size, and the skeletal structure can take a stable state without distortion.
  • Eu represents an activator element that requires europium.
  • Europium (Eu) which is an activator, includes chromium (Cr), manganese (Mn), iron (Fe), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm) as other activators.
  • chromium (Cr) manganese (Mn), iron (Fe), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm) as other activators.
  • Terbium (Tb) Dy
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • Tm thulium
  • Yb ytterbium
  • at least one metal element selected from the group consisting of Ce, Pr, Sm, Tb, and Yb is preferable, and Ce is more preferable in terms of emission quantum efficiency.
  • the ratio of europium (Eu) to the whole activator element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more.
  • D represents a tetravalent metal element in which Si is essential.
  • the element D may contain germanium (Ge) or the like within a range that does not affect the properties of the obtained phosphor.
  • the proportion of Si with respect to the entire D element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more. If the ratio of Si to the entire D element is too small, impurities are generated, and it tends to be difficult to obtain a phosphor having the target composition.
  • E represents a trivalent metal element in which Al is essential.
  • the element E may contain boron (B), gallium (Ga), or the like within a range that does not affect the properties of the obtained phosphor.
  • the proportion of Al to the entire E element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more. If the ratio of Al to the entire E element is too small, impurities are generated, and it tends to be difficult to obtain a phosphor having the target composition.
  • N represents nitrogen.
  • the N element only needs to contain nitrogen as a main component, and may contain fluorine (F), chlorine (Cl), or the like within a range that does not affect the characteristics of the obtained phosphor.
  • O represents oxygen.
  • the O element only needs to contain oxygen as a main component, and may contain F, Cl, or the like within a range that does not affect the characteristics of the obtained phosphor.
  • the phosphor of the first embodiment of the present invention affects the effects of the first embodiment of the present invention in addition to the above-described constituent elements of A, Eu, D, E, N and O. It may contain an element inevitably mixed within a range, for example, an impurity element.
  • x represents the molar ratio of the activator element (Eu).
  • x is a number satisfying 0.0001 ⁇ x ⁇ 0.20, preferably 0.001 or more, more preferably 0.005 or more, still more preferably 0.01 or more, and preferably 0.19. In the following, it is more preferably 0.17 or less, further preferably 0.15 or less, particularly preferably 0.12 or less.
  • a represents the sum of molar ratios of the element A (an alkaline earth metal element essential for Sr and Ca) and the activator element (Eu).
  • a is usually a number satisfying 0.7 ⁇ a ⁇ 1.3, preferably 0.8 or more, more preferably 0.9 or more, particularly preferably 0.95 or more, and preferably 1. It is 2 or less, more preferably 1.1 or less, and particularly preferably 1.05 or less.
  • the molar ratio of “a” and the moles of “b” and “c” described below are within the scope of the first embodiment of the present invention, that is, the D element (a tetravalent metal element in which Si is essential) and By setting the ratio of element E (trivalent metal element essential for Al) within a specific range, element A (alkaline earth metal element essential for Sr and Ca) is surely solid-dissolved. A phosphor exhibiting the effect can be obtained.
  • b represents the molar ratio of the D element (a tetravalent metal element in which Si is essential).
  • b is a number satisfying 2.8 ⁇ b ⁇ 4.0, preferably 3.0 or more, more preferably 3.2 or more, more preferably 3.4 or more, more preferably 3.5 or more, particularly Preferably, it is 3.55 or more, preferably 3.9 or less, more preferably 3.8 or less, still more preferably 3.7 or less, and particularly preferably 3.65 or less.
  • c represents the molar ratio of the E element (a trivalent metal element in which Al is essential).
  • c is a number satisfying 1.0 ⁇ c ⁇ 3.0, preferably 1.1 or more, more preferably 1.2 or more, still more preferably 1.3 or more, and preferably 2.5 or more. Below, more preferably 2.0 or less, still more preferably 1.75 or less, particularly preferably 1.5 or less.
  • (b + c) / a is a ratio of the sum of the molar ratio of the D element and the E element to the sum of the molar ratio of the A element and the activator element, and is generally 4.0 ⁇ (b + c) / a ⁇ 6 It is a number satisfying .0. Further, (b + c) / a is preferably 4.25 or more, more preferably 4.5 or more, still more preferably 4.75 or more, and preferably 5.75 or less, more preferably 5.5. Hereinafter, it is more preferably 5.25 or less.
  • d represents the molar ratio of N element (nitrogen).
  • d is a number satisfying 5.0 ⁇ d ⁇ 7.0, preferably 5.5 or more, more preferably 6.0 or more, further preferably 6.25 or more, and particularly preferably 6.5 or more. Also, it is preferably 6.9 or less, more preferably 6.8 or less, and particularly preferably 6.7 or less.
  • e represents the molar ratio of O element (oxygen).
  • e is a number satisfying 0 ⁇ e ⁇ 2.0, preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more, still more preferably 0.4 or more, More preferably 0.45 or more, further preferably 0.5 or more, particularly preferably 0.55 or more, preferably 1.5 or less, more preferably 1.0 or less, more preferably 0.8 or less. More preferably, it is 0.6 or less.
  • (d + e) / a is the ratio of the sum of the molar ratios of N element (nitrogen) and O element (oxygen) to the sum of the molar ratios of element A and activator element, and usually 6.5 ⁇ ( d + e) /a ⁇ 7.5.
  • (d + e) / a is preferably 6.7 or more, more preferably 6.9 or more, particularly preferably 6.95 or more, and preferably 7.3 or less, more preferably 7.1 or less. Particularly preferably, it is 7.05 or less.
  • the molar ratio of a, the molar ratio of d, and the molar ratio of e are within the above ranges, that is, a, b, c, (b + c) / a,
  • the A element can be reliably dissolved, and a phosphor exhibiting the above-described effects can be obtained.
  • Sr is 13.5 wt% or more and 25.4% or less
  • Ca is more than 0 and 6.3 wt% or less
  • Eu is more than 0 and 5.0 or less.
  • Wt% or less Si 25.0 wt% or more and 37.0 wt% or less, Al 8.1 wt% or more 17.7 wt% or less, N 25.0 wt% or more 33.0 wt% or less, O Is preferably more than 0 and 5.3% by weight or less.
  • the phosphor of the third embodiment of the present invention has the following formula [2]: (A 1-x , Eu x ) a D b E c N d O e [2]
  • A represents an alkaline earth metal element essential for Sr and Ca
  • D represents a tetravalent metal element essential for Si
  • E represents a trivalent metal essential for Al.
  • x represents a number satisfying 0.0001 ⁇ x ⁇ 0.20
  • a, b, c, d, and e represent 0.7 ⁇ a ⁇ 1.3 and 2.8 ⁇ b ⁇ , respectively.
  • a shows the sum of the molar ratio of A element (alkaline earth metal element which makes Sr and Ca essential) and activator element (Eu).
  • a is usually a number satisfying 0.7 ⁇ a ⁇ 1.3, preferably 0.95 or more, more preferably 0.97 or more, more preferably 0.99 or more, and preferably 1. 05 or less, more preferably 1.03 or less, more preferably 1.1 or less.
  • the molar ratio of “a” and the moles of “b” and “c” described below are included in the range of the third embodiment of the present invention, that is, D element (a tetravalent metal element in which Si is essential) and By setting the ratio of element E (trivalent metal element essential for Al) within a specific range, element A (alkaline earth metal element essential for Sr and Ca) is surely solid-dissolved. A phosphor exhibiting the effect can be obtained.
  • b represents the molar ratio of the D element (a tetravalent metal element in which Si is essential).
  • b is a number satisfying 2.8 ⁇ b ⁇ 3.6, preferably 2.9 or more, more preferably 3.0 or more, more preferably 3.1 or more, more preferably 3.2 or more. Also, it is preferably 3.55 or less, more preferably 3.50 or less, further preferably 3.45 or less, and particularly preferably 3.4 or less.
  • c represents the molar ratio of the E element (a trivalent metal element in which Al is essential).
  • c is a number satisfying 1.0 ⁇ c ⁇ 3.0, preferably 1.4 or more, more preferably 1.45 or more, more preferably 1.5 or more, and further preferably 1.55 or more. Also, it is preferably 2.2 or less, more preferably 2.1 or less, more preferably 2.0 or less, further preferably 1.9 or less, and particularly preferably 1.8 or less. Further, (b + c) / a is a ratio of the sum of the molar ratio of the D element and the E element to the sum of the molar ratio of the A element and the activator element, and is generally 4.0 ⁇ (b + c) / a ⁇ 6 It is a number satisfying .0.
  • (b + c) / a is preferably 4.7 or more, more preferably 4.75 or more, more preferably 4.8 or more, still more preferably 4.85 or more, and preferably 5.3.
  • it is more preferably 5.25 or less, more preferably 5.2 or less, further preferably 5.15 or less, and particularly preferably 5.1 or less.
  • "d" shows the molar ratio of N element (nitrogen).
  • d is a number satisfying 5.0 ⁇ d ⁇ 7.0, preferably 5.8 or more, more preferably 5.9 or more, more preferably 6.0 or more, still more preferably 6.1 or more, particularly Preferably, it is 6.2 or more, preferably 6.6 or less, more preferably 6.55 or less, more preferably 6.5 or less, further preferably 6.45 or less, and particularly preferably 6.4 or less. is there.
  • e represents the molar ratio of O element (oxygen).
  • e is a number satisfying 0 ⁇ e ⁇ 2.0, preferably 0.4 or more, more preferably 0.45 or more, more preferably 0.5 or more, still more preferably 0.55 or more, and particularly preferably It is 0.6 or more, preferably 1.2 or less, more preferably 1.1 or less, more preferably 1.0 or less, more preferably 0.9 or less, and particularly preferably 0.8 or less.
  • (d + e) / a is the ratio of the sum of the molar ratios of N element (nitrogen) and O element (oxygen) to the sum of the molar ratios of element A and activator element, and usually 6.5 ⁇ ( d + e) /a ⁇ 7.3.
  • (d + e) / a is preferably 6.7 or more, more preferably 6.75 or more, more preferably 6.8 or more, particularly preferably 6.85 or more, and preferably 7.3 or less. More preferably, it is 7.25 or less, More preferably, it is 7.2 or less, Most preferably, it is 7.15 or less.
  • the molar ratio of a, the molar ratio of d, and the molar ratio of e are within the above ranges, that is, a, b, c, (b + c) / a, d, e, (d + e ) / A in the above range makes it possible to obtain a phosphor exhibiting the effects described above by reliably dissolving the A element.
  • the phosphor of the first embodiment of the present invention is usually 550 nm or more, preferably 570 nm or more, more preferably 575 nm or more, more preferably 580 nm or more, more preferably 582 nm or more, more preferably 590 nm or more, particularly preferably 600 nm.
  • the emission peak is usually in the wavelength range of 650 nm or less, preferably 630 nm or less, more preferably 610 nm or less. That is, it has a yellow to red light emission color.
  • the phosphor of the second embodiment is usually 581 nm or more, preferably 582 nm or more, and usually has a light emission peak in a wavelength range of 650 nm or less, preferably 630 nm or less, more preferably 610 nm or less. That is, it has an emission color of orange to red.
  • the phosphor of the third embodiment is usually 550 nm or more, preferably 570 nm or more, more preferably 575 nm or more, particularly preferably 580 nm or more, and usually 650 nm or less, preferably 600 nm or less, more preferably 595 nm or less, More preferably, it has an emission peak in a wavelength range of 590 nm or less. That is, it has a yellow to orange emission color.
  • the phosphors of the first to third embodiments of the present invention have a wide half-value width of the emission peak, when used in combination with a blue LED, light emission with good color rendering can be obtained with only one type of phosphor. .
  • a light emitting device is formed by combining a blue to yellow-green phosphor, a red phosphor, or the like, a light emitting device that emits light of higher color rendering can be obtained. Obtainable.
  • the half width of the emission peak is usually 95 nm or more, preferably 97 nm or more, more preferably 100 nm or more, more preferably 103 nm or more, and particularly preferably 105 nm or more. . That is, it shows an emission spectrum with a wide half-value width.
  • the phosphor of the first to third embodiments of the present invention has a wide half-value width of the light emission peak, when used in combination with a blue LED, the first to third embodiments of the present invention are used as the second light emitter. Even when only the above phosphor is used, light emission with good color rendering can be obtained. In particular, when only the phosphor of the third embodiment is used as the second light emitter, a light emitter with particularly good color rendering properties can be obtained, and the effects of the present invention can be remarkably exhibited.
  • a light emitting device is formed by combining a blue to yellow-green phosphor, a red phosphor, or the like, a light emitting device that emits light of higher color rendering can be obtained. Obtainable.
  • the x value of the CIE chromaticity coordinate of the phosphor according to the first or second embodiment of the present invention is usually 0.400 or more, preferably 0.425 or more, more preferably 0.450 or more, more preferably 0.00. 50 or more, particularly preferably 0.520 or more, usually 0.66 or less, preferably 0.63 or less, more preferably 0.61 or less, more preferably 0.59 or less, more preferably 0.575 or less, Especially preferably, it is 0.56 or less.
  • the y value of the CIE chromaticity coordinates of the phosphor according to the first or second embodiment of the present invention is usually 0.30 or more, preferably 0.35 or more, more preferably 0.40 or more, and still more preferably.
  • the x value of CIE chromaticity coordinates of the phosphor according to the third embodiment of the present invention is usually 0.400 or more, preferably 0.425 or more, more preferably 0.450 or more, and usually 0.8. 575 or less, preferably 0.550 or less, more preferably 0.525 or less, more preferably 0.500 or less, and particularly preferably 0.475 or less.
  • the y value of the CIE chromaticity coordinates of the phosphor of the third embodiment of the present invention is usually 0.425 or more, preferably 0.450 or more, more preferably 0.475 or more, and particularly preferably 0.480.
  • the above is usually 0.550 or less, preferably 0.525 or less, more preferably 0.510 or less.
  • the phosphor according to the first to third embodiments of the present invention has a wavelength range of usually 300 nm or more, preferably 330 nm or more, more preferably 360 nm or more, and usually 500 nm or less, preferably 480 nm or less, more preferably 460 nm or less.
  • the phosphors according to the first to third embodiments of the present invention also have excellent temperature characteristics. Specifically, the ratio of the emission peak intensity value in the emission spectrum diagram at 100 ° C. to the emission peak intensity value in the emission spectrum diagram at 25 ° C. when light having a peak at a wavelength of 405 nm is usually 50 % Or more, preferably 60% or more, more preferably 70% or more. In addition, since the emission intensity of ordinary phosphors decreases with increasing temperature, it is unlikely that the ratio exceeds 100%, but it may exceed 100% for some reason. However, if it exceeds 150%, the color shift tends to occur due to a temperature change.
  • the external quantum efficiency ( ⁇ o ) of the phosphors of the first to third embodiments of the present invention is usually 40% or more, preferably 50 or more, more preferably 60% or more.
  • the internal quantum efficiency, external quantum efficiency, absorption efficiency, and the like can be measured by, for example, the methods described in paragraphs [0026] to [0038] of JP-A-2008-285562.
  • the phosphors of the first to third embodiments of the present invention are usually in the form of fine particles.
  • the mass median diameter D 50 is usually 2 ⁇ m or more, preferably 5 ⁇ m or more, and usually 30 ⁇ m or less, preferably fine particles of the range 20 [mu] m.
  • the mass median diameter D 50 is too large, for example, tend to dispersibility becomes poor in the resin which is used as a sealing material described later, they tend to be too small and the low luminance.
  • Mass median diameter D 50 is, for example, obtained by measuring particle size distribution by laser diffraction scattering method, is a value determined from the mass-standard particle size distribution curve.
  • the median diameter D 50 is in this mass-standard particle size distribution curve, the accumulated value refers to the particle size value when the 50%.
  • each phosphor raw material preferably has an elemental composition represented by the following formula [3] so as to have a crystal phase composition represented by the formula [1].
  • it can be produced by weighing a compound or metal as a raw material to prepare a phosphor raw material mixture and firing the obtained phosphor raw material mixture.
  • A represents an alkaline earth metal element essential for Sr and Ca
  • D represents a tetravalent metal element essential for Si
  • E represents a trivalent metal essential for Al.
  • X represents a number satisfying 0.0001 ⁇ x ⁇ 0.20
  • f, g, h, i and j represent 0.7 ⁇ f ⁇ 1.3 and 2.8 ⁇ g ⁇ , respectively.
  • each phosphor raw material preferably has the composition of the crystal phase represented by the formula [2], preferably the elemental composition is represented by the following formula [4].
  • the phosphor raw material mixture can be prepared by weighing the compound or metal used as the raw material, and the obtained phosphor raw material mixture can be fired.
  • A represents an alkaline earth metal element essential for Sr and Ca
  • D represents a tetravalent metal element essential for Si
  • E represents a trivalent metal essential for Al.
  • X represents a number satisfying 0.0001 ⁇ x ⁇ 0.20
  • f, g, h, i and j represent 0.7 ⁇ f ⁇ 1.3 and 2.8 ⁇ g ⁇ , respectively.
  • f, g, h, i, and j correspond to a, b, c, d, and e in the item of the composition of the phosphor of this embodiment, respectively, and explanations of preferred ranges thereof are incorporated.
  • phosphor raw material As the phosphor material, a metal compound, a metal, or the like is used. For example, when producing a phosphor having the composition of the crystal phase represented by the above formula [1] or [2], a raw material of A element (hereinafter referred to as “A source” as appropriate), a raw material of D element (hereinafter referred to as “D” as appropriate).
  • a source a raw material of A element
  • D element hereinafter referred to as “D” as appropriate
  • E source E element source
  • N source N element source
  • O source O element source
  • Eu element A necessary combination is mixed from raw materials (hereinafter referred to as “Eu source” as appropriate) (mixing step), the resulting mixture is fired (firing step), and the obtained fired product is crushed and pulverized as necessary. Or by washing (post-treatment process).
  • the raw material used as the alkaline earth metal source is preferably an alkaline earth metal oxide or an alkaline earth metal carbonate, particularly preferably an alkaline earth metal carbonate. This is because the raw material used as the alkaline earth metal source can be handled in the air, which eliminates the need for atmosphere control during mixing and is advantageous in terms of manufacturing costs.
  • an Sr source such as Sr 3 N 2 , SrO, SrCO 3 , or a Ca source such as Ca 3 N 2 , CaO, CaCO 3, etc.
  • Si source such as SiC, Si 3 N 4 , and SiO 2 as D source
  • Al source such as AlN, Al 2 O 3 , and Al 4 C 3 as E source
  • Eu metal, oxide, and carbonate as Eu source Eu compounds selected from chlorides, fluorides, nitrides or oxynitrides can be used.
  • the O source (oxygen) and N source (nitrogen) in the formula [3] or [4] are A source (Sr and Ca source), D source (Si source), E source (Al source), Eu source. May be supplied from a firing atmosphere. Each raw material may contain inevitable impurities.
  • the mixing of the phosphor raw material may be either the wet mixing method or the dry mixing method, but in order to avoid contamination of the phosphor raw material with moisture, a dry mixing method or a wet mixing method using a water-insoluble solvent is more preferable. .
  • the phosphor material mixture obtained in the mixing step is fired (firing step).
  • the above-mentioned phosphor raw material mixture is dried as necessary and then filled in a container such as a crucible and fired using a firing furnace, a pressure furnace or the like.
  • the pressure in the furnace is 0.2 MPa or more and 100 MPa or less as described above. It has been found that firing the phosphor raw material mixture is more preferable. Preferred conditions in the firing step are described below.
  • Examples of the material of the firing container (such as a crucible) used in the firing step include boron nitride and carbon.
  • Calcination temperature varies depending on other conditions such as pressure, but can be usually performed in a temperature range of 1300 ° C. or higher and 2100 ° C. or lower.
  • the highest temperature reached in the firing step is usually 1200 ° C. or higher, preferably 1400 ° C. or higher, more preferably 1600 ° C. or higher, particularly preferably 1800 ° C. or higher, and usually 2100 ° C. or lower, preferably 2000 ° C. or lower. Preferably it is 1900 degrees C or less. If the firing temperature is too high, nitrogen will fly, generating defects in the host crystal and coloring, and impurities tend to be generated. If it is too low, the progress of the solid phase reaction tends to be slow.
  • the heating rate in the firing step is usually 2 ° C./min or more, preferably 5 ° C./min or more, more preferably 10 ° C./min or more, and usually 30 ° C./min or less, preferably 25 ° C./min or less. It is. If the rate of temperature rise is below this range, the firing time may be long. In addition, if the rate of temperature rise exceeds this range, the firing device, container, etc. may be damaged.
  • the firing atmosphere in the firing step is arbitrary as long as the phosphors according to the first to third embodiments of the present invention are obtained, but a nitrogen-containing atmosphere is preferable. Specific examples include a nitrogen atmosphere and a hydrogen-containing nitrogen atmosphere, and a nitrogen atmosphere is particularly preferable.
  • the oxygen content in the firing atmosphere is usually 10 ppm or less, preferably 5 ppm or less.
  • the firing time varies depending on the temperature and pressure during firing, but is usually 10 minutes or longer, preferably 30 minutes or longer, and usually 24 hours or shorter, preferably 12 hours or shorter.
  • the pressure in the firing step varies depending on the firing temperature and the like, the pressure in the furnace can be set to atmospheric pressure (0.1013 MPa) or a pressurized state.
  • the pressure in the firing step is usually 0.1013 MPa or more, preferably 0.2 MPa or more, more preferably 0.4 MPa or more, and usually 100 MPa or less, preferably 50 MPa or less, more preferably 20 MPa or less, particularly preferably 10 MPa. It is as follows. If the pressure is too high, by-products tend to increase, and if the pressure is too low, the obtained phosphor may be decomposed or colored, so adjustment of the pressure is important.
  • the firing conditions may be the same or different between the first firing and the second firing. It is preferable to perform the second baking at a relatively high temperature after the first baking as a preliminary baking at a relatively low temperature in order to reduce the impurity phase and increase the luminous efficiency.
  • the obtained fired product is granular or massive. This is pulverized, pulverized and / or classified into a powder of a predetermined size.
  • D 50 is less than about 30 [mu] m.
  • the treatment include a method of subjecting the synthesized product to sieve classification with an opening of about 45 ⁇ m, and passing the powder that has passed through the sieve to the next step, or the synthesized product to a general method such as a ball mill, a vibration mill, or a jet mill.
  • a general method such as a ball mill, a vibration mill, or a jet mill.
  • pulverizing to a predetermined particle size using a grinder is mentioned. In the latter method, excessive pulverization not only generates fine particles that easily scatter light, but also generates crystal defects on the particle surface, which may cause a decrease in luminous efficiency.
  • a step of cleaning the phosphor may be provided. After the cleaning step, the phosphor is dried until it has no adhering moisture and is used. Further, if necessary, dispersion / classification treatment may be performed to loosen the aggregation.
  • the phosphor according to the first to third embodiments of the present invention can be used for any application using the phosphor.
  • the phosphors of the first to third embodiments of the present invention can be used alone, but two or more kinds of phosphors can be used together, or the phosphors of the first to third embodiments of the present invention can be used together. It can also be used as a phosphor mixture of any combination, such as in combination with other phosphors.
  • the phosphors of the first to third embodiments of the present invention can be used as a phosphor-containing composition by mixing with a known liquid medium (for example, a silicone compound).
  • a known liquid medium for example, a silicone compound.
  • the phosphor obtained by the first to third embodiments of the present invention can be used in various light emitting devices by combining with a light source that emits ultraviolet light, taking advantage of the fact that it can be excited by ultraviolet light. It can be used suitably.
  • the emission color of the light-emitting device is not limited to purple or white, but by appropriately selecting the combination and content of phosphors, light emission that emits light in any color, such as light bulb color (warm white) or pastel color
  • the device can be manufactured.
  • the light-emitting device thus obtained can be used as a light-emitting portion (particularly a liquid crystal backlight) or an illumination device of an image display device.
  • the phosphors of the first to third embodiments of the present invention can be used by mixing with a liquid medium.
  • the phosphor of the first to third embodiments of the present invention is used for a light emitting device or the like, it is preferably used in a form dispersed in a liquid medium.
  • the phosphor of the first to third embodiments of the present invention dispersed in a liquid medium is appropriately referred to as “the phosphor-containing composition of the present invention”, and the fourth embodiment of the present invention is A phosphor-containing composition obtained by dispersing at least one phosphor described above in a liquid medium.
  • or 3rd embodiment of this invention contained in a fluorescent substance containing composition may be only 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • the phosphor-containing composition may contain a phosphor other than the phosphors of the first to third embodiments of the present invention as long as the effects of the present embodiment are not significantly impaired.
  • the kind of liquid medium used for the phosphor-containing composition is not particularly limited, and a curable material that can be molded over the semiconductor light emitting element can be used.
  • the curable material is a fluid material that is cured by performing some kind of curing treatment.
  • the fluid state means, for example, a liquid state or a gel state.
  • the curable material is not particularly limited as long as it secures the role of guiding the light emitted from the solid light emitting element to the phosphor.
  • only 1 type may be used for a curable material and it may use 2 or more types together by arbitrary combinations and a ratio. Therefore, as the curable material, any of inorganic materials, organic materials, and mixtures thereof can be used.
  • the inorganic material for example, a solution obtained by hydrolytic polymerization of a solution containing a metal alkoxide, a ceramic precursor polymer or a metal alkoxide by a sol-gel method, or a combination thereof, an inorganic material (for example, a siloxane bond) Inorganic materials having
  • examples of the organic material include a thermosetting resin and a photocurable resin.
  • specific examples include (meth) acrylic resins such as methyl poly (meth) acrylate; styrene resins such as polystyrene and styrene-acrylonitrile copolymers; polycarbonate resins; polyester resins; phenoxy resins; butyral resins; Cellulose resins such as cellulose acetate and cellulose acetate butyrate; epoxy resins; phenol resins; silicone resins and the like.
  • a silicon-containing compound is a compound having a silicon atom in the molecule, organic materials such as polyorganosiloxane (silicone compounds), inorganic materials such as silicon oxide, silicon nitride, and silicon oxynitride, and borosilicates and phosphosilicates. Examples thereof include glass materials such as salts and alkali silicates.
  • silicone materials are preferable from the viewpoints of transparency, adhesion, ease of handling, and excellent mechanical and thermal stress relaxation characteristics.
  • the silicone-based material usually refers to an organic polymer having a siloxane bond as a main chain, and for example, a silicone-based material such as a condensation type, an addition type, an improved sol-gel type, and a photocurable type can be used.
  • condensation type silicone material for example, semiconductor light-emitting device members described in JP-A No. 2007-129973 to No. 112975, JP-A No. 2007-19459, JP-A No. 2008-34833 and the like can be used.
  • Condensation-type silicone materials have excellent adhesion to packages, electrodes, and light-emitting elements used in semiconductor light-emitting devices, so the addition of adhesion-improving components can be minimized, and crosslinking is mainly due to siloxane bonds. There is an advantage of excellent heat resistance and light resistance.
  • addition-type silicone material examples include potting silicone materials described in JP-A No. 2004-186168, JP-A No. 2004-221308, JP-A No. 2005-327777, JP-A No. 2003-183881, Organically modified silicone materials for potting described in JP-A-2006-206919, silicone materials for injection molding described in JP-A-2006-324596, silicone materials for transfer molding described in JP-A-2007-231173, etc. Can be suitably used.
  • the addition-type silicone material has advantages such as a high degree of freedom in selection such as a curing speed and a hardness of a cured product, a component that does not desorb during curing, hardly shrinking due to curing, and excellent deep part curability.
  • an improved sol-gel type silicone material which is one of the condensation types
  • the silicone materials described in JP-A-2006-077234, JP-A-2006-291018, JP-A-2007-119569 and the like are used. It can be used suitably.
  • the improved sol-gel type silicone material has an advantage that it has a high degree of crosslinking, heat resistance, light resistance and durability, and is excellent in the protective function of a phosphor having low gas permeability and low moisture resistance.
  • the photocurable silicone-based material for example, silicone materials described in JP2007-131812A, JP2007-214543A, and the like can be suitably used.
  • the ultraviolet curable silicone material has advantages such as excellent productivity because it cures in a short time, and it is not necessary to apply a high temperature for curing, so that the light emitting element is hardly deteriorated.
  • silicone materials may be used alone, or a plurality of silicone materials may be mixed and used as long as they do not inhibit curing by mixing.
  • the content of the liquid medium is arbitrary as long as the effect of the present embodiment is not significantly impaired, but is usually 25% by mass or more, preferably 40% by mass or more with respect to the entire phosphor-containing composition of the present embodiment. Moreover, it is 99 mass% or less normally, Preferably it is 95 mass% or less, More preferably, it is 80 mass% or less.
  • the amount of the liquid medium is large, no particular problem occurs. However, in order to obtain a desired chromaticity coordinate, color rendering index, luminous efficiency, etc. in the case of a semiconductor light emitting device, it is usually at a blending ratio as described above. It is desirable to use a liquid medium. On the other hand, when there is too little liquid medium, fluidity
  • the liquid medium mainly has a role as a binder in the phosphor-containing composition of the present embodiment.
  • the liquid medium may be used alone or in combination of two or more in any combination and ratio.
  • other thermosetting resins such as an epoxy resin are contained so as not to impair the durability of the silicon-containing compound. Also good.
  • the content of the other thermosetting resin is usually 25% by mass or less, preferably 10% by mass or less, based on the total amount of the liquid medium as the binder.
  • the phosphor content in the phosphor-containing composition is arbitrary as long as the effect of the present embodiment is not significantly impaired, but is usually 1% by mass or more, preferably with respect to the entire phosphor-containing composition of the present embodiment. Is 5% by mass or more, more preferably 20% by mass or more, and usually 75% by mass or less, preferably 60% by mass or less.
  • the proportion of the phosphor of the first to third embodiments of the present invention in the phosphor in the phosphor-containing composition is also arbitrary, but is usually 30% by mass or more, preferably 50% by mass or more. Usually, it is 100 mass% or less.
  • the flowability of the phosphor-containing composition may be inferior and difficult to handle, and if the phosphor content is too low, the light emission efficiency of the light-emitting device decreases. There is a tendency.
  • the phosphor-containing composition has other components such as a metal oxide for adjusting the refractive index, a diffusing agent, a filler, and a viscosity, as long as the effects of the present embodiment are not significantly impaired.
  • You may contain additives, such as a regulator and a ultraviolet absorber. Only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a first light emitter excitation light source
  • a second light emitter that can emit visible light by converting light from the first light emitter into visible light.
  • the light emitting device of this embodiment includes a first phosphor as the second light emitter.
  • a first phosphor as the second light emitter.
  • the ratio of the first phosphor in the second phosphor is 95% by mass or more, preferably 98% by mass or more, and more preferably 99.9% by mass or more, different types of phosphors
  • By mixing the phosphors it is possible to avoid the problem of self-absorption that other phosphors absorb the light emission of the phosphors, so that a light-emitting device with high luminous efficiency can be provided.
  • phosphors of the first to third embodiments used in the light emitting device of the present embodiment include [1. Examples include phosphors according to the embodiments described in the “Phosphor” column, and phosphors used in each Example in the “Example” column described below. In addition, the phosphors of the first to third embodiments may be used alone or in combination of two or more in any combination and ratio.
  • the light emitting device of this embodiment has a first light emitter (excitation light source) and uses at least the phosphors of the first to third embodiments as the second light emitter.
  • the configuration is not limited, and a known device configuration can be arbitrarily employed. A specific example of the device configuration will be described later.
