JP2013197325A - Wavelength conversion member and light-emitting device - Google Patents

Wavelength conversion member and light-emitting device Download PDF

Info

Publication number
JP2013197325A
JP2013197325A JP2012063105A JP2012063105A JP2013197325A JP 2013197325 A JP2013197325 A JP 2013197325A JP 2012063105 A JP2012063105 A JP 2012063105A JP 2012063105 A JP2012063105 A JP 2012063105A JP 2013197325 A JP2013197325 A JP 2013197325A
Authority
JP
Japan
Prior art keywords
glass
wavelength conversion
conversion member
powder
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012063105A
Other languages
Japanese (ja)
Other versions
JP6004250B2 (en
Inventor
Tamio Ando
民雄 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012063105A priority Critical patent/JP6004250B2/en
Publication of JP2013197325A publication Critical patent/JP2013197325A/en
Application granted granted Critical
Publication of JP6004250B2 publication Critical patent/JP6004250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion member in which phosphor powder is dispersed in a glass matrix and which is capable of emitting a homogeneous light having a great whole luminous value while maintaining a desired chromaticity range.SOLUTION: A wavelength conversion member in which phosphor powder is dispersed in a glass matrix, includes glass filler powder having a refraction index different from that of the glass matrix.

Description

本発明は、白色LED(発光ダイオード)等の発光デバイスの構成部材として用いられる波長変換部材に関するものである。   The present invention relates to a wavelength conversion member used as a constituent member of a light emitting device such as a white LED (light emitting diode).

近年、白色LEDの開発が盛んになっている。白色LEDは白熱灯や蛍光灯に比べ、消費電力が低く寿命が長いことを特徴としており、携帯電話やデジタルカメラ等のバックライトとして使用されている。また、白熱灯や蛍光灯に替わる次世代の光源として、照明用途への応用も進んでいる。   In recent years, white LEDs have been actively developed. White LEDs are characterized by low power consumption and long life compared to incandescent lamps and fluorescent lamps, and are used as backlights for mobile phones and digital cameras. In addition, as a next-generation light source that replaces incandescent lamps and fluorescent lamps, application to lighting applications is also progressing.

白色LEDは、例えば青色や紫外の励起光を発するLEDと、蛍光体粉末が樹脂等のマトリックス中に分散されてなる波長変換部材から構成されている。蛍光体粉末は、LEDからの励起光を受けて、励起光とは異なる波長の光(蛍光)を発する。一方、LEDからの励起光のうち、一部は波長変換に寄与せずに波長変換部材を透過する。これらの光が混ざり合って白色光が得られる。   The white LED is composed of, for example, an LED that emits blue or ultraviolet excitation light, and a wavelength conversion member in which phosphor powder is dispersed in a matrix such as a resin. The phosphor powder receives excitation light from the LED and emits light (fluorescence) having a wavelength different from that of the excitation light. On the other hand, some of the excitation light from the LED passes through the wavelength conversion member without contributing to wavelength conversion. These lights are mixed to obtain white light.

ところで、白色LEDは用途によってはますます高い輝度(ハイパワー化)が要求されている。従来のように樹脂マトリックス中に蛍光体粉末を分散させる方法では、LEDからの熱によって樹脂マトリックスが変色し、長期間使用すると輝度が低下するという問題があった。また、蛍光体粉末を含有する樹脂をLED上に塗布する際、厚みを均一に調整することが困難であり、色度ばらつきが生じやすいといった問題があった。   Incidentally, white LEDs are required to have higher luminance (higher power) depending on applications. In the conventional method of dispersing the phosphor powder in the resin matrix, there is a problem that the resin matrix is discolored by heat from the LED and the luminance is lowered when used for a long time. In addition, when a resin containing phosphor powder is applied on the LED, it is difficult to adjust the thickness uniformly, and there is a problem that chromaticity variations are likely to occur.

これらの問題を解決するために、蛍光体粉末をガラスマトリックス中に分散させる方法が提案されている(例えば、特許文献1および2参照)。当該方法によれば、波長変換部材の耐熱性および耐候性を向上させることが可能となる。具体的には、長時間の高温環境下(例えば、150℃で600時間)や長時間の高温高湿環境下(例えば、温度85℃、湿度85%で2000時間)に晒しても、白色LEDの発光特性がほとんど変化せず、また太陽光の紫外線に長時間晒されても着色や劣化がほとんどない。さらには、加工性に優れることから、厚みの不均一性に起因する色度ばらつきも抑制することが可能となる。   In order to solve these problems, a method of dispersing phosphor powder in a glass matrix has been proposed (see, for example, Patent Documents 1 and 2). According to this method, the heat resistance and weather resistance of the wavelength conversion member can be improved. Specifically, even when exposed to a long-time high-temperature environment (for example, 150 ° C. for 600 hours) or a long-time high-temperature and high-humidity environment (for example, temperature 85 ° C., humidity 85% for 2000 hours), a white LED The light emission characteristics of the material hardly change, and even when exposed to ultraviolet rays of sunlight for a long time, there is almost no coloring or deterioration. Furthermore, since it is excellent in workability, it is possible to suppress chromaticity variation due to thickness non-uniformity.

特開2005−11933号公報JP 2005-11933 A 特開2003−258308号公報JP 2003-258308 A

蛍光体粉末をガラスマトリックスに分散させてなる波長変換部材は、LEDの励起光が波長変換部材内部で十分に散乱せずに直進してしまうという問題がある。特にガラスマトリックスと蛍光体粉末の屈折率差が小さい場合は、両者の界面における光の散乱が少なくなるためその傾向が顕著である。励起光が十分に拡散されず直進成分が多くなると、発光デバイスから出射される光が均質でなくなり、励起光源の光軸に近い範囲と光軸から離れた範囲では色度に差が出てくる傾向がある。また、励起光が蛍光体粉末に当たる頻度が少なくなるため、蛍光強度が低下する傾向がある。なお、蛍光強度が低下すると、全光束値が低下する原因ともなる。   A wavelength conversion member obtained by dispersing phosphor powder in a glass matrix has a problem that LED excitation light travels straight without being sufficiently scattered inside the wavelength conversion member. In particular, when the difference in refractive index between the glass matrix and the phosphor powder is small, the tendency is remarkable because light scattering at the interface between the two decreases. If the excitation light is not sufficiently diffused and the linear component increases, the light emitted from the light emitting device is not homogeneous, and there is a difference in chromaticity between the range close to the optical axis of the excitation light source and the range away from the optical axis. Tend. Further, since the frequency with which the excitation light strikes the phosphor powder decreases, the fluorescence intensity tends to decrease. Note that when the fluorescence intensity decreases, the total luminous flux value also decreases.