  • an excitation light source as described later is used as the first light emitter, and in addition to the phosphors of the first to third embodiments, the light source will be described later.
  • a phosphor that emits blue fluorescence hereinafter referred to as “blue phosphor” as appropriate
  • a phosphor that emits green fluorescence hereinafter referred to as “green phosphor” as appropriate
  • a phosphor that emits red fluorescence hereinafter referred to as “green phosphor”.
  • the white color of the white light emitting device is any of (yellowish) white, (greenish) white, (blueish) white, (purple) white and white as defined by JIS Z 8701. Of these, white is preferred.
  • the first light emitter in the light emitting device of this embodiment emits light that excites a second light emitter described later.
  • the emission peak wavelength of the first illuminant is not particularly limited as long as it overlaps with the absorption wavelength of the second illuminant described later, and an illuminant having a wide emission wavelength region can be used.
  • a light emitter having an emission wavelength from the ultraviolet region to the blue region is used.
  • the specific value of the emission peak wavelength of the first illuminant is usually 300 nm or more, preferably 330 nm or more, more preferably 360 nm or more, and usually 500 nm or less, preferably 480 nm or less, more preferably 460 nm or less. It is desirable to use a light emitter having a wavelength.
  • a semiconductor light emitting element is generally used, and specifically, a light emitting diode (LED), a laser diode (LD), or the like can be used.
  • a light-emitting body which can be used as a 1st light-emitting body an organic electroluminescent light emitting element, an inorganic electroluminescent light emitting element, etc. are mentioned, for example.
  • what can be used as a 1st light-emitting body is not restricted to what is illustrated by this specification.
  • a GaN LED or LD using a GaN compound semiconductor is preferable.
  • GaN-based LEDs and LDs have significantly higher emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and emit very bright light with low power when combined with the phosphor. It is because it is obtained.
  • GaN-based LEDs and LDs usually have a light emission intensity 100 times or more that of SiC-based.
  • the GaN-based LED and LD those having an Al X Ga Y N light emitting layer, a GaN light emitting layer, or an In X Ga Y N light emitting layer are preferable.
  • the GaN-based LED is particularly preferably one having an In X Ga Y N light emitting layer, and more preferably a multiple quantum well structure having an In X Ga Y N layer and a GaN layer. preferable.
  • the value of X + Y is usually in the range of 0.8 to 1.2.
  • those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.
  • a GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic components, and the light-emitting layer is an n-type and p-type Al X Ga Y N layer, GaN layer, or In X Those having a heterostructure sandwiched between Ga Y N layers and the like are preferable because of high light emission efficiency, and those having a heterostructure having a quantum well structure are more preferable because of high light emission efficiency. Note that only one first light emitter may be used, or two or more first light emitters may be used in any combination and ratio. Among the first light emitters described above, a blue LED is preferable as the first light emitter used in the light emitting device of the present invention.
  • the specific value of the emission peak wavelength of the first illuminant is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, and usually 500 nm or less, preferably 480 nm or less, more preferably 460 nm or less. It is desirable to use an illuminant having an emission peak wavelength in the above range.
  • a light emitting device with high color rendering can be obtained by including at least one blue LED and the phosphors of the first to third embodiments. In particular, the phosphor of the third embodiment. The use of is particularly preferred.
  • a blue LED and one or more phosphors of the first to third embodiments can be used to obtain a light emitting device with high color rendering, but as another embodiment, A light emitting device in which a near-ultraviolet LED, the phosphor of the first to third embodiments (first phosphor), and the blue phosphor (second phosphor) are combined can also be provided.
  • the specific value of the emission peak wavelength of the first illuminant at this time is usually 300 nm or more, preferably 330 nm or more, more preferably 360 nm or more, and usually 420 nm or less, preferably 415 nm or less, more preferably 410 nm or less.
  • the specific value of the emission peak wavelength of the second phosphor (blue phosphor) at this time is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, and usually 500 nm or less, preferably 480 nm or less, More preferably, it is desirable to use a phosphor having an emission peak wavelength in a range of 460 nm or less.
  • the second light emitter in the light emitting device of the present embodiment is a light emitter that emits visible light when irradiated with the light from the first light emitter described above, and the first to third embodiments are used as the first phosphor.
  • the second phosphor blue phosphor, green phosphor, yellow phosphor, orange phosphor, red phosphor, etc.
  • the second light emitter is configured by dispersing the first and second phosphors in a sealing material.
  • composition of the phosphor other than the phosphors of the first to third embodiments that is, the second phosphor used in the second luminous body, but it becomes a base crystal.
  • Y 2 O 3 , YVO 4 , Zn 2 SiO 4 metal oxides typified by Y 3 A 15 O 12 , Sr 2 SiO 4 , metal nitrides typified by Sr 2 Si 5 N 8 , Ca 5 Ce in phosphates typified by (PO 4 ) 3 Cl and the like, sulfides typified by ZnS, SrS, CaS and the like, oxysulfides typified by Y 2 O 2 S and La 2 O 2 S and the like , Ions of rare earth metals such as Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and ions of metals such as Ag, Cu, Au, Al, Mn, Sb A combination of the coactiv
  • the matrix crystal and the activator element or coactivator element are not particularly limited in element composition, and can be partially replaced with elements of the same family, and the obtained phosphor is light in the near ultraviolet to visible region. Any material that absorbs and emits visible light can be used. Specifically, the following phosphors can be used, but these are merely examples, and phosphors that can be used in the present embodiment are not limited to these. In the following examples, as described above, phosphors that differ only in part of the structure are omitted as appropriate.
  • the second light emitter in the light emitting device of this embodiment contains at least the first phosphor including the phosphors of the first to third embodiments described above. Any one of the phosphors of the first to third embodiments may be used alone, or two or more thereof may be used in any combination and ratio, so that a desired emission color is obtained. What is necessary is just to adjust suitably the composition of the fluorescent substance of the 1st thru
  • the second light emitter in the light emitting device of the present embodiment may contain a phosphor (that is, the second phosphor) in addition to the first phosphor described above, depending on the application.
  • the second phosphor emits fluorescence having a color different from that of the first phosphor.
  • phosphors are used. For example, when a green phosphor is used as the first phosphor, a phosphor other than a green phosphor such as a blue phosphor, a red phosphor, or a yellow phosphor may be used as the second phosphor.
  • a phosphor having the same color as the first phosphor can be used as the second phosphor.
  • Second phosphor mass median diameter D 50 that is used for the light emitting device of the present embodiment is generally 2 ⁇ m or more and preferably 5 ⁇ m or more, and usually 30 ⁇ m or less is preferably in a range of inter alia 20 ⁇ m or less.
  • the mass median diameter D 50 is too small, and the luminance decreases tends to phosphor particles tend to aggregate.
  • the mass median diameter is too large, there is a tendency for coating unevenness and blockage of a dispenser to occur.
  • the emission peak wavelength of the blue phosphor is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, and usually 490 nm or less, preferably 480 nm or less, more preferably 470 nm or less, and further preferably 460 nm or less. It is preferable to be in the wavelength range.
  • the emission peak wavelength of the blue phosphor used is within this range, it overlaps with the excitation band of the phosphor of this embodiment, and the phosphor of this embodiment is efficiently excited by the blue light from the blue phosphor. Because you can. Table 2 shows phosphors that can be used as such blue phosphors.
  • (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, (Ba , Ca, Mg, Sr) 2 SiO 4 : Eu, (Ba, Ca, Sr) 3 MgSi 2 O 8: Eu are preferred, and (Ba, Sr) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 10 ( PO 4 ) 6 (Cl, F) 2 : Eu and Ba 3 MgSi 2 O 8 : Eu are more preferable, and Sr 10 (PO 4 ) 6 Cl 2 : Eu and BaMgAl 10 O 17 : Eu are particularly preferable.
  • the emission peak wavelength of the green phosphor is usually larger than 500 nm, preferably 510 nm or more, more preferably 515 nm or more, and usually 550 nm or less, especially 542 nm or less, and further preferably 535 nm or less. If this emission peak wavelength is too short, it tends to be bluish, while if it is too long, it tends to be yellowish, and the characteristics as green light may deteriorate. Table 3 shows phosphors that can be used as such green phosphors.
  • Y 3 (Al, Ga) 5 O 12 : Tb, CaSc 2 O 4 : CeCa 3 (Sc, Mg) 2 Si 3 O 12 : Ce, (Sr, Ba ) 2 SiO 4 : Eu, (Si, Al) 6 (O, N) 8 : Eu ( ⁇ -sialon), (Ba, Sr) 3 Si 6 O 12 N 2 : Eu are preferable.
  • the emission peak wavelength of the yellow phosphor is usually in the wavelength range of 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. Is preferred. Table 4 shows phosphors that can be used as such yellow phosphors.
  • Y 3 Al 5 O 12 Ce
  • a l5 O 12 Ce
  • (Ca, Sr) Si 2 N 2 O 2 : Eu is preferred.
  • any orange or red phosphor can be used as long as the effect of the present embodiment is not significantly impaired.
  • the emission peak wavelength of the orange to red phosphor is usually in the wavelength range of 570 nm or more, preferably 580 nm or more, more preferably 585 nm or more, and usually 780 nm or less, preferably 700 nm or less, more preferably 680 nm or less. Is preferred. Table 5 shows phosphors that can be used as such orange to red phosphors.
  • red phosphors (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr , Ba) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, (La, Y) 2 O 2 S: Eu, Eu (dibenzoylmethane) ) ⁇ -diketone Eu complex such as 3,1,10-phenanthroline complex, carboxylic acid Eu complex, K 2 SiF 6 : Mn is preferred, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Sr, Ca) AlSi (N, O): Eu, (La, Y) 2 O 2 S: Eu, and K 2 SiF 6 : Mn are more preferable.
  • FIG. 1 denotes a phosphor-containing portion (second light emitter)
  • reference numeral 2 denotes a surface-emitting GaN-based LD as an excitation light source (first light emitter)
  • reference numeral 3 denotes a substrate.
  • the excitation light source (LD) 2 and the phosphor-containing portion 1 (second light emitter) are separately manufactured, and their surfaces are brought into contact with each other by an adhesive or other means.
  • the phosphor-containing portion 1 (second light emitter) may be formed (molded) on the light emitting surface of the excitation light source (LD) 2.
  • FIG. 2A is a typical example of a light emitting device of a form generally referred to as a shell type, and has a light emission having an excitation light source (first light emitter) and a phosphor-containing portion (second light emitter). It is typical sectional drawing which shows one Example of an apparatus.
  • reference numeral 5 is a mount lead
  • reference numeral 6 is an inner lead
  • reference numeral 7 is an excitation light source (first light emitter)
  • reference numeral 8 is a phosphor-containing portion
  • reference numeral 9 is a conductive wire
  • reference numeral 10 is a mold. Each member is indicated.
  • FIG. 2B is a representative example of a light-emitting device in a form called a surface-mount type, and light emission having an excitation light source (first light emitter) and a phosphor-containing portion (second light emitter).
  • first light emitter an excitation light source
  • second light emitter a phosphor-containing portion
  • reference numeral 24 is a frame
  • reference numeral 25 is a conductive wire
  • reference numerals 26 and 27 are electrodes. Respectively.
  • the Ra of the emission color is usually 58 or more, preferably 60 or more, more preferably 62 or more, and particularly preferably 64 or more. As the value of Ra is larger, a light emitting device having better color rendering properties can be obtained.
  • the special color rendering index R9 of the emitted color is usually minus 75 or more, preferably minus 70 or more, more preferably minus 65 or more, particularly preferably minus 60 or more. When the special color rendering index R9 is in the above range, a light emitting device having good color rendering properties can be obtained.
  • the correlated color temperature of the emitted color is usually 2600 K or higher, preferably 2700 K or higher, particularly preferably 2800 K or higher, and usually 4500 K or lower, preferably 4300 K or lower, more preferably 4000 K or lower, Preferably it is 3700K or less, Especially preferably, it is 3400K or less.
  • the correlated color temperature is in the above-described range, a light emitting device that exhibits a warm emission color from a preferable white color to a light bulb color (a range in which the correlated color temperature is 2600K to 4500K) can be obtained.
  • the application of the light-emitting device of this embodiment is not particularly limited, and can be used in various fields where a normal light-emitting device is used. However, since the color rendering property is high and the color reproduction range is wide, illumination is particularly important. It is particularly preferably used as a light source for a device or an image display device.
  • a sixth embodiment of the present invention is an illumination device or an image display device including the above-described light emitting device.
  • FIG. 3 is a cross-sectional view schematically showing one embodiment of the illumination device of the present embodiment.
  • the surface-emitting illumination device has a large number of light-emitting devices 13 (on the light-emitting device 4 described above) on the bottom surface of a rectangular holding case 12 whose inner surface is light-opaque such as a white smooth surface.
  • the diffusion plate 14 is fixed for uniform light emission.
  • the surface-emitting illumination device 11 is driven to emit light by applying a voltage to the excitation light source (first light emitter) of the light-emitting device 13, and a part of the light emission is converted to the phosphor-containing portion (first The phosphor in the phosphor-containing resin portion as the second phosphor) absorbs and emits visible light, while light emission with high color rendering is obtained by mixing with blue light or the like that is not absorbed by the phosphor.
  • the light passes through the diffusion plate 14 and is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 14 of the holding case 12.
  • the specific configuration of the image display device is not limited, but it is preferably used together with a color filter.
  • the image display device is a color image display device using color liquid crystal display elements
  • the light emitting device is used as a backlight, a light shutter using liquid crystal, and a color filter having red, green, and blue pixels; By combining these, an image display device can be formed.
  • the present invention will be described more specifically with reference to examples.
  • the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
  • the values of various production conditions and evaluation results in the following examples have meanings as preferable values of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the value of the upper limit or the lower limit. It may be a range defined by a combination of values of the following examples or values of the examples.
  • the light from the excitation light source was passed through a diffraction grating spectrometer having a focal length of 10 cm, and only the excitation light having a wavelength of 455 nm was irradiated to the phosphor through the optical fiber.
  • the light generated from the phosphor by the irradiation of the excitation light is dispersed by a diffraction grating spectroscope having a focal length of 25 cm, the emission intensity of each wavelength is measured by a spectrum measuring device in a wavelength range of 300 nm to 800 nm, and a personal computer is used.
  • An emission spectrum was obtained through signal processing such as sensitivity correction.
  • the slit width of the light-receiving side spectroscope was set to 1 nm and the measurement was performed.
  • the emission peak wavelength (hereinafter sometimes referred to as “peak wavelength”) was read from the obtained emission spectrum.
  • the relative peak intensity was expressed as a relative value with the peak intensity of Comparative Example 1 as the reference value 100.
  • the relative emission luminance is a range obtained by excluding the excitation wavelength region from the emission spectrum in the visible region obtained by the above-described method, and the stimulus of Comparative Example 3 from the stimulus value Y in the XYZ color system calculated according to JIS Z8724.
  • the value Y was calculated as a relative value (hereinafter, sometimes simply referred to as “luminance”) with 100%.
  • ⁇ Chromaticity coordinates> The chromaticity coordinates of the x, y color system (CIE 1931 color system) are obtained from the data in the wavelength region of 360 nm to 800 nm of the emission spectrum obtained by the above method, according to JIS Z8724. The chromaticity coordinates x and y in the prescribed XYZ color system were calculated.
  • ⁇ Excitation spectrum> A fluorescence spectrophotometer F-4500 manufactured by Hitachi, Ltd. was used, and the wavelength was monitored according to the emission peak wavelength to obtain an excitation spectrum in the wavelength range of 250 nm to 500 nm.
  • the lattice constant has a skeletal structure composed of Si, Al, N, and O, and has a crystal structure in which Sr sites exist in the voids.
  • Examples 1 to 13, 17 and Comparative Examples 1 to 3 As phosphor raw materials, Sr 3 N 2 (manufactured by Shellac), Ca 3 N 2 (manufactured by Shellac), Si 3 N 4 (manufactured by Ube Industries), Al 2 O 3 (manufactured by Sumitomo Chemical), AlN (Tokuyama) The phosphor was prepared as follows using Eu 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the temperature was further increased to 1200 ° C. at a temperature increase rate of 20 ° C./min while maintaining 0.92 MPa. While maintaining at 1200 ° C. for 5 minutes, the thermocouple was changed to a radiation thermometer, and further heated to 1600 ° C. at a rate of temperature increase of 20 ° C./min. When the temperature reached 1600 ° C., the temperature was maintained for 2 hours, followed by heating to 1850 ° C. at 20 ° C./min, and the temperature was maintained for 6 hours. After firing, the mixture was cooled to 1200 ° C. at a temperature lowering rate of 20 ° C./min, and then allowed to cool. Thereafter, the product was crushed to obtain phosphors of Examples 1 to 13, 17 and Comparative Examples 1 to 3.
  • Example 14 to 16 Phosphors were prepared in the same manner as in Examples 1 to 13, 17 and Comparative Examples 1 to 3, except that the following preliminary firing was performed before firing.
  • BN crucible boron nitride crucible
  • This BN crucible was placed in a resistance heating type vacuum pressure atmosphere heat treatment furnace (manufactured by Fuji Denpa Kogyo Co., Ltd.). Subsequently, the pressure was reduced to 5 ⁇ 10 ⁇ 3 Pa or less, and then vacuum heating was performed from room temperature to 800 ° C. at a temperature rising rate of 20 ° C./min. When the temperature reached 800 ° C., high-purity nitrogen gas (99.9995%) was introduced for 30 minutes until the pressure in the furnace reached 0.92 MPa.
  • the temperature was further increased to 1200 ° C. at a temperature increase rate of 20 ° C./min while maintaining 0.92 MPa. While maintaining at 1200 ° C. for 5 minutes, the thermocouple was changed to a radiation thermometer and further heated to 1500 ° C. at a temperature rising rate of 20 ° C./min. When it reached 1500 ° C., it was maintained for 8 hours. After firing, the mixture was cooled to 1200 ° C. at a temperature lowering rate of 20 ° C./min, and then allowed to cool. Thereafter, the product was crushed to obtain pre-fired products of Examples 14 to 16.
  • Example 18 to 28 Examples 1 to 13 and 17 and Comparative Example except that Ba 3 N 2 (manufactured by Taiheiyo Cement Co., Ltd.) was used as the phosphor raw material, and the respective charge compositions of Examples 18 to 28 shown in Table 7 were used. Phosphors were obtained in the same manner as in Examples 1 to 3.
  • Comparative Examples 1 to 3 are phosphors in which Ca is not substituted at all, Examples 1 to 5 are phosphors in which Ca is substituted at a ratio of 10 mol% with respect to Sr, and Examples 6 to 12 and 17 are based on Sr.
  • Examples 13 to 15 and 18 to 21 were phosphors in which Ca was substituted at a ratio of 30 mol% to Sr
  • Examples 16 and 22 to 23 were Sr Phosphors in which Ca was substituted at a ratio of 40 mol% with respect to Example 24
  • Examples 24 to 28 were phosphors in which Ca was substituted at a ratio of 30 mol% and Ba at a ratio shown in Table 7.
  • Table 8 shows the results of refinement of the lattice constant based on the powder X-ray diffraction patterns of the phosphors of Examples 1 to 17 and Comparative Examples 1 to 3, and Patent Document 3 (Japanese Patent Publication No. 2010-518194).
  • V unit lattice volume
  • FIG. 4 is a powder X-ray pattern of the phosphors of Examples 2, 3, 6, 10 and Comparative Example 1.
  • FIG. The obtained powder X-ray diffraction pattern has a skeleton structure composed of Si, Al, N, and O, and SrAlSi 4 N, which is a kind of phosphor having a crystal structure in which Sr sites exist in the voids.
  • 7 shows a crystal phase having the same crystal structure as that of FIG. 7 , that is, a space group of a crystal structure in which the space group is classified as Pna2 1 , and the peak positions are slightly different. Moreover, it was confirmed that the difference in peak intensity ratio seen in FIG. 4 is the influence of selective orientation in the measurement.
  • FIG. 5 shows emission spectra of the phosphors obtained in Examples 2, 3, 6 to 9, 13 and Comparative Example 1. It was confirmed that the peak intensities of the phosphors of all the examples were increased from the peak intensity of Comparative Example 1. That is, the emission intensity was increased by adjusting the unit cell volume.
  • FIG. 6 is an excitation spectrum of the phosphor obtained in Example 2. It has been found that the phosphor of this example exhibits high-intensity orange light emission over a wide range of wavelengths from 300 nm to 550 nm, particularly from 400 nm to 500 nm.
  • FIG. 7 is a powder X-ray pattern of the phosphors of Examples 4 and 11 and Comparative Example 2, and FIG. 8 is an emission spectrum of those phosphors.
  • the ratio of Si and Al in the crystal structure is the same as that of the phosphor of Comparative Example 2, and only the amount of substitution of Ca is changed.
  • Comparative Example 2 a peak due to the impurity phase was confirmed, but in Example 4, the intensity decreased, and in Example 11, it was not confirmed. This suggests that by replacing the Sr site with Ca, the unit cell volume was adjusted and a phosphor having a more stable structure could be generated. Accordingly, the generation of the impurity phase is suppressed, and the target crystal phase is easily generated selectively, so that an increase in emission intensity is achieved.
  • FIG. 9 shows emission spectra of the phosphors of Examples 5 and 12 and Comparative Example 3.
  • the ratio of Si and Al in the crystal structure is the same as that of the phosphor of Comparative Example 3, and only the amount of substitution of Ca is changed.
  • the emission intensity increased in accordance with Example 5 and Example 12. This is because, as in the phosphors of Examples 4 and 11, and Comparative Example 2, the Sr site was replaced with Ca, whereby the unit cell volume was adjusted and a phosphor having a more stable structure could be generated. It is suggested.
  • FIG. 10 is a powder X-ray pattern of the phosphors of Examples 18 to 23.
  • the obtained powder X-ray diffraction pattern has a skeleton structure composed of Si, Al, N, and O, and SrAlSi 4 N, which is a kind of phosphor having a crystal structure in which Sr sites exist in the voids.
  • 7 shows a crystal phase having the same crystal structure as that of FIG. 7 , that is, a space group of a crystal structure in which the space group is classified as Pna2 1 , and the peak positions are slightly different. Moreover, it was confirmed that the difference in peak intensity ratio seen in FIG. 10 is the influence of selective orientation in the measurement.
  • FIG. 11 shows emission spectra of the phosphors of Examples 18 to 23. It can be seen that the emission peak wavelength can be controlled by adjusting the ratio of Si, Al, N, and O constituting the skeleton structure and the Ca substitution amount of the Sr site.
  • FIG. 12 is a powder X-ray pattern of the phosphors of Examples 18 and 24-28.
  • the obtained powder X-ray diffraction pattern has a skeleton structure composed of Si, Al, N, and O, and SrAlSi 4 N, which is a kind of phosphor having a crystal structure in which Sr sites exist in the voids.
  • 7 shows a crystal phase having the same crystal structure as that of FIG. 7 , that is, a space group of a crystal structure in which the space group is classified as Pna2 1 , and the peak positions are slightly different.
  • the difference in peak intensity ratio seen in FIG. 12 is the influence of the selective orientation in the measurement.
  • Ba could be solid solution-substituted at the ratio shown in Table 7 for the Sr sites in the crystal structure.
  • FIG. 13 shows the emission spectra of the phosphors of Examples 18 and 24-28.
  • the ratio of Si, Al, N, and O constituting the skeleton structure and the Ca substitution amount of the Sr site are made constant, and the Sr site is substituted with Ba, the full width at half maximum increases as the substitution amount increases.
  • the half-value width can be controlled by replacing the Sr site in the crystal structure of the phosphor of the present invention with Ba.
  • Table 9 shows the measurement results of the emission peak wavelength, CIE chromaticity coordinates, emission peak half width, and relative emission peak intensity of the phosphors of Examples 1 to 4, 6 to 11, and 13 and Comparative Examples 1 and 2. .
  • the peak intensity is increased from the peak intensity of Comparative Examples 1 and 2 while maintaining a wide half-value width, and the emission intensity is high in a wide range from yellow to red. It was confirmed that an excellent phosphor could be produced. This is considered to be because by replacing the Sr site with Ca together with the composition of the skeletal structure, the unit cell volume was adjusted and optimum stable structures could be constructed in various emission colors.
  • Table 10 shows the measurement results of the emission peak wavelength, CIE chromaticity coordinates, emission peak half-value width, and relative emission luminance of the phosphors of Examples 5, 12, 14 to 17 and Comparative Example 3.
  • the relative light emission luminance is higher than the relative light emission luminance of Comparative Example 3 while maintaining a wide half width.
  • Example 29 and 30 A phosphor was prepared in the same manner as in Example 9 in Example 29 and in the same manner as in Example 14 in Example 30. The obtained phosphor was subjected to composition analysis by the above method.
  • Table 11 shows the composition analysis results of the phosphors of Examples 29 and 30.
  • Example 29 is Sr 0.75 Ca 0.20 Eu 0.05 Si 3.57 Al 1.41 N 6.33 O 0.46
  • Example 30 is Sr 0. .67 Ca 0.28 Eu 0.05 Si 3.33 Al 1.73 N 6.13 O 0.74 , confirming that a phosphor having a substantially aimed composition (prepared composition) was obtained.
  • Sr 1.98 BaSiO 5 used in Comparative Example 5 Eu 0.02 is, Sr 1.98 BaSiO 5 by powder X-ray measurement: it was confirmed that Eu 0.02 is obtained.
  • the yttrium aluminum garnet phosphor used in Comparative Example 6 is P46-Y3 manufactured by Mitsubishi Chemical Corporation.
  • the phosphor of Example 18 is the phosphor of Example 14 described above
  • the phosphor of Example 19 is the phosphor of Example 15 described above
  • the phosphor of Example 22 is the fluorescence of Example 16 described above. It is the same as the body.
  • the simulation was performed by the following method.
  • Simulation method An emission spectrum obtained by subtracting the spectrum of the excitation light source from the actual measurement data of the blue LED (peak wavelength: 450 nm, half-value width: 21 nm) and the actual emission spectrum of the phosphor used at a wavelength of 455 nm was prepared. The emission peak intensity of each prepared spectrum is normalized to 1, and the spectrum obtained by multiplying the intensity of the blue LED and the emission peak intensity of the phosphor by an arbitrary ratio is added to obtain a white spectrum. As derived.
  • each optical characteristic evaluation item was as follows.
  • (I) The xy chromaticity coordinates on the CIE 1931 chromaticity diagram were calculated based on JIS Z8724: 1997 (title: color measurement method—light source color—).
  • (Ii) Based on the result of (i) above, after conversion to uv chromaticity coordinates on the CIE 1960 UCS chromaticity diagram, JIS Z8725: 1999 (title: measurement of light source distribution temperature and color temperature / correlated color temperature) Method) The correlated color temperature (Kelvin) and Duv were calculated.
  • (Iii) The color rendering index (Ra, R1 to R15) was calculated from the white spectrum based on JIS Z8726: 1990 (title: color rendering property evaluation method of light source).
  • Table 12 shows the chromaticity, correlated color temperature, and Duv values calculated from the white spectrum created by simulation for the light emitting devices using the phosphors of Examples 18 to 28 and Comparative Examples 4 to 6.
  • the light emitting device of Comparative Example 4 since the half-value width of the phosphor used was as narrow as 95 nm or less, the color rendering index Ra was as low as 57, and there was a problem in terms of color rendering properties. Since the full width at half maximum is 95 nm or more, the color rendering properties of the light emitting device are improved. In other words, the light emitting device of the present invention can provide a phosphor having a wide half-value width according to the present invention, so that it is possible to provide a light emitting device having good color rendering and white to light bulb color. .
  • Non-Patent Document 1 Proceedings of the IEICE General Conference, 2005, Electronics (2), 42, 2005-03-07.
  • the correlation color temperature of the light-emitting device described in 1 and the color rendering index Ra were almost the same, indicating the validity of the simulation used for creating the emission spectrum of the light-emitting device of the example.
  • the half width of the phosphor used is narrow, and the emission peak wavelength is too long as 594 nm, so the correlated color temperature is 1942K. It is not possible.
  • the emission peak wavelength of the phosphor to be used is on the short wavelength side, it is possible to provide a light emitting device with good color rendering and white to light bulb color.
  • the correlated color temperature of the phosphor used is about 5500K, and the blue LED and this phosphor alone cannot be a white to light bulb color (2600K to 4500K) light emitting device.
  • Examples 18 to 23 it was confirmed that a light emitting device having good color rendering properties and a light emitting color of white to light bulb color (4500K to 2600K) could be provided. This is because the emission peak wavelength can be adjusted while maintaining the feature that the phosphor of the present invention to be used has a wide half-value width of the emission spectrum.
  • the color rendering index Ra of the light emitting device of Example 18 is 7 points higher than that of Comparative Example 4, and the color rendering index Ra of Examples 19 to 23 is equivalent to that of Example 18. Or it increased within the range of plus 6 points.
  • the value of the color rendering index Ra is higher than that of Example 18 in Examples 24, 25, 26, It increased by 1 or 2 points in the order of 27 and 28. This is because the full width at half maximum of the emission spectrum can be widened by replacing the Sr site of the phosphor used in the light emitting device with Ba. As a result, it is possible to provide a light-emitting device having a light bulb color (2600K to 3250K) with good color rendering.
  • Example 31 Regarding the light emitting device simulated in Example 18 described above, a surface-mounted white light emitting device having the configuration shown in FIG. 2B was actually manufactured by the following procedure, and the light emission characteristics were measured. Of the constituent elements of the present embodiment, the constituent elements corresponding to those shown in FIG. 2B are indicated by parentheses as appropriate.
  • an InGaN light emitting diode manufactured by Showa Denko KK
  • Showa Denko KK which is a blue light emitting diode (hereinafter referred to as “blue LED” where appropriate) that emits light at a wavelength of 450 nm to 470 nm
  • This blue LED (22) was die-bonded to the electrode (27) at the bottom of the recess of the frame (24) using a silver paste as an adhesive.
  • the silver paste as the adhesive was thinly and uniformly applied in consideration of the heat dissipation of the heat generated in the blue LED (22).
  • the blue LED (22) and the electrode (26) of the frame (24) were wire-bonded.
  • a gold wire having a diameter of 25 ⁇ m was used as the wire (25).
  • the phosphor 18 described above was used as the luminescent material of the phosphor-containing part (23).
  • Phosphor slurry obtained by mixing the phosphor 18, the organically modified silicone resin (SCR 1011 manufactured by Shin-Etsu Silicone), and Aerosil (RX-200 manufactured by Nippon Aerosil Co., Ltd.) in a weight ratio of 15.5: 85.5: 2.
  • Aerosil RX-200 manufactured by Nippon Aerosil Co., Ltd.
  • the purpose of using Aerosil is to prevent sedimentation of the phosphor in the resin.
  • the obtained phosphor slurry is poured into the recesses of the frame (24) and cured by heating at 100 ° C. for 3 hours and further at 140 ° C. for 3 hours to form the phosphor-containing portion (23), and the surface A mounting type white light emitting device was produced. Further, the obtained light emitting device was driven to emit light at 25 ° C. by applying a current of 20 mA to the blue LED (22). All the light emission from the white light emitting device was received by an integrating sphere, and further introduced into a spectroscope by an optical fiber, the emission spectrum and the total luminous flux were measured, and the white chromaticity coordinates were measured.
  • the emission spectrum is measured by energizing 20 mA using Ocean Optics color / illuminance measurement software and USB2000 series spectroscope (integral sphere specification). , It was confirmed that it emitted light bulb color. From the obtained emission spectra, the correlated color temperature was calculated in the same manner as in Examples 18 to 28 and Comparative Examples 4 to 6, and it was 2773K.
  • the phosphor of the present invention can be used in any field where light is used.
  • image display of various electronic devices such as mobile phones, household appliances, and outdoor installation displays. It can be suitably used for an apparatus or the like.