なお、波長変換部材における蛍光体粉末の含有量を多くすることにより、全体としてガラスマトリックスと蛍光体粉末の界面における光の散乱量は多くなるが、色度が所望の範囲からずれてしまうという別の問題が発生してしまう。   Increasing the phosphor powder content in the wavelength conversion member increases the amount of light scattering at the interface between the glass matrix and the phosphor powder as a whole, but the chromaticity is deviated from the desired range. The problem will occur.

以上の問題に鑑み、本発明は、ガラスマトリックス中に蛍光体粉末が分散されてなる波長変換部材であって、発光デバイスに用いた際に、所望の色度範囲を維持しながら、均質かつ蛍光強度の高い光を照射することが可能な波長変換部材を提供することを目的とする。   In view of the above problems, the present invention is a wavelength conversion member in which phosphor powder is dispersed in a glass matrix, and is homogeneous and fluorescent while maintaining a desired chromaticity range when used in a light emitting device. It aims at providing the wavelength conversion member which can irradiate light with high intensity | strength.

本発明は、ガラスマトリックス中に蛍光体粉末が分散してなる波長変換部材であって、ガラスマトリックスと異なる屈折率を有するガラスフィラー粉末を含有することを特徴とする波長変換部材に関する。   The present invention relates to a wavelength conversion member in which a phosphor powder is dispersed in a glass matrix, the glass conversion material comprising a glass filler powder having a refractive index different from that of the glass matrix.

既述の通り、蛍光体粉末をガラスマトリックスに分散させてなる波長変換部材において、LEDからの励起光の直進成分が多いと、発光デバイスからの照射光が均質でなくなり、照射角度によって色度に差が生じてしまう。そこで、ガラスマトリックス中に光拡散剤として、ガラスマトリックスとは屈折率の異なるガラスフィラー粉末を分散させることにより、当該屈折率差によって光散乱性(例えば、励起光成分の散乱性)を高め、結果として、均質かつ蛍光強度の高い光を照射することが可能な波長変換部材を得ることができる。   As described above, in the wavelength conversion member in which the phosphor powder is dispersed in the glass matrix, if there are many linear components of the excitation light from the LED, the irradiation light from the light emitting device is not homogeneous, and the chromaticity depends on the irradiation angle. There will be a difference. Therefore, by dispersing glass filler powder having a refractive index different from that of the glass matrix as a light diffusing agent in the glass matrix, the light scattering property (for example, the scattering property of the excitation light component) is enhanced by the difference in the refractive index. As a result, it is possible to obtain a wavelength conversion member capable of irradiating light with uniform and high fluorescence intensity.

なお、ガラスマトリックス中にセラミックフィラー粉末(例えばアルミナやシリカ等)を分散させることにより、光散乱性を高めることも可能であるが、この場合、セラミックフィラー粉末自身が光吸収の要因となる傾向がある。また、ガラスマトリックスとセラミックフィラー粉末の界面に異質層や空隙が生じて、これらに起因して過剰散乱による散乱損失が生じたりして、蛍光強度が低下しやすくなる。一方、本発明の波長変換部材は、マトリックスとフィラー粉末がいずれもガラスからなるため、界面に異質層や空隙が生じにくく、光吸収や散乱損失による蛍光強度の低下を抑制することができる。   It is possible to increase the light scattering property by dispersing ceramic filler powder (for example, alumina, silica, etc.) in the glass matrix. In this case, however, the ceramic filler powder itself tends to cause light absorption. is there. In addition, a heterogeneous layer and voids are formed at the interface between the glass matrix and the ceramic filler powder, and due to these, scattering loss due to excessive scattering occurs, and the fluorescence intensity tends to decrease. On the other hand, in the wavelength conversion member of the present invention, since the matrix and the filler powder are both made of glass, a heterogeneous layer or void is unlikely to occur at the interface, and a decrease in fluorescence intensity due to light absorption or scattering loss can be suppressed.

第二に、本発明の波長変換部材は、ガラスマトリックスとガラスフィラー粉末の屈折率差が0.001〜1であることが好ましい。   Secondly, the wavelength conversion member of the present invention preferably has a refractive index difference between the glass matrix and the glass filler powder of 0.001 to 1.

当該構成によれば、励起光がガラスフィラー粉末によって散乱されやすく、均質かつ蛍光強度の高い光を照射することが可能な波長変換部材が得られやすくなる。   According to the said structure, excitation light is easily scattered by glass filler powder, and it becomes easy to obtain the wavelength conversion member which can irradiate light with uniform and high fluorescence intensity.

第三に、本発明の波長変換部材は、ガラスフィラー粉末の軟化点が、ガラスマトリックスの軟化点より30℃以上高いことが好ましい。   Third, the wavelength conversion member of the present invention preferably has a glass filler powder whose softening point is 30 ° C. or higher higher than the softening point of the glass matrix.

当該構成によれば、波長変換部材作製時の熱処理により、ガラスフィラー粉末が軟化流動して光拡散性が低下することを抑制することができる。   According to the said structure, it can suppress that a glass filler powder softens and flows and the light diffusibility falls by the heat processing at the time of wavelength conversion member preparation.

第四に、本発明の波長変換部材は、ガラスマトリックスがSnO−P系ガラス、SiO−B−RO(RはMg、Ca、SrまたはBa)系ガラス、SiO−B−R’O(R’はLi、NaまたはKa)系ガラスまたはSiO−B−RO−R’O系ガラスからなることが好ましい。 Fourthly, in the wavelength conversion member of the present invention, the glass matrix is SnO—P 2 O 5 glass, SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr or Ba) glass, SiO 2 —. B 2 O 3 -R '2 O (R' is Li, Na or Ka) is preferably made of glass or SiO 2 -B 2 O 3 -RO- R '2 O -based glass.