Abstract

Provided is a phosphor which has a skeletal structure configured of Si, Al, N and O and has high luminous intensity. An oxynitride-based phosphor which is characterized by containing a crystalline phase that has a composition represented by formula (1): (A1-x,Eux)aDbEcNdOe. (In formula (1), A represents alkaline earth metal elements essentially including Sr and Ca; D represents tetravalent metal elements essentially including Si; E represents trivalent metal elements essentially including Al; x represents a number that satisfies 0.0001 ≤ x ≤ 0.20; and a, b, c, d and e respectively represent numbers that satisfy 0.7 ≤ a ≤ 1.3, 2.8 ≤ b ≤ 4.0, 1.0 ≤ c ≤ 3.0, 4.0 ≤ (b + c)/a ≤ 6.0, 5.0 ≤ d ≤ 7.0, 0 < e ≤ 2.0 and 6.5 ≤ (d + e)/a ≤ 7.5.) The oxynitride-based phosphor is also characterized in that: the crystal system of the crystalline phase is an orthorhombic system or a monoclinic system; and the unit cell volume (V) of the crystalline phase as calculated from the lattice constant is from 1,220 × 106 pm3 to 1,246 × 106 pm3 (inclusive).

Description

酸窒化物系蛍光体およびこれを用いた発光装置Oxynitride phosphor and light emitting device using the same
 本発明は、酸窒化物系蛍光体およびこれを用いた発光装置等に関する。 The present invention relates to an oxynitride phosphor and a light-emitting device using the same.
 蛍光体は、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、冷極線管(CRT)、発光装置(LED)などに用いられている。これらのいずれの用途においても、蛍光体を発光させるためには、蛍光体を励起するためのエネルギーを蛍光体に供給する必要がある。蛍光体は真空紫外線、紫外線、電子線、青色光などの高いエネルギーを有する励起源により励起されて、可視光を発する。 Fluorescent substances are used in fluorescent display tubes (VFD), field emission displays (FED), plasma display panels (PDP), cold cathode tubes (CRT), light emitting devices (LEDs), and the like. In any of these applications, in order to cause the phosphor to emit light, it is necessary to supply energy for exciting the phosphor to the phosphor. The phosphor is excited by an excitation source having high energy such as vacuum ultraviolet rays, ultraviolet rays, electron beams, blue light, and emits visible light.
 近年、高い演色性と色再現性を備えた白色光を放出する発光装置が求められており、その実現を目指し従来のケイ酸塩蛍光体、リン酸塩蛍光体、アルミン酸塩蛍光体、硫化物蛍光体などの蛍光体に加えて、窒化物蛍光体や酸窒化物蛍光体についても探索されている。 In recent years, there has been a demand for a light emitting device that emits white light with high color rendering and color reproducibility. To achieve this, conventional silicate phosphors, phosphate phosphors, aluminate phosphors, sulfides are required. In addition to phosphors such as nitride phosphors, nitride phosphors and oxynitride phosphors are also being searched for.
 例えば、注目を浴びている酸窒化物蛍光体の一つとして、SrAlSiON13:Eu、SrAl1.25Si3.750.256.75:Eu、SrAlSi:Euに代表される組成を有する蛍光体が報告されている(特許文献1~4)。 For example, Sr 2 Al 3 Si 7 ON 13 : Eu, SrAl 1.25 Si 3.75 O 0.25 N 6.75 : Eu, SrAlSi 4 N are one of the oxynitride phosphors that are attracting attention. 7 : Phosphors having a composition typified by Eu have been reported (Patent Documents 1 to 4).
特開2010-106127号公報JP 2010-106127 A 国際公開第2007/037059号パンフレットInternational Publication No. 2007/037059 Pamphlet 特表2010-518194号公報Special table 2010-518194 gazette 特開2011-195688号公報JP 2011-195688 A
 ここで、特許文献1に記載の蛍光体は、その結晶構造が開示されているが、結晶格子のサイズと元素置換の効果については何ら検討がなされておらず、高い発光強度を得ることができていないため、実用化するためには更なる発光強度の向上が求められている。
 また、特許文献2に記載の蛍光体はSrサイトをBaに置換した具体例が開示されているが、その効果については充分に検討されておらず、結晶構造との関係についても何ら検討がなされていない。
 また、特許文献3には、SrサイトをCaで置換することにより発光波長を長波化し得ることは開示されているものの、Caで置換した具体例については開示がなく、Ca置換による結晶格子のサイズの変化や発光強度の向上については何ら示唆されていない。
 また、上述した特許文献4に記載の蛍光体は、発光強度は向上してきているものの、実用化の点では未だ不充分であり、単相を得るためには繰り返し焼成が必要とされ、その分、製造コストが高くなる可能性がある。
Here, although the crystal structure of the phosphor described in Patent Document 1 is disclosed, no study has been made on the size of the crystal lattice and the effect of element substitution, and high emission intensity can be obtained. Therefore, further improvement in emission intensity is required for practical use.
In addition, the phosphor described in Patent Document 2 discloses a specific example in which the Sr site is replaced with Ba, but the effect has not been sufficiently studied, and the relationship with the crystal structure has not been studied at all. Not.
Further, although Patent Document 3 discloses that the emission wavelength can be lengthened by substituting the Sr site with Ca, there is no disclosure of specific examples of substituting with Ca, and the size of the crystal lattice due to Ca substitution. There is no suggestion of any change in light emission or improvement in emission intensity.
Further, although the phosphor described in Patent Document 4 described above has improved the emission intensity, it is still insufficient in practical use, and repeated firing is required to obtain a single phase. The manufacturing cost may be high.
 このように、特許文献1~4に記載の蛍光体、即ち、Si、Al、N、およびOから構成される骨格構造を有し、その空隙にSrサイトが存在するという結晶構造を持つ蛍光体の発光強度の向上が望まれていた。
 本発明の課題は、Si、Al、N、およびOから構成される骨格構造を有し、その空隙にSrサイトが存在するという結晶構造を持つ蛍光体の発光強度を向上させることにある。
Thus, the phosphors described in Patent Documents 1 to 4, that is, phosphors having a skeletal structure composed of Si, Al, N, and O and having a crystal structure in which Sr sites exist in the voids. The improvement of the emission intensity was desired.
An object of the present invention is to improve the emission intensity of a phosphor having a skeleton structure composed of Si, Al, N, and O and having a crystal structure in which Sr sites exist in the voids.
 本発明者等は上記課題を達成すべく諸種の検討を行った結果、結晶相の単位格子体積が特定の範囲である酸窒化物系蛍光体が発光強度の点で優れること、さらには、下記一般式[1]で表されるようにアルカリ土類金属元素の中でもCaを必須とするとさらに発光強度が向上することを見出した。本発明はこれらの知見に基づいて成し遂げられたものである。 As a result of various studies to achieve the above-mentioned problems, the inventors of the present invention are excellent in terms of emission intensity of oxynitride phosphors whose unit cell volume of the crystal phase is in a specific range. As represented by the general formula [1], it has been found that when Ca is essential among the alkaline earth metal elements, the emission intensity is further improved. The present invention has been accomplished based on these findings.
 即ち、本発明の要旨は、次の第1の実施態様の蛍光体を含む。
〔1〕下記式[1]:
(A1-x,Eue   [1]
(式[1]中、AはSrおよびCaを必須とするアルカリ土類金属元素を示し、DはSiを必須とする4価の金属元素を示し、EはAlを必須とする3価の金属元素を示し、xは0.0001≦x≦0.20を満たす数を示し、a、b、c、d及びeは、それぞれ、0.7≦a≦1.3、2.8≦b≦4.0、1.0≦c≦3.0、4.0≦(b+c)/a≦6.0、5.0≦d≦7.0、0<e≦2.0、6.5≦(d+e)/a≦7.5を満たす数を示す。)で表される組成を有する結晶相を含み、前記結晶相の結晶系が斜方晶系または単斜晶系であり、格子定数から算出した該結晶相の単位格子体積(V)が1220×10pm以上、1246×10pm以下であることを特徴とする酸窒化物系蛍光体。
〔2〕前記結晶相の空間群がPna21であることを特徴とする〔1〕に記載の蛍光体。
〔3〕前記式[1]において、A元素全体に対するCaの割合が、0.001モル%以上80モル%以下であることを特徴とする〔1〕または〔2〕に記載の蛍光体。
〔4〕発光ピークが、波長550nm以上650nm以下の範囲に存在することを特徴とする〔1〕~〔3〕のいずれかに記載の蛍光体。
 また、本発明の要旨は、次の第2の実施態様の蛍光体を含む。
〔5〕下記式[1]:
(A1-x,Eue   [1]
(式[1]中、AはSrおよびCaを必須とするアルカリ土類金属元素を示し、DはSiを必須とする4価の金属元素を示し、EはAlを必須とする3価の金属元素を示し、xは0.0001≦x≦0.20を満たす数を示し、a、b、c、d及びeは、それぞれ、0.7≦a≦1.3、2.8≦b≦4.0、1.0≦c≦3.0、4.0≦(b+c)/a≦6.0、5.0≦d≦7.0、0<e≦2.0、6.5≦(d+e)/a≦7.5を満たす数を示す。)で表される組成を有する結晶相を含み、前記結晶相の結晶系が斜方晶系または単斜晶系であり、発光ピークが、波長581nm以上650nm以下の範囲に存在することを特徴とする酸窒化物系蛍光体。
〔6〕前記結晶相の空間群がPna21であることを特徴とする〔5〕に記載の蛍光体。
〔7〕前記式[1]において、A元素全体に対するCaの割合が、0.001モル%以上80モル%以下であることを特徴とする〔5〕または〔6〕に記載の蛍光体。
 また、本発明の要旨は、次の第3の実施態様の蛍光体を含む。
〔8〕下記式[2]:
(A1-x,Eue   [2]
(式[2]中、AはSrおよびCaを必須とするアルカリ土類金属元素を示し、DはSiを必須とする4価の金属元素を示し、EはAlを必須とする3価の金属元素を示し、xは0.0001≦x≦0.20を満たす数を示し、a、b、c、d及びeは、それぞれ、0.7≦a≦1.3、2.8≦b≦3.6、1.0≦c≦3.0、4.0≦(b+c)/a≦6.0、5.0≦d≦7.0、0<e≦2.0、6.5≦(d+e)/a≦7.3を満たす数を示す。)で表される組成を有する結晶相を含み、上記[2]におけるA元素に対するCaの割合が0.001モル%以上80モル%以下であって、前記結晶相の結晶系が斜方晶系または単斜晶系であることを特徴とする酸窒化物系蛍光体。
〔9〕前記結晶相の空間群がPna21であることを特徴とする〔8〕に記載の蛍光体。
〔10〕発光ピークが、波長570nm以上600nm以下の範囲に存在することを特徴とする〔8〕または〔9〕に記載の蛍光体。
〔11〕発光ピークの半値幅が、95nm以上であることを特徴とする〔1〕~〔10〕のいずれかに記載の蛍光体。
 また、本発明の要旨は、次の実施態様の蛍光体含有組成物、発光装置、照明装置、および画像表示装置を含む。
〔12〕〔1〕~〔11〕のいずれかに記載の蛍光体の少なくとも一種を液体媒体中に分散させてなることを特徴とする蛍光体含有組成物。
〔13〕第1の発光体(励起光源)と、該第1の発光体からの光を可視光に変換して、可視光を発し得る第2の発光体とを有する発光装置であって、該第2の発光体が、第1の蛍光体として〔1〕~〔11〕のいずれかに記載の蛍光体の少なくとも一種を含有する、または、該第2の発光体として、〔12〕に記載の蛍光体含有組成物を有することを特徴とする発光装置。
〔14〕前記第2の発光体が、第2の蛍光体として前記第1の蛍光体とは発光ピーク波長の異なる少なくとも一種の蛍光体を含有することを特徴とする〔13〕に記載の発光装置。 
〔15〕相関色温度が、2600K以上4500K以下であることを特徴とする〔13〕または〔14〕に記載の発光装置。
〔16〕〔13〕~〔15〕のいずれかに記載の発光装置を備えることを特徴とする照明装置または画像表示装置。
That is, the gist of the present invention includes the phosphor of the following first embodiment.
[1] The following formula [1]:
(A 1-x , Eu x ) a D b E c N d O e [1]
(In the formula [1], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al. Represents an element, x represents a number satisfying 0.0001 ≦ x ≦ 0.20, and a, b, c, d, and e represent 0.7 ≦ a ≦ 1.3 and 2.8 ≦ b ≦, respectively. 4.0, 1.0 ≦ c ≦ 3.0, 4.0 ≦ (b + c) /a≦6.0, 5.0 ≦ d ≦ 7.0, 0 <e ≦ 2.0, 6.5 ≦ (D + e) /a≦7.5 represents a crystal phase having a composition represented by the formula), and the crystal system of the crystal phase is orthorhombic or monoclinic, and from the lattice constant The calculated unit cell volume (V) of the crystal phase is 1220 × 10 6 pm 3 or more and 1246 × 10 6 pm 3 or less.
[2] The phosphor according to [1], wherein the space group of the crystal phase is Pna2 1 .
[3] The phosphor according to [1] or [2], wherein, in the formula [1], a ratio of Ca to the entire element A is 0.001 mol% or more and 80 mol% or less.
[4] The phosphor according to any one of [1] to [3], wherein the emission peak exists in a wavelength range of 550 nm to 650 nm.
The gist of the present invention includes the phosphor of the second embodiment described below.
[5] The following formula [1]:
(A 1-x , Eu x ) a D b E c N d O e [1]
(In the formula [1], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al. Represents an element, x represents a number satisfying 0.0001 ≦ x ≦ 0.20, and a, b, c, d, and e represent 0.7 ≦ a ≦ 1.3 and 2.8 ≦ b ≦, respectively. 4.0, 1.0 ≦ c ≦ 3.0, 4.0 ≦ (b + c) /a≦6.0, 5.0 ≦ d ≦ 7.0, 0 <e ≦ 2.0, 6.5 ≦ (D + e) /a≦7.5). The crystal phase of the crystal phase is orthorhombic or monoclinic, and the emission peak is An oxynitride phosphor having a wavelength in the range of 581 nm to 650 nm.
[6] The phosphor according to [5], wherein the space group of the crystal phase is Pna2 1 .
[7] The phosphor according to [5] or [6], wherein, in the formula [1], a ratio of Ca to the entire element A is 0.001 mol% to 80 mol%.
The gist of the present invention includes the phosphor of the following third embodiment.
[8] The following formula [2]:
(A 1-x , Eu x ) a D b E c N d O e [2]
(In the formula [2], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al. Represents an element, x represents a number satisfying 0.0001 ≦ x ≦ 0.20, and a, b, c, d, and e represent 0.7 ≦ a ≦ 1.3 and 2.8 ≦ b ≦, respectively. 3.6, 1.0 ≦ c ≦ 3.0, 4.0 ≦ (b + c) /a≦6.0, 5.0 ≦ d ≦ 7.0, 0 <e ≦ 2.0, 6.5 ≦ (D + e) /a≦7.3 is included.) The ratio of Ca to element A in the above [2] is 0.001 mol% or more and 80 mol% or less. The crystal system of the crystal phase is orthorhombic or monoclinic.
[9] The phosphor according to [8], wherein the space group of the crystal phase is Pna2 1 .
[10] The phosphor according to [8] or [9], wherein the emission peak exists in a wavelength range of 570 nm to 600 nm.
[11] The phosphor according to any one of [1] to [10], wherein the half width of the emission peak is 95 nm or more.
Moreover, the gist of the present invention includes the phosphor-containing composition, the light emitting device, the lighting device, and the image display device of the following embodiment.
[12] A phosphor-containing composition, wherein at least one phosphor according to any one of [1] to [11] is dispersed in a liquid medium.
[13] A light-emitting device having a first light emitter (excitation light source) and a second light emitter capable of emitting visible light by converting light from the first light emitter, The second light emitter contains at least one of the phosphors according to any one of [1] to [11] as the first phosphor, or the second light emitter according to [12] A light emitting device comprising the phosphor-containing composition described above.
[14] The light emitting device according to [13], wherein the second phosphor includes at least one phosphor having a light emission peak wavelength different from that of the first phosphor as the second phosphor. apparatus.
[15] The light emitting device according to [13] or [14], wherein the correlated color temperature is 2600K to 4500K.
[16] An illumination device or an image display device comprising the light-emitting device according to any one of [13] to [15].
 本発明によれば、Si、Al、N、およびOから構成される骨格構造を有し、その空隙にSrサイトが存在するという結晶構造を持つ蛍光体の発光強度を向上させることができる。さらに、本発明の蛍光体は不純物相が生じにくく、容易に製造することができる。また、本発明の蛍光体とLEDなどとを組み合わせれば、発光特性に優れた発光装置を提供することができる。 According to the present invention, it is possible to improve the light emission intensity of a phosphor having a skeletal structure composed of Si, Al, N, and O and having a crystal structure in which Sr sites exist in the voids. Furthermore, the phosphor of the present invention hardly produces an impurity phase and can be easily manufactured. In addition, when the phosphor of the present invention is combined with an LED or the like, a light emitting device having excellent light emission characteristics can be provided.
本発明の発光装置の一実施態様を模式的に示す斜視図である。It is a perspective view which shows typically one embodiment of the light-emitting device of this invention. 本発明の発光装置の別の実施態様を模式的に示す断面図である。図2中、(a)は砲弾型発光装置を示し、(b)は表面実装型発光装置を示す。It is sectional drawing which shows another embodiment of the light-emitting device of this invention typically. 2A shows a bullet-type light emitting device, and FIG. 2B shows a surface-mounted light-emitting device. 本発明の照明装置の一態様を模式的に示す断面図である。It is sectional drawing which shows typically the one aspect | mode of the illuminating device of this invention. 実施例2、3、6、10および比較例1の蛍光体について、粉末X線回折により得られたX線回折パターンである。It is an X-ray diffraction pattern obtained by powder X-ray diffraction for the phosphors of Examples 2, 3, 6, 10 and Comparative Example 1. 実施例2、3、6~9、13および比較例1の蛍光体の発光スペクトルである。3 is an emission spectrum of the phosphors of Examples 2, 3, 6 to 9, 13 and Comparative Example 1. 実施例2の蛍光体の励起スペクトルである。3 is an excitation spectrum of the phosphor of Example 2. 実施例4、11および比較例2の蛍光体について、粉末X線回折により得られたX線回折パターンである。It is an X-ray diffraction pattern obtained by powder X-ray diffraction for the phosphors of Examples 4 and 11 and Comparative Example 2. 実施例4、11および比較例2の蛍光体の発光スペクトルである。It is an emission spectrum of the phosphors of Examples 4 and 11 and Comparative Example 2. 実施例5、12および比較例3の発光スペクトルである。It is an emission spectrum of Examples 5 and 12 and Comparative Example 3. 実施例18~23の蛍光体について、粉末X線回折により得られた粉末X線パターンである。6 is a powder X-ray pattern obtained by powder X-ray diffraction for the phosphors of Examples 18 to 23. FIG. 実施例18~23の蛍光体の発光スペクトルである。It is an emission spectrum of the phosphors of Examples 18 to 23. 実施例18、24~28の蛍光体について、粉末X線回折により得られた粉末X線パターンである。6 is a powder X-ray pattern obtained by powder X-ray diffraction for the phosphors of Examples 18 and 24-28. 実施例18、24~28の蛍光体の発光スペクトルである。7 is an emission spectrum of the phosphors of Examples 18 and 24 to 28.
 以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、本明細書中の蛍光体の組成式において、各組成式の区切りは読点(、)で区切って表わす。また、カンマ(,)で区切って複数の元素を列記する場合には、列記された元素のうち一種又は二種以上を任意の組み合わせ及び組成で含有していてもよいことを示している。例えば、「(Ca,Sr,Ba)Al:Eu」という組成式は、「CaAl:Eu」と、「SrAl:Eu」と、「BaAl:Eu」と、「Ca1-xSrAl:Eu」と、「Sr1-xBaAl:Eu」と、「Ca1-xBaAl:Eu」と、「Ca1-x-ySrBaAl:Eu」(但し、式中、0<x<1、0<y<1、0<x+y<1である。)とを全て包括的に示しているものとする。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. Further, in the phosphor composition formula in this specification, each composition formula is delimited by a punctuation mark (,). In addition, when a plurality of elements are listed separated by commas (,), one or two or more of the listed elements may be included in any combination and composition. For example, the composition formula “(Ca, Sr, Ba) Al 2 O 4 : Eu” has “CaAl 2 O 4 : Eu”, “SrAl 2 O 4 : Eu”, and “BaAl 2 O 4 : Eu”. “Ca 1-x Sr x Al 2 O 4 : Eu”, “Sr 1-x Ba x Al 2 O 4 : Eu”, “Ca 1-x Ba x Al 2 O 4 : Eu”, "Ca 1-x-y Sr x Ba y Al 2 O 4: Eu " (. in the formula, 0 <x <1,0 <y <1,0 < a x + y <1) all the comprehensive It shall be shown in
[1.蛍光体]
<結晶構造>
 本発明の第1乃至第3の実施態様の蛍光体は、Si、Al、N、およびOから構成される骨格構造を有し、その空隙にSrサイトが存在するという結晶構造を持つ。
[1. Phosphor]
<Crystal structure>
The phosphors of the first to third embodiments of the present invention have a skeletal structure composed of Si, Al, N, and O, and have a crystal structure in which Sr sites exist in the voids.
(結晶系)
 本発明の第1乃至第3の実施態様の蛍光体が含有する結晶相の晶系は、斜方晶系もしくは単斜晶系であり、斜方晶系であることが好ましい。
(Crystal system)
The crystal system of the crystal phase contained in the phosphor according to the first to third embodiments of the present invention is orthorhombic or monoclinic, and is preferably orthorhombic.
 本発明の第1乃至第3の実施態様の蛍光体は、SrAlSiと同様の結晶構造を有することが好ましく、結晶相の空間群としては、「International Tables for Crystallography(Third, revised edition)、Volume A Space-Group Symmetry」に基づく62番〔Pnma〕、33番〔Pna21〕、19番〔P2〕、7番〔Pc〕、または4番〔P2〕のいずれかに属するものであることが好ましく、33番〔Pna2〕に属するものが最も好ましい。
 なお、空間群は、電子回折、又は収束電子回折により一義的に求めることができる。
The phosphors according to the first to third embodiments of the present invention preferably have a crystal structure similar to that of SrAlSi 4 N 7, and the crystal phase space group is “International Tables for Crystallography (Third, revised edition)”. No. 62 [Pnma], 33 [Pna2 1 ], 19 [P2 1 2 1 2 1 ], 7 [Pc], or 4 [P2 1 ] based on “Volume A Space-Group Symmetry” And those belonging to No. 33 [Pna2 1 ] are most preferred.
The space group can be uniquely determined by electron diffraction or convergent electron diffraction.
(結晶相の格子体積)
 本発明の第1の実施態様の蛍光体は、格子定数から算出した単位格子体積(V)が1220×10pm以上、1246×10pm以下である結晶相を含有する。単位格子体積が上記範囲であると、付活剤を導入することにより生じる骨格構造のひずみを抑制でき、安定したエネルギー伝達が可能であることから、発光強度が向上する。
(Lattice volume of crystal phase)
The phosphor according to the first embodiment of the present invention contains a crystal phase whose unit cell volume (V) calculated from the lattice constant is 1220 × 10 6 pm 3 or more and 1246 × 10 6 pm 3 or less. When the unit cell volume is in the above range, distortion of the skeleton structure caused by introducing the activator can be suppressed, and stable energy transfer is possible, so that the emission intensity is improved.
 本発明の第1の実施態様の蛍光体が含有する結晶相の、格子定数から算出される単位格子体積(10pm)は、上記のとおり、通常1220以上1246以下であるが、好ましくは1224以上、より好ましくは1228以上、さらに好ましくは1232以上、さらに好ましくは1236以上、特に好ましくは1240以上であり、また、好ましくは1245以下、より好ましくは1244以下である。 As described above, the unit cell volume (10 6 pm 3 ) calculated from the lattice constant of the crystal phase contained in the phosphor of the first embodiment of the present invention is usually 1220 or more and 1246 or less, preferably It is 1224 or more, more preferably 1228 or more, further preferably 1232 or more, further preferably 1236 or more, particularly preferably 1240 or more, and preferably 1245 or less, more preferably 1244 or less.
 単位格子体積が大きすぎると発光強度が低下し、逆に単位格子体積が小さすぎると骨格構造が不安定化して別の構造の不純物が副生するようになり、発光強度の低下や色純度の低下を招く傾向がある。 If the unit cell volume is too large, the emission intensity will decrease. Conversely, if the unit cell volume is too small, the skeletal structure will become unstable and impurities of another structure will be produced as a by-product. It tends to cause a decline.
 本発明の第1の実施態様の蛍光体が含有する結晶相の単位格子体積を実現する手段は、面状の骨格構造中に開いた孔が構成する空隙(Srサイト)に、SrとCaを一定の割合で導入することが好ましいが、SrとCaの他に、Mg、LiなどSrよりイオン半径の小さい別の原子を導入してもよい。またSrサイトに欠損を残すことにより単位格子体積を調節することも好適に行われる。さらに、骨格構造を小さくする効果が大きいLiなどの小さい原子または欠損と、骨格構造を大きくする効果があるBaなどの大きい原子を両方導入することにより、適当な骨格構造を構成することも可能である。さらには、Srサイトが二種類以上ある場合、そのサイトの配位数、配位距離などに応じて導入する原子または欠損の種類や割合を適宜選択することも好適に行われる。
 なお、上記と同様の理由から本発明の第2乃至第3の実施態様の蛍光体は、上記単位格子体積(V)の要件を満たすことが好ましい。
The means for realizing the unit cell volume of the crystal phase contained in the phosphor according to the first embodiment of the present invention is that Sr and Ca are contained in the voids (Sr sites) formed by the open holes in the planar skeleton structure. It is preferable to introduce at a constant ratio, but other atoms having an ionic radius smaller than Sr, such as Mg and Li, may be introduced in addition to Sr and Ca. It is also preferable to adjust the unit cell volume by leaving defects at the Sr site. It is also possible to construct an appropriate skeleton structure by introducing both small atoms or defects such as Li that have a large effect on reducing the skeletal structure and large atoms such as Ba that have the effect of increasing the skeleton structure. is there. Furthermore, when there are two or more types of Sr sites, it is also preferable to appropriately select the type and ratio of atoms or defects to be introduced according to the coordination number, coordination distance, etc. of the sites.
For the same reason as described above, the phosphors of the second to third embodiments of the present invention preferably satisfy the requirements for the unit cell volume (V).
(格子定数)
 本発明の第1乃至第3の実施態様の蛍光体が含有する結晶相の格子定数(pm)は、a軸が、通常1162以上、好ましくは1164以上、より好ましくは1166以上であり、通常1178以下、好ましくは1172以下、より好ましくは1168以下である。また、b軸が、通常、2115以上、好ましくは2125以上、より好ましくは2135以上、特に好ましくは2137.5以上であり、通常2165以下、好ましくは2155以下、より好ましくは2145以下である。
(Lattice constant)
As for the lattice constant (pm) of the crystal phase contained in the phosphor according to the first to third embodiments of the present invention, the a-axis is usually 1162 or more, preferably 1164 or more, more preferably 1166 or more, and usually 1178. Hereinafter, it is preferably 1172 or less, more preferably 1168 or less. Further, the b-axis is usually 2115 or more, preferably 2125 or more, more preferably 2135 or more, particularly preferably 2137.5 or more, and usually 2165 or less, preferably 2155 or less, more preferably 2145 or less.
 本発明の第1乃至第3の実施態様の蛍光体は、a軸とb軸を含む平面上に広がる、孔の開いた面状骨格構造を有しており、この面状骨格構造がc軸方向に積み重なることにより骨格構造を構成している。そのため、a軸とb軸の格子定数が上記値であることにより、特に上記面状骨格構造のひずみを抑えることができ、発光強度が向上する。c軸は特に限定されないが、通常494以上、好ましくは494.5以上、より好ましくは495.5以上、特に好ましくは496.5以上であり、通常499.5以下、好ましくは498.5以上、より好ましくは497.5以下である。 The phosphor according to the first to third embodiments of the present invention has a planar skeletal structure with a hole extending on a plane including the a-axis and the b-axis, and the planar skeletal structure is c-axis. A skeletal structure is formed by stacking in the direction. Therefore, when the lattice constants of the a axis and the b axis are the above values, particularly the distortion of the planar skeleton structure can be suppressed, and the emission intensity is improved. The c-axis is not particularly limited, but is usually 494 or more, preferably 494.5 or more, more preferably 495.5 or more, particularly preferably 496.5 or more, usually 499.5 or less, preferably 498.5 or more, More preferably, it is 497.5 or less.
(粉末X線回折パターン)
 本発明の第1乃至第3の実施態様の蛍光体は下記の粉末X線回折(XRD)パターンを示す結晶相を含むことが好ましい。
 本発明の第1乃至第3の実施態様の蛍光体の結晶相は、CuKαのX線源を用いたX線回折測定において回折角(2θ)31.0°~31.9゜の範囲(R0)に少なくとも1本の回折ピークが観測される結晶相であって、当該回折ピークのうち高さが最も高い回折ピークを基準回折ピーク(P0)とし、P0のブラッグ角(θ0)より導かれる5つの回折ピークを低角度側から順にそれぞれP1、P2、P3、P4及びP5とし、これらの回折ピークの回折角の角度範囲を、R1、R2、R3、R4及びR5としたときに、R1、R2、R3、R4及びR5が、それぞれ、
R1=R1s~R1e、
R2=R2s~R2e、
R3=R3s~R3e、
R4=R4s~R4e、
R5=R5s~R5e、
の角度範囲を示すものであり、R1、R2、R3、R4及びR5のすべての範囲に回折ピークが少なくとも1本存在し、且つ、P0、P1、P2、P3、P4及びP5のうち、回折ピーク高さが最も高い回折ピークの高さに対して、P0の強度が回折ピーク高さ比で通常20%以上、好ましくは30%以上、より好ましくは40%以上、特に好ましくは50%以上の強度を有するものであり、P1、P2、P3、P4、及びP5のうち、回折ピーク高さが最も高い回折ピークの高さに対して、それ以外のP1、P2、P3、P4、及びP5のうち少なくとも1以上のピーク強度が回折ピーク高さ比で、通常5%以上、好ましくは10%以上、より好ましくは15%以上、特に好ましくは20%以上の結晶相であって、P1、P2、P3、P4又はP5の少なくとも1以上のピーク強度が回折ピーク高さ比で5%以上の結晶相である。
(Powder X-ray diffraction pattern)
The phosphors of the first to third embodiments of the present invention preferably contain a crystal phase exhibiting the following powder X-ray diffraction (XRD) pattern.
The crystal phase of the phosphor of the first to third embodiments of the present invention has a diffraction angle (2θ) in the range of 31.0 ° to 31.9 ° (R0) in X-ray diffraction measurement using a CuKα X-ray source. ) Is a crystal phase in which at least one diffraction peak is observed, and a diffraction peak having the highest height among the diffraction peaks is defined as a reference diffraction peak (P0), and is derived from a Bragg angle (θ0) of P0. Two diffraction peaks are designated as P1, P2, P3, P4 and P5 in this order from the low angle side, and when the diffraction angle angle range of these diffraction peaks is R1, R2, R3, R4 and R5, R1, R2 , R3, R4 and R5 are each
R1 = R1s to R1e,
R2 = R2s to R2e,
R3 = R3s to R3e,
R4 = R4s to R4e,
R5 = R5s to R5e,
At least one diffraction peak in all ranges of R1, R2, R3, R4, and R5, and among P0, P1, P2, P3, P4, and P5, a diffraction peak The intensity of P0 is usually 20% or more, preferably 30% or more, more preferably 40% or more, particularly preferably 50% or more in terms of diffraction peak height ratio with respect to the height of the highest diffraction peak. Among the P1, P2, P3, P4, and P5, the diffraction peak height is the highest among the P1, P2, P3, P4, and P5. A peak intensity of at least one or more is a diffraction peak height ratio, usually 5% or more, preferably 10% or more, more preferably 15% or more, and particularly preferably 20% or more of a crystal phase, P1, P2, P3 , P4 Is 5% or more crystalline phases at least one or more peak intensity diffraction peak height ratio of P5.
 ここで、角度範囲R0、R1、R2、R3、R4及びR5のそれぞれの角度範囲内に回折ピークが2本以上存在する場合は、これらのうち最もピーク強度の高いピークを、それぞれ、P0、P1、P2、P3、P4及びP5とする。 Here, when there are two or more diffraction peaks in each angular range of the angular ranges R0, R1, R2, R3, R4, and R5, the peaks having the highest peak intensity among these are P0, P1 respectively. , P2, P3, P4 and P5.
 また、R1s、R2s、R3s、R4s及びR5sは、それぞれ、R1、R2、R3、R4及びR5の開始角度、R1e、R2e、R3e、R4e及びR5eは、それぞれR1、R2、R3、R4及びR5の終了角度を示すものであって、以下の角度を示す。 R1s, R2s, R3s, R4s, and R5s are the start angles of R1, R2, R3, R4, and R5, and R1e, R2e, R3e, R4e, and R5e are R1, R2, R3, R4, and R5, respectively. The end angle is shown, and the following angles are shown.
R1s:2×arcsin{sin(θ0)/(1.268×1.015)}
R1e:2×arcsin{sin(θ0)/(1.268×0.985)}
R2s:2×arcsin{sin(θ0)/(1.037×1.015)}
R2e:2×arcsin{sin(θ0)/(1.037×0.985)}
R3s:2×arcsin{sin(θ0)/(1.023×1.015)}
R3e:2×arcsin{sin(θ0)/(1.023×0.985)}
R4s:2×arcsin{sin(θ0)/(0.882×1.015)}
R4e:2×arcsin{sin(θ0)/(0.882×0.985)}
R5s:2×arcsin{sin(θ0)/(0.788×1.015)}
R5e:2×arcsin{sin(θ0)/(0.788×0.985)}
R1s: 2 × arcsin {sin (θ0) / (1.268 × 1.015)}
R1e: 2 × arcsin {sin (θ0) / (1.268 × 0.985)}
R2s: 2 × arcsin {sin (θ0) / (1.037 × 1.015)}
R2e: 2 × arcsin {sin (θ0) / (1.037 × 0.985)}
R3s: 2 × arcsin {sin (θ0) / (1.023 × 1.015)}
R3e: 2 × arcsin {sin (θ0) / (1.023 × 0.985)}
R4s: 2 × arcsin {sin (θ0) / (0.882 × 1.015)}
R4e: 2 × arcsin {sin (θ0) / (0.882 × 0.985)}
R5s: 2 × arcsin {sin (θ0) / (0.788 × 1.015)}
R5e: 2 × arcsin {sin (θ0) / (0.788 × 0.985)}
 本発明の蛍光体は、以下で説明する、黄色~赤色系の発光色を有する蛍光体(第1の実施態様)、橙色~赤色系の発光色を有する蛍光体(第2の実施態様)、および黄色~橙色系の発光色を有する蛍光体(第3の実施態様)を含む。 The phosphor of the present invention includes a phosphor having a yellow to red emission color (first embodiment), a phosphor having an orange to red emission color (second embodiment), which will be described below. And a phosphor having a light emission color of yellow to orange (third embodiment).
<蛍光体の組成>
 本発明の第1の実施態様の蛍光体は、下記式[1]:
(A1-x,Euae   [1]
(式[1]中、AはSrおよびCaを必須とするアルカリ土類金属元素を示し、DはSiを必須とする4価の金属元素を示し、EはAlを必須とする3価の金属元素を示し、xは0.0001≦x≦0.20を満たす数を示し、a、b、c、d及びeは、それぞれ、0.7≦a≦1.3、2.8≦b≦4.0、1.0≦c≦3.0、4.0≦(b+c)/a≦6.0、5.0≦d≦7.0、0<e≦2.0、6.5≦(d+e)/a≦7.5を満たす数を示す。)で表される組成を有する結晶相を含むものである。
<Composition of phosphor>
The phosphor according to the first embodiment of the present invention has the following formula [1]:
(A 1-x , Eu x ) a D b E c N d O e [1]
(In the formula [1], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al. Represents an element, x represents a number satisfying 0.0001 ≦ x ≦ 0.20, and a, b, c, d, and e represent 0.7 ≦ a ≦ 1.3 and 2.8 ≦ b ≦, respectively. 4.0, 1.0 ≦ c ≦ 3.0, 4.0 ≦ (b + c) /a≦6.0, 5.0 ≦ d ≦ 7.0, 0 <e ≦ 2.0, 6.5 ≦ It includes a crystal phase having a composition represented by (d + e) /a≦7.5.
 上記のとおり、前記式[1]において、「A」は、SrおよびCaを必須とするアルカリ土類金属元素を示す。A元素全体に対するSrおよびCaの占める割合は、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が特に好ましい。また、A元素は、SrおよびCa以外に、バリウム(Ba)等のアルカリ土類金属元素を含んでいても良い。 As described above, in the above formula [1], “A” represents an alkaline earth metal element in which Sr and Ca are essential. The ratio of Sr and Ca to the entire A element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more. In addition to Sr and Ca, the element A may contain an alkaline earth metal element such as barium (Ba).
 前記式[1]において、A元素全体に対するCaの割合は、通常0.001モル%以上80モル%以下を満たす数であり、好ましくは0.01モル%以上、より好ましくは1モル%以上、さらに好ましくは5モル%以上、特に好ましくは7モル%以上、最も好ましくは9モル%以上であり、また、好ましくは65モル%以下、さらに好ましくは50モル%以下、さらに好ましくは35モル%以下、特に好ましくは20モル%以下である。
 Caの割合が上記範囲であると、格子体積がより適切な大きさになり、骨格構造がひずみのない安定的な状態をとることができる。
In the formula [1], the ratio of Ca with respect to the entire element A is a number that usually satisfies 0.001 mol% or more and 80 mol% or less, preferably 0.01 mol% or more, more preferably 1 mol% or more, More preferably 5 mol% or more, particularly preferably 7 mol% or more, most preferably 9 mol% or more, preferably 65 mol% or less, more preferably 50 mol% or less, more preferably 35 mol% or less. Especially preferably, it is 20 mol% or less.
When the proportion of Ca is in the above range, the lattice volume becomes a more appropriate size, and the skeletal structure can take a stable state without distortion.
 前記式[1]において、「Eu」はユーロピウムを必須とする付活剤元素を示す。付活剤であるユーロピウム(Eu)は、他の付活剤としてクロム(Cr)、マンガン(Mn)、鉄(Fe)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、テルビウム(Tb)、ジスプロシウム(Dy)、ホロミウム(Ho)、エルビウム(Er)、ツリウム(Tm)及びイッテルビウム(Yb)よりなる群から選ばれる少なくとも1種類の金属元素で置換されていてもよい。これら他の付活剤のうち、Ce、Pr、Sm、Tb及びYbよりなる群から選ばれる少なくとも1種の金属元素が好ましく、発光量子効率の点でCeがより好ましい。 In the above formula [1], “Eu” represents an activator element that requires europium. Europium (Eu), which is an activator, includes chromium (Cr), manganese (Mn), iron (Fe), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm) as other activators. ), Terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm) and ytterbium (Yb) may be substituted with at least one metal element. . Among these other activators, at least one metal element selected from the group consisting of Ce, Pr, Sm, Tb, and Yb is preferable, and Ce is more preferable in terms of emission quantum efficiency.
 付活剤元素全体に対するユーロピウム(Eu)の割合は、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が特に好ましい。 The ratio of europium (Eu) to the whole activator element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more.
 前記式[1]において、「D」は、Siを必須とする4価の金属元素を示す。D元素は、得られる蛍光体の特性に影響を与えない範囲内で、ゲルマニウム(Ge)等を含有していてもよい。D元素全体に対するSiの占める割合は、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が特に好ましい。D元素全体に対するSiの占める割合が少なすぎると不純物が生成され、目的の組成の蛍光体を得るのが困難となる傾向がある。 In the above formula [1], “D” represents a tetravalent metal element in which Si is essential. The element D may contain germanium (Ge) or the like within a range that does not affect the properties of the obtained phosphor. The proportion of Si with respect to the entire D element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more. If the ratio of Si to the entire D element is too small, impurities are generated, and it tends to be difficult to obtain a phosphor having the target composition.
 前記式[1]において、「E」は、Alを必須とする3価の金属元素を示す。E元素は、得られる蛍光体の特性に影響を与えない範囲内で、ホウ素(B)、ガリウム(Ga)等を含有していてもよい。E元素全体に対するAlの占める割合は、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が特に好ましい。E元素全体に対するAlの占める割合が少なすぎると不純物が生成され、目的の組成の蛍光体を得るのが困難となる傾向がある。 In the above formula [1], “E” represents a trivalent metal element in which Al is essential. The element E may contain boron (B), gallium (Ga), or the like within a range that does not affect the properties of the obtained phosphor. The proportion of Al to the entire E element is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more. If the ratio of Al to the entire E element is too small, impurities are generated, and it tends to be difficult to obtain a phosphor having the target composition.
 前記式[1]において、「N」は、窒素を示す。N元素は、窒素を主成分としていればよく、得られる蛍光体の特性に影響を与えない範囲内で、フッ素(F)、塩素(Cl)等を含有していてもよい。 In the formula [1], “N” represents nitrogen. The N element only needs to contain nitrogen as a main component, and may contain fluorine (F), chlorine (Cl), or the like within a range that does not affect the characteristics of the obtained phosphor.
 前記式[1]において、「O」は、酸素を示す。O元素は、酸素を主成分としていればよく、得られる蛍光体の特性に影響を与えない範囲内で、F、Cl等を含有していてもよい。 In the formula [1], “O” represents oxygen. The O element only needs to contain oxygen as a main component, and may contain F, Cl, or the like within a range that does not affect the characteristics of the obtained phosphor.
 また、本発明の第1の実施態様の蛍光体は、上述したA、Eu、D、E、NおよびOの各構成元素の他に、本発明の第1の実施態様の効果に影響を与えない範囲内で不可避的に混入してしまう元素、例えば不純物元素などを含んでいてもよい。 The phosphor of the first embodiment of the present invention affects the effects of the first embodiment of the present invention in addition to the above-described constituent elements of A, Eu, D, E, N and O. It may contain an element inevitably mixed within a range, for example, an impurity element.
 前記式[1]において、「x」は付活剤元素(Eu)のモル比を示す。xは、0.0001≦x≦0.20を満たす数であり、好ましくは0.001以上、より好ましくは0.005以上、さらに好ましくは0.01以上であり、また、好ましくは0.19以下、より好ましくは0.17以下、さらに好ましくは0.15以下、特に好ましくは0.12以下である。 In the formula [1], “x” represents the molar ratio of the activator element (Eu). x is a number satisfying 0.0001 ≦ x ≦ 0.20, preferably 0.001 or more, more preferably 0.005 or more, still more preferably 0.01 or more, and preferably 0.19. In the following, it is more preferably 0.17 or less, further preferably 0.15 or less, particularly preferably 0.12 or less.
 xの値が大きすぎると濃度消光が起こって輝度が低下する傾向にあり、小さすぎると吸収効率が低下する傾向にあり、それに伴い、輝度が低下する傾向にある。 If the value of x is too large, concentration quenching tends to occur and the brightness tends to decrease. If it is too small, the absorption efficiency tends to decrease, and the brightness tends to decrease accordingly.
 前記式[1]において、「a」はA元素(SrおよびCaを必須とするアルカリ土類金属元素)と付活剤元素(Eu)のモル比の和を示す。aは、通常0.7≦a≦1.3を満たす数であり、好ましくは0.8以上、より好ましくは0.9以上、特に好ましくは0.95以上であり、また、好ましくは1.2以下、より好ましくは1.1以下、特に好ましくは1.05以下である。 In the above formula [1], “a” represents the sum of molar ratios of the element A (an alkaline earth metal element essential for Sr and Ca) and the activator element (Eu). a is usually a number satisfying 0.7 ≦ a ≦ 1.3, preferably 0.8 or more, more preferably 0.9 or more, particularly preferably 0.95 or more, and preferably 1. It is 2 or less, more preferably 1.1 or less, and particularly preferably 1.05 or less.
 「a」のモル比と、次に述べる「b」、「c」のモルを本発明の第1の実施態様の範囲とする、即ちD元素(Siを必須とする4価の金属元素)とE元素(Alを必須とする3価の金属元素)の割合を特定の範囲とすることにより、A元素(SrおよびCaを必須とするアルカリ土類金属元素)を確実に固溶させ、前記した効果を奏する蛍光体を得ることができる。 The molar ratio of “a” and the moles of “b” and “c” described below are within the scope of the first embodiment of the present invention, that is, the D element (a tetravalent metal element in which Si is essential) and By setting the ratio of element E (trivalent metal element essential for Al) within a specific range, element A (alkaline earth metal element essential for Sr and Ca) is surely solid-dissolved. A phosphor exhibiting the effect can be obtained.
 前記式[1]において、「b」はD元素(Siを必須とする4価の金属元素)のモル比を示す。bは、2.8≦b≦4.0を満たす数であり、好ましくは3.0以上、より好ましくは3.2以上、より好ましくは3.4以上、より好ましくは3.5以上、特に好ましくは3.55以上であり、また、好ましくは3.9以下、より好ましくは3.8以下、さらに好ましくは3.7以下、特に好ましくは3.65以下である。 In the above formula [1], “b” represents the molar ratio of the D element (a tetravalent metal element in which Si is essential). b is a number satisfying 2.8 ≦ b ≦ 4.0, preferably 3.0 or more, more preferably 3.2 or more, more preferably 3.4 or more, more preferably 3.5 or more, particularly Preferably, it is 3.55 or more, preferably 3.9 or less, more preferably 3.8 or less, still more preferably 3.7 or less, and particularly preferably 3.65 or less.
 前記式[1]において、「c」はE元素(Alを必須とする3価の金属元素)のモル比を示す。cは、1.0≦c≦3.0を満たす数であり、好ましくは1.1以上、より好ましくは1.2以上、さらに好ましくは1.3以上であり、また、好ましくは2.5以下、より好ましくは2.0以下、さらに好ましくは1.75以下、特に好ましくは1.5以下である。 In the above formula [1], “c” represents the molar ratio of the E element (a trivalent metal element in which Al is essential). c is a number satisfying 1.0 ≦ c ≦ 3.0, preferably 1.1 or more, more preferably 1.2 or more, still more preferably 1.3 or more, and preferably 2.5 or more. Below, more preferably 2.0 or less, still more preferably 1.75 or less, particularly preferably 1.5 or less.
 また、(b+c)/aは、A元素と付活剤元素のモル比の和に対するD元素とE元素のモル比の和の割合であり、通常、4.0≦(b+c)/a≦6.0を満たす数となる。さらに、(b+c)/aは、好ましくは4.25以上、より好ましくは4.5以上、さらに特に好ましくは4.75以上であり、また、好ましくは5.75以下、より好ましくは5.5以下、さらに好ましくは5.25以下である。 Further, (b + c) / a is a ratio of the sum of the molar ratio of the D element and the E element to the sum of the molar ratio of the A element and the activator element, and is generally 4.0 ≦ (b + c) / a ≦ 6 It is a number satisfying .0. Further, (b + c) / a is preferably 4.25 or more, more preferably 4.5 or more, still more preferably 4.75 or more, and preferably 5.75 or less, more preferably 5.5. Hereinafter, it is more preferably 5.25 or less.
 前記式[1]において、「d」はN元素(窒素)のモル比を示す。dは、5.0≦d≦7.0を満たす数であり、好ましくは5.5以上、より好ましくは6.0以上、さらに好ましくは6.25以上、特に好ましくは6.5以上であり、また、好ましくは6.9以下、より好ましくは6.8以下、特に好ましくは6.7以下である。 In the above formula [1], “d” represents the molar ratio of N element (nitrogen). d is a number satisfying 5.0 ≦ d ≦ 7.0, preferably 5.5 or more, more preferably 6.0 or more, further preferably 6.25 or more, and particularly preferably 6.5 or more. Also, it is preferably 6.9 or less, more preferably 6.8 or less, and particularly preferably 6.7 or less.
 前記式[1]において、「e」はO元素(酸素)のモル比を示す。eは、0<e≦2.0を満たす数であり、好ましくは0.1以上、より好ましくは0.2以上、より一層好ましくは0.3以上であり、さらに好ましくは0.4以上、さらに好ましくは0.45以上、さらに好ましくは0.5以上、特に好ましくは0.55以上であり、また、好ましくは1.5以下、より好ましくは1.0以下、より好ましくは0.8以下、さらに好ましくは0.6以下である。 In the above formula [1], “e” represents the molar ratio of O element (oxygen). e is a number satisfying 0 <e ≦ 2.0, preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more, still more preferably 0.4 or more, More preferably 0.45 or more, further preferably 0.5 or more, particularly preferably 0.55 or more, preferably 1.5 or less, more preferably 1.0 or less, more preferably 0.8 or less. More preferably, it is 0.6 or less.
 また、(d+e)/aは、A元素と付活剤元素のモル比の和に対するN元素(窒素)とO元素(酸素)のモル比の和の割合であり、通常、6.5≦(d+e)/a≦7.5を満たす数となる。さらに、(d+e)/aは、好ましくは6.7以上、より好ましくは6.9以上、特に好ましくは6.95以上であり、また、好ましくは7.3以下、より好ましくは7.1以下、特に好ましくは7.05以下である。 Further, (d + e) / a is the ratio of the sum of the molar ratios of N element (nitrogen) and O element (oxygen) to the sum of the molar ratios of element A and activator element, and usually 6.5 ≦ ( d + e) /a≦7.5. Further, (d + e) / a is preferably 6.7 or more, more preferably 6.9 or more, particularly preferably 6.95 or more, and preferably 7.3 or less, more preferably 7.1 or less. Particularly preferably, it is 7.05 or less.
 上記のとおり、本発明の第1の実施態様の蛍光体において、aのモル比、dのモル比ならびにeのモル比を上記範囲とする、即ちa、b、c、(b+c)/a、d、e、(d+e)/aの数を上記範囲とすることにより、A元素を確実に固溶させ、前記した効果を奏する蛍光体を得ることができる。 As described above, in the phosphor according to the first embodiment of the present invention, the molar ratio of a, the molar ratio of d, and the molar ratio of e are within the above ranges, that is, a, b, c, (b + c) / a, By setting the number of d, e, and (d + e) / a within the above range, the A element can be reliably dissolved, and a phosphor exhibiting the above-described effects can be obtained.
 第1の実施態様の蛍光体を元素分析した場合、Srが13.5重量%以上25.4%以下、Caが0を超えて6.3重量%以下、Euが0を超えて5.0重量%以下、Siが25.0重量%以上37.0重量%以下、Alが8.1重量%以上17.7重量%以下、Nが25.0重量%以上33.0重量%以下、Oが0を超えて5.3重量%以下であることが好ましい。 When the phosphor of the first embodiment is subjected to elemental analysis, Sr is 13.5 wt% or more and 25.4% or less, Ca is more than 0 and 6.3 wt% or less, Eu is more than 0 and 5.0 or less. Wt% or less, Si 25.0 wt% or more and 37.0 wt% or less, Al 8.1 wt% or more 17.7 wt% or less, N 25.0 wt% or more 33.0 wt% or less, O Is preferably more than 0 and 5.3% by weight or less.
 本発明の第2の実施態様については、上記第1の実施態様の説明が援用される。 For the second embodiment of the present invention, the description of the first embodiment is incorporated.
 本発明の第3の実施態様の蛍光体は、下記式[2]:
(A1-x,Euae   [2]
(式[2]中、AはSrおよびCaを必須とするアルカリ土類金属元素を示し、DはSiを必須とする4価の金属元素を示し、EはAlを必須とする3価の金属元素を示し、xは0.0001≦x≦0.20を満たす数を示し、a、b、c、d及びeは、それぞれ、0.7≦a≦1.3、2.8≦b≦3.6、1.0≦c≦3.0、4.0≦(b+c)/a≦6.0、5.0≦d≦7.0、0<e≦2.0、6.5≦(d+e)/a≦7.3を満たす数を示す。)で表される組成を有する結晶相を含むものである。
 前記式[2]において、「a」はA元素(SrおよびCaを必須とするアルカリ土類金属元素)と付活剤元素(Eu)のモル比の和を示す。aは、通常0.7≦a≦1.3を満たす数であり、好ましくは0.95以上、より好ましくは0.97以上、より好ましくは0.99以上であり、また、好ましくは1.05以下、より好ましくは1.03以下、より好ましくは1.1以下である。
 「a」のモル比と、次に述べる「b」、「c」のモルを本発明の第3の実施態様の範囲とする、即ちD元素(Siを必須とする4価の金属元素)とE元素(Alを必須とする3価の金属元素)の割合を特定の範囲とすることにより、A元素(SrおよびCaを必須とするアルカリ土類金属元素)を確実に固溶させ、前記した効果を奏する蛍光体を得ることができる。
The phosphor of the third embodiment of the present invention has the following formula [2]:
(A 1-x , Eu x ) a D b E c N d O e [2]
(In the formula [2], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al. Represents an element, x represents a number satisfying 0.0001 ≦ x ≦ 0.20, and a, b, c, d, and e represent 0.7 ≦ a ≦ 1.3 and 2.8 ≦ b ≦, respectively. 3.6, 1.0 ≦ c ≦ 3.0, 4.0 ≦ (b + c) /a≦6.0, 5.0 ≦ d ≦ 7.0, 0 <e ≦ 2.0, 6.5 ≦ It includes a crystal phase having a composition represented by (d + e) /a≦7.3.
In said Formula [2], "a" shows the sum of the molar ratio of A element (alkaline earth metal element which makes Sr and Ca essential) and activator element (Eu). a is usually a number satisfying 0.7 ≦ a ≦ 1.3, preferably 0.95 or more, more preferably 0.97 or more, more preferably 0.99 or more, and preferably 1. 05 or less, more preferably 1.03 or less, more preferably 1.1 or less.
The molar ratio of “a” and the moles of “b” and “c” described below are included in the range of the third embodiment of the present invention, that is, D element (a tetravalent metal element in which Si is essential) and By setting the ratio of element E (trivalent metal element essential for Al) within a specific range, element A (alkaline earth metal element essential for Sr and Ca) is surely solid-dissolved. A phosphor exhibiting the effect can be obtained.
 前記式[2]において、「b」はD元素(Siを必須とする4価の金属元素)のモル比を示す。bは、2.8≦b≦3.6を満たす数であり、好ましくは2.9以上、より好ましくは3.0以上、より好ましくは3.1以上、より好ましくは3.2以上であり、また、好ましくは3.55以下、より好ましくは3.50以下、さらに好ましくは3.45以下、特に好ましくは3.4以下である。
 前記式[2]において、「c」はE元素(Alを必須とする3価の金属元素)のモル比を示す。cは、1.0≦c≦3.0を満たす数であり、好ましくは1.4以上、より好ましくは1.45以上、より好ましくは1.5以上、さらに好ましくは1.55以上であり、また、好ましくは2.2以下、より好ましくは2.1以下、より好ましくは2.0以下、さらに好ましくは1.9以下、特に好ましくは1.8以下である。
 また、(b+c)/aは、A元素と付活剤元素のモル比の和に対するD元素とE元素のモル比の和の割合であり、通常、4.0≦(b+c)/a≦6.0を満たす数となる。さらに、(b+c)/aは、好ましくは4.7以上、より好ましくは4.75以上、より好ましくは4.8以上、さらに特に好ましくは4.85以上であり、また、好ましくは5.3以下、より好ましくは5.25以下、より好ましくは5.2以下、さらに好ましくは5.15以下、特に好ましくは5.1以下である。
 前記式[2]において、「d」はN元素(窒素)のモル比を示す。dは、5.0≦d≦7.0を満たす数であり、好ましくは5.8以上、より好ましくは5.9以上、より好ましくは6.0以上、さらに好ましくは6.1以上、特に好ましくは6.2以上であり、また、好ましくは6.6以下、より好ましくは6.55以下、より好ましくは6.5以下、さらに好ましくは6.45以下、特に好ましくは6.4以下である。 
In the above formula [2], “b” represents the molar ratio of the D element (a tetravalent metal element in which Si is essential). b is a number satisfying 2.8 ≦ b ≦ 3.6, preferably 2.9 or more, more preferably 3.0 or more, more preferably 3.1 or more, more preferably 3.2 or more. Also, it is preferably 3.55 or less, more preferably 3.50 or less, further preferably 3.45 or less, and particularly preferably 3.4 or less.
In the formula [2], “c” represents the molar ratio of the E element (a trivalent metal element in which Al is essential). c is a number satisfying 1.0 ≦ c ≦ 3.0, preferably 1.4 or more, more preferably 1.45 or more, more preferably 1.5 or more, and further preferably 1.55 or more. Also, it is preferably 2.2 or less, more preferably 2.1 or less, more preferably 2.0 or less, further preferably 1.9 or less, and particularly preferably 1.8 or less.
Further, (b + c) / a is a ratio of the sum of the molar ratio of the D element and the E element to the sum of the molar ratio of the A element and the activator element, and is generally 4.0 ≦ (b + c) / a ≦ 6 It is a number satisfying .0. Further, (b + c) / a is preferably 4.7 or more, more preferably 4.75 or more, more preferably 4.8 or more, still more preferably 4.85 or more, and preferably 5.3. Hereinafter, it is more preferably 5.25 or less, more preferably 5.2 or less, further preferably 5.15 or less, and particularly preferably 5.1 or less.
In said Formula [2], "d" shows the molar ratio of N element (nitrogen). d is a number satisfying 5.0 ≦ d ≦ 7.0, preferably 5.8 or more, more preferably 5.9 or more, more preferably 6.0 or more, still more preferably 6.1 or more, particularly Preferably, it is 6.2 or more, preferably 6.6 or less, more preferably 6.55 or less, more preferably 6.5 or less, further preferably 6.45 or less, and particularly preferably 6.4 or less. is there.
 前記式[2]において、「e」はO元素(酸素)のモル比を示す。eは、0<e≦2.0を満たす数であり、好ましくは0.4以上、より好ましくは0.45以上、より好ましくは0.5以上、さらに好ましくは0.55以上、特に好ましくは0.6以上であり、また、好ましくは1.2以下、より好ましくは1.1以下、より好ましくは1.0以下、より好ましくは0.9以下、特に好ましくは0.8以下である。  In the above formula [2], “e” represents the molar ratio of O element (oxygen). e is a number satisfying 0 <e ≦ 2.0, preferably 0.4 or more, more preferably 0.45 or more, more preferably 0.5 or more, still more preferably 0.55 or more, and particularly preferably It is 0.6 or more, preferably 1.2 or less, more preferably 1.1 or less, more preferably 1.0 or less, more preferably 0.9 or less, and particularly preferably 0.8 or less. *
 また、(d+e)/aは、A元素と付活剤元素のモル比の和に対するN元素(窒素)とO元素(酸素)のモル比の和の割合であり、通常、6.5≦(d+e)/a≦7.3を満たす数となる。さらに、(d+e)/aは、好ましくは6.7以上、より好ましくは6.75以上、より好ましくは6.8以上、特に好ましくは6.85以上であり、また、好ましくは7.3以下、より好ましくは7.25以下、より好ましくは7.2以下、特に好ましくは7.15以下である。
 上記のとおり、本発明の蛍光体において、aのモル比、dのモル比ならびにeのモル比を上記範囲とする、即ちa、b、c、(b+c)/a、d、e、(d+e)/aの数を上記範囲とすることにより、A元素を確実に固溶させ、前記した効果を奏する蛍光体を得ることができる。 
Further, (d + e) / a is the ratio of the sum of the molar ratios of N element (nitrogen) and O element (oxygen) to the sum of the molar ratios of element A and activator element, and usually 6.5 ≦ ( d + e) /a≦7.3. Further, (d + e) / a is preferably 6.7 or more, more preferably 6.75 or more, more preferably 6.8 or more, particularly preferably 6.85 or more, and preferably 7.3 or less. More preferably, it is 7.25 or less, More preferably, it is 7.2 or less, Most preferably, it is 7.15 or less.
As described above, in the phosphor of the present invention, the molar ratio of a, the molar ratio of d, and the molar ratio of e are within the above ranges, that is, a, b, c, (b + c) / a, d, e, (d + e ) / A in the above range makes it possible to obtain a phosphor exhibiting the effects described above by reliably dissolving the A element.
 第3の実施態様の蛍光体の組成に関し、その他の項目については、上記第1の実施態様の説明が援用される。 Regarding the composition of the phosphor of the third embodiment, the explanation of the first embodiment is incorporated for other items.
<蛍光体の特性>
(発光ピーク波長)
 本発明の第1の実施態様の蛍光体は、通常550nm以上、好ましくは570nm以上、より好ましくは575nm以上、より好ましくは580nm以上、より好ましくは582nm以上、より好ましくは590nm以上、特に好ましくは600nm以上であり、また、通常650nm以下、好ましくは630nm以下、より好ましくは610nm以下の波長範囲に発光ピークを有する。即ち、黄色~赤色系の発光色を有するものである。
<Characteristics of phosphor>
(Peak emission wavelength)
The phosphor of the first embodiment of the present invention is usually 550 nm or more, preferably 570 nm or more, more preferably 575 nm or more, more preferably 580 nm or more, more preferably 582 nm or more, more preferably 590 nm or more, particularly preferably 600 nm. In addition, the emission peak is usually in the wavelength range of 650 nm or less, preferably 630 nm or less, more preferably 610 nm or less. That is, it has a yellow to red light emission color.
 第2の実施態様の蛍光体は、通常581nm以上、好ましくは582nm以上であり、また、通常650nm以下、好ましくは630nm以下、より好ましくは610nm以下の波長範囲に発光ピークを有する。即ち、橙色~赤色系の発光色を有するものである。 The phosphor of the second embodiment is usually 581 nm or more, preferably 582 nm or more, and usually has a light emission peak in a wavelength range of 650 nm or less, preferably 630 nm or less, more preferably 610 nm or less. That is, it has an emission color of orange to red.
 第3の実施態様の蛍光体は、通常550nm以上、好ましくは570nm以上、より好ましくは575nm以上、特に好ましくは580nm以上であり、また、通常650nm以下、好ましくは600nm以下、より好ましくは595nm以下、より一層好ましくは590nm以下の波長範囲に発光ピークを有する。即ち、黄色~橙色系の発光色を有するものである。 The phosphor of the third embodiment is usually 550 nm or more, preferably 570 nm or more, more preferably 575 nm or more, particularly preferably 580 nm or more, and usually 650 nm or less, preferably 600 nm or less, more preferably 595 nm or less, More preferably, it has an emission peak in a wavelength range of 590 nm or less. That is, it has a yellow to orange emission color.
 本発明の第1乃至第3の実施態様の蛍光体は、発光ピークの半値幅が広いことから、青色LEDと組み合わせて用いると一種類の蛍光体のみで演色性のよい発光を得ることができる。また、本発明の第1乃至第3の実施態様の蛍光体に加えて、青色~黄緑色蛍光体や赤色蛍光体等を組み合わせて発光装置とすれば、さらなる高演色の発光を示す発光装置を得ることができる。 Since the phosphors of the first to third embodiments of the present invention have a wide half-value width of the emission peak, when used in combination with a blue LED, light emission with good color rendering can be obtained with only one type of phosphor. . In addition to the phosphors of the first to third embodiments of the present invention, if a light emitting device is formed by combining a blue to yellow-green phosphor, a red phosphor, or the like, a light emitting device that emits light of higher color rendering can be obtained. Obtainable.
(発光スペクトルの半値幅)
 本発明の第1乃至第3の実施態様の蛍光体は、発光ピークの半値幅が通常95nm以上、好ましくは97nm以上、より好ましくは100nm以上、より好ましくは103nm以上、特に好ましくは105nm以上である。即ち、半値幅の広い発光スペクトルを示すものである。
(Half width of emission spectrum)
In the phosphors according to the first to third embodiments of the present invention, the half width of the emission peak is usually 95 nm or more, preferably 97 nm or more, more preferably 100 nm or more, more preferably 103 nm or more, and particularly preferably 105 nm or more. . That is, it shows an emission spectrum with a wide half-value width.
 本発明の第1乃至第3の実施態様の蛍光体は、発光ピークの半値幅が広いことから、青色LEDと組み合わせて用いると第2の発光体として本発明の第1乃至第3の実施態様の蛍光体のみを使用した場合であっても演色性のよい発光を得ることができる。特に、第2の発光体として第3の実施態様の蛍光体のみを用いた場合に、特に演色性のよい発光体を得ることができ、本発明の効果を顕著に奏することができるため好ましい。また、本発明の第1乃至第3の実施態様の蛍光体に加えて、青色~黄緑色蛍光体や赤色蛍光体等を組み合わせて発光装置とすれば、さらなる高演色の発光を示す発光装置を得ることができる。 Since the phosphor of the first to third embodiments of the present invention has a wide half-value width of the light emission peak, when used in combination with a blue LED, the first to third embodiments of the present invention are used as the second light emitter. Even when only the above phosphor is used, light emission with good color rendering can be obtained. In particular, when only the phosphor of the third embodiment is used as the second light emitter, a light emitter with particularly good color rendering properties can be obtained, and the effects of the present invention can be remarkably exhibited. In addition to the phosphors of the first to third embodiments of the present invention, if a light emitting device is formed by combining a blue to yellow-green phosphor, a red phosphor, or the like, a light emitting device that emits light of higher color rendering can be obtained. Obtainable.
(CIE色度座標)
 本発明の第1又は第2の実施態様の蛍光体のCIE色度座標のx値は、通常0.400以上、好ましくは0.425以上、より好ましくは0.450以上、より好ましくは0.50以上、特に好ましくは0.520以上であり、通常0.66以下、好ましくは0.63以下、より好ましくは0.61以下、より好ましくは0.59以下、より好ましくは0.575以下、特に好ましくは0.56以下である。また、本発明の第1又は第2の実施態様の蛍光体のCIE色度座標のy値は、通常0.30以上、好ましくは0.35以上、より好ましくは0.40以上、さらに好ましくは0.425以上であり、通常0.55以下、好ましくは0.525以下、より好ましくは0.510以下、より好ましくは0.50以下、特に好ましくは0.46以下である。 
 一方で、本発明の第3の実施態様の蛍光体のCIE色度座標のx値は、通常0.400以上、好ましくは0.425以上、より好ましくは0.450以上であり、通常0.575以下、好ましくは0.550以下、より好ましくは0.525以下、より好ましくは0.500以下、特に好ましくは0.475以下である。また、本発明の第3の実施態様の蛍光体のCIE色度座標のy値は、通常0.425以上、好ましくは0.450以上、より好ましくは0.475以上、特に好ましくは0.480以上であり、通常0.550以下、好ましくは0.525以下、より好ましくは0.510以下である。
 CIE色度座標が上記の範囲にあることで、演色性のよい発光色を得ることができる。特に第3の実施態様の蛍光体が有するCIE色度座標の範囲であれば、第1の発光体として青色LEDと組み合わせた場合に、第2の発光体として該蛍光体のみを用いれば演色性のよい発光体を得ることができるため、コストメリットと品質とを同時に達成し得るため好ましい。
(CIE chromaticity coordinates)
The x value of the CIE chromaticity coordinate of the phosphor according to the first or second embodiment of the present invention is usually 0.400 or more, preferably 0.425 or more, more preferably 0.450 or more, more preferably 0.00. 50 or more, particularly preferably 0.520 or more, usually 0.66 or less, preferably 0.63 or less, more preferably 0.61 or less, more preferably 0.59 or less, more preferably 0.575 or less, Especially preferably, it is 0.56 or less. The y value of the CIE chromaticity coordinates of the phosphor according to the first or second embodiment of the present invention is usually 0.30 or more, preferably 0.35 or more, more preferably 0.40 or more, and still more preferably. It is 0.425 or more, usually 0.55 or less, preferably 0.525 or less, more preferably 0.510 or less, more preferably 0.50 or less, and particularly preferably 0.46 or less.
On the other hand, the x value of CIE chromaticity coordinates of the phosphor according to the third embodiment of the present invention is usually 0.400 or more, preferably 0.425 or more, more preferably 0.450 or more, and usually 0.8. 575 or less, preferably 0.550 or less, more preferably 0.525 or less, more preferably 0.500 or less, and particularly preferably 0.475 or less. The y value of the CIE chromaticity coordinates of the phosphor of the third embodiment of the present invention is usually 0.425 or more, preferably 0.450 or more, more preferably 0.475 or more, and particularly preferably 0.480. The above is usually 0.550 or less, preferably 0.525 or less, more preferably 0.510 or less.
When the CIE chromaticity coordinates are in the above range, a light emission color with good color rendering can be obtained. In particular, within the range of the CIE chromaticity coordinates of the phosphor of the third embodiment, when combined with a blue LED as the first light emitter, color rendering properties can be achieved by using only the phosphor as the second light emitter. Therefore, it is preferable because a cost advantage and quality can be achieved at the same time.
(励起波長)
 本発明の第1乃至第3の実施態様の蛍光体は、通常300nm以上、好ましくは330nm以上、より好ましくは360nm以上、また、通常500nm以下、好ましくは480nm以下、より好ましくは460nm以下の波長範囲に励起ピークを有する。即ち、紫外から青色領域の光で励起される。
(Excitation wavelength)
The phosphor according to the first to third embodiments of the present invention has a wavelength range of usually 300 nm or more, preferably 330 nm or more, more preferably 360 nm or more, and usually 500 nm or less, preferably 480 nm or less, more preferably 460 nm or less. Has an excitation peak. That is, it is excited by light in the ultraviolet to blue region.
(温度消光特性(発光強度維持率))
 本発明の第1乃至第3の実施態様の蛍光体は、温度特性にも優れるものである。具体的には、波長405nmにピークを有する光を照射した場合における25℃での発光スペクトル図中の発光ピーク強度値に対する100℃での発光スペクトル図中の発光ピーク強度値の割合が、通常50%以上、好ましくは60%以上、より好ましくは70%以上である。また、通常の蛍光体は温度上昇と共に発光強度が低下するので、該割合が100%を越えることは考えられにくいが、何らかの理由により100%を超えることがあってもよい。ただし150%を超えるようであれば、温度変化により色ずれを起こす傾向となる。
(Temperature extinction characteristics (emission intensity maintenance rate))
The phosphors according to the first to third embodiments of the present invention also have excellent temperature characteristics. Specifically, the ratio of the emission peak intensity value in the emission spectrum diagram at 100 ° C. to the emission peak intensity value in the emission spectrum diagram at 25 ° C. when light having a peak at a wavelength of 405 nm is usually 50 % Or more, preferably 60% or more, more preferably 70% or more. In addition, since the emission intensity of ordinary phosphors decreases with increasing temperature, it is unlikely that the ratio exceeds 100%, but it may exceed 100% for some reason. However, if it exceeds 150%, the color shift tends to occur due to a temperature change.
(量子効率)
 本発明の第1乃至第3の実施態様の蛍光体の外部量子効率(η)は、通常40%以上、好ましくは50以上、更に好ましくは60%以上である。外部量子効率は高いほど好ましく、外部量子効率が低くなると発光効率が低下する傾向がある。
(Quantum efficiency)
The external quantum efficiency (η o ) of the phosphors of the first to third embodiments of the present invention is usually 40% or more, preferably 50 or more, more preferably 60% or more. The higher the external quantum efficiency, the better. The lower the external quantum efficiency, the lower the light emission efficiency.
 内部量子効率、外部量子効率、及び吸収効率などは、例えば、特開2008-285662号公報の段落[0026]~[0038]に記載の方法で測定することができる。 The internal quantum efficiency, external quantum efficiency, absorption efficiency, and the like can be measured by, for example, the methods described in paragraphs [0026] to [0038] of JP-A-2008-285562.
(粒径)
 本発明の第1乃至第3の実施態様の蛍光体は、通常、微粒子の形態を有している。具体的には、質量メジアン径D50が、通常2μm以上、好ましくは5μm以上、また、通常30μm以下、好ましくは20μm以下の範囲の微粒子である。質量メジアン径D50が大きすぎると、例えば後述する封止材料として用いる樹脂中への分散性が悪くなる傾向があり、小さすぎると低輝度となる傾向がある。
(Particle size)
The phosphors of the first to third embodiments of the present invention are usually in the form of fine particles. Specifically, the mass median diameter D 50 is usually 2μm or more, preferably 5μm or more, and usually 30μm or less, preferably fine particles of the range 20 [mu] m. When the mass median diameter D 50 is too large, for example, tend to dispersibility becomes poor in the resin which is used as a sealing material described later, they tend to be too small and the low luminance.