SnO−P系ガラスは屈折率が比較的高いため、ガラスマトリックスとガラスフィラー粉末との屈折率差を大きくしやすい。また、ガラスマトリックスと蛍光体との屈折率差が小さいため、励起光が十分に拡散されず直進成分が多くなりやすい。屈折率の小さいガラスフィラーを含有することで、光拡散性を向上させやすく、均質かつ蛍光強度の高い光を照射することが可能な波長変換部材が得られやすくなる。 Since SnO—P 2 O 5 based glass has a relatively high refractive index, it is easy to increase the refractive index difference between the glass matrix and the glass filler powder. In addition, since the difference in refractive index between the glass matrix and the phosphor is small, the excitation light is not sufficiently diffused and the straight component tends to increase. By containing a glass filler having a small refractive index, it becomes easy to improve the light diffusibility, and it becomes easy to obtain a wavelength conversion member capable of irradiating light with a uniform and high fluorescence intensity.

第五に、本発明の波長変換部材は、ガラスマトリックスの原料となるガラス粉末、ガラスフィラー粉末および蛍光体粉末を含む混合粉末の焼結体からなることが好ましい。   Fifth, the wavelength conversion member of the present invention is preferably made of a sintered body of a mixed powder containing a glass powder, a glass filler powder, and a phosphor powder as a raw material for the glass matrix.

当該構成によれば、ガラスマトリックス中にガラスフィラー粉末および蛍光体粉末が均一に分散した波長変換部材を容易に得ることができる。   According to the said structure, the wavelength conversion member in which the glass filler powder and fluorescent substance powder were disperse | distributed uniformly in a glass matrix can be obtained easily.

第六に、本発明の波長変換部材は、JIS K7105に準拠して測定した平行光線透過率が20%以下、ヘイズが70%以上であることが好ましい。   Sixth, the wavelength conversion member of the present invention preferably has a parallel light transmittance of 20% or less and a haze of 70% or more as measured in accordance with JIS K7105.

当該パラメータを満たす波長変換部材は、光拡散性に優れており、均質かつ蛍光強度の高い光が得られやすい。   A wavelength conversion member that satisfies the parameters has excellent light diffusibility, and it is easy to obtain light that is homogeneous and has high fluorescence intensity.

第七に、本発明の波長変換部材は、蛍光体粉末が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物から選ばれた少なくとも1種からなることが好ましい。   Seventh, in the wavelength conversion member of the present invention, the phosphor powder is selected from oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, and halophosphates. It is preferable to consist of at least one kind.

第八に、本発明の波長変換部材は、蛍光体粉末 1〜30体積%およびガラスフィラー粉末 0.05〜50体積%を含有することが好ましい。   Eighth, the wavelength conversion member of the present invention preferably contains 1 to 30% by volume of phosphor powder and 0.05 to 50% by volume of glass filler powder.

第九に、本発明は、前記いずれかの波長変換部材と、波長変換部材に対して、蛍光体粉末の励起光を照射する光源と、を備えることを特徴とする発光デバイスに関する。   Ninthly, the present invention relates to a light emitting device comprising any one of the wavelength conversion members and a light source that irradiates the wavelength conversion member with excitation light of a phosphor powder.

本発明の波長変換部材は、ガラスマトリックス中に光拡散剤として、ガラスマトリックスとは屈折率の異なるガラスフィラー粉末が分散してなるものであるため、当該屈折率差によって光散乱性が高まり、結果として、均質かつ高い蛍光強度を得ることが可能となる。   Since the wavelength conversion member of the present invention is formed by dispersing glass filler powder having a refractive index different from that of the glass matrix as a light diffusing agent in the glass matrix, the light scattering property is increased due to the difference in refractive index. As a result, uniform and high fluorescence intensity can be obtained.

本発明の波長変換部材は、ガラスマトリックス中に蛍光体粉末が分散してなるものであって、ガラスマトリックスと異なる屈折率を有するガラスフィラー粉末を含有することを特徴とする。   The wavelength conversion member of the present invention is formed by dispersing phosphor powder in a glass matrix, and contains a glass filler powder having a refractive index different from that of the glass matrix.

ガラスマトリックスには蛍光体粉末を安定に保持するための媒体としての役割がある。ここで、ガラスマトリックスのガラス組成によって蛍光体粉末との反応性に差が出るため、使用する蛍光体粉末に適したガラス組成を選択することが好ましい。   The glass matrix has a role as a medium for stably holding the phosphor powder. Here, since the reactivity with the phosphor powder varies depending on the glass composition of the glass matrix, it is preferable to select a glass composition suitable for the phosphor powder to be used.

ガラスマトリックスに使用できるガラスとしては、例えばSiO−B−RO(RはMg、Ca、SrまたはBa)系ガラス、SiO−B−R’O(R’はLi、NaまたはKa)系ガラス、SiO−B−RO−R’O(RはMg、Ca、SrまたはBa、R’はLi、NaまたはKa)系ガラス、SnO−P系ガラス、TeO系ガラス、Bi系ガラス等が挙げられる。 Examples of the glass that can be used for the glass matrix include SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr, or Ba) -based glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li , Na or Ka) based glass, SiO 2 —B 2 O 3 —RO—R ′ 2 O (R is Mg, Ca, Sr or Ba, R ′ is Li, Na or Ka) based glass, SnO—P 2 O Examples thereof include 5 glass, TeO 2 glass, Bi 2 O 3 glass, and the like.

SiO−B−RO系ガラスとしては、例えば組成としてモル%で、SiO 30〜80%、B 1〜40%、MgO 0〜10%、CaO 0〜30%、SrO 0〜20%、BaO 0〜40%、MgO+CaO+SrO+BaO 0〜45%、LiO 0〜20%、NaO 0〜20%、KO 0〜20%、LiO+NaO+KO 0〜20%、Al 0〜20%およびZnO 0〜20%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SiO 2 -B 2 O 3 -RO based glass, for example, in mol% composition, SiO 2 30~80%, B 2 O 3 1~40%, 0~10% MgO, CaO 0~30%, SrO 0~20%, BaO 0~40%, MgO + CaO + SrO + BaO 0~45%, Li 2 O 0~20%, Na 2 O 0~20%, K 2 O 0~20%, Li 2 O + Na 2 O + K 2 O 0~ Those containing 20%, Al 2 O 3 0-20% and ZnO 0-20% are preferred. The reason for limiting the glass composition in this way will be described below.