 質量メジアン径D50は、例えば、レーザー回折・散乱法により粒度分布を測定して得られる、質量基準粒度分布曲線から求められる値である。メジアン径D50は、この質量基準粒度分布曲線において、積算値が50%のときの粒径値を意味する。 Mass median diameter D 50 is, for example, obtained by measuring particle size distribution by laser diffraction scattering method, is a value determined from the mass-standard particle size distribution curve. The median diameter D 50 is in this mass-standard particle size distribution curve, the accumulated value refers to the particle size value when the 50%.
 以下の説明は、本発明の第1乃至第3の実施態様全てに共通する説明である。 The following description is common to all the first to third embodiments of the present invention.
[2.蛍光体の製造方法]
 本発明の第1及び第2の実施態様の蛍光体は、各蛍光体原料を、前記式[1]で表される結晶相の組成となるように、好ましくは元素組成が下記式[3]となるように、原料となる化合物や金属を秤量して蛍光体原料混合物を調整し、得られた蛍光体原料混合物を焼成することにより製造することができる。
[2. Method for producing phosphor]
In the phosphors according to the first and second embodiments of the present invention, each phosphor raw material preferably has an elemental composition represented by the following formula [3] so as to have a crystal phase composition represented by the formula [1]. Thus, it can be produced by weighing a compound or metal as a raw material to prepare a phosphor raw material mixture and firing the obtained phosphor raw material mixture.
(A1-x,Eu   [3]
(式[3]中、AはSrおよびCaを必須とするアルカリ土類金属元素を示し、DはSiを必須とする4価の金属元素を示し、EはAlを必須とする3価の金属元素を示し、xは0.0001≦x≦0.20を満たす数を示し、f、g、h、i及びjは、それぞれ、0.7≦f≦1.3、2.8≦g≦4.0、1.0≦h≦3.0、4.0≦(g+h)/f≦6.0、5.0≦i≦7.0、0<j≦2.0、6.5≦(i+j)/f≦7.5を満たす数を示す。)
(A 1-x , Eu x ) f D g E h N i O j [3]
(In the formula [3], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al. X represents a number satisfying 0.0001 ≦ x ≦ 0.20, and f, g, h, i and j represent 0.7 ≦ f ≦ 1.3 and 2.8 ≦ g ≦, respectively. 4.0, 1.0 ≦ h ≦ 3.0, 4.0 ≦ (g + h) /f≦6.0, 5.0 ≦ i ≦ 7.0, 0 <j ≦ 2.0, 6.5 ≦ (The number satisfying (i + j) /f≦7.5 is indicated.)
 本発明の第3の実施態様の蛍光体は、各蛍光体原料を、前記式[2]で表される結晶相の組成となるように、好ましくは元素組成が下記式[4]となるように、原料となる化合物や金属を秤量して蛍光体原料混合物を調整し、得られた蛍光体原料混合物を焼成することにより製造することができる。 In the phosphor according to the third embodiment of the present invention, each phosphor raw material preferably has the composition of the crystal phase represented by the formula [2], preferably the elemental composition is represented by the following formula [4]. In addition, the phosphor raw material mixture can be prepared by weighing the compound or metal used as the raw material, and the obtained phosphor raw material mixture can be fired.
(A1-x,Eu   [4]
(式[4]中、AはSrおよびCaを必須とするアルカリ土類金属元素を示し、DはSiを必須とする4価の金属元素を示し、EはAlを必須とする3価の金属元素を示し、xは0.0001≦x≦0.20を満たす数を示し、f、g、h、i及びjは、それぞれ、0.7≦f≦1.3、2.8≦g≦3.6、1.0≦h≦3.0、4.0≦(g+h)/f≦6.0、5.0≦i≦7.0、0<j≦2.0、6.5≦(i+j)/f≦7.3を満たす数を示す。)
(A 1-x , Eu x ) f D g E h N i O j [4]
(In the formula [4], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al. X represents a number satisfying 0.0001 ≦ x ≦ 0.20, and f, g, h, i and j represent 0.7 ≦ f ≦ 1.3 and 2.8 ≦ g ≦, respectively. 3.6, 1.0 ≦ h ≦ 3.0, 4.0 ≦ (g + h) /f≦6.0, 5.0 ≦ i ≦ 7.0, 0 <j ≦ 2.0, 6.5 ≦ (The number satisfying (i + j) /f≦7.3 is shown.)
 なお、f、g、h、i及びjは、それぞれ本実施態様の蛍光体の組成の項目のa、b、c、d及びeに対応し、それぞれの好ましい範囲の説明が援用される。 Note that f, g, h, i, and j correspond to a, b, c, d, and e in the item of the composition of the phosphor of this embodiment, respectively, and explanations of preferred ranges thereof are incorporated.
(蛍光体原料)
 蛍光体原料としては、金属化合物、金属などを用いる。例えば、上記式[1]又は[2]で表わされる結晶相の組成を有する蛍光体を製造する場合、A元素の原料(以下適宜「A源」という)、D元素の原料(以下適宜「D源」という)、E元素の原料(以下適宜「E源」という)、N元素の原料(以下適宜「N源」という)、O元素の原料(以下適宜「O源」という)、Eu元素の原料(以下適宜「Eu源」という)から必要な組み合わせを混合し(混合工程)、得られた混合物を焼成し(焼成工程)、得られた焼成物を、必要に応じて、解砕・粉砕や洗浄する(後処理工程)ことにより製造することができる。
(Phosphor raw material)
As the phosphor material, a metal compound, a metal, or the like is used. For example, when producing a phosphor having the composition of the crystal phase represented by the above formula [1] or [2], a raw material of A element (hereinafter referred to as “A source” as appropriate), a raw material of D element (hereinafter referred to as “D” as appropriate). Source), E element source (hereinafter referred to as “E source” as appropriate), N element source (hereinafter referred to as “N source” as appropriate), O element source (hereinafter referred to as “O source” as appropriate), Eu element A necessary combination is mixed from raw materials (hereinafter referred to as “Eu source” as appropriate) (mixing step), the resulting mixture is fired (firing step), and the obtained fired product is crushed and pulverized as necessary. Or by washing (post-treatment process).
 中でも、アルカリ土類金属源として用いる原料としては、好ましくはアルカリ土類金属酸化物やアルカリ土類金属炭酸塩、特に好ましくはアルカリ土類金属炭酸塩である。アルカリ土類金属源として用いる原料が大気中で扱えることで、混合時の雰囲気制御の必要性がなくなるため、製造コストの面で有益であるからである。 Among them, the raw material used as the alkaline earth metal source is preferably an alkaline earth metal oxide or an alkaline earth metal carbonate, particularly preferably an alkaline earth metal carbonate. This is because the raw material used as the alkaline earth metal source can be handled in the air, which eliminates the need for atmosphere control during mixing and is advantageous in terms of manufacturing costs.
 使用される蛍光体原料としては、公知のものを用いることができ、例えば、A源としてSr、SrO、SrCO等のSr源、Ca、CaO、CaCO等のCa源、D源としてSiC、Si、SiO等のSi源、E源としてAlN、Al、Al等のAl源と、Eu源としてEuの金属、酸化物、炭酸塩、塩化物、フッ化物、窒化物又は酸窒化物から選ばれるEu化合物を用いることができる。 As the phosphor material used, known materials can be used. For example, as the A source, an Sr source such as Sr 3 N 2 , SrO, SrCO 3 , or a Ca source such as Ca 3 N 2 , CaO, CaCO 3, etc. Si source such as SiC, Si 3 N 4 , and SiO 2 as D source, Al source such as AlN, Al 2 O 3 , and Al 4 C 3 as E source, and Eu metal, oxide, and carbonate as Eu source Eu compounds selected from chlorides, fluorides, nitrides or oxynitrides can be used.
 なお、前記式[3]又は[4]におけるO源(酸素)やN源(窒素)は、A源(SrおよびCa源)、D源(Si源)、E源(Al源)、Eu源から供給されてもよいし、焼成雰囲気から供給されてもよい。また、各原料には、不可避的不純物が含まれていてもよい。 The O source (oxygen) and N source (nitrogen) in the formula [3] or [4] are A source (Sr and Ca source), D source (Si source), E source (Al source), Eu source. May be supplied from a firing atmosphere. Each raw material may contain inevitable impurities.
(混合工程)
 目的組成が得られるように蛍光体原料を秤量し、ボールミル等を用いて十分混合し、蛍光体原料混合物を得る(混合工程)。
 上記混合手法としては、特に限定はされないが、具体的には、下記(A)及び(B)の手法が挙げられる。
(Mixing process)
The phosphor raw materials are weighed so as to obtain the target composition, and sufficiently mixed using a ball mill or the like to obtain a phosphor raw material mixture (mixing step).
Although it does not specifically limit as said mixing method, Specifically, the method of following (A) and (B) is mentioned.
 (A)例えばハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、又は、乳鉢と乳棒等を用いる粉砕と、例えばリボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、又は、乳鉢と乳棒を用いる混合とを組み合わせ、前述の蛍光体原料を粉砕混合する乾式混合法。 (A) Dry pulverizer such as hammer mill, roll mill, ball mill, jet mill, etc., or pulverization using mortar and pestle, and mixer such as ribbon blender, V-type blender, Henschel mixer, or mortar and pestle And a dry mixing method in which the above phosphor raw materials are pulverized and mixed.
 (B)前述の蛍光体原料に水等の溶媒又は分散媒を加え、例えば粉砕機、乳鉢と乳棒、又は蒸発皿と撹拌棒等を用いて混合し、溶液又はスラリーの状態としたうえで、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる湿式混合法。 (B) After adding a solvent or dispersion medium such as water to the above-mentioned phosphor raw material and mixing with, for example, a pulverizer, a mortar and a pestle, or an evaporating dish and a stirring rod, A wet mixing method in which drying is performed by spray drying, heat drying, or natural drying.
 蛍光体原料の混合は、上記湿式混合法又は乾式混合法のいずれでもよいが、水分による蛍光体原料の汚染を避けるために、乾式混合法や非水溶性溶媒を使った湿式混合法がより好ましい。 The mixing of the phosphor raw material may be either the wet mixing method or the dry mixing method, but in order to avoid contamination of the phosphor raw material with moisture, a dry mixing method or a wet mixing method using a water-insoluble solvent is more preferable. .
(焼成工程)
 続いて、混合工程で得られた蛍光体原料混合物を焼成する(焼成工程)。上述の蛍光体原料混合物を、必要に応じて乾燥後、坩堝等の容器内に充填し、焼成炉、加圧炉等を用いて焼成を行なう。
(Baking process)
Subsequently, the phosphor material mixture obtained in the mixing step is fired (firing step). The above-mentioned phosphor raw material mixture is dried as necessary and then filled in a container such as a crucible and fired using a firing furnace, a pressure furnace or the like.
 本発明者らの検討により、本発明の第1乃至第3の実施態様の蛍光体を製造する場合、焼成工程において、炉内の圧力が0.2MPa以上、100MPa以下である条件下で上述の蛍光体原料混合物を焼成することがより好ましいことがわかった。焼成工程における好ましい諸条件を以下に述べる。 When the phosphors according to the first to third embodiments of the present invention are manufactured by the study of the present inventors, in the firing step, the pressure in the furnace is 0.2 MPa or more and 100 MPa or less as described above. It has been found that firing the phosphor raw material mixture is more preferable. Preferred conditions in the firing step are described below.
 焼成工程で用いる焼成容器(坩堝など)の材質としては、窒化ホウ素製、カーボン製等が挙げられる。 Examples of the material of the firing container (such as a crucible) used in the firing step include boron nitride and carbon.
 焼成温度は、圧力など、その他の条件によっても異なるが、通常1300℃以上、2100℃以下の温度範囲で焼成を行なうことができる。焼成工程における最高到達温度としては、通常1200℃以上、好ましくは1400℃以上、より好ましくは1600℃以上、特に好ましくは1800℃以上であり、また、通常2100℃以下、好ましくは2000℃以下、より好ましくは1900℃以下である。焼成温度が高すぎると窒素が飛んで母体結晶に欠陥を生成し着色することや、不純物が生成しやすくなる傾向がある。低すぎると固相反応の進行が遅くなる傾向にある。 Calcination temperature varies depending on other conditions such as pressure, but can be usually performed in a temperature range of 1300 ° C. or higher and 2100 ° C. or lower. The highest temperature reached in the firing step is usually 1200 ° C. or higher, preferably 1400 ° C. or higher, more preferably 1600 ° C. or higher, particularly preferably 1800 ° C. or higher, and usually 2100 ° C. or lower, preferably 2000 ° C. or lower. Preferably it is 1900 degrees C or less. If the firing temperature is too high, nitrogen will fly, generating defects in the host crystal and coloring, and impurities tend to be generated. If it is too low, the progress of the solid phase reaction tends to be slow.
 焼成工程における昇温速度は、通常2℃/分以上、好ましくは5℃/分以上、より好ましくは10℃/分以上であり、また、通常30℃/分以下、好ましくは25℃/分以下である。昇温速度がこの範囲を下回ると、焼成時間が長くなる可能性がある。また、昇温速度がこの範囲を上回ると、焼成装置、容器等が破損する場合がある。 The heating rate in the firing step is usually 2 ° C./min or more, preferably 5 ° C./min or more, more preferably 10 ° C./min or more, and usually 30 ° C./min or less, preferably 25 ° C./min or less. It is. If the rate of temperature rise is below this range, the firing time may be long. In addition, if the rate of temperature rise exceeds this range, the firing device, container, etc. may be damaged.
 焼成工程における焼成雰囲気は、本発明の第1乃至第3の実施態様の蛍光体が得られる限り任意であるが、窒素含有雰囲気とすることが好ましい。具体的には、窒素雰囲気、水素含有窒素雰囲気等が挙げられ、中でも窒素雰囲気が好ましい。なお、焼成雰囲気の酸素含有量は、通常10ppm以下、好ましくは5ppm以下にするとよい。 The firing atmosphere in the firing step is arbitrary as long as the phosphors according to the first to third embodiments of the present invention are obtained, but a nitrogen-containing atmosphere is preferable. Specific examples include a nitrogen atmosphere and a hydrogen-containing nitrogen atmosphere, and a nitrogen atmosphere is particularly preferable. The oxygen content in the firing atmosphere is usually 10 ppm or less, preferably 5 ppm or less.
 焼成時間は、焼成時の温度や圧力等によっても異なるが、通常10分間以上、好ましくは30分間以上、また、通常24時間以下、好ましくは12時間以下である。 The firing time varies depending on the temperature and pressure during firing, but is usually 10 minutes or longer, preferably 30 minutes or longer, and usually 24 hours or shorter, preferably 12 hours or shorter.
 焼成工程における圧力は、焼成温度等によっても異なるが、炉内の圧力を大気圧(0.1013MPa)もしくは、加圧状態にして製造することができる。焼成工程における圧力は、通常0.1013MPa以上、好ましくは0.2MPa以上、より好ましくは0.4MPa以上であり、また、通常100MPa以下、好ましくは50MPa以下、より好ましくは20MPa以下、特に好ましくは10MPa以下である。圧力が高すぎると、副生物が多くなる傾向にあり、圧力が低すぎると得られた蛍光体が分解したり、着色したりする可能性があるので、圧力の調整が重要である。 Although the pressure in the firing step varies depending on the firing temperature and the like, the pressure in the furnace can be set to atmospheric pressure (0.1013 MPa) or a pressurized state. The pressure in the firing step is usually 0.1013 MPa or more, preferably 0.2 MPa or more, more preferably 0.4 MPa or more, and usually 100 MPa or less, preferably 50 MPa or less, more preferably 20 MPa or less, particularly preferably 10 MPa. It is as follows. If the pressure is too high, by-products tend to increase, and if the pressure is too low, the obtained phosphor may be decomposed or colored, so adjustment of the pressure is important.
 なお、焼成工程は、必要に応じて、複数回繰り返し行なってもよい。その際は、一回目の焼成と、二回目の焼成とで、焼成条件を同一にしてもよいし、異なるものにしてもよい。一回目の焼成を予備焼成として比較的低温で行った後、比較的高温の本焼成を二回目に行うと、不純物相を減らし発光効率を上げるために好ましい。 In addition, you may repeat a baking process in multiple times as needed. In that case, the firing conditions may be the same or different between the first firing and the second firing. It is preferable to perform the second baking at a relatively high temperature after the first baking as a preliminary baking at a relatively low temperature in order to reduce the impurity phase and increase the luminous efficiency.
(後処理工程)
 得られる焼成物は、粒状又は塊状となる。これを解砕、粉砕及び/又は分級操作を組み合わせて所定のサイズの粉末にする。ここでは、D50が約30μm以下になるように処理するとよい。
(Post-processing process)
The obtained fired product is granular or massive. This is pulverized, pulverized and / or classified into a powder of a predetermined size. Here, it is preferable to process as D 50 is less than about 30 [mu] m.
 具体的な処理の例としては、合成物を目開き45μm程度の篩分級処理し、篩を通過した粉末を次工程に回す方法、或いは合成物をボールミルや振動ミル、ジェットミル等の一般的な粉砕機を使用して所定の粒度に粉砕する方法が挙げられる。後者の方法において、過度の粉砕は、光を散乱しやすい微粒子を生成するだけでなく、粒子表面に結晶欠陥を生成し、発光効率の低下を引き起こす可能性がある。 Specific examples of the treatment include a method of subjecting the synthesized product to sieve classification with an opening of about 45 μm, and passing the powder that has passed through the sieve to the next step, or the synthesized product to a general method such as a ball mill, a vibration mill, or a jet mill. The method of grind | pulverizing to a predetermined particle size using a grinder is mentioned. In the latter method, excessive pulverization not only generates fine particles that easily scatter light, but also generates crystal defects on the particle surface, which may cause a decrease in luminous efficiency.
 また、必要に応じて、蛍光体(焼成物)を洗浄する工程を設けてもよい。洗浄工程後は、蛍光体を付着水分がなくなるまで乾燥させて、使用に供する。さらに、必要に応じて、凝集をほぐすために分散・分級処理を行ってもよい。 Further, if necessary, a step of cleaning the phosphor (baked product) may be provided. After the cleaning step, the phosphor is dried until it has no adhering moisture and is used. Further, if necessary, dispersion / classification treatment may be performed to loosen the aggregation.
[3.蛍光体の用途]
 本発明の第1乃至第3の実施態様の蛍光体は、蛍光体を使用する任意の用途に用いることができる。また、本発明の第1乃至第3の実施態様の蛍光体を単独で使用することも可能であるが、2種以上併用したり、本発明の第1乃至第3の実施態様の蛍光体とその他の蛍光体とを併用したりした、任意の組み合わせの蛍光体混合物として用いることも可能である。
[3. Use of phosphor]
The phosphor according to the first to third embodiments of the present invention can be used for any application using the phosphor. The phosphors of the first to third embodiments of the present invention can be used alone, but two or more kinds of phosphors can be used together, or the phosphors of the first to third embodiments of the present invention can be used together. It can also be used as a phosphor mixture of any combination, such as in combination with other phosphors.
 本発明の第1乃至第3の実施態様の蛍光体は、公知の液体媒体(例えば、シリコーン系化合物等)と混合して、蛍光体含有組成物として用いることもできる。
 また、本発明の第1乃至第3の実施態様により得られる蛍光体は、特に、紫外光で励起可能であるという特性を生かして、紫外光を発する光源と組み合わせることで、各種の発光装置に好適に用いることができる。
The phosphors of the first to third embodiments of the present invention can be used as a phosphor-containing composition by mixing with a known liquid medium (for example, a silicone compound).
In addition, the phosphor obtained by the first to third embodiments of the present invention can be used in various light emitting devices by combining with a light source that emits ultraviolet light, taking advantage of the fact that it can be excited by ultraviolet light. It can be used suitably.
 発光装置の発光色としては紫色や、白色に制限されず、蛍光体の組み合わせや含有量を適宜選択することにより、電球色(暖かみのある白色)やパステルカラー等、任意の色に発光する発光装置を製造することができる。こうして得られた発光装置を、画像表示装置の発光部(特に液晶用バックライトなど)や照明装置として使用することができる。 The emission color of the light-emitting device is not limited to purple or white, but by appropriately selecting the combination and content of phosphors, light emission that emits light in any color, such as light bulb color (warm white) or pastel color The device can be manufactured. The light-emitting device thus obtained can be used as a light-emitting portion (particularly a liquid crystal backlight) or an illumination device of an image display device.
[4.蛍光体含有組成物]
 本発明の第1乃至第3の実施態様の蛍光体は、液体媒体と混合して用いることもできる。特に、本発明の第1乃至第3の実施態様の蛍光体を発光装置等の用途に使用する場合には、これを液体媒体中に分散させた形態で用いることが好ましい。本発明の第1乃至第3の実施態様の蛍光体を液体媒体中に分散させたものを、適宜「本発明の蛍光体含有組成物」と呼ぶものとし、本発明の第4の実施態様は、上述の蛍光体の少なくとも一種を液体媒体中に分散させてなることを特徴とする蛍光体含有組成物である。
[4. Phosphor-containing composition]
The phosphors of the first to third embodiments of the present invention can be used by mixing with a liquid medium. In particular, when the phosphor of the first to third embodiments of the present invention is used for a light emitting device or the like, it is preferably used in a form dispersed in a liquid medium. The phosphor of the first to third embodiments of the present invention dispersed in a liquid medium is appropriately referred to as “the phosphor-containing composition of the present invention”, and the fourth embodiment of the present invention is A phosphor-containing composition obtained by dispersing at least one phosphor described above in a liquid medium.
(蛍光体)
 上記蛍光体含有組成物に含有させる本発明の第1乃至第3の実施態様の蛍光体の種類に制限は無く、その条件を満たすものから任意に選択することができる。また、蛍光体含有組成物に含有させる本発明の第1乃至第3の実施態様の蛍光体は、1種のみであってもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。更に、蛍光体含有組成物には、本実施態様の効果を著しく損なわない限り、本発明の第1乃至第3の実施態様の蛍光体以外の蛍光体を含有させてもよい。
(Phosphor)
There is no restriction | limiting in the kind of fluorescent substance of the 1st thru | or 3rd embodiment of this invention contained in the said fluorescent substance containing composition, It can select arbitrarily from what satisfy | fills the condition. Moreover, the fluorescent substance of the 1st thru | or 3rd embodiment of this invention contained in a fluorescent substance containing composition may be only 1 type, and may use 2 or more types together by arbitrary combinations and ratios. . Furthermore, the phosphor-containing composition may contain a phosphor other than the phosphors of the first to third embodiments of the present invention as long as the effects of the present embodiment are not significantly impaired.
(液体媒体)
 蛍光体含有組成物に用いられる液体媒体の種類は特に限定されず、通常、半導体発光素子を覆ってモールディングすることのできる硬化性材料を用いることができる。硬化性材料とは、流体状の材料であって、何らかの硬化処理を施すことにより硬化する材料のことをいう。ここで、流体状とは、例えば液状又はゲル状のことをいう。硬化性材料は、固体発光素子から発せられた光を蛍光体へ導く役割を担保するものであれば、具体的な種類に制限は無い。また、硬化性材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。したがって、硬化性材料としては、無機系材料及び有機系材料並びに両者の混合物のいずれを用いることも可能である。
(Liquid medium)
The kind of liquid medium used for the phosphor-containing composition is not particularly limited, and a curable material that can be molded over the semiconductor light emitting element can be used. The curable material is a fluid material that is cured by performing some kind of curing treatment. Here, the fluid state means, for example, a liquid state or a gel state. The curable material is not particularly limited as long as it secures the role of guiding the light emitted from the solid light emitting element to the phosphor. Moreover, only 1 type may be used for a curable material and it may use 2 or more types together by arbitrary combinations and a ratio. Therefore, as the curable material, any of inorganic materials, organic materials, and mixtures thereof can be used.
 無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル-ゲル法により加水分解重合して成る溶液、またはこれらの組み合わせを固化した無機系材料(例えばシロキサン結合を有する無機系材料)等を挙げることができる。 As the inorganic material, for example, a solution obtained by hydrolytic polymerization of a solution containing a metal alkoxide, a ceramic precursor polymer or a metal alkoxide by a sol-gel method, or a combination thereof, an inorganic material (for example, a siloxane bond) Inorganic materials having
 一方、有機系材料としては、例えば、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体例を挙げると、ポリ(メタ)アクリル酸メチル等の(メタ)アクリル樹脂;ポリスチレン、スチレン-アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。 On the other hand, examples of the organic material include a thermosetting resin and a photocurable resin. Specific examples include (meth) acrylic resins such as methyl poly (meth) acrylate; styrene resins such as polystyrene and styrene-acrylonitrile copolymers; polycarbonate resins; polyester resins; phenoxy resins; butyral resins; Cellulose resins such as cellulose acetate and cellulose acetate butyrate; epoxy resins; phenol resins; silicone resins and the like.
 これら硬化性材料の中では、半導体発光素子からの発光に対して劣化が少なく、耐アルカリ性、耐酸性、耐熱性にも優れる珪素含有化合物を使用することが好ましい。珪素含有化合物とは分子中に珪素原子を有する化合物をいい、ポリオルガノシロキサン等の有機材料(シリコーン系化合物)、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等の無機材料、及びホウケイ酸塩、ホスホケイ酸塩、アルカリケイ酸塩等のガラス材料を挙げることができる。中でも、透明性、接着性、ハンドリングの容易さ、機械的、熱的応力の緩和特性に優れる等の点から、シリコーン系材料が好ましい。 Among these curable materials, it is preferable to use a silicon-containing compound that is less deteriorated with respect to light emitted from the semiconductor light-emitting element and is excellent in alkali resistance, acid resistance, and heat resistance. A silicon-containing compound is a compound having a silicon atom in the molecule, organic materials such as polyorganosiloxane (silicone compounds), inorganic materials such as silicon oxide, silicon nitride, and silicon oxynitride, and borosilicates and phosphosilicates. Examples thereof include glass materials such as salts and alkali silicates. Among these, silicone materials are preferable from the viewpoints of transparency, adhesion, ease of handling, and excellent mechanical and thermal stress relaxation characteristics.
 シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい、例えば、縮合型、付加型、改良ゾルゲル型、光硬化型等のシリコーン系材料を用いることができる。 The silicone-based material usually refers to an organic polymer having a siloxane bond as a main chain, and for example, a silicone-based material such as a condensation type, an addition type, an improved sol-gel type, and a photocurable type can be used.
 縮合型シリコーン系材料としては、例えば、特開2007-112973~112975号公報、特開2007-19459号公報、特開2008-34833号公報等に記載の半導体発光デバイス用部材を用いることができる。縮合型シリコーン系材料は半導体発光デバイスに用いられるパッケージや電極、発光素子などの部材との接着性に優れるため、密着向上成分の添加を最低限とすることができ、架橋はシロキサン結合主体のため耐熱性・耐光性に優れる利点がある。 As the condensation type silicone material, for example, semiconductor light-emitting device members described in JP-A No. 2007-129973 to No. 112975, JP-A No. 2007-19459, JP-A No. 2008-34833 and the like can be used. Condensation-type silicone materials have excellent adhesion to packages, electrodes, and light-emitting elements used in semiconductor light-emitting devices, so the addition of adhesion-improving components can be minimized, and crosslinking is mainly due to siloxane bonds. There is an advantage of excellent heat resistance and light resistance.
 付加型シリコーン系材料としては、例えば、特開2004-186168号公報、特開2004-221308号公報、特開2005-327777号公報等に記載のポッティング用シリコーン材料、特開2003-183881号公報、特開2006-206919号公報等に記載のポッティング用有機変性シリコーン材料、特開2006-324596号公報に記載の射出成型用シリコーン材料、特開2007-231173号公報に記載のトランスファー成型用シリコーン材料等を好適に用いることができる。付加型シリコーン材料は、硬化速度や硬化物の硬度などの選択の自由度が高い、硬化時に脱離する成分が無く硬化収縮しにくい、深部硬化性に優れるなどの利点がある。 Examples of the addition-type silicone material include potting silicone materials described in JP-A No. 2004-186168, JP-A No. 2004-221308, JP-A No. 2005-327777, JP-A No. 2003-183881, Organically modified silicone materials for potting described in JP-A-2006-206919, silicone materials for injection molding described in JP-A-2006-324596, silicone materials for transfer molding described in JP-A-2007-231173, etc. Can be suitably used. The addition-type silicone material has advantages such as a high degree of freedom in selection such as a curing speed and a hardness of a cured product, a component that does not desorb during curing, hardly shrinking due to curing, and excellent deep part curability.
 また、縮合型の一つである改良ゾルゲル型シリコーン系材料としては、例えば、特開2006-077234号公報、特開2006-291018号公報、特開2007-119569号公報等に記載のシリコーン材料を好適に用いることができる。改良ゾルゲル型のシリコーン材料は高架橋度で耐熱性・耐光性高く耐久性に優れ、ガス透過性低く耐湿性の低い蛍光体の保護機能にも優れる利点がある。 Further, as an improved sol-gel type silicone material which is one of the condensation types, for example, the silicone materials described in JP-A-2006-077234, JP-A-2006-291018, JP-A-2007-119569 and the like are used. It can be used suitably. The improved sol-gel type silicone material has an advantage that it has a high degree of crosslinking, heat resistance, light resistance and durability, and is excellent in the protective function of a phosphor having low gas permeability and low moisture resistance.
 光硬化型シリコーン系材料としては、例えば、特開2007-131812号公報、特開2007-214543号公報等に記載のシリコーン材料を好適に用いることができる。紫外硬化方シリコーン材料は、短時間に硬化するため生産性に優れる、硬化に高い温度をかける必要が無く発光素子の劣化が起こりにくいなどの利点がある。 As the photocurable silicone-based material, for example, silicone materials described in JP2007-131812A, JP2007-214543A, and the like can be suitably used. The ultraviolet curable silicone material has advantages such as excellent productivity because it cures in a short time, and it is not necessary to apply a high temperature for curing, so that the light emitting element is hardly deteriorated.
 これらのシリコーン系材料は単独で使用してもよいし、混合することにより硬化阻害が起きなければ複数のシリコーン系材料を混合して用いてもよい。 These silicone materials may be used alone, or a plurality of silicone materials may be mixed and used as long as they do not inhibit curing by mixing.
(液体媒体及び蛍光体の含有率)
 液体媒体の含有率は、本実施態様の効果を著しく損なわない限り任意であるが、本実施態様の蛍光体含有組成物全体に対して、通常25質量%以上、好ましくは40質量%以上であり、また、通常99質量%以下、好ましくは95質量%以下、より好ましくは80質量%以下である。液体媒体の量が多い場合には特段の問題は起こらないが、半導体発光装置とした場合に所望の色度座標、演色指数、発光効率等を得るには、通常、上記のような配合比率で液体媒体を用いることが望ましい。一方、液体媒体が少な過ぎると流動性が低下し取り扱い難くなる可能性がある。
(Content of liquid medium and phosphor)
The content of the liquid medium is arbitrary as long as the effect of the present embodiment is not significantly impaired, but is usually 25% by mass or more, preferably 40% by mass or more with respect to the entire phosphor-containing composition of the present embodiment. Moreover, it is 99 mass% or less normally, Preferably it is 95 mass% or less, More preferably, it is 80 mass% or less. When the amount of the liquid medium is large, no particular problem occurs. However, in order to obtain a desired chromaticity coordinate, color rendering index, luminous efficiency, etc. in the case of a semiconductor light emitting device, it is usually at a blending ratio as described above. It is desirable to use a liquid medium. On the other hand, when there is too little liquid medium, fluidity | liquidity may fall and it may become difficult to handle.
 液体媒体は、本実施態様の蛍光体含有組成物において、主にバインダーとしての役割を有する。液体媒体は、一種を単独で用いてもよいが、二種以上を任意の組み合わせ及び比率で併用してもよい。例えば、耐熱性や耐光性等を向上させることを目的として珪素含有化合物を使用する場合は、当該珪素含有化合物の耐久性を損なわない程度に、エポキシ樹脂など他の熱硬化性樹脂を含有してもよい。この場合、他の熱硬化性樹脂の含有量は、バインダーである液体媒体全量に対して、通常25質量%以下、好ましくは10質量%以下とすることが望ましい。 The liquid medium mainly has a role as a binder in the phosphor-containing composition of the present embodiment. The liquid medium may be used alone or in combination of two or more in any combination and ratio. For example, when using a silicon-containing compound for the purpose of improving heat resistance, light resistance, etc., other thermosetting resins such as an epoxy resin are contained so as not to impair the durability of the silicon-containing compound. Also good. In this case, the content of the other thermosetting resin is usually 25% by mass or less, preferably 10% by mass or less, based on the total amount of the liquid medium as the binder.
 蛍光体含有組成物中の蛍光体の含有率は、本実施態様の効果を著しく損なわない限り任意であるが、本実施態様の蛍光体含有組成物全体に対して、通常1質量%以上、好ましくは5質量%以上、より好ましくは20質量%以上であり、通常75質量%以下、好ましくは60質量%以下である。また、蛍光体含有組成物中の蛍光体に占める本発明の第1乃至第3の実施態様の蛍光体の割合についても任意であるが、通常30質量%以上、好ましくは50質量%以上であり、通常100質量%以下である。蛍光体含有組成物中の蛍光体含有量が多過ぎると蛍光体含有組成物の流動性が劣り、取り扱いにくくなることがあり、蛍光体含有量が少な過ぎると発光装置の発光の効率が低下する傾向にある。 The phosphor content in the phosphor-containing composition is arbitrary as long as the effect of the present embodiment is not significantly impaired, but is usually 1% by mass or more, preferably with respect to the entire phosphor-containing composition of the present embodiment. Is 5% by mass or more, more preferably 20% by mass or more, and usually 75% by mass or less, preferably 60% by mass or less. The proportion of the phosphor of the first to third embodiments of the present invention in the phosphor in the phosphor-containing composition is also arbitrary, but is usually 30% by mass or more, preferably 50% by mass or more. Usually, it is 100 mass% or less. If the phosphor content in the phosphor-containing composition is too high, the flowability of the phosphor-containing composition may be inferior and difficult to handle, and if the phosphor content is too low, the light emission efficiency of the light-emitting device decreases. There is a tendency.