SiOはガラスネットワークを形成する成分である。SiOの含有量は30〜80%、特に40〜60%であることが好ましい。SiOの含有量が少なすぎると、化学的耐久性が低下する傾向にある。一方、SiOの含有量が多すぎると、焼成温度が高温になり、蛍光体粉末が劣化しやすくなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 30 to 80%, particularly preferably 40 to 60%. When the content of SiO 2 is too small, chemical durability tends to decrease. On the other hand, if the content of SiO 2 is too large, the firing temperature becomes a high temperature, comprising a phosphor powder is likely to deteriorate.

は溶融温度を低下させて溶融性を改善する効果が大きい成分である。また、ガラスを分相させることにより、光拡散性を向上させる効果もある。Bの含有量は1〜40%、5〜35%、特に10〜30%であることが好ましい。Bの含有量が少なすぎると、前記効果が得られにくくなる。一方、Bの含有量が多すぎると、化学的耐久性が低下する傾向にある。 B 2 O 3 is a component having a great effect of improving the meltability by lowering the melting temperature. Moreover, there is an effect of improving the light diffusibility by splitting the glass. The content of B 2 O 3 is preferably 1 to 40%, 5 to 35%, particularly preferably 10 to 30%. If the content of B 2 O 3 is too small, the effect is difficult to obtain. On the other hand, when the content of B 2 O 3 is too large, chemical durability tends to decrease.

MgOは溶融温度を低下させて溶融性を改善する成分であり、分相を促進させる効果もある。MgOの含有量は0〜10%、特に0.1〜5%であることが好ましい。MgOの含有量が多すぎると、化学的耐久性が低下する傾向にある。また、分相傾向が大きくなり、熱処理温度の小さな変化に対しても、分相状態が大きく変動する傾向がある。その結果、光拡散性にばらつきが生じやすくなる。   MgO is a component that improves the meltability by lowering the melting temperature, and also has the effect of promoting phase separation. The content of MgO is preferably 0 to 10%, particularly preferably 0.1 to 5%. When the content of MgO is too large, chemical durability tends to decrease. In addition, the phase separation tendency increases, and the phase separation state tends to fluctuate greatly even with a small change in the heat treatment temperature. As a result, the light diffusibility tends to vary.

CaOは溶融温度を低下させて溶融性を改善する成分であり、分相を促進させる効果もある。CaOの含有量は0〜30%、特に3〜20%であることが好ましい。CaOの含有量が多すぎると、化学的耐久性が低下したり、分相傾向が大きくなりやすい。   CaO is a component that improves the meltability by lowering the melting temperature, and also has the effect of promoting phase separation. The CaO content is preferably 0 to 30%, particularly preferably 3 to 20%. When there is too much content of CaO, chemical durability will fall or a phase separation tendency will become large easily.

SrOは溶融温度を低下させて溶融性を改善する成分であり、分相を促進させる効果もある。SrOの含有量は0〜20%、0〜10%、特に0.1〜5%であることが好ましい。SrOの含有量が多すぎると、化学的耐久性が低下したり、分相傾向が大きくなりやすい。   SrO is a component that improves the meltability by lowering the melting temperature, and also has the effect of promoting phase separation. The SrO content is preferably 0 to 20%, 0 to 10%, particularly preferably 0.1 to 5%. When the content of SrO is too large, chemical durability tends to decrease or the phase separation tendency tends to increase.

BaOは溶融温度を低下させて溶融性を改善する成分であり、分相を促進させる効果もある。また、蛍光体粉末との反応を抑制する成分でもある。BaOの含有量は0〜40%、特に5〜30%であることが好ましい。BaOの含有量が多すぎると、化学的耐久性が低下したり、分相傾向が大きくなりやすい。   BaO is a component that improves the meltability by lowering the melting temperature, and has the effect of promoting phase separation. Moreover, it is also a component which suppresses reaction with fluorescent substance powder. The BaO content is preferably 0 to 40%, particularly preferably 5 to 30%. When there is too much content of BaO, chemical durability will fall or a phase separation tendency will become large easily.

MgO、CaO、SrO、BaOの合量は、上記各成分の特性を考慮して、0〜45%、特に5〜40%の範囲で適宜調整することが好ましい。   The total amount of MgO, CaO, SrO, and BaO is preferably adjusted appropriately in the range of 0 to 45%, particularly 5 to 40% in consideration of the characteristics of the above components.

LiOは屈伏点を低下させるとともに、分相を顕著に促進させるための成分である。LiOの含有量は0〜20%、0.1〜10%、1〜7%、特に2〜5%であることが好ましい。LiOの含有量が多すぎると、化学的耐久性が低下したり、分相傾向が大きくなりやすい。 Li 2 O is a component for reducing the yield point and significantly promoting phase separation. The content of Li 2 O is preferably 0 to 20%, 0.1 to 10%, 1 to 7%, particularly 2 to 5%. The content of Li 2 O is too large, or reduced chemical durability, phase separation tendency tends to increase.

NaOは屈伏点を低下させるとともに、分相を促進させるための成分である。NaOの含有量は0〜20%、0〜10%、特に0〜2%であることが好ましい。NaOの含有量が多すぎると、化学的耐久性が低下したり、分相傾向が大きくなりやすい。 Na 2 O is a component for lowering the yield point and promoting phase separation. The content of Na 2 O is preferably 0 to 20%, 0 to 10%, particularly preferably 0 to 2%. When the content of Na 2 O is too large, or reduced chemical durability, phase separation tendency tends to increase.

Oは屈伏点を低下させるとともに、分相を促進させるための成分である。KOの含有量は0〜20%、0〜15%、0〜5%、特に0〜2%であることが好ましい。KOの含有量が多すぎると、化学的耐久性が低下したり、分相傾向が大きくなりやすい。 K 2 O is a component for lowering the yield point and promoting phase separation. The content of K 2 O is preferably 0 to 20%, 0 to 15%, 0 to 5%, particularly preferably 0 to 2%. When the content of K 2 O is too large, or reduced chemical durability, phase separation tendency tends to increase.

LiO、NaO、KOの合量は、上記各成分の特性を考慮して、0〜20%、0.1〜15%、1〜10%、特に2〜8%の範囲で適宜調整することが好ましい。 The total amount of Li 2 O, Na 2 O and K 2 O is in the range of 0 to 20%, 0.1 to 15%, 1 to 10%, particularly 2 to 8% in consideration of the characteristics of the above components. It is preferable to adjust as appropriate.

Alは化学的耐久性を向上させる成分である。Alの含有量は0〜20%、特に1〜18%であることが好ましい。Alの含有量が多すぎると、溶融性が低下する傾向がある。 Al 2 O 3 is a component that improves chemical durability. The content of Al 2 O 3 is preferably 0 to 20%, particularly preferably 1 to 18%. When the content of Al 2 O 3 is too large, there is a tendency that the melting is lowered.

ZnOは分相性を顕著に促進させる成分であるとともに、溶融温度を低下させて溶融性を改善する成分である。ZnOの含有量は0〜20%、特に1〜18%であることが好ましい。ZnOの含有量が多すぎると、化学的耐久性が低下したり、分相傾向が大きくなりやすい。   ZnO is a component that significantly promotes phase separation and is a component that improves the meltability by lowering the melting temperature. The content of ZnO is preferably 0 to 20%, particularly preferably 1 to 18%. When there is too much content of ZnO, chemical durability will fall or a phase separation tendency will become large easily.

また上記成分以外にも、化学的耐久性を向上させるために、Ta、TiO、Nb、Gd、La、Y、CeO、Sb、SnO、BiまたはZrOをそれぞれ15%まで添加してもよい。 In addition to the above components, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 , Y 2 O 3 , CeO 2 , Sb 2 are used to improve chemical durability. O 3 , SnO 2 , Bi 2 O 3 or ZrO 2 may be added up to 15% each.

SnO−P系ガラスとしては、ガラス組成としてモル%で、SnO 35〜80%、P 5〜40%、B 0〜30%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SnO-P 2 O 5 based glass, in mol% as a glass composition, SnO 35~80%, P 2 O 5 5~40%, those containing 2 O 3 0 to 30% B is preferred. The reason for limiting the glass composition in this way will be described below.

SnOはガラスネットワークを形成するとともに、軟化点を低下させる成分である。SnOの含有量は35〜80%、特に45〜75%であることが好ましい。SnOの含有量が少なすぎると、軟化点が上昇したり、耐候性が低下する傾向がある。一方、SnOの含有量が多すぎると、ガラス中にSnに起因する失透ブツが析出して透過率が低下する傾向にあり、結果として、波長変換部材の蛍光強度が低下しやすくなる。また、ガラス化しにくくなる。   SnO is a component that forms a glass network and lowers the softening point. The SnO content is preferably 35 to 80%, particularly 45 to 75%. When there is too little content of SnO, there exists a tendency for a softening point to raise or for a weather resistance to fall. On the other hand, when there is too much content of SnO, the devitrification pattern resulting from Sn will precipitate in glass, and there exists a tendency for the transmittance | permeability to fall, As a result, the fluorescence intensity of a wavelength conversion member tends to fall. Moreover, it becomes difficult to vitrify.

はガラス骨格を形成する成分である。Pの含有量は5〜40%、特に10〜30%であることが好ましい。Pの含有量が少なすぎると、ガラス化しにくくなる。一方、Pの含有量が多すぎると、軟化点が上昇したり、耐候性が著しく低下したりする傾向がある。 P 2 O 5 is a component that forms a glass skeleton. The content of P 2 O 5 is preferably 5 to 40%, particularly preferably 10 to 30%. When the content of P 2 O 5 is too small, it is difficult to vitrify. On the other hand, when the content of P 2 O 5 is too large, or the softening point is increased, there is a tendency that weather resistance is remarkably lowered.

は耐候性を向上させる成分であるとともに、分相を促進させるための成分である。また、ガラスを安定化させる成分でもある。Bの含有量は0〜30%、特に1〜25%であることが好ましい。Bの含有量が多すぎると、耐候性が低下しやすくなる。また、軟化点が上昇する傾向がある。 B 2 O 3 is a component for improving weather resistance and a component for promoting phase separation. It is also a component that stabilizes the glass. The content of B 2 O 3 is preferably 0 to 30%, particularly preferably 1 to 25%. If the B 2 O 3 content is too large, the weather resistance tends to lower. Also, the softening point tends to increase.

また上記成分以外にも、溶融性を向上させたり、軟化点を低下させて低温焼成しやすくするために、CaO、MgO、SrOまたはBaOを合量で5%まで、またLiO、NaOまたはKOを合量で5%まで添加することができる。他にも、化学的耐久性を向上させるために、Al、ZrO、ZnO、Ta、TiO、Nb、Gd、Bi、TeOまたはLaをそれぞれ15%まで添加してもよい。 In addition to the above components, the total amount of CaO, MgO, SrO or BaO is up to 5%, Li 2 O, Na 2 in order to improve the meltability or lower the softening point to facilitate low temperature firing. O or K 2 O can be added up to 5% in total. Besides, in order to improve chemical durability, Al 2 O 3 , ZrO, ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , Bi 2 O 3 , TeO 2 or La 2 O 3 may be added up to 15% each.

本発明の波長変換部材は、蛍光体粉末およびガラスフィラー粉末がガラスマトリックス中に分散してなるものであれば特に限定されないが、ガラスマトリックスの原料となるガラス粉末、ガラスフィラー粉末および蛍光体粉末を含む混合粉末の焼結体からなるものであると、蛍光体粉末およびガラスフィラー粉末をガラスマトリックス中に容易かつ均一に分散させることができるため好ましい。   The wavelength conversion member of the present invention is not particularly limited as long as the phosphor powder and the glass filler powder are dispersed in the glass matrix, but the glass powder, the glass filler powder and the phosphor powder which are the raw materials for the glass matrix are used. It is preferable that it is made of a sintered body of a mixed powder containing, since the phosphor powder and the glass filler powder can be easily and uniformly dispersed in the glass matrix.