(その他の成分)
 蛍光体含有組成物には、本実施態様の効果を著しく損なわない限り、蛍光体及び液体媒体以外に、その他の成分、例えば、屈折率調整のための金属酸化物や、拡散剤、フィラー、粘度調整剤、紫外線吸収剤等の添加剤を含有させても良い。その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Other ingredients)
In addition to the phosphor and the liquid medium, the phosphor-containing composition has other components such as a metal oxide for adjusting the refractive index, a diffusing agent, a filler, and a viscosity, as long as the effects of the present embodiment are not significantly impaired. You may contain additives, such as a regulator and a ultraviolet absorber. Only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and a ratio.
[5.発光装置]
 本発明の第5の実施態様は、第1の発光体(励起光源)と、当該第1の発光体からの光を可視光に変換して、可視光を発し得る第2の発光体とを有する発光装置であって、該第2の発光体として前述の[1.蛍光体]の項で記載した第1乃至第3の実施態様の蛍光体を1種以上含む第1の蛍光体を含有するものである。
[5. Light emitting device]
According to a fifth embodiment of the present invention, there is provided a first light emitter (excitation light source) and a second light emitter that can emit visible light by converting light from the first light emitter into visible light. A light-emitting device having the above-described [1. It contains a first phosphor containing one or more of the phosphors of the first to third embodiments described in the section [Phosphor].
 本実施態様の発光装置は、第2の発光体として第1の蛍光体を含む。これにより、発光装置に第1乃至第3の実施態様の蛍光体のみを用いた場合であっても演色性や色再現性に優れた発光装置を提供することができる。第2の発光体における、蛍光体全体に対する第1の蛍光体の割合は、95質量%以上、好ましくは98質量%以上、さらに好ましくは99.9質量%以上であると、種類の異なる蛍光体を混在させることによって蛍光体の発光を他の蛍光体が吸収してしまう自己吸収の問題を避けることができるため、発光効率の高い発光装置を提供することができる。 The light emitting device of this embodiment includes a first phosphor as the second light emitter. As a result, it is possible to provide a light emitting device excellent in color rendering and color reproducibility even when only the phosphors of the first to third embodiments are used in the light emitting device. When the ratio of the first phosphor in the second phosphor is 95% by mass or more, preferably 98% by mass or more, and more preferably 99.9% by mass or more, different types of phosphors By mixing the phosphors, it is possible to avoid the problem of self-absorption that other phosphors absorb the light emission of the phosphors, so that a light-emitting device with high luminous efficiency can be provided.
 本実施態様の発光装置に用いられる第1乃至第3の実施態様の蛍光体の好ましい具体例としては、前述の[1.蛍光体]の欄に記載した実施態様の蛍光体や、後述の[実施例]の欄の各実施例に用いた蛍光体が挙げられる。また、第1乃至第3の実施態様の蛍光体は、何れか一種を単独で使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。 Favorable specific examples of the phosphors of the first to third embodiments used in the light emitting device of the present embodiment include [1. Examples include phosphors according to the embodiments described in the “Phosphor” column, and phosphors used in each Example in the “Example” column described below. In addition, the phosphors of the first to third embodiments may be used alone or in combination of two or more in any combination and ratio.
 本実施態様の発光装置は、第1の発光体(励起光源)を有し、且つ、第2の発光体として少なくとも第1乃至第3の実施態様の蛍光体を使用している他は、その構成は制限されず、公知の装置構成を任意にとることが可能である。装置構成の具体例については後述する。 The light emitting device of this embodiment has a first light emitter (excitation light source) and uses at least the phosphors of the first to third embodiments as the second light emitter. The configuration is not limited, and a known device configuration can be arbitrarily employed. A specific example of the device configuration will be described later.
 本実施態様の発光装置のうち、特に白色発光装置として、具体的には、第1の発光体として後述するような励起光源を用い、第1乃至第3の実施態様の蛍光体の他、後述するような青色の蛍光を発する蛍光体(以下、適宜「青色蛍光体」という)、緑色の蛍光を発する蛍光体(以下、適宜「緑色蛍光体」という)、赤色の蛍光を発する蛍光体(以下、適宜「赤色蛍光体」という)、黄色の蛍光を発する蛍光体(以下、適宜「黄色蛍光体」という)等の公知の蛍光体を任意に組み合わせて使用し、公知の装置構成をとることにより得られる。 Among the light emitting devices of the present embodiment, in particular, as a white light emitting device, specifically, an excitation light source as described later is used as the first light emitter, and in addition to the phosphors of the first to third embodiments, the light source will be described later. Such a phosphor that emits blue fluorescence (hereinafter referred to as “blue phosphor” as appropriate), a phosphor that emits green fluorescence (hereinafter referred to as “green phosphor” as appropriate), and a phosphor that emits red fluorescence (hereinafter referred to as “green phosphor”). By appropriately combining known phosphors such as “red phosphor” and yellow phosphor (hereinafter referred to as “yellow phosphor” as appropriate) and using a known apparatus configuration can get.
 ここで、該白色発光装置の白色とは、JIS Z 8701により規定された、(黄みの)白、(緑みの)白、(青みの)白、(紫みの)白及び白の全てを含む意であり、このうち好ましくは白である。 Here, the white color of the white light emitting device is any of (yellowish) white, (greenish) white, (blueish) white, (purple) white and white as defined by JIS Z 8701. Of these, white is preferred.
<発光装置の構成>
(第1の発光体)
 本実施態様の発光装置における第1の発光体は、後述する第2の発光体を励起する光を発光するものである。
 第1の発光体の発光ピーク波長は、後述する第2の発光体の吸収波長と重複するものであれば、特に制限されず、幅広い発光波長領域の発光体を使用することができる。通常は、紫外領域から青色領域までの発光波長を有する発光体が使用される。
<Configuration of light emitting device>
(First luminous body)
The first light emitter in the light emitting device of this embodiment emits light that excites a second light emitter described later.
The emission peak wavelength of the first illuminant is not particularly limited as long as it overlaps with the absorption wavelength of the second illuminant described later, and an illuminant having a wide emission wavelength region can be used. Usually, a light emitter having an emission wavelength from the ultraviolet region to the blue region is used.
 第1の発光体の発光ピーク波長の具体的数値としては、通常300nm以上、好ましくは330nm以上、より好ましくは360nm以上、また、通常500nm以下、好ましくは480nm以下、より好ましくは460nm以下の発光ピーク波長を有する発光体を使用することが望ましい。 The specific value of the emission peak wavelength of the first illuminant is usually 300 nm or more, preferably 330 nm or more, more preferably 360 nm or more, and usually 500 nm or less, preferably 480 nm or less, more preferably 460 nm or less. It is desirable to use a light emitter having a wavelength.
 第1の発光体としては、一般的には半導体発光素子が用いられ、具体的には発光ダイオード(LED)やレーザーダイオード(LD)等が使用できる。その他、第1の発光体として使用できる発光体としては、例えば、有機エレクトロルミネッセンス発光素子、無機エレクトロルミネッセンス発光素子等が挙げられる。但し、第1の発光体として使用できるものは本明細書に例示されるものに限られない。 As the first light emitter, a semiconductor light emitting element is generally used, and specifically, a light emitting diode (LED), a laser diode (LD), or the like can be used. In addition, as a light-emitting body which can be used as a 1st light-emitting body, an organic electroluminescent light emitting element, an inorganic electroluminescent light emitting element, etc. are mentioned, for example. However, what can be used as a 1st light-emitting body is not restricted to what is illustrated by this specification.
 中でも、第1の発光体としては、GaN系化合物半導体を使用したGaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の発光強度を有する。GaN系LEDやLDとしては、AlGaN発光層、GaN発光層又はInGaN発光層を有しているものが好ましい。中でも、発光強度が非常に高いことから、GaN系LEDとしては、InGaN発光層を有するものが特に好ましく、InGaN層とGaN層との多重量子井戸構造のものがさらに好ましい。 Among these, as the first light emitter, a GaN LED or LD using a GaN compound semiconductor is preferable. This is because GaN-based LEDs and LDs have significantly higher emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and emit very bright light with low power when combined with the phosphor. It is because it is obtained. For example, for a current load of 20 mA, GaN-based LEDs and LDs usually have a light emission intensity 100 times or more that of SiC-based. As the GaN-based LED and LD, those having an Al X Ga Y N light emitting layer, a GaN light emitting layer, or an In X Ga Y N light emitting layer are preferable. Among them, since the emission intensity is very high, the GaN-based LED is particularly preferably one having an In X Ga Y N light emitting layer, and more preferably a multiple quantum well structure having an In X Ga Y N layer and a GaN layer. preferable.
 なお、上記においてX+Yの値は、通常0.8~1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節するうえで好ましいものである。 In the above, the value of X + Y is usually in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.
 GaN系LEDはこれら発光層、p層、n層、電極、及び基板を基本構成要素としたものであり、発光層をn型とp型のAlGaN層、GaN層、又はInGaN層などでサンドイッチにしたヘテロ構造を有しているものが、発光効率が高くて好ましく、更にヘテロ構造を量子井戸構造にしたものが、発光効率が更に高いため、より好ましい。
 なお、第1の発光体は、1個のみを用いてもよく、2個以上を任意の組み合わせ及び比率で併用してもよい。
 上述した第1の発光体の中でも、本発明の発光装置に用いる第1の発光体としては、青色LEDが好ましい。このときの第1の発光体の発光ピーク波長の具体的数値としては、通常420nm以上、好ましくは430nm以上、より好ましくは440nm以上、また、通常500nm以下、好ましくは480nm以下、より好ましくは460nm以下の範囲に発光ピーク波長を有する発光体を使用することが望ましい。
 本発明の発光装置では、青色LEDと、第1乃至第3の実施態様の蛍光体を一種以上含有すれば演色性の高い発光装置を得ることができ、なかでも第3の実施態様の蛍光体を用いた場合が特に好ましい。
A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic components, and the light-emitting layer is an n-type and p-type Al X Ga Y N layer, GaN layer, or In X Those having a heterostructure sandwiched between Ga Y N layers and the like are preferable because of high light emission efficiency, and those having a heterostructure having a quantum well structure are more preferable because of high light emission efficiency.
Note that only one first light emitter may be used, or two or more first light emitters may be used in any combination and ratio.
Among the first light emitters described above, a blue LED is preferable as the first light emitter used in the light emitting device of the present invention. In this case, the specific value of the emission peak wavelength of the first illuminant is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, and usually 500 nm or less, preferably 480 nm or less, more preferably 460 nm or less. It is desirable to use an illuminant having an emission peak wavelength in the above range.
In the light emitting device of the present invention, a light emitting device with high color rendering can be obtained by including at least one blue LED and the phosphors of the first to third embodiments. In particular, the phosphor of the third embodiment. The use of is particularly preferred.
 本実施態様の発光装置では、青色LEDと、第1乃至第3の実施態様の蛍光体を一種以上含有すれば演色性の高い発光装置を得ることができるものであるが、別の態様として、近紫外LEDと第1乃至第3の実施態様の蛍光体(第1の蛍光体)と青色蛍光体(第2の蛍光体)とを組み合わせた発光装置とすることもできる。このときの第1の発光体の発光ピーク波長の具体的数値としては、通常300nm以上、好ましくは330nm以上、より好ましくは360nm以上、また、通常420nm以下、好ましくは415nm以下、より好ましくは410nm以下の範囲に発光ピーク波長を有する発光体を使用することが望ましい。このときの第2の蛍光体(青色蛍光体)の発光ピーク波長の具体的数値としては、通常420nm以上、好ましくは430nm以上、より好ましくは440nm以上、また、通常500nm以下、好ましくは480nm以下、より好ましくは460nm以下の範囲に発光ピーク波長を有する蛍光体を使用することが望ましい。 In the light emitting device of this embodiment, a blue LED and one or more phosphors of the first to third embodiments can be used to obtain a light emitting device with high color rendering, but as another embodiment, A light emitting device in which a near-ultraviolet LED, the phosphor of the first to third embodiments (first phosphor), and the blue phosphor (second phosphor) are combined can also be provided. The specific value of the emission peak wavelength of the first illuminant at this time is usually 300 nm or more, preferably 330 nm or more, more preferably 360 nm or more, and usually 420 nm or less, preferably 415 nm or less, more preferably 410 nm or less. It is desirable to use an illuminant having an emission peak wavelength in the above range. The specific value of the emission peak wavelength of the second phosphor (blue phosphor) at this time is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, and usually 500 nm or less, preferably 480 nm or less, More preferably, it is desirable to use a phosphor having an emission peak wavelength in a range of 460 nm or less.
(第2の発光体)
 本実施態様の発光装置における第2の発光体は、上述した第1の発光体からの光の照射によって可視光を発する発光体であり、第1の蛍光体として第1乃至第3の実施態様の蛍光体を1種以上含有するとともに、その用途等に応じて適宜、後述する第2の蛍光体(青色蛍光体、緑色蛍光体、黄色蛍光体、橙色蛍光体、赤色蛍光体等)を含有することができる。また、例えば、第2の発光体は、第1及び第2の蛍光体を封止材料中に分散させて構成される。
(Second light emitter)
The second light emitter in the light emitting device of the present embodiment is a light emitter that emits visible light when irradiated with the light from the first light emitter described above, and the first to third embodiments are used as the first phosphor. In addition to containing one or more of the above phosphors, the second phosphor (blue phosphor, green phosphor, yellow phosphor, orange phosphor, red phosphor, etc.), which will be described later, is appropriately included depending on the application. can do. Further, for example, the second light emitter is configured by dispersing the first and second phosphors in a sealing material.
 上記第2の発光体中に用いられる、第1乃至第3の実施態様の蛍光体以外の蛍光体(即ち、第2の蛍光体)の組成には特に制限はないが、母体結晶となる、Y、YVO、ZnSiO、Yl512、SrSiO等に代表される金属酸化物、SrSi等に代表される金属窒化物、Ca(POCl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化物、YS、LaS等に代表される酸硫化物等にCe、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活元素又は共付活元素として組み合わせたものが挙げられる。
 好ましい結晶母体の具体例を表1に示す。
There is no particular limitation on the composition of the phosphor other than the phosphors of the first to third embodiments (that is, the second phosphor) used in the second luminous body, but it becomes a base crystal. Y 2 O 3 , YVO 4 , Zn 2 SiO 4 , metal oxides typified by Y 3 A 15 O 12 , Sr 2 SiO 4 , metal nitrides typified by Sr 2 Si 5 N 8 , Ca 5 Ce in phosphates typified by (PO 4 ) 3 Cl and the like, sulfides typified by ZnS, SrS, CaS and the like, oxysulfides typified by Y 2 O 2 S and La 2 O 2 S and the like , Ions of rare earth metals such as Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and ions of metals such as Ag, Cu, Au, Al, Mn, Sb A combination of the coactivator elements is included.
Specific examples of preferred crystal matrixes are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 但し、上記の母体結晶及び付活元素又は共付活元素は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。
 具体的には、蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本実施態様で使用できる蛍光体はこれらに限られるものではない。なお、以下の例示では、前述の通り、構造の一部のみが異なる蛍光体を、適宜省略して示している。
However, the matrix crystal and the activator element or coactivator element are not particularly limited in element composition, and can be partially replaced with elements of the same family, and the obtained phosphor is light in the near ultraviolet to visible region. Any material that absorbs and emits visible light can be used.
Specifically, the following phosphors can be used, but these are merely examples, and phosphors that can be used in the present embodiment are not limited to these. In the following examples, as described above, phosphors that differ only in part of the structure are omitted as appropriate.
(第1の蛍光体)
 本実施態様の発光装置における第2の発光体は、少なくとも上述の第1乃至第3の実施態様の蛍光体を含む第1の蛍光体を含有する。第1乃至第3の実施態様の蛍光体は、何れか1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよく、所望の発光色となるよう、第1乃至第3の実施態様の蛍光体の組成を適宜調整すればよい。
(First phosphor)
The second light emitter in the light emitting device of this embodiment contains at least the first phosphor including the phosphors of the first to third embodiments described above. Any one of the phosphors of the first to third embodiments may be used alone, or two or more thereof may be used in any combination and ratio, so that a desired emission color is obtained. What is necessary is just to adjust suitably the composition of the fluorescent substance of the 1st thru | or 3rd embodiment.
(第2の蛍光体)
 本実施態様の発光装置における第2の発光体は、その用途に応じて、上述の第1の蛍光体以外にも蛍光体(即ち、第2の蛍光体)を含有していてもよい。通常、これらの第2の蛍光体は、第2の発光体の発光の色調を調節するために使用されるため、第2の蛍光体としては第1の蛍光体とは異なる色の蛍光を発する蛍光体を使用することが多い。例えば、第1の蛍光体として緑色蛍光体を使用する場合、第2の蛍光体としては、青色蛍光体、赤色蛍光体、黄色蛍光体等の緑色蛍光体以外の蛍光体を用いるとよい。但し、第1の蛍光体と同色の蛍光体を第2の蛍光体として用いることも可能である。
(Second phosphor)
The second light emitter in the light emitting device of the present embodiment may contain a phosphor (that is, the second phosphor) in addition to the first phosphor described above, depending on the application. Usually, since these second phosphors are used to adjust the color tone of light emitted from the second light emitter, the second phosphor emits fluorescence having a color different from that of the first phosphor. Often phosphors are used. For example, when a green phosphor is used as the first phosphor, a phosphor other than a green phosphor such as a blue phosphor, a red phosphor, or a yellow phosphor may be used as the second phosphor. However, a phosphor having the same color as the first phosphor can be used as the second phosphor.
 本実施態様の発光装置に使用される第2の蛍光体の質量メジアン径D50は、通常2μm以上、中でも5μm以上、また、通常30μm以下、中でも20μm以下の範囲であることが好ましい。質量メジアン径D50が小さ過ぎると、輝度が低下し、蛍光体粒子が凝集してしまう傾向がある。一方、質量メジアン径が大き過ぎると、塗布ムラやディスペンサー等の閉塞が生じる傾向がある。 Second phosphor mass median diameter D 50 that is used for the light emitting device of the present embodiment is generally 2μm or more and preferably 5μm or more, and usually 30μm or less is preferably in a range of inter alia 20μm or less. When the mass median diameter D 50 is too small, and the luminance decreases tends to phosphor particles tend to aggregate. On the other hand, when the mass median diameter is too large, there is a tendency for coating unevenness and blockage of a dispenser to occur.
(青色蛍光体)
 第2の蛍光体として青色蛍光体を使用する場合、当該青色蛍光体は本実施態様の効果を著しく損なわない限り任意のものを使用することができる。この際、青色蛍光体の発光ピーク波長は、通常420nm以上、好ましくは430nm以上、より好ましくは440nm以上、また、通常490nm以下、好ましくは480nm以下、より好ましくは470nm以下、更に好ましくは460nm以下の波長範囲にあることが好適である。使用する青色蛍光体の発光ピーク波長がこの範囲にあると、本実施態様の蛍光体の励起帯と重なり、当該青色蛍光体からの青色光により、本実施態様の蛍光体を効率良く励起することができるからである。このような青色蛍光体として使用できる蛍光体を表2に示す。
(Blue phosphor)
When a blue phosphor is used as the second phosphor, any blue phosphor can be used as long as the effect of the present embodiment is not significantly impaired. At this time, the emission peak wavelength of the blue phosphor is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, and usually 490 nm or less, preferably 480 nm or less, more preferably 470 nm or less, and further preferably 460 nm or less. It is preferable to be in the wavelength range. When the emission peak wavelength of the blue phosphor used is within this range, it overlaps with the excitation band of the phosphor of this embodiment, and the phosphor of this embodiment is efficiently excited by the blue light from the blue phosphor. Because you can. Table 2 shows phosphors that can be used as such blue phosphors.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の中でも、青色蛍光体としては、(Ca,Sr,Ba)MgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO(Cl,F):Eu、(Ba,Ca,Mg,Sr)SiO:Eu、(Ba,Ca,Sr)MgSiO8:Euが好ましく、(Ba,Sr)MgAl1017:Eu、(Ca,Sr,Ba)10(PO(Cl,F):Eu、BaMgSi:Euがより好ましく、Sr10(POCl:Eu、BaMgAl1017:Euが特に好ましい。 Among these, as the blue phosphor, (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu, (Ba , Ca, Mg, Sr) 2 SiO 4 : Eu, (Ba, Ca, Sr) 3 MgSi 2 O 8: Eu are preferred, and (Ba, Sr) MgAl 10 O 17 : Eu, (Ca, Sr, Ba) 10 ( PO 4 ) 6 (Cl, F) 2 : Eu and Ba 3 MgSi 2 O 8 : Eu are more preferable, and Sr 10 (PO 4 ) 6 Cl 2 : Eu and BaMgAl 10 O 17 : Eu are particularly preferable.
(緑色蛍光体)
 第2の蛍光体として緑色蛍光体を使用する場合、当該緑色蛍光体は本実施態様の効果を著しく損なわない限り任意のものを使用することができる。この際、緑色蛍光体の発光ピーク波長は、通常500nmより大きく、中でも510nm以上、更には515nm以上、また、通常550nm以下、中でも542nm以下、更には535nm以下の範囲であることが好ましい。この発光ピーク波長が短過ぎると青味を帯びる傾向がある一方で、長過ぎると黄味を帯びる傾向があり、何れも緑色光としての特性が低下する場合がある。このような緑色蛍光体として利用できる蛍光体を表3に示す。
(Green phosphor)
When a green phosphor is used as the second phosphor, any green phosphor can be used as long as the effects of the present embodiment are not significantly impaired. At this time, the emission peak wavelength of the green phosphor is usually larger than 500 nm, preferably 510 nm or more, more preferably 515 nm or more, and usually 550 nm or less, especially 542 nm or less, and further preferably 535 nm or less. If this emission peak wavelength is too short, it tends to be bluish, while if it is too long, it tends to be yellowish, and the characteristics as green light may deteriorate. Table 3 shows phosphors that can be used as such green phosphors.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の中でも、緑色蛍光体としては、Y(Al,Ga)12:Tb、CaSc:Ce、Ca(Sc,Mg)Si12:Ce、(Sr,Ba)SiO:Eu、(Si,Al)(O,N):Eu(β-sialon)、(Ba,Sr)Si12:N:Eu、SrGa:Eu、BaMgAl1017:Eu,Mnが好ましい。 Among these, as the green phosphor, Y 3 (Al, Ga) 5 O 12 : Tb, CaSc 2 O 4 : Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, (Sr, Ba) 2 SiO 4 : Eu, (Si, Al) 6 (O, N) 8 : Eu (β-sialon), (Ba, Sr) 3 Si 6 O 12 : N 2 : Eu, SrGa 2 S 4 : Eu, BaMgAl 10 O 17 : Eu, Mn is preferred.
 得られる発光装置を照明装置に用いる場合には、Y(Al,Ga)12:Tb、CaSc:CeCa(Sc,Mg)Si12:Ce、(Sr,Ba)SiO:Eu、(Si,Al)(O,N):Eu(β-sialon)、(Ba,Sr)Si12:Euが好ましい。
 また、得られる発光装置を画像表示装置に用いる場合には、(Sr,Ba)SiO:Eu、(Si,Al)(O,N):Eu(β-sialon)、(Ba,Sr)Si12:Eu、SrGa:Eu、BaMgAl1017:Eu,Mnが好ましい。
When the obtained light-emitting device is used for a lighting device, Y 3 (Al, Ga) 5 O 12 : Tb, CaSc 2 O 4 : CeCa 3 (Sc, Mg) 2 Si 3 O 12 : Ce, (Sr, Ba ) 2 SiO 4 : Eu, (Si, Al) 6 (O, N) 8 : Eu (β-sialon), (Ba, Sr) 3 Si 6 O 12 N 2 : Eu are preferable.
When the obtained light emitting device is used for an image display device, (Sr, Ba) 2 SiO 4 : Eu, (Si, Al) 6 (O, N) 8 : Eu (β-sialon), (Ba, Sr) 3 Si 6 O 12 N 2 : Eu, SrGa 2 S 4 : Eu, and BaMgAl 10 O 17 : Eu, Mn are preferable.
(黄色蛍光体)
 第2の蛍光体として黄色蛍光体を使用する場合、当該黄色蛍光体は本実施態様の効果を著しく損なわない限り任意のものを使用することができる。この際、黄色蛍光体の発光ピーク波長は、通常530nm以上、好ましくは540nm以上、より好ましくは550nm以上、また、通常620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあることが好適である。このような黄色蛍光体として利用できる蛍光体を表4に示す。
(Yellow phosphor)
When a yellow phosphor is used as the second phosphor, any yellow phosphor can be used as long as the effects of the present embodiment are not significantly impaired. At this time, the emission peak wavelength of the yellow phosphor is usually in the wavelength range of 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. Is preferred. Table 4 shows phosphors that can be used as such yellow phosphors.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の中でも、黄色蛍光体としては、YAl12:Ce、(Y,Gd)l512:Ce、(Sr,Ca,Ba,Mg)SiO:Eu、(Ca,Sr)Si:Euが好ましい。 More in even, as the yellow phosphor, Y 3 Al 5 O 12: Ce, (Y, Gd) 3 A l5 O 12: Ce, (Sr, Ca, Ba, Mg) 2 SiO 4: Eu, (Ca, Sr) Si 2 N 2 O 2 : Eu is preferred.
(橙色ないし赤色蛍光体)
 第2の蛍光体として橙色ないし赤色蛍光体を使用する場合、当該橙色ないし赤色蛍光体は本実施態様の効果を著しく損なわない限り任意のものを使用することができる。この際、橙色ないし赤色蛍光体の発光ピーク波長は、通常570nm以上、好ましくは580nm以上、より好ましくは585nm以上、また、通常780nm以下、好ましくは700nm以下、より好ましくは680nm以下の波長範囲にあることが好適である。このような橙色ないし赤色蛍光体として使用できる蛍光体を表5に示す。
(Orange to red phosphor)
When an orange or red phosphor is used as the second phosphor, any orange or red phosphor can be used as long as the effect of the present embodiment is not significantly impaired. At this time, the emission peak wavelength of the orange to red phosphor is usually in the wavelength range of 570 nm or more, preferably 580 nm or more, more preferably 585 nm or more, and usually 780 nm or less, preferably 700 nm or less, more preferably 680 nm or less. Is preferred. Table 5 shows phosphors that can be used as such orange to red phosphors.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の中でも、赤色蛍光体としては、(Ca,Sr,Ba)Si(N,O):Eu、(Ca,Sr,Ba)Si(N,O):Eu、(Ca,Sr,Ba)AlSi(N,O):Eu、(Sr,Ba)SiO:Eu、(Ca,Sr)S:Eu、(La,Y)S:Eu、Eu(ジベンゾイルメタン)3・1,10-フェナントロリン錯体等のβ-ジケトン系Eu錯体、カルボン酸系Eu錯体、KSiF:Mnが好ましく、(Ca,Sr,Ba)Si(N,O):Eu、(Sr,Ca)AlSi(N,O):Eu、(La,Y)S:Eu、KSiF:Mnがより好ましい。 Among these, as red phosphors, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Ca, Sr, Ba) Si (N, O) 2 : Eu, (Ca, Sr , Ba) AlSi (N, O) 3 : Eu, (Sr, Ba) 3 SiO 5 : Eu, (Ca, Sr) S: Eu, (La, Y) 2 O 2 S: Eu, Eu (dibenzoylmethane) ) Β-diketone Eu complex such as 3,1,10-phenanthroline complex, carboxylic acid Eu complex, K 2 SiF 6 : Mn is preferred, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, (Sr, Ca) AlSi (N, O): Eu, (La, Y) 2 O 2 S: Eu, and K 2 SiF 6 : Mn are more preferable.
 また、橙色蛍光体としては、(Sr,Ba)SiO:Eu、(Sr,Ba)SiO:Eu、(Ca,Sr,Ba)Si(N,O):Eu、(Ca,Sr,Ba)AlSi(N,O):Ceが好ましい。 As the orange phosphor, (Sr, Ba) 3 SiO 5 : Eu, (Sr, Ba) 2 SiO 4 : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, ( Ca, Sr, Ba) AlSi (N, O) 3 : Ce is preferred.
<発光装置の実施態様>
 以下、本実施態様の発光装置について、具体的な実施の態様を挙げて、より詳細に説明するが、本発明は以下の実施態様に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。
<Embodiment of Light Emitting Device>
Hereinafter, the light-emitting device of this embodiment will be described in more detail with specific embodiments, but the present invention is not limited to the following embodiments and does not depart from the gist of the present invention. It can be implemented with any modification.
 本実施態様の発光装置の一例における、励起光源となる第1の発光体と、蛍光体を有する蛍光体含有部として構成された第2の発光体との位置関係を示す模式的斜視図を図1に示す。図1中の符号1は蛍光体含有部(第2の発光体)、符号2は励起光源(第1の発光体)としての面発光型GaN系LD、符号3は基板を表す。相互に接触した状態をつくるために、励起光源(LD)2と蛍光体含有部1(第2の発光体)とそれぞれ別個に作製し、それらの面同士を接着剤やその他の手段によって接触させてもよいし、励起光源(LD)2の発光面上に蛍光体含有部1(第2の発光体)を製膜(成型)させてもよい。これらの結果、励起光源(LD)2と蛍光体含有部1(第2の発光体)とを接触した状態とすることができる。 The typical perspective view which shows the positional relationship of the 1st light-emitting body used as an excitation light source, and the 2nd light-emitting body comprised as a fluorescent substance containing part which has fluorescent substance in an example of the light-emitting device of this embodiment is a figure. It is shown in 1. In FIG. 1, reference numeral 1 denotes a phosphor-containing portion (second light emitter), reference numeral 2 denotes a surface-emitting GaN-based LD as an excitation light source (first light emitter), and reference numeral 3 denotes a substrate. In order to create a state in which they are in contact with each other, the excitation light source (LD) 2 and the phosphor-containing portion 1 (second light emitter) are separately manufactured, and their surfaces are brought into contact with each other by an adhesive or other means. Alternatively, the phosphor-containing portion 1 (second light emitter) may be formed (molded) on the light emitting surface of the excitation light source (LD) 2. As a result, the excitation light source (LD) 2 and the phosphor-containing part 1 (second light emitter) can be brought into contact with each other.
 このような装置構成をとった場合には、励起光源(第1の発光体)からの光が蛍光体含有部(第2の発光体)の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。
 図2(a)は、一般的に砲弾型と言われる形態の発光装置の代表例であり、励起光源(第1の発光体)と蛍光体含有部(第2の発光体)とを有する発光装置の一実施例を示す模式的断面図である。該発光装置4において、符号5はマウントリード、符号6はインナーリード、符号7は励起光源(第1の発光体)、符号8は蛍光体含有部、符号9は導電性ワイヤ、符号10はモールド部材をそれぞれ指す。
When such an apparatus configuration is employed, the light loss is such that light from the excitation light source (first light emitter) is reflected by the film surface of the phosphor-containing portion (second light emitter) and oozes out. Therefore, the light emission efficiency of the entire device can be improved.
FIG. 2A is a typical example of a light emitting device of a form generally referred to as a shell type, and has a light emission having an excitation light source (first light emitter) and a phosphor-containing portion (second light emitter). It is typical sectional drawing which shows one Example of an apparatus. In the light emitting device 4, reference numeral 5 is a mount lead, reference numeral 6 is an inner lead, reference numeral 7 is an excitation light source (first light emitter), reference numeral 8 is a phosphor-containing portion, reference numeral 9 is a conductive wire, and reference numeral 10 is a mold. Each member is indicated.
 また、図2(b)は、表面実装型と言われる形態の発光装置の代表例であり、励起光源(第1の発光体)と蛍光体含有部(第2の発光体)とを有する発光装置の一実施例を示す模式的断面図である。図中、符号22は励起光源(第1の発光体)、符号23は蛍光体含有部(第2の発光体)、符号24はフレーム、符号25は導電性ワイヤ、符号26及び符号27は電極をそれぞれ指す。 FIG. 2B is a representative example of a light-emitting device in a form called a surface-mount type, and light emission having an excitation light source (first light emitter) and a phosphor-containing portion (second light emitter). It is typical sectional drawing which shows one Example of an apparatus. In the figure, reference numeral 22 is an excitation light source (first light emitter), reference numeral 23 is a phosphor-containing portion (second light emitter), reference numeral 24 is a frame, reference numeral 25 is a conductive wire, reference numerals 26 and 27 are electrodes. Respectively.
 <発光装置の特性>
 本実施態様の発光装置は、その発光色のRaが通常58以上、好ましくは60以上、より好ましくは62以上、特に好ましくは64以上である。Raの値が大きいほど、演色性のよい発光装置が得られる。
 本実施態様の発光装置は、その発光色の特殊演色評価数R9が通常マイナス75以上、好ましくはマイナス70以上、さらに好ましくはマイナス65以上、特に好ましくはマイナス60以上である。特殊演色評価数R9が上述の範囲であることにより、演色性のよい発光装置が得られる。
<Characteristics of light emitting device>
In the light emitting device of this embodiment, the Ra of the emission color is usually 58 or more, preferably 60 or more, more preferably 62 or more, and particularly preferably 64 or more. As the value of Ra is larger, a light emitting device having better color rendering properties can be obtained.
In the light emitting device of this embodiment, the special color rendering index R9 of the emitted color is usually minus 75 or more, preferably minus 70 or more, more preferably minus 65 or more, particularly preferably minus 60 or more. When the special color rendering index R9 is in the above range, a light emitting device having good color rendering properties can be obtained.
 本実施態様の発光装置は、その発光色の相関色温度が通常2600K以上、好ましくは2700K以上、特に好ましく2800K以上であり、また、通常4500K以下、好ましくは4300K以下、より好ましくは4000K以下、さらに好ましくは3700K以下、特に好ましくは3400K以下である。
 相関色温度が上述の範囲であることにより、好ましい白色から電球色(相関色温度が2600K~4500Kとなる範囲)の温かみのある発光色を示す発光装置が得られる。
In the light emitting device of this embodiment, the correlated color temperature of the emitted color is usually 2600 K or higher, preferably 2700 K or higher, particularly preferably 2800 K or higher, and usually 4500 K or lower, preferably 4300 K or lower, more preferably 4000 K or lower, Preferably it is 3700K or less, Especially preferably, it is 3400K or less.
When the correlated color temperature is in the above-described range, a light emitting device that exhibits a warm emission color from a preferable white color to a light bulb color (a range in which the correlated color temperature is 2600K to 4500K) can be obtained.
<発光装置の用途>
 本実施態様の発光装置の用途は特に制限されず、通常の発光装置が用いられる各種の分野に使用することが可能であるが、演色性が高い、及び色再現範囲が広いことから、中でも照明装置や画像表示装置の光源として、とりわけ好適に用いられる。
<Applications of light emitting device>
The application of the light-emitting device of this embodiment is not particularly limited, and can be used in various fields where a normal light-emitting device is used. However, since the color rendering property is high and the color reproduction range is wide, illumination is particularly important. It is particularly preferably used as a light source for a device or an image display device.
[6.照明装置および画像表示装置]
 本発明の第6の実施態様は、上述の発光装置を備えることを特徴とする照明装置または画像表示装置である。
[6. Lighting device and image display device]
A sixth embodiment of the present invention is an illumination device or an image display device including the above-described light emitting device.
<照明装置>
 本発明の第5の実施態様の発光装置を照明装置に適用する場合には、前述のような発光装置を公知の照明装置に適宜組み込んで用いればよい。例えば、図3に示されるような、前述の発光装置4を組み込んだ面発光照明装置11を挙げることができる。
 図3は、本実施態様の照明装置の一実施態様を模式的に示す断面図である。この図3に示すように、該面発光照明装置は、内面を白色の平滑面等の光不透過性とした方形の保持ケース12の底面に、多数の発光装置13(前述の発光装置4に相当)を、その外側に発光装置13の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース12の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板14を発光の均一化のために固定してなる。
<Lighting device>
When the light emitting device according to the fifth embodiment of the present invention is applied to a lighting device, the light emitting device as described above may be appropriately incorporated in a known lighting device. For example, a surface emitting illumination device 11 incorporating the above-described light emitting device 4 as shown in FIG. 3 can be cited.
FIG. 3 is a cross-sectional view schematically showing one embodiment of the illumination device of the present embodiment. As shown in FIG. 3, the surface-emitting illumination device has a large number of light-emitting devices 13 (on the light-emitting device 4 described above) on the bottom surface of a rectangular holding case 12 whose inner surface is light-opaque such as a white smooth surface. Is provided with a power source and a circuit (not shown) for driving the light-emitting device 13 on the outside, and a milky white acrylic plate or the like is provided at a position corresponding to the lid portion of the holding case 12. The diffusion plate 14 is fixed for uniform light emission.
 そして、面発光照明装置11を駆動して、発光装置13の励起光源(第1の発光体)に電圧を印加することにより光を発光させ、その発光の一部を、蛍光体含有部(第2の発光体)としての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板14を透過して、図面上方に出射され、保持ケース12の拡散板14面内において均一な明るさの照明光が得られることとなる。 Then, the surface-emitting illumination device 11 is driven to emit light by applying a voltage to the excitation light source (first light emitter) of the light-emitting device 13, and a part of the light emission is converted to the phosphor-containing portion (first The phosphor in the phosphor-containing resin portion as the second phosphor) absorbs and emits visible light, while light emission with high color rendering is obtained by mixing with blue light or the like that is not absorbed by the phosphor. The light passes through the diffusion plate 14 and is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 14 of the holding case 12.
<画像表示装置>
 第5の実施態様の発光装置を画像表示装置の光源として用いる場合には、その画像表示装置の具体的構成に制限は無いが、カラーフィルターとともに用いることが好ましい。例えば、画像表示装置として、カラー液晶表示素子を利用したカラー画像表示装置とする場合は、上記発光装置をバックライトとし、液晶を利用した光シャッターと赤、緑、青の画素を有するカラーフィルターとを組み合わせることにより画像表示装置を形成することができる。
<Image display device>
When the light emitting device of the fifth embodiment is used as a light source of an image display device, the specific configuration of the image display device is not limited, but it is preferably used together with a color filter. For example, when the image display device is a color image display device using color liquid crystal display elements, the light emitting device is used as a backlight, a light shutter using liquid crystal, and a color filter having red, green, and blue pixels; By combining these, an image display device can be formed.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、下記の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限または下限の好ましい値としての意味をもつものであり、好ましい範囲は、前記上限または下限の値と下記実施例の値または実施例同士の値との組合せで規定される範囲であってもよい。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded. In addition, the values of various production conditions and evaluation results in the following examples have meanings as preferable values of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the value of the upper limit or the lower limit. It may be a range defined by a combination of values of the following examples or values of the examples.
[蛍光体の特性測定・評価方法]
 各実施例及び比較例において、蛍光体粒子の各種の特性測定・評価は、特に断りの無い限り、以下の手法で行った。
[Measurement and evaluation method of phosphor characteristics]
In each Example and Comparative Example, various characteristics measurement / evaluation of the phosphor particles were performed by the following method unless otherwise specified.
<発光スペクトル>
 励起光源として150Wキセノンランプを備え、スペクトル測定装置としてマルチチャンネルCCD検出器C7041(浜松フォトニクス社製)を備える蛍光測定装置(日本分光社製)を用いて測定した。
<Emission spectrum>
Measurement was performed using a fluorescence measuring apparatus (manufactured by JASCO Corporation) equipped with a 150 W xenon lamp as an excitation light source and a multichannel CCD detector C7041 (manufactured by Hamamatsu Photonics) as a spectrum measuring apparatus.
 具体的には、励起光源からの光を焦点距離が10cmである回折格子分光器に通し、波長455nmの励起光のみを光ファイバーを通じて蛍光体に照射した。励起光の照射により蛍光体から発生した光を焦点距離が25cmである回折格子分光器により分光し、300nm以上800nm以下の波長範囲においてスペクトル測定装置により各波長の発光強度を測定し、パーソナルコンピュータによる感度補正等の信号処理を経て発光スペクトルを得た。なお、測定時には、受光側分光器のスリット幅を1nmに設定して測定を行った。
 また、発光ピーク波長(以下、「ピーク波長」と称することがある。)は、得られた発光スペクトルから読み取った。相対ピーク強度は、比較例1のピーク強度を基準値100とした相対値で表した。相対発光輝度は、上述の方法で得られた可視領域における発光スペクトルから励起波長域を除いた範囲で、JIS Z8724に準拠して算出したXYZ表色系における刺激値Yから、比較例3の刺激値Yの値を100%とした相対値(以下、単に「輝度」と称する場合がある。)として算出した。
Specifically, the light from the excitation light source was passed through a diffraction grating spectrometer having a focal length of 10 cm, and only the excitation light having a wavelength of 455 nm was irradiated to the phosphor through the optical fiber. The light generated from the phosphor by the irradiation of the excitation light is dispersed by a diffraction grating spectroscope having a focal length of 25 cm, the emission intensity of each wavelength is measured by a spectrum measuring device in a wavelength range of 300 nm to 800 nm, and a personal computer is used. An emission spectrum was obtained through signal processing such as sensitivity correction. During the measurement, the slit width of the light-receiving side spectroscope was set to 1 nm and the measurement was performed.
The emission peak wavelength (hereinafter sometimes referred to as “peak wavelength”) was read from the obtained emission spectrum. The relative peak intensity was expressed as a relative value with the peak intensity of Comparative Example 1 as the reference value 100. The relative emission luminance is a range obtained by excluding the excitation wavelength region from the emission spectrum in the visible region obtained by the above-described method, and the stimulus of Comparative Example 3 from the stimulus value Y in the XYZ color system calculated according to JIS Z8724. The value Y was calculated as a relative value (hereinafter, sometimes simply referred to as “luminance”) with 100%.
<色度座標>
 x、y表色系(CIE 1931表色系)の色度座標は、上述の方法で得られた発光スペクトルの360nm~800nmの波長領域のデータから、JIS Z8724に準じた方法で、JIS Z8701で規定されるXYZ表色系における色度座標xとyとして算出した。
<Chromaticity coordinates>
The chromaticity coordinates of the x, y color system (CIE 1931 color system) are obtained from the data in the wavelength region of 360 nm to 800 nm of the emission spectrum obtained by the above method, according to JIS Z8724. The chromaticity coordinates x and y in the prescribed XYZ color system were calculated.
<励起スペクトル>
 日立製作所社製蛍光分光光度計F-4500を使用し、波長は発光ピーク波長に合わせてモニターして250nm~500nmの波長範囲内の励起スペクトルを得た。
<Excitation spectrum>
A fluorescence spectrophotometer F-4500 manufactured by Hitachi, Ltd. was used, and the wavelength was monitored according to the emission peak wavelength to obtain an excitation spectrum in the wavelength range of 250 nm to 500 nm.
<粉末X線回折>
 粉末X線回折装置X’Pert(PANalytical社製)にて精密測定した。測定条件は以下の通りである。また、測定データについては、データ処理用ソフトX’Pert High Score(PANalytical社製)を用い、ベンディングフィルターを5として自動バックグラウンド処理を実施した。
  CuKα管球使用
  X線出力=45KV,40mA
  発散スリット=1/4°,X線ミラー
  検出器=半導体アレイ検出器X’Celerator使用
      Niフィルター使用
  走査範囲 2θ=10°~65°
  読み込み幅=0.05°
  計数時間=33秒
<Powder X-ray diffraction>
Precision measurement was performed with a powder X-ray diffractometer X′Pert (manufactured by PANalytical). The measurement conditions are as follows. For the measurement data, automatic background processing was performed using data processing software X'Pert High Score (manufactured by PANalytical) with a bending filter of 5.
CuKα tube used X-ray output = 45KV, 40mA
Divergence slit = 1/4 °, X-ray mirror Detector = Semiconductor array detector X'Celerator used Ni filter used Scanning range 2θ = 10 ° to 65 °
Reading width = 0.05 °
Counting time = 33 seconds
<格子定数精密化>
 格子定数は、各実施例および比較例の粉末X線回折測定データより、Si、Al、N、およびOから構成される骨格構造を有し、その空隙にSrサイトが存在するという結晶構造を持つ蛍光体の一種であるSrAlSiと同じ結晶構造、つまり空間群がPna21に分類される結晶構造に起因したピークを選択しデータ処理用ソフトX’Pert Plus(PANalytical社製)を用いて精密化することにより求めた。
<Lattice constant refinement>
From the powder X-ray diffraction measurement data of each example and comparative example, the lattice constant has a skeletal structure composed of Si, Al, N, and O, and has a crystal structure in which Sr sites exist in the voids. The same crystal structure as SrAlSi 4 N 7 which is a kind of phosphor, that is, a peak due to the crystal structure in which the space group is classified as Pna2 1 , is selected and data processing software X'Pert Plus (manufactured by PANalytical) is used. Obtained by refining.
<組成分析>
 Sr、Ca、Si、Al、Euについては、得られた蛍光体をアルカリ溶融処理した後、酸溶解を行い、ICP-AES(堀場製作所製 ULTIMA 2C)にて定量分析を行った。
 O、Nについては酸素窒素水素分析装置(LECO社製 TCH600)を用いて、不活性ガス雰囲気下真パルス炉加熱抽出-IR検出法およびTCD検出法にて定量分析を行った。
<Composition analysis>
For Sr, Ca, Si, Al, and Eu, the obtained phosphor was subjected to alkali melting treatment, acid dissolution, and quantitative analysis by ICP-AES (ULTIMA 2C manufactured by Horiba Seisakusho).
For O and N, quantitative analysis was performed using an oxygen / nitrogen / hydrogen analyzer (TCH600, manufactured by LECO) by a true pulse furnace heating extraction-IR detection method and a TCD detection method in an inert gas atmosphere.
[実施例1~13、17および比較例1~3]
 蛍光体原料として、Sr(セラック社製)、Ca(セラック社製)、Si(宇部興産社製)、Al(住友化学社製)、AlN(トクヤマ社製)、Eu(信越化学社製)を用いて、次のとおり蛍光体を調製した。
[Examples 1 to 13, 17 and Comparative Examples 1 to 3]
As phosphor raw materials, Sr 3 N 2 (manufactured by Shellac), Ca 3 N 2 (manufactured by Shellac), Si 3 N 4 (manufactured by Ube Industries), Al 2 O 3 (manufactured by Sumitomo Chemical), AlN (Tokuyama) The phosphor was prepared as follows using Eu 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd.).
(秤量、粉砕及び混合)
 上記原料を、表6に示す実施例1~13、17および比較例1~3の各仕込み組成となるように電子天秤で秤量し、アルミナ乳鉢に入れ、均一になるまで粉砕及び混合した。これらの操作は、Nガスで満たしたグローブボックス中で行った。
(Weighing, grinding and mixing)
The raw materials were weighed with an electronic balance so as to have the charged compositions of Examples 1 to 13 and 17 and Comparative Examples 1 to 3 shown in Table 6, placed in an alumina mortar, and ground and mixed until uniform. These operations were performed in a glove box filled with N 2 gas.
(焼成)
 得られた原料混合粉末から約1gを秤量し、窒化ホウ素坩堝(BN坩堝)にそのまま充填した。このBN坩堝を、抵抗加熱式真空加圧雰囲気熱処理炉(富士電波工業社製)内に置いた。次いで、5×10-3Pa以下まで減圧した後、室温から800℃まで昇温速度20℃/分で真空加熱した。800℃に達したところで、その温度で維持して炉内圧力が0.92MPaになるまで高純度窒素ガス(99.9995%)を30分間導入した。高純度窒素ガスの導入後、0.92MPaを保持しながら、さらに、昇温速度20℃/分で1200℃まで昇温した。1200℃で5分間保持する間に熱電対から放射温度計に換えて、さらに昇温速度20℃/分で1600℃まで加熱した。1600℃に達したところで2時間維持し、さらに引き続いて20℃/分で1850℃まで加熱し、その温度で6時間維持した。焼成後1200℃まで降温速度20℃/分で冷却し、次いで放冷した。その後、生成物を解砕し、実施例1~13、17および比較例1~3の蛍光体を得た。
(Baking)
About 1 g of the obtained raw material mixed powder was weighed and filled into a boron nitride crucible (BN crucible) as it was. This BN crucible was placed in a resistance heating type vacuum pressure atmosphere heat treatment furnace (manufactured by Fuji Denpa Kogyo Co., Ltd.). Subsequently, the pressure was reduced to 5 × 10 −3 Pa or less, and then vacuum heating was performed from room temperature to 800 ° C. at a temperature rising rate of 20 ° C./min. When the temperature reached 800 ° C., high-purity nitrogen gas (99.9995%) was introduced for 30 minutes until the pressure in the furnace reached 0.92 MPa. After the introduction of the high purity nitrogen gas, the temperature was further increased to 1200 ° C. at a temperature increase rate of 20 ° C./min while maintaining 0.92 MPa. While maintaining at 1200 ° C. for 5 minutes, the thermocouple was changed to a radiation thermometer, and further heated to 1600 ° C. at a rate of temperature increase of 20 ° C./min. When the temperature reached 1600 ° C., the temperature was maintained for 2 hours, followed by heating to 1850 ° C. at 20 ° C./min, and the temperature was maintained for 6 hours. After firing, the mixture was cooled to 1200 ° C. at a temperature lowering rate of 20 ° C./min, and then allowed to cool. Thereafter, the product was crushed to obtain phosphors of Examples 1 to 13, 17 and Comparative Examples 1 to 3.
[実施例14~16]
 焼成の前に次に示す予備焼成を行う以外は実施例1~13、17、および比較例1~3と同様に蛍光体の調製を行った。
[Examples 14 to 16]
Phosphors were prepared in the same manner as in Examples 1 to 13, 17 and Comparative Examples 1 to 3, except that the following preliminary firing was performed before firing.
(予備焼成)
 得られた原料混合粉末から約1gを秤量し、窒化ホウ素坩堝(BN坩堝)にそのまま充填した。このBN坩堝を、抵抗加熱式真空加圧雰囲気熱処理炉(富士電波工業社製)内に置いた。次いで、5×10-3Pa以下まで減圧した後、室温から800℃まで昇温速度20℃/分で真空加熱した。800℃に達したところで、その温度で維持して炉内圧力が0.92MPaになるまで高純度窒素ガス(99.9995%)を30分間導入した。高純度窒素ガスの導入後、0.92MPaを保持しながら、さらに、昇温速度20℃/分で1200℃まで昇温した。1200℃で5分間保持する間に熱電対から放射温度計に換えて、さらに昇温速度20℃/分で1500℃まで加熱した。1500℃に達したところで8時間維持した。焼成後1200℃まで降温速度20℃/分で冷却し、次いで放冷した。その後、生成物を解砕し、実施例14~16の予備焼成物を得た。
(Preliminary firing)
About 1 g of the obtained raw material mixed powder was weighed and filled into a boron nitride crucible (BN crucible) as it was. This BN crucible was placed in a resistance heating type vacuum pressure atmosphere heat treatment furnace (manufactured by Fuji Denpa Kogyo Co., Ltd.). Subsequently, the pressure was reduced to 5 × 10 −3 Pa or less, and then vacuum heating was performed from room temperature to 800 ° C. at a temperature rising rate of 20 ° C./min. When the temperature reached 800 ° C., high-purity nitrogen gas (99.9995%) was introduced for 30 minutes until the pressure in the furnace reached 0.92 MPa. After the introduction of the high purity nitrogen gas, the temperature was further increased to 1200 ° C. at a temperature increase rate of 20 ° C./min while maintaining 0.92 MPa. While maintaining at 1200 ° C. for 5 minutes, the thermocouple was changed to a radiation thermometer and further heated to 1500 ° C. at a temperature rising rate of 20 ° C./min. When it reached 1500 ° C., it was maintained for 8 hours. After firing, the mixture was cooled to 1200 ° C. at a temperature lowering rate of 20 ° C./min, and then allowed to cool. Thereafter, the product was crushed to obtain pre-fired products of Examples 14 to 16.
(焼成)
 得られた予備焼成物から約1gを秤量し、窒化ホウ素坩堝(BN坩堝)にそのまま充填して、実施例1~13、17および比較例1~3と同様に焼成を行った。
(Baking)
About 1 g of the obtained preliminary fired product was weighed and filled in a boron nitride crucible (BN crucible) as it was, and fired in the same manner as in Examples 1 to 13, 17 and Comparative Examples 1 to 3.
[実施例18~28]
 蛍光体原料として、さらにBa(太平洋セメント社製)を用いて、表7に示す実施例18~28の各仕込み組成となるようにした以外は、実施例1~13、17および比較例1~3と同様にして蛍光体を得た。
[Examples 18 to 28]
Examples 1 to 13 and 17 and Comparative Example except that Ba 3 N 2 (manufactured by Taiheiyo Cement Co., Ltd.) was used as the phosphor raw material, and the respective charge compositions of Examples 18 to 28 shown in Table 7 were used. Phosphors were obtained in the same manner as in Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 得られた蛍光体について、上記した方法により各種特性評価を行った。その結果を表8~10、後掲の表12、および図4~13に示す。比較例1~3はCaを全く置換していない蛍光体、実施例1~5はSrに対してCaを10モル%の割合で置換した蛍光体、実施例6~12および17はSrに対してCaを20モル%の割合で置換した蛍光体、実施例13~15および18~21はSrに対してCaを30モル%の割合で置換した蛍光体、実施例16および22~23はSrに対してCaを40モル%の割合で置換した蛍光体、実施例24~28はSrに対してCaを30モル%、Baを表7に記載の割合で置換した蛍光体である。 The various characteristics of the obtained phosphor were evaluated by the methods described above. The results are shown in Tables 8 to 10, Table 12 below, and FIGS. Comparative Examples 1 to 3 are phosphors in which Ca is not substituted at all, Examples 1 to 5 are phosphors in which Ca is substituted at a ratio of 10 mol% with respect to Sr, and Examples 6 to 12 and 17 are based on Sr. Phosphors in which Ca was substituted at a ratio of 20 mol%, Examples 13 to 15 and 18 to 21 were phosphors in which Ca was substituted at a ratio of 30 mol% to Sr, and Examples 16 and 22 to 23 were Sr Phosphors in which Ca was substituted at a ratio of 40 mol% with respect to Example 24, Examples 24 to 28 were phosphors in which Ca was substituted at a ratio of 30 mol% and Ba at a ratio shown in Table 7.
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表8は、実施例1~17、比較例1~3の蛍光体の粉末X線回折パターンをもとに、格子定数を精密化した結果と、特許文献3(特表2010-518194号公報)に記載されているSrAlSiの格子定数、単位格子体積(V)の値(比較例4)である。結晶構造中のSrサイトをCaで置換していくにつれて、単位格子体積の減少が確認された。したがって、本発明で得られた蛍光体には確実にSrサイトにCaを置換し、単位格子体積を任意に調整できていることが確認できた。 Table 8 shows the results of refinement of the lattice constant based on the powder X-ray diffraction patterns of the phosphors of Examples 1 to 17 and Comparative Examples 1 to 3, and Patent Document 3 (Japanese Patent Publication No. 2010-518194). Are the lattice constants and unit lattice volume (V) values of SrAlSi 4 N 7 described in (Comparative Example 4). As the Sr site in the crystal structure was replaced with Ca, the unit cell volume decreased. Therefore, it was confirmed that the phosphor obtained in the present invention was able to reliably replace Ca at the Sr site and arbitrarily adjust the unit cell volume.
 図4は、実施例2、3、6、10および比較例1の蛍光体の粉末X線パターンである。得られた粉末X線回折パターンは、Si、Al、N、およびOから構成される骨格構造を有し、その空隙にSrサイトが存在するという結晶構造を持つ蛍光体の一種であるSrAlSiと同じ結晶構造、つまり空間群がPna21に分類される結晶構造の空間群を有する結晶相が示すものであり、そのピーク位置がわずかに異なる結果であった。また、図4で見られるピーク強度比の違いは測定における選択配向の影響であることが確認された。 4 is a powder X-ray pattern of the phosphors of Examples 2, 3, 6, 10 and Comparative Example 1. FIG. The obtained powder X-ray diffraction pattern has a skeleton structure composed of Si, Al, N, and O, and SrAlSi 4 N, which is a kind of phosphor having a crystal structure in which Sr sites exist in the voids. 7 shows a crystal phase having the same crystal structure as that of FIG. 7 , that is, a space group of a crystal structure in which the space group is classified as Pna2 1 , and the peak positions are slightly different. Moreover, it was confirmed that the difference in peak intensity ratio seen in FIG. 4 is the influence of selective orientation in the measurement.
 図5は、実施例2、3、6~9、13、および比較例1で得られた蛍光体の発光スペクトルである。いずれの実施例の蛍光体のピーク強度も比較例1のピーク強度より増加していることが確認できた。つまり、単位格子体積を調整することで発光強度の増加が達成された。 FIG. 5 shows emission spectra of the phosphors obtained in Examples 2, 3, 6 to 9, 13 and Comparative Example 1. It was confirmed that the peak intensities of the phosphors of all the examples were increased from the peak intensity of Comparative Example 1. That is, the emission intensity was increased by adjusting the unit cell volume.
 図6は、実施例2で得られた蛍光体の励起スペクトルである。本実施例の蛍光体は波長300nmから550nmの広い範囲、特に400nmから500nmの範囲で高強度の橙色の発光を示すことがわかった。 FIG. 6 is an excitation spectrum of the phosphor obtained in Example 2. It has been found that the phosphor of this example exhibits high-intensity orange light emission over a wide range of wavelengths from 300 nm to 550 nm, particularly from 400 nm to 500 nm.
 図7は、実施例4、11、および比較例2の蛍光体の粉末X線パターン、図8は、それらの蛍光体の発光スペクトルである。実施例4と11の蛍光体は結晶構造内のSiとAlの比を比較例2の蛍光体のものと同じにし、Caの置換量のみを変化させたものである。比較例2では不純物相によるピークが確認されたが、実施例4ではその強度が減少し、実施例11では確認されなかった。これはSrサイトをCaで置換することにより、単位格子体積を調整し、より安定した構造を有する蛍光体を生成できたことが示唆される。したがって、不純物相の生成が抑制され、目的とする結晶相が選択的に生成しやくなるため、発光強度の増加が達成された。 7 is a powder X-ray pattern of the phosphors of Examples 4 and 11 and Comparative Example 2, and FIG. 8 is an emission spectrum of those phosphors. In the phosphors of Examples 4 and 11, the ratio of Si and Al in the crystal structure is the same as that of the phosphor of Comparative Example 2, and only the amount of substitution of Ca is changed. In Comparative Example 2, a peak due to the impurity phase was confirmed, but in Example 4, the intensity decreased, and in Example 11, it was not confirmed. This suggests that by replacing the Sr site with Ca, the unit cell volume was adjusted and a phosphor having a more stable structure could be generated. Accordingly, the generation of the impurity phase is suppressed, and the target crystal phase is easily generated selectively, so that an increase in emission intensity is achieved.
 図9は、実施例5、12、および比較例3の蛍光体の発光スペクトルである。実施例5と12の蛍光体は結晶構造内のSiとAlの比を比較例3の蛍光体のものと同じにし、Caの置換量のみを変化させたものである。比較例3に対して実施例5、実施例12になるに従って、発光強度が増加した。これは、実施例4、11、および比較例2の蛍光体と同様にSrサイトをCaで置換することにより、単位格子体積を調整し、より安定した構造を有する蛍光体を生成できたことが示唆される。 FIG. 9 shows emission spectra of the phosphors of Examples 5 and 12 and Comparative Example 3. In the phosphors of Examples 5 and 12, the ratio of Si and Al in the crystal structure is the same as that of the phosphor of Comparative Example 3, and only the amount of substitution of Ca is changed. As compared with Comparative Example 3, the emission intensity increased in accordance with Example 5 and Example 12. This is because, as in the phosphors of Examples 4 and 11, and Comparative Example 2, the Sr site was replaced with Ca, whereby the unit cell volume was adjusted and a phosphor having a more stable structure could be generated. It is suggested.
 図10は、実施例18~23の蛍光体の粉末X線パターンである。得られた粉末X線回折パターンは、Si、Al、N、およびOから構成される骨格構造を有し、その空隙にSrサイトが存在するという結晶構造を持つ蛍光体の一種であるSrAlSiと同じ結晶構造、つまり空間群がPna21に分類される結晶構造の空間群を有する結晶相が示すものであり、そのピーク位置がわずかに異なる結果であった。また、図10で見られるピーク強度比の違いは測定における選択配向の影響であることが確認された。 FIG. 10 is a powder X-ray pattern of the phosphors of Examples 18 to 23. The obtained powder X-ray diffraction pattern has a skeleton structure composed of Si, Al, N, and O, and SrAlSi 4 N, which is a kind of phosphor having a crystal structure in which Sr sites exist in the voids. 7 shows a crystal phase having the same crystal structure as that of FIG. 7 , that is, a space group of a crystal structure in which the space group is classified as Pna2 1 , and the peak positions are slightly different. Moreover, it was confirmed that the difference in peak intensity ratio seen in FIG. 10 is the influence of selective orientation in the measurement.
 図11は、実施例18~23の蛍光体の発光スペクトルである。骨格構造を構成しているSi、Al、N、およびOの割合、および、SrサイトのCa置換量を調整することで、発光ピーク波長を制御することができることが可能であることがわかる。 FIG. 11 shows emission spectra of the phosphors of Examples 18 to 23. It can be seen that the emission peak wavelength can be controlled by adjusting the ratio of Si, Al, N, and O constituting the skeleton structure and the Ca substitution amount of the Sr site.
 図12は、実施例18、24~28の蛍光体の粉末X線パターンである。得られた粉末X線回折パターンは、Si、Al、N、およびOから構成される骨格構造を有し、その空隙にSrサイトが存在するという結晶構造を持つ蛍光体の一種であるSrAlSiと同じ結晶構造、つまり空間群がPna21に分類される結晶構造の空間群を有する結晶相が示すものであり、そのピーク位置がわずかに異なる結果であった。また、図12で見られるピーク強度比の違いは測定における選択配向の影響であることが確認された。つまり、結晶構造内のSrサイトを表7に記載の割合で確実にBaを固溶置換できたことが確認された。 FIG. 12 is a powder X-ray pattern of the phosphors of Examples 18 and 24-28. The obtained powder X-ray diffraction pattern has a skeleton structure composed of Si, Al, N, and O, and SrAlSi 4 N, which is a kind of phosphor having a crystal structure in which Sr sites exist in the voids. 7 shows a crystal phase having the same crystal structure as that of FIG. 7 , that is, a space group of a crystal structure in which the space group is classified as Pna2 1 , and the peak positions are slightly different. Moreover, it was confirmed that the difference in peak intensity ratio seen in FIG. 12 is the influence of the selective orientation in the measurement. In other words, it was confirmed that Ba could be solid solution-substituted at the ratio shown in Table 7 for the Sr sites in the crystal structure.
 図13は、実施例18、24~28の蛍光体の発光スペクトルである。骨格構造を構成しているSi、Al、N、およびOの割合とSrサイトのCa置換量を一定にし、さらにSrサイトをBaで置換すると、その置換量の増加に伴い半値幅が大きくなることが確認された。つまり、本発明の蛍光体における結晶構造内のSrサイトをBaで置換することで半値幅の制御が可能であることが確認された。 FIG. 13 shows the emission spectra of the phosphors of Examples 18 and 24-28. When the ratio of Si, Al, N, and O constituting the skeleton structure and the Ca substitution amount of the Sr site are made constant, and the Sr site is substituted with Ba, the full width at half maximum increases as the substitution amount increases. Was confirmed. That is, it was confirmed that the half-value width can be controlled by replacing the Sr site in the crystal structure of the phosphor of the present invention with Ba.
 表9は、実施例1~4、6~11、13、および比較例1、2の蛍光体の発光ピーク波長、CIE色度座標、発光ピーク半値幅、および相対発光ピーク強度の測定結果である。いずれの実施例の蛍光体も、広い半値幅を保ったまま、ピーク強度が比較例1および2のピーク強度より増加しており、発光色が黄色から赤色の広い範囲で発光強度が高く演色性に優れた蛍光体を生成できたことが確認された。これは、骨格構造の組成とともにSrサイトをCaで置換することにより、単位格子体積を調整し、様々な発光色において最適な安定構造を構築することができたためであると考えられる。 Table 9 shows the measurement results of the emission peak wavelength, CIE chromaticity coordinates, emission peak half width, and relative emission peak intensity of the phosphors of Examples 1 to 4, 6 to 11, and 13 and Comparative Examples 1 and 2. . In all the phosphors of the examples, the peak intensity is increased from the peak intensity of Comparative Examples 1 and 2 while maintaining a wide half-value width, and the emission intensity is high in a wide range from yellow to red. It was confirmed that an excellent phosphor could be produced. This is considered to be because by replacing the Sr site with Ca together with the composition of the skeletal structure, the unit cell volume was adjusted and optimum stable structures could be constructed in various emission colors.
 表10は、実施例5、12、14~17、および比較例3の蛍光体の発光ピーク波長、CIE色度座標、発光ピーク半値幅、および相対発光輝度の測定結果である。いずれの実施例の蛍光体も、広い半値幅を保ったまま、相対発光輝度が比較例3の相対発光輝度より増加している。これは、骨格構造の組成とともにSrサイトをCaで置換することにより、単位格子体積を調節し、発光効率を低下させることなく発光色を調整することが可能になり、視感度の高い黄色から橙色の広い範囲で輝度が高い蛍光体を得ることができたためであると考えられる。 Table 10 shows the measurement results of the emission peak wavelength, CIE chromaticity coordinates, emission peak half-value width, and relative emission luminance of the phosphors of Examples 5, 12, 14 to 17 and Comparative Example 3. In all the phosphors of the examples, the relative light emission luminance is higher than the relative light emission luminance of Comparative Example 3 while maintaining a wide half width. By replacing the Sr site with Ca together with the composition of the skeletal structure, the unit cell volume can be adjusted, and the emission color can be adjusted without reducing the light emission efficiency. This is considered to be because a phosphor with high luminance was obtained in a wide range.
[実施例29、30]
 実施例29は実施例9と同様に、実施例30は実施例14と同様に蛍光体を調製した。得られた蛍光体を上記の方法で、組成分析を行った。
[Examples 29 and 30]
A phosphor was prepared in the same manner as in Example 9 in Example 29 and in the same manner as in Example 14 in Example 30. The obtained phosphor was subjected to composition analysis by the above method.
 表11は実施例29および30の蛍光体の組成分析結果である。 Table 11 shows the composition analysis results of the phosphors of Examples 29 and 30.
Figure JPOXMLDOC01-appb-T000011