この場合、ガラスマトリックスの原料となるガラス粉末の平均粒子径D50は0.1〜100μm、特に1〜50μmであることが好ましい。ガラス粉末の平均粒子径D50が小さすぎると、焼成する際に気泡の発生量が多くなって、波長変換部材中に気泡が残存しやすくなる。波長変換部材中に気泡が多く含まれると、光散乱が過剰になり、散乱損失によって蛍光強度が低下する傾向がある。また、水分等が部材内部に浸入しやすくなり、化学的耐久性が低下するおそれがある。波長変換部材の気孔率は5%以下、3%以下、特に1%以下であることが好ましい。ガラス粉末の平均粒子径D50が大きすぎると、波長変換部材中に蛍光体粉末が均一に分散されにくくなり、結果として、波長変換部材の蛍光強度が低下したり、色度ばらつきが生じたりする傾向がある。 In this case, the average particle diameter D 50 of the glass powder as a raw material of the glass matrix is 0.1 to 100 [mu] m, it is particularly preferably 1 to 50 [mu] m. If the average of the glass powder the particle diameter D 50 is too small, an increasing number generation amount of air bubbles during the firing, air bubbles are likely to remain in the wavelength conversion member. If the bubble is contained in the wavelength conversion member, light scattering becomes excessive, and the fluorescence intensity tends to decrease due to scattering loss. In addition, moisture and the like can easily enter the member, and chemical durability may be reduced. The porosity of the wavelength conversion member is preferably 5% or less, 3% or less, and particularly preferably 1% or less. When the average particle diameter D 50 of the glass powder is too large, the phosphor powder is less likely to be uniformly dispersed in the wavelength conversion member, as a result, the fluorescence intensity of the wavelength conversion member is or, or cause variation in chromaticity decreased Tend.

ガラスフィラー粉末としては、ガラスマトリックスと屈折率(nd)が異なるものが使用される。ガラスマトリックスとガラスフィラー粉末の屈折率差は、0.001〜1、特に0.005〜0.5であることが好ましい。ガラスマトリックスとガラスフィラー粉末の屈折率差が小さすぎると、十分な光散乱性が得られにくくなる。一方、ガラスマトリックスとガラスフィラー粉末の屈折率差が大きすぎると、散乱損失が大きくなり蛍光強度が低下する傾向がある。   As the glass filler powder, a glass matrix having a refractive index (nd) different from that of the glass matrix is used. The difference in refractive index between the glass matrix and the glass filler powder is preferably 0.001 to 1, particularly 0.005 to 0.5. When the difference in refractive index between the glass matrix and the glass filler powder is too small, it becomes difficult to obtain sufficient light scattering properties. On the other hand, if the difference in refractive index between the glass matrix and the glass filler powder is too large, the scattering loss tends to increase and the fluorescence intensity tends to decrease.

ガラスフィラー粉末の平均粒子径D50は0.1〜120μm、特に0.2〜30μmであることが好ましい。ガラスフィラー粉末の平均粒子径D50が小さすぎると、十分な光散乱性が得られにくい。一方、平均粒子径D50が大きすぎると、波長変換部材中にガラスフィラー粉末が均一に分散されにくくなり、結果として、波長変換部材の蛍光強度が低下したり、色度ばらつきが生じたりする傾向がある。 The average particle diameter D 50 of the glass filler powder 0.1~120Myuemu, it is particularly preferably 0.2 to 30. When the average particle diameter D 50 of the glass filler powder is too small, sufficient light scattering properties is difficult to obtain. On the other hand, when the average particle diameter D 50 is too large, the glass filler powder less likely to be uniformly dispersed in the wavelength conversion member, as a result, tend to fluorescence intensity of the wavelength conversion member is or, or cause variation in chromaticity decreased There is.

ガラスフィラー粉末を構成するガラスは特に限定されず、ガラスマトリックスと異なる屈折率を有するものであれば使用でき、多成分系ガラスであってもよく、シリカガラス等の単一成分系ガラスであってもよい。なお、波長変換部材作製時の熱処理工程で、ガラスフィラー粉末が軟化流動することに起因する光拡散性の低下を抑制する観点から、ガラスフィラー粉末の軟化点が、ガラスマトリックスの軟化点より30℃以上、50℃以上、特に100℃以上高いことが好ましい。   The glass constituting the glass filler powder is not particularly limited and can be used as long as it has a refractive index different from that of the glass matrix, and may be a multicomponent glass or a single component glass such as silica glass. Also good. In addition, the softening point of the glass filler powder is 30 ° C. higher than the softening point of the glass matrix from the viewpoint of suppressing a decrease in light diffusibility due to the softening and flow of the glass filler powder in the heat treatment step during the wavelength conversion member preparation. As described above, it is preferably 50 ° C. or higher, particularly 100 ° C. or higher.

ガラスフィラー粉末の形状は特に限定されず、球状、破砕状、中空状、ロッド状、ファイバー状等が挙げられる。   The shape of the glass filler powder is not particularly limited, and examples thereof include a spherical shape, a crushed shape, a hollow shape, a rod shape, and a fiber shape.

波長変換部材におけるガラスフィラー粉末の含有量は、0.05〜50体積%、特に0.1〜45体積%であることが好ましい。ガラスフィラー粉末の含有量が少なすぎると、十分な光散乱性が得られにくい。一方、ガラスフィラー粉末の含有量が多すぎると、散乱損失が大きくなり蛍光強度が低下する傾向がある。なお、蛍光体粉末とガラスマトリックスの屈折率差が比較的大きい場合は、もともと光散乱が生じやすい状態にあるため、ガラスフィラー粉末の添加により散乱損失が大きくなりやすい。よって、蛍光体粉末とガラスマトリックスの屈折率差を考慮に入れて、ガラスフィラー粉末の含有量を適宜選択することが好ましい。   The glass filler powder content in the wavelength conversion member is preferably 0.05 to 50% by volume, particularly preferably 0.1 to 45% by volume. If the content of the glass filler powder is too small, it is difficult to obtain sufficient light scattering properties. On the other hand, when the content of the glass filler powder is too large, the scattering loss tends to increase and the fluorescence intensity tends to decrease. In addition, when the refractive index difference between the phosphor powder and the glass matrix is relatively large, light scattering tends to occur from the beginning, so that the scattering loss tends to increase due to the addition of the glass filler powder. Therefore, it is preferable to appropriately select the content of the glass filler powder in consideration of the refractive index difference between the phosphor powder and the glass matrix.