 
Figure JPOXMLDOC01-appb-T000011

 
 組成分析の値を組成式に変換すると、実施例29がSr0.75Ca0.20Eu0.05Si3.57Al1.416.330.46、実施例30がSr0.67Ca0.28Eu0.05Si3.33Al1.736.130.74となり、ほぼ狙い組成(仕込み組成)の蛍光体が得られていることが確認された。 When the value of the composition analysis is converted into the composition formula, Example 29 is Sr 0.75 Ca 0.20 Eu 0.05 Si 3.57 Al 1.41 N 6.33 O 0.46 , and Example 30 is Sr 0. .67 Ca 0.28 Eu 0.05 Si 3.33 Al 1.73 N 6.13 O 0.74 , confirming that a phosphor having a substantially aimed composition (prepared composition) was obtained.
[半導体発光装置シミュレーション]
[実施例18~28、および比較例4~6]
 上述の実施例18~28の蛍光体を、比較例4はCa-アルファサイアロンを、比較例5はSr1.98BaSiO:Eu0.02を、比較例6はイットリウム・アルミニウム・ガーネット蛍光体を青色LED(発光ピーク波長455nm)と組み合わせて半導体発光装置を作製したものとしてシミュレーションを行なった。なお、比較例4で用いたCa-アルファサイアロンは公知のものである。また、比較例5で用いたSr1.98BaSiO:Eu0.02は、粉末X線測定によりSr1.98BaSiO:Eu0.02が得られていることを確認した。さらに、比較例6で用いたイットリウム・アルミニウム・ガーネット蛍光体は三菱化学株式会社製、P46-Y3である。なお、実施例18の蛍光体は上述の実施例14の蛍光体と、実施例19の蛍光体は上述の実施例15の蛍光体と、実施例22の蛍光体は上述の実施例16の蛍光体と、それぞれ一致するものである。
[Semiconductor light-emitting device simulation]
[Examples 18 to 28 and Comparative Examples 4 to 6]
The phosphor of the above-described embodiments 18-28, Comparative Example 4 is Ca- alpha sialon, Comparative Example 5 Sr 1.98 BaSiO 5: the Eu 0.02, Comparative Example 6 is yttrium-aluminum-garnet fluorescent material A simulation was performed on the assumption that a semiconductor light emitting device was manufactured by combining with a blue LED (emission peak wavelength 455 nm). The Ca-alpha sialon used in Comparative Example 4 is a known one. Further, Sr 1.98 BaSiO 5 used in Comparative Example 5: Eu 0.02 is, Sr 1.98 BaSiO 5 by powder X-ray measurement: it was confirmed that Eu 0.02 is obtained. Further, the yttrium aluminum garnet phosphor used in Comparative Example 6 is P46-Y3 manufactured by Mitsubishi Chemical Corporation. The phosphor of Example 18 is the phosphor of Example 14 described above, the phosphor of Example 19 is the phosphor of Example 15 described above, and the phosphor of Example 22 is the fluorescence of Example 16 described above. It is the same as the body.
 以下の方法でシミュレーションを行った。
(シミュレーション方法)
 青色LED(ピーク波長:450nm、半値幅:21nm)の実測データと、用いる蛍光体の波長455nm励起における実測の発光スペクトルより励起光源のスペクトルを差し引いた発光スペクトルをそれぞれ用意した。用意したそれぞれのスペクトルの発光ピーク強度を1に規格化し、青色LEDの強度と蛍光体の発光ピーク強度を任意の比で掛けたスペクトルを足し合わせ、一つの発光スペクトルとして計算されたものを白色スペクトルとして導出した。
The simulation was performed by the following method.
(Simulation method)
An emission spectrum obtained by subtracting the spectrum of the excitation light source from the actual measurement data of the blue LED (peak wavelength: 450 nm, half-value width: 21 nm) and the actual emission spectrum of the phosphor used at a wavelength of 455 nm was prepared. The emission peak intensity of each prepared spectrum is normalized to 1, and the spectrum obtained by multiplying the intensity of the blue LED and the emission peak intensity of the phosphor by an arbitrary ratio is added to obtain a white spectrum. As derived.
 各光学特性評価項目の計算方法は、以下の通りとした。
(i)JIS Z8724:1997(標題:色の測定方法-光源色-)に基づき、CIE 1931色度図上のxy色度座標を計算した。
(ii)上記(i)の結果を基に、CIE 1960 UCS色度図上のuv色度座標に変換した後、JIS Z8725:1999(標題:光源の分布温度及び色温度・相関色温度の測定方法 )に基づき相関色温度(ケルビン)およびとDuvを計算した。
(iii)JIS Z8726:1990(標題:光源の演色性評価方法)に基づき、白色スペクトルより、演色評価数(Ra, R1~R15)を計算した。
The calculation method of each optical characteristic evaluation item was as follows.
(I) The xy chromaticity coordinates on the CIE 1931 chromaticity diagram were calculated based on JIS Z8724: 1997 (title: color measurement method—light source color—).
(Ii) Based on the result of (i) above, after conversion to uv chromaticity coordinates on the CIE 1960 UCS chromaticity diagram, JIS Z8725: 1999 (title: measurement of light source distribution temperature and color temperature / correlated color temperature) Method) The correlated color temperature (Kelvin) and Duv were calculated.
(Iii) The color rendering index (Ra, R1 to R15) was calculated from the white spectrum based on JIS Z8726: 1990 (title: color rendering property evaluation method of light source).
 実施例18~28、および比較例4~6の蛍光体を用いた発光装置について、シミュレーションにより作成した白色スペクトルから算出した色度、相関色温度、Duvの値を表12に示す。 Table 12 shows the chromaticity, correlated color temperature, and Duv values calculated from the white spectrum created by simulation for the light emitting devices using the phosphors of Examples 18 to 28 and Comparative Examples 4 to 6.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 比較例4の発光装置では用いた蛍光体の半値幅が95nm以下と狭いため、演色評価数Raが57と低く、演色性の点で課題があったが、実施例18~28では用いる蛍光体の半値幅が95nm以上と幅広いため、発光装置の演色性が向上した。
 つまり、本発明の発光装置は、本発明により半値幅の広い蛍光体を提供できるようになったことにより、演色性がよく発光色が白色~電球色である発光装置の提供が可能となった。
In the light emitting device of Comparative Example 4, since the half-value width of the phosphor used was as narrow as 95 nm or less, the color rendering index Ra was as low as 57, and there was a problem in terms of color rendering properties. Since the full width at half maximum is 95 nm or more, the color rendering properties of the light emitting device are improved.
In other words, the light emitting device of the present invention can provide a phosphor having a wide half-value width according to the present invention, so that it is possible to provide a light emitting device having good color rendering and white to light bulb color. .
 また、比較例4の発光装置の相関色温度、および、演色評価数Raは非特許文献1(電気情報通信学会総合大会講演論文集,2005,エレクトロニクス(2),42,2005-03-07)に記載の発光装置の相関色温度と演色評価数Raとほぼ一致しており、実施例の発光装置の発光スペクトル作成に用いたシミュレーションの妥当性が示された。
 比較例5の発光装置では、用いる蛍光体の半値幅が狭く、また、発光ピーク波長が594nmと長波長すぎるので相関色温度が1942Kになり、単独で青色LEDと組み合わせただけでは電球色を示すことはできない。これに対して、実施例18~28の発光装置は、使用する蛍光体の発光ピーク波長が短波長側にあるため、演色性がよく発光色が白色~電球色である発光装置を提供できる。
Further, the correlated color temperature and the color rendering index Ra of the light emitting device of Comparative Example 4 are described in Non-Patent Document 1 (Proceedings of the IEICE General Conference, 2005, Electronics (2), 42, 2005-03-07). The correlation color temperature of the light-emitting device described in 1 and the color rendering index Ra were almost the same, indicating the validity of the simulation used for creating the emission spectrum of the light-emitting device of the example.
In the light emitting device of Comparative Example 5, the half width of the phosphor used is narrow, and the emission peak wavelength is too long as 594 nm, so the correlated color temperature is 1942K. It is not possible. On the other hand, in the light emitting devices of Examples 18 to 28, since the emission peak wavelength of the phosphor to be used is on the short wavelength side, it is possible to provide a light emitting device with good color rendering and white to light bulb color.
 比較例6の発光装置は使用する蛍光体の相関色温度が5500K程度であり、青色LEDとこの蛍光体のみでは白色~電球色(2600K~4500K)の発光装置とはなり得ない。
 また、実施例18~23では、演色性がよく発光色が白色~電球色(4500K~2600K)の発光装置を提供できたことが確認できた。これは、使用する本発明の蛍光体が発光スペクトルの半値幅が幅広いという特徴を維持しながら、発光ピーク波長を調整できようになったためである。なお、シミュレーション結果において、実施例18の発光装置の演色評価数Raは比較例4のものよりも7ポイント上回っており、実施例19~23の演色評価数Raは実施例18のものと同等、もしくはプラス6ポイントの範囲内で増加していた。
In the light emitting device of Comparative Example 6, the correlated color temperature of the phosphor used is about 5500K, and the blue LED and this phosphor alone cannot be a white to light bulb color (2600K to 4500K) light emitting device.
In Examples 18 to 23, it was confirmed that a light emitting device having good color rendering properties and a light emitting color of white to light bulb color (4500K to 2600K) could be provided. This is because the emission peak wavelength can be adjusted while maintaining the feature that the phosphor of the present invention to be used has a wide half-value width of the emission spectrum. In the simulation results, the color rendering index Ra of the light emitting device of Example 18 is 7 points higher than that of Comparative Example 4, and the color rendering index Ra of Examples 19 to 23 is equivalent to that of Example 18. Or it increased within the range of plus 6 points.
 さらに、実施例24~28の発光装置では、実施例18と同程度の相関色温度でありながらも、シミュレーション結果において、演色評価数Raの値が実施例18より実施例24、25、26、27、28の順で1、ないしは2ポイントずつ増加していた。これは、発光装置に使用する蛍光体のSrサイトをBaで置換することにより、発光スペクトルの半値幅を幅広くすることができたことによるものである。これにより、演色性のよい電球色(2600K~3250K)の発光装置の提供が可能になった。 Further, in the light emitting devices of Examples 24 to 28, although the correlated color temperature is about the same as that of Example 18, in the simulation result, the value of the color rendering index Ra is higher than that of Example 18 in Examples 24, 25, 26, It increased by 1 or 2 points in the order of 27 and 28. This is because the full width at half maximum of the emission spectrum can be widened by replacing the Sr site of the phosphor used in the light emitting device with Ba. As a result, it is possible to provide a light-emitting device having a light bulb color (2600K to 3250K) with good color rendering.
[発光装置]
[実施例31]
 上述の実施例18でシミュレーションを行なった発光装置について図2(b)に示す構成の表面実装型白色発光装置を実際に下記の手順により作製し、発光特性の測定を行なった。なお、本実施例の各構成要素のうち、図2(b)に対応する構成要素が描かれているものについては、適宜その符号をカッコ書きにて示す。 
[Light emitting device]
[Example 31]
Regarding the light emitting device simulated in Example 18 described above, a surface-mounted white light emitting device having the configuration shown in FIG. 2B was actually manufactured by the following procedure, and the light emission characteristics were measured. Of the constituent elements of the present embodiment, the constituent elements corresponding to those shown in FIG. 2B are indicated by parentheses as appropriate.
 第1の発光体(22)としては、波長450nm~470nmで発光する青色発光ダイオード(以下適宜「青色LED」と略する。)であるInGaN発光ダイオード(昭和電工社製)を用いた。この青色LED(22)を、フレーム(24)の凹部の底の電極(27)に、接着剤として銀ペーストを用いてダイボンディングした。この際、青色LED(22)で発生する熱の放熱性を考慮して、接着剤である銀ペーストは薄く均一に塗布した。150℃で2時間加熱し、銀ペーストを硬化させた後、青色LED(22)とフレーム(24)の電極(26)とをワイヤボンディングした。ワイヤ(25)としては、直径25μmの金線を用いた。  As the first light emitter (22), an InGaN light emitting diode (manufactured by Showa Denko KK), which is a blue light emitting diode (hereinafter referred to as “blue LED” where appropriate) that emits light at a wavelength of 450 nm to 470 nm, was used. This blue LED (22) was die-bonded to the electrode (27) at the bottom of the recess of the frame (24) using a silver paste as an adhesive. At this time, the silver paste as the adhesive was thinly and uniformly applied in consideration of the heat dissipation of the heat generated in the blue LED (22). After heating at 150 ° C. for 2 hours to cure the silver paste, the blue LED (22) and the electrode (26) of the frame (24) were wire-bonded. A gold wire having a diameter of 25 μm was used as the wire (25).
 蛍光体含有部(23)の発光物質として上記の蛍光体18を使用した。上記の蛍光体18、有機変性シリコーン樹脂(信越シリコーン社製のSCR1011)、アエロジル(日本アエロジル社製のRX-200)を15.5:85.5:2の重量割合で混合して蛍光体スラリー(蛍光体含有組成物)を作製した。アエロジルの使用目的は蛍光体の樹脂中での沈降防止のためである。 The phosphor 18 described above was used as the luminescent material of the phosphor-containing part (23). Phosphor slurry obtained by mixing the phosphor 18, the organically modified silicone resin (SCR 1011 manufactured by Shin-Etsu Silicone), and Aerosil (RX-200 manufactured by Nippon Aerosil Co., Ltd.) in a weight ratio of 15.5: 85.5: 2. (Phosphor-containing composition) was prepared. The purpose of using Aerosil is to prevent sedimentation of the phosphor in the resin.
 得られた蛍光体スラリーを、上述のフレーム(24)の凹部に注入し、100℃で3時間、さらに140℃で3時間加熱して硬化させ、蛍光体含有部(23)を形成し、表面実装型白色発光装置を作製した。 
 また、得られた発光装置を、25℃において、その青色LED(22)に20mAの電流を通電して駆動し発光させた。白色発光装置からの全ての発光を積分球で受け、さらに光ファイバーによって分光器に導き入れ、発光スペクトルと全光束とを測定し、白色色度座標を測定した。具体的には、気温25±1℃に保たれた室内において、オーシャン オプティクス社製の色・照度測定ソフトウェア及びUSB2000シリーズ分光器(積分球仕様)を用いて20mA通電して発光スペクトルの測定を行ない、電球色に発光することを確認した。得られた発光スペクトルから、実施例18~28、および比較例4~6と同様の手法で相関色温度を計算したところ、2773Kであった。
The obtained phosphor slurry is poured into the recesses of the frame (24) and cured by heating at 100 ° C. for 3 hours and further at 140 ° C. for 3 hours to form the phosphor-containing portion (23), and the surface A mounting type white light emitting device was produced.
Further, the obtained light emitting device was driven to emit light at 25 ° C. by applying a current of 20 mA to the blue LED (22). All the light emission from the white light emitting device was received by an integrating sphere, and further introduced into a spectroscope by an optical fiber, the emission spectrum and the total luminous flux were measured, and the white chromaticity coordinates were measured. Specifically, in a room maintained at a temperature of 25 ± 1 ° C, the emission spectrum is measured by energizing 20 mA using Ocean Optics color / illuminance measurement software and USB2000 series spectroscope (integral sphere specification). , It was confirmed that it emitted light bulb color. From the obtained emission spectra, the correlated color temperature was calculated in the same manner as in Examples 18 to 28 and Comparative Examples 4 to 6, and it was 2773K.
 本発明の蛍光体は、光を用いる任意の分野において用いることができ、例えば屋内及び屋外用の照明などのほか、携帯電話、家庭用電化製品、屋外設置用ディスプレイ等の各種電子機器の画像表示装置などに好適に用いることができる。 The phosphor of the present invention can be used in any field where light is used. For example, in addition to indoor and outdoor lighting, image display of various electronic devices such as mobile phones, household appliances, and outdoor installation displays. It can be suitably used for an apparatus or the like.
 1 蛍光体含有部(第2の発光体)
 2 励起光源(第1の発光体)(LD)
 3 基板
 4 発光装置
 5 マウントリード
 6 インナーリード
 7 励起光源(第1の発光体)
 8 蛍光体含有部
 9 導電性ワイヤ
 10 モールド部材
 11 面発光照明装置
 12 保持ケース
 13 発光装置
 14 拡散板
 22 励起光源(第1の発光体)
 23 蛍光体含有部(第2の発光体)
 24 フレーム
 25 導電性ワイヤ
 26 電極
 27 電極
1 Phosphor-containing part (second light emitter)
2 Excitation light source (first light emitter) (LD)
3 Substrate 4 Light-emitting device 5 Mount lead 6 Inner lead 7 Excitation light source (first light emitter)
DESCRIPTION OF SYMBOLS 8 Fluorescent substance containing part 9 Conductive wire 10 Mold member 11 Surface light-emitting illuminating device 12 Holding case 13 Light-emitting device 14 Diffusion plate 22 Excitation light source (1st light-emitting body)
23 Phosphor-containing part (second light emitter)
24 frame 25 conductive wire 26 electrode 27 electrode

Claims (16)

  1.  下記式[1]:
    (A1-x,Eue   [1]
    (式[1]中、AはSrおよびCaを必須とするアルカリ土類金属元素を示し、DはSiを必須とする4価の金属元素を示し、EはAlを必須とする3価の金属元素を示し、xは0.0001≦x≦0.20を満たす数を示し、a、b、c、d及びeは、それぞれ、
    0.7≦a≦1.3
    2.8≦b≦4.0
    1.0≦c≦3.0
    4.0≦(b+c)/a≦6.0
    5.0≦d≦7.0
    0<e≦2.0
    6.5≦(d+e)/a≦7.5
    を満たす数を示す。)
    で表される組成を有する結晶相を含み、前記結晶相の結晶系が斜方晶系または単斜晶系であり、格子定数から算出した該結晶相の単位格子体積(V)が1220×10pm以上、1246×10pm以下であることを特徴とする酸窒化物系蛍光体。
    The following formula [1]:
    (A 1-x , Eu x ) a D b E c N d O e [1]
    (In the formula [1], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al. Represents an element, x represents a number satisfying 0.0001 ≦ x ≦ 0.20, and a, b, c, d and e are respectively
    0.7 ≦ a ≦ 1.3
    2.8 ≦ b ≦ 4.0
    1.0 ≦ c ≦ 3.0
    4.0 ≦ (b + c) /a≦6.0
    5.0 ≦ d ≦ 7.0
    0 <e ≦ 2.0
    6.5 ≦ (d + e) /a≦7.5
    Indicates the number that satisfies )
    The crystal phase of the crystal phase is orthorhombic or monoclinic, and the unit lattice volume (V) of the crystal phase calculated from the lattice constant is 1220 × 10 6. An oxynitride phosphor characterized by being 6 pm 3 or more and 1246 × 10 6 pm 3 or less.
  2.  前記結晶相の空間群がPna21であることを特徴とする請求項1に記載の蛍光体。 The phosphor according to claim 1, wherein a space group of the crystal phase is Pna2 1 .
  3.  前記式[1]において、A元素全体に対するCaの割合が、0.001モル%以上80モル%以下であることを特徴とする請求項1または2に記載の蛍光体。 3. The phosphor according to claim 1, wherein, in the formula [1], a ratio of Ca to the entire element A is 0.001 mol% or more and 80 mol% or less.
  4.  発光ピークが、波長550nm以上650nm以下の範囲に存在することを特徴とする請求項1~3のいずれか1項に記載の蛍光体。 The phosphor according to any one of claims 1 to 3, wherein the emission peak exists in a wavelength range of 550 nm to 650 nm.
  5.  下記式[1]:
    (A1-x,Eue   [1]
    (式[1]中、AはSrおよびCaを必須とするアルカリ土類金属元素を示し、DはSiを必須とする4価の金属元素を示し、EはAlを必須とする3価の金属元素を示し、xは0.0001≦x≦0.20を満たす数を示し、a、b、c、d及びeは、それぞれ、
    0.7≦a≦1.3
    2.8≦b≦4.0
    1.0≦c≦3.0
    4.0≦(b+c)/a≦6.0
    5.0≦d≦7.0
    0<e≦2.0
    6.5≦(d+e)/a≦7.5
    を満たす数を示す。)
    で表される組成を有する結晶相を含み、前記結晶相の結晶系が斜方晶系または単斜晶系であり、発光ピークが、波長581nm以上650nm以下の範囲に存在することを特徴とする酸窒化物系蛍光体。
    The following formula [1]:
    (A 1-x , Eu x ) a D b E c N d O e [1]
    (In the formula [1], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al. Represents an element, x represents a number satisfying 0.0001 ≦ x ≦ 0.20, and a, b, c, d and e are respectively
    0.7 ≦ a ≦ 1.3
    2.8 ≦ b ≦ 4.0
    1.0 ≦ c ≦ 3.0
    4.0 ≦ (b + c) /a≦6.0
    5.0 ≦ d ≦ 7.0
    0 <e ≦ 2.0
    6.5 ≦ (d + e) /a≦7.5
    Indicates the number that satisfies )
    A crystal phase of the crystal phase is orthorhombic or monoclinic, and an emission peak exists in a wavelength range of 581 nm to 650 nm. Oxynitride phosphor.
  6.  前記結晶相の空間群がPna21であることを特徴とする請求項5に記載の蛍光体。 The phosphor according to claim 5, wherein the space group of the crystal phase is Pna2 1 .
  7.  前記式[1]において、A元素全体に対するCaの割合が、0.001モル%以上80モル%以下であることを特徴とする請求項5または6に記載の蛍光体。 7. The phosphor according to claim 5, wherein, in the formula [1], a ratio of Ca to the entire element A is 0.001 mol% or more and 80 mol% or less.
  8.  下記式[2]:
    (A1-x,Eue   [2]
    (式[2]中、AはSrおよびCaを必須とするアルカリ土類金属元素を示し、DはSiを必須とする4価の金属元素を示し、EはAlを必須とする3価の金属元素を示し、xは0.0001≦x≦0.20を満たす数を示し、a、b、c、d及びeは、それぞれ、
    0.7≦a≦1.3
    2.8≦b≦3.6
    1.0≦c≦3.0
    4.0≦(b+c)/a≦6.0
    5.0≦d≦7.0
    0<e≦2.0
    6.5≦(d+e)/a≦7.3
    を満たす数を示す。)
    で表される組成を有する結晶相を含み、上記[2]におけるA元素に対するCaの割合が0.001モル%以上80モル%以下であって、前記結晶相の結晶系が斜方晶系または単斜晶系であることを特徴とする酸窒化物系蛍光体。
    Following formula [2]:
    (A 1-x , Eu x ) a D b E c N d O e [2]
    (In the formula [2], A represents an alkaline earth metal element essential for Sr and Ca, D represents a tetravalent metal element essential for Si, and E represents a trivalent metal essential for Al. Represents an element, x represents a number satisfying 0.0001 ≦ x ≦ 0.20, and a, b, c, d and e are respectively
    0.7 ≦ a ≦ 1.3
    2.8 ≦ b ≦ 3.6
    1.0 ≦ c ≦ 3.0
    4.0 ≦ (b + c) /a≦6.0
    5.0 ≦ d ≦ 7.0
    0 <e ≦ 2.0
    6.5 ≦ (d + e) /a≦7.3
    Indicates the number that satisfies )
    The ratio of Ca to element A in [2] above is 0.001 mol% or more and 80 mol% or less, and the crystal system of the crystal phase is orthorhombic or An oxynitride phosphor characterized by being monoclinic.
  9.  前記結晶相の空間群がPna21であることを特徴とする請求項8に記載の蛍光体。 The phosphor according to claim 8, wherein a space group of the crystal phase is Pna2 1 .
  10.  発光ピークが、波長570nm以上600nm以下の範囲に存在することを特徴とする請求項8または9に記載の蛍光体。 The phosphor according to claim 8 or 9, wherein the emission peak exists in a wavelength range of 570 nm to 600 nm.
  11.  発光ピークの半値幅が、95nm以上であることを特徴とする請求項1~10のいずれか1項に記載の蛍光体。 The phosphor according to any one of claims 1 to 10, wherein the half-value width of the emission peak is 95 nm or more.
  12.  請求項1~11のいずれか1項に記載の蛍光体の少なくとも一種を液体媒体中に分散させてなることを特徴とする蛍光体含有組成物。 A phosphor-containing composition obtained by dispersing at least one phosphor according to any one of claims 1 to 11 in a liquid medium.
  13.  第1の発光体(励起光源)と、該第1の発光体からの光を可視光に変換して、可視光を発し得る第2の発光体とを有する発光装置であって、該第2の発光体が、第1の蛍光体として請求項1~11のいずれか1項に記載の蛍光体の少なくとも一種を含有する、または、該第2の発光体として、請求項12に記載の蛍光体含有組成物を有することを特徴とする発光装置。 A light emitting device having a first light emitter (excitation light source) and a second light emitter capable of emitting visible light by converting light from the first light emitter, the second light emitter. The phosphor according to claim 12 contains at least one of the phosphors according to any one of claims 1 to 11 as a first phosphor, or the fluorescence according to claim 12 as the second phosphor. A light-emitting device comprising a body-containing composition.
  14.  前記第2の発光体が、第2の蛍光体として前記第1の蛍光体とは発光ピーク波長の異なる少なくとも一種の蛍光体を含有することを特徴とする請求項13に記載の発光装置。  14. The light emitting device according to claim 13, wherein the second light emitter contains at least one kind of phosphor having a light emission peak wavelength different from that of the first phosphor as the second phosphor.
  15.  相関色温度が、2600K以上4500K以下であることを特徴とする請求項13または14に記載の発光装置。 15. The light emitting device according to claim 13 or 14, wherein the correlated color temperature is 2600K or more and 4500K or less.
  16.  請求項13~15のいずれか1項に記載の発光装置を備えることを特徴とする照明装置または画像表示装置。
     
     
    An illumination device or an image display device comprising the light emitting device according to any one of claims 13 to 15.

PCT/JP2013/050668 2012-01-17 2013-01-16 Oxynitride-based phosphor and light emitting device using same WO2013108782A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012007128 2012-01-17
JP2012-007128 2012-01-17
JP2012049561 2012-03-06
JP2012-049561 2012-03-06

Publications (1)

Publication Number Publication Date
WO2013108782A1 true WO2013108782A1 (en) 2013-07-25

Family

ID=48799207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050668 WO2013108782A1 (en) 2012-01-17 2013-01-16 Oxynitride-based phosphor and light emitting device using same

Country Status (3)

Country Link
JP (1) JP2013213191A (en)
TW (1) TW201335338A (en)
WO (1) WO2013108782A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484110A (en) * 2013-09-06 2014-01-01 北京科技大学 Red silicon-aluminum oxynitride fluorescent material and preparation method thereof
WO2019045106A1 (en) * 2017-09-04 2019-03-07 三菱ケミカル株式会社 Phosphor, light-emitting device, image display device, and illumination device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050230689A1 (en) * 2004-04-20 2005-10-20 Gelcore Llc Ce3+ and Eu2+ doped phosphors for light generation
WO2006061778A1 (en) * 2004-12-06 2006-06-15 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a blue-emitting phospor
JP2007137946A (en) * 2005-11-15 2007-06-07 Mitsubishi Chemicals Corp Phosphor, light emitting device using the same, image display device and illumination device
JP2008527706A (en) * 2005-01-10 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system with ceramic luminescence converter
JP2010106127A (en) * 2008-10-29 2010-05-13 Toshiba Corp Red phosphor and light emitting device using the same
JP2010268004A (en) * 2010-08-18 2010-11-25 Toshiba Corp Red phosphor and light-emitting device using the same
WO2011024296A1 (en) * 2009-08-28 2011-03-03 株式会社 東芝 Process for producing fluorescent substance and fluorescent substance produced thereby
JP2011153320A (en) * 2011-05-02 2011-08-11 Toshiba Corp Method for producing red phosphor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050230689A1 (en) * 2004-04-20 2005-10-20 Gelcore Llc Ce3+ and Eu2+ doped phosphors for light generation
WO2006061778A1 (en) * 2004-12-06 2006-06-15 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a blue-emitting phospor
JP2008527706A (en) * 2005-01-10 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system with ceramic luminescence converter
JP2007137946A (en) * 2005-11-15 2007-06-07 Mitsubishi Chemicals Corp Phosphor, light emitting device using the same, image display device and illumination device
JP2010106127A (en) * 2008-10-29 2010-05-13 Toshiba Corp Red phosphor and light emitting device using the same
WO2011024296A1 (en) * 2009-08-28 2011-03-03 株式会社 東芝 Process for producing fluorescent substance and fluorescent substance produced thereby
JP2010268004A (en) * 2010-08-18 2010-11-25 Toshiba Corp Red phosphor and light-emitting device using the same
JP2011153320A (en) * 2011-05-02 2011-08-11 Toshiba Corp Method for producing red phosphor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484110A (en) * 2013-09-06 2014-01-01 北京科技大学 Red silicon-aluminum oxynitride fluorescent material and preparation method thereof
WO2019045106A1 (en) * 2017-09-04 2019-03-07 三菱ケミカル株式会社 Phosphor, light-emitting device, image display device, and illumination device
CN111051472A (en) * 2017-09-04 2020-04-21 三菱化学株式会社 Phosphor, light emitting device, image display device, and illumination device
JPWO2019045106A1 (en) * 2017-09-04 2020-08-20 三菱ケミカル株式会社 Phosphor, light emitting device, image display device, and lighting device
US11203713B2 (en) 2017-09-04 2021-12-21 Mitsubishi Chemical Corporation Phosphor, light-emitting device, image display device, and illumination device

Also Published As

Publication number Publication date
JP2013213191A (en) 2013-10-17
TW201335338A (en) 2013-09-01

Similar Documents

Publication Publication Date Title
US8709838B2 (en) Method for preparing a β-SiAlON phosphor
US7857994B2 (en) Green emitting phosphors and blends thereof
US20120212123A1 (en) Halophosphate phosphor and white light-emitting device
US20120267999A1 (en) Halophosphate phosphor and white light-emitting device
KR20120118469A (en) White light-emitting device
US9657222B2 (en) Silicate phosphors
KR20110042122A (en) Alpha-sialon phosphor
JP2009094231A (en) Light-emitting device
JP2015113358A (en) Phosphor, phosphor-containing composition, light-emitting device, lighting device, image display device, and method for producing the phosphor
JP2010270196A (en) Phosphor, method for manufacturing phosphor, phosphor-containing composition, light-emitting device, lighting apparatus, image display, and fluorescent paint
US8414795B2 (en) Red light-emitting fluorescent substance and light-emitting device employing the same
JP2011256340A (en) Phosphor, phosphor-containing composition using the phosphor, light emitting device, image display device and lighting device
JP6094377B2 (en) Phosphor, phosphor-containing composition and light emitting device using the phosphor, and illumination device and image display device using the light emitting device
KR101176212B1 (en) Alkali-earth Phosporus Nitride system phosphor, manufacturing method thereof and light emitting devices using the same
WO2008065567A1 (en) Illumination system comprising hetero- polyoxometalate
JP2013249466A (en) Oxynitride-based phosphor and light-emitting device using the same
WO2013108782A1 (en) Oxynitride-based phosphor and light emitting device using same
JP2013144794A (en) Oxynitride-based phosphor and light-emitting device using the same
JP2013185011A (en) Method for manufacturing phosphor, and phosphor obtained by the method
JP5471021B2 (en) Phosphor and phosphor manufacturing method, phosphor-containing composition, light emitting device, illumination device, and image display device
JP2013214718A (en) Oxynitride-based fluorescent material, and light-emitting device using the same
JP2015183084A (en) Fluorescent material for violet ray excitation, composition containing fluorescent material and light-emitting device using the fluorescent material and lightening apparatus and picture display unit using the light-emitting device
JP2013227527A (en) Phosphor and light emitting device using the same
US9475986B2 (en) Red phosphor and light-emitting device comprising the same
JP2015000953A (en) Oxynitride-based fluorescent material and light-emitting device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738331

Country of ref document: EP

Kind code of ref document: A1