蛍光体粉末としては、紫外または可視の励起光を入射すると、当該励起光の波長よりも長波長の蛍光を発するものが挙げられる。例えば、可視光線からなる励起光を入射すると、当該励起光の色相に対して補色の蛍光を発する蛍光体粉末を用いると、透過した励起光と蛍光との混色により白色光が得られるため、容易に白色LEDを製造することができる。特に、可視光線からなる励起光が430〜490nmの中心波長を有する光であり、蛍光が530〜590nmの中心波長を有する光であると、白色光が得られやすいため好ましい。   Examples of the phosphor powder include those that emit fluorescence having a wavelength longer than the wavelength of the excitation light when ultraviolet or visible excitation light is incident. For example, when excitation light consisting of visible light is incident, if phosphor powder that emits a complementary color fluorescence with respect to the hue of the excitation light is used, white light can be easily obtained by mixing the transmitted excitation light and fluorescence. A white LED can be manufactured. In particular, it is preferable that excitation light composed of visible light is light having a central wavelength of 430 to 490 nm and fluorescence is light having a central wavelength of 530 to 590 nm because white light is easily obtained.

本発明において使用可能な蛍光体粉末としては、一般に市場で入手できるものであれば特に限定されない。例えば、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物から選ばれた少なくとも1種からなる無機蛍光体粉末が挙げられる。その他にも、有機物からなる蛍光体を使用しても構わない。   The phosphor powder that can be used in the present invention is not particularly limited as long as it is generally available on the market. Examples thereof include inorganic phosphor powders composed of at least one selected from oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, and halophosphates. In addition, a phosphor made of an organic material may be used.

上記蛍光体粉末の中でも、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)、赤色(波長600〜700nm)に発光するものを用いることが好ましい。   Among the phosphor powders, those having an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength 540 to 540) It is preferable to use one that emits light at a wavelength of 595 nm and red (wavelength 600 to 700 nm).

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する蛍光体粉末としては、(Sr,Ba)MgSi:Eu2+等が挙げられる。 Examples of the phosphor powder that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する蛍光体粉末としては、SrAl:Eu2+等が挙げられる。 The phosphor powder that emits green fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light of wavelength 300~440nm, SrAl 2 O 4: Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する蛍光体粉末としては、SrGa:Eu2+等が挙げられる。 Examples of the phosphor powder that emits green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrGa 2 S 4 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する蛍光体粉末としては、ZnS:Eu2+等が挙げられる。 Examples of the phosphor powder that emits yellow fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include ZnS: Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する蛍光体粉末としては、Y(Al,Gd)12:Ce2+、SrBaSiO:Eu2+、LaSi11:Ce3+等が挙げられる。 As phosphor powders that emit yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm, Y 3 (Al, Gd) 5 O 12 : Ce 2+ , SrBaSiO 4 : Eu 2+ , La 3 Si 6 N 11 : Ce 3+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する蛍光体粉末としては、CaS:Yb2+等が挙げられる。 Examples of the phosphor powder that emits red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include CaS: Yb 2+ .

波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する蛍光体粉末としては、(Ca,Sr)Si:Eu2+等が挙げられる。 Examples of the phosphor powder that emits red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include (Ca, Sr) 2 Si 5 N 8 : Eu 2+ .

なお、励起光や発光の波長域に合わせて、複数の蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する蛍光体粉末を混合して使用すればよい。   A plurality of phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiating excitation light in the ultraviolet region, phosphor powders that emit blue, green, yellow, and red fluorescence may be mixed and used.

なお、波長変換部材のガラスマトリックスとして用いられるガラスは、通常約1.5〜2.0の屈折率を有するのに対し、蛍光体粉末も1.5〜2.4程度といった幅広い屈折率を有する。ガラスと蛍光体粉末の組み合わせは、いろいろな可能性があるが、特にガラスと蛍光体粉末の屈折率差が小さい場合、両者の界面での散乱が少なくなる。その結果、励起光の直進成分が増加し、光拡散性が低下しやすくなる。したがって、本発明の波長変換部材は、ガラスマトリックスと蛍光体粉末の屈折率差が小さい場合(例えば、0.05未満)に、既述の効果が特に得られやすいと言える。   The glass used as the glass matrix of the wavelength conversion member usually has a refractive index of about 1.5 to 2.0, whereas the phosphor powder has a wide refractive index of about 1.5 to 2.4. . The combination of glass and phosphor powder has various possibilities, but especially when the refractive index difference between the glass and phosphor powder is small, scattering at the interface between the two becomes small. As a result, the straight component of the excitation light increases, and the light diffusibility tends to decrease. Therefore, it can be said that the wavelength conversion member of the present invention is particularly easy to obtain the above-described effect when the difference in refractive index between the glass matrix and the phosphor powder is small (for example, less than 0.05).

波長変換部材における蛍光体粉末の含有量は1〜30体積%、特に2〜20体積%であることが好ましい。蛍光体粉末の含有量が少なすぎると、発光量が不十分となり、所望の白色光が得られにくくなる。一方、蛍光体粉末の含有量が多すぎても、所望の白色光が得られにくくなる。また、励起光が蛍光体粉末全体に十分に照射されず、蛍光強度が低下するおそれがある。さらに、気孔が発生しやすくなり、緻密な構造が得られにくくなる。   The content of the phosphor powder in the wavelength conversion member is preferably 1 to 30% by volume, particularly 2 to 20% by volume. If the content of the phosphor powder is too small, the amount of light emission becomes insufficient, making it difficult to obtain desired white light. On the other hand, even if there is too much content of phosphor powder, it becomes difficult to obtain desired white light. Further, the excitation light is not sufficiently applied to the entire phosphor powder, and the fluorescence intensity may be reduced. Furthermore, pores are easily generated, and it is difficult to obtain a dense structure.

本発明の波長変換部材は、JIS K7105に準拠して測定した平行光線(直線)透過率が20%以下、特に10%以下であることが好ましい。また、同じくJIS K7105に準拠して測定したヘイズが70%以上、特に75%以上であることが好ましい。平行光線透過率が大きすぎる、または、ヘイズが小さすぎると、励起光の直進成分が多くなりすぎて、蛍光強度の低下や色ばらつきが発生する傾向がある。   The wavelength conversion member of the present invention preferably has a parallel ray (linear) transmittance measured in accordance with JIS K7105 of 20% or less, particularly 10% or less. Moreover, it is preferable that the haze similarly measured based on JIS K7105 is 70% or more, especially 75% or more. If the parallel light transmittance is too large or the haze is too small, the linear component of the excitation light tends to increase so that the fluorescence intensity decreases and color variation tends to occur.

本発明の波長変換部材は、例えばガラスマトリックスの原料となるガラス粉末、蛍光体粉末、ガラスフィラー粉末を含む混合粉末を予備成型し、所定の温度で焼成することにより焼結体とし、その後必要に応じて、研削、研磨、リプレス等による加工を行うことにより作製することができる。   The wavelength conversion member of the present invention is formed into a sintered body by pre-molding a mixed powder containing, for example, glass powder, phosphor powder, and glass filler powder, which is a raw material of the glass matrix, and firing it at a predetermined temperature, and then required. Accordingly, it can be produced by processing by grinding, polishing, repressing or the like.

予備成型方法は特に制限されず、プレス成形法や、射出成形法、シート成形法、押出成形法等の方法を採用することができる。   The preforming method is not particularly limited, and methods such as a press molding method, an injection molding method, a sheet molding method, and an extrusion molding method can be employed.

焼成温度は、ガラスマトリックスの原料となるガラス粉末の軟化点以上、特に軟化点+50℃以上であることが好ましい。焼成温度がガラス粉末の軟化点より低くなると、気孔が残存して蛍光強度が低下しやすくなる。一方、焼成温度の上限は特に限定されないが、高すぎると、ガラス粉末と蛍光体粉末の反応が進行し、蛍光体粉末が一部失活して全高速値が低下する傾向がある。したがって、焼成温度はガラス粉末の軟化点+100℃以下であることが好ましい。   The firing temperature is preferably not less than the softening point of the glass powder used as a raw material for the glass matrix, particularly not less than the softening point + 50 ° C. When the firing temperature is lower than the softening point of the glass powder, pores remain and the fluorescence intensity tends to decrease. On the other hand, the upper limit of the firing temperature is not particularly limited, but if it is too high, the reaction between the glass powder and the phosphor powder proceeds, and the phosphor powder tends to be partially deactivated to reduce the total high speed value. Therefore, it is preferable that a calcination temperature is the softening point of glass powder +100 degrees C or less.

本発明の波長変換部材は、波長変換部材に対して、蛍光体粉末の励起光を照射する光源と組み合わせることにより発光デバイスとして使用することができる。光源としては、LEDやLD(レーザーダイオード)等の半導体発光素子を使用することができる。   The wavelength conversion member of the present invention can be used as a light emitting device by combining the wavelength conversion member with a light source that emits excitation light of phosphor powder. As the light source, a semiconductor light emitting element such as an LED or an LD (laser diode) can be used.

なお、波長変換部材は半導体発光素子上に直接接着してもよいし、半導体発光素子を取り囲む函体上に接着して用いてもよい。また、板状の波長変換部材の下側に半導体発光素子を複数個設置した面発光デバイスとすることも可能である。   The wavelength conversion member may be directly adhered on the semiconductor light emitting element or may be adhered on a box surrounding the semiconductor light emitting element. It is also possible to provide a surface light emitting device in which a plurality of semiconductor light emitting elements are installed below the plate-like wavelength conversion member.

以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

表1〜4は実施例(No.1〜4、6、7、9、10、12)および比較例(No.5、8、11、13)を示している。   Tables 1-4 show Examples (No. 1-4, 6, 7, 9, 10, 12) and Comparative Examples (No. 5, 8, 11, 13).

まず、表に示すガラス組成となるようにガラス原料を秤量して混合し、この混合物を白金坩堝中において900〜1400℃で1時間溶融してガラス化した。溶融ガラスをフィルム状に成形し、得られたフィルム状ガラスをボールミルで粉砕した後、325メッシュの篩に通して分級し、平均粒子径D50が30μmのガラス粉末を得た。 First, glass raw materials were weighed and mixed so as to have the glass composition shown in the table, and this mixture was melted in a platinum crucible at 900 to 1400 ° C. for 1 hour to be vitrified. Molding the molten glass into a film, and the obtained film-like glass was pulverized by a ball mill and then classified through a sieve of 325 mesh, the average particle diameter D 50 was obtained glass powder 30 [mu] m.

次に、ガラス粉末に対し、表に示す蛍光体粉末およびフィラー粉末を混合し、金型を用いて加圧成形して直径1cmのボタン状の予備成形体を作製した。この予備成形体を表に示す焼成温度で焼成し、焼結体を得た。焼結体に対して研磨処理を施し、直径8mm、厚さ0.5mmに加工することにより波長変換部材を得た。得られた波長変換部材について、平行光線透過率、ヘイズ、蛍光強度を測定した。結果を表1〜4に示す。   Next, the phosphor powder and filler powder shown in the table were mixed with the glass powder, and pressure-molded using a mold to prepare a button-shaped preform having a diameter of 1 cm. This preform was fired at the firing temperature shown in the table to obtain a sintered body. The sintered body was subjected to a polishing treatment and processed into a diameter of 8 mm and a thickness of 0.5 mm to obtain a wavelength conversion member. The obtained wavelength conversion member was measured for parallel light transmittance, haze, and fluorescence intensity. The results are shown in Tables 1-4.

なお、ガラスマトリックスおよびフィラー粉末の屈折率は、屈折率計(カルニュー社製 KPR−200)を用いて、ヘリウムランプのd線(波長:587.6nm)における測定値で示した。また、ガラスマトリックスおよびフィラー粉末の軟化点は、示差熱分析(DTA)装置により測定した。   In addition, the refractive index of the glass matrix and filler powder was shown by the measured value in d line | wire (wavelength: 587.6 nm) of a helium lamp using the refractometer (KPR-200 by a Calnew company). Moreover, the softening point of the glass matrix and filler powder was measured by a differential thermal analysis (DTA) apparatus.

平行光線透過率およびヘイズはJIS K7105に準拠して測定した。   The parallel light transmittance and haze were measured according to JIS K7105.

蛍光強度は次のようにして測定した。校正された積分球内で、200mAの電流で点灯した青色LEDを波長変換部材に照射し、得られた光を光ファイバーを通じて小型分光器(オーシャンオプティクス製 USB−4000)に取り込み、制御PC上に発光スペクトル(エネルギー分布曲線)を得た。得られた発光スペクトルから蛍光強度を算出した。   The fluorescence intensity was measured as follows. In a calibrated integrating sphere, a blue LED lit at a current of 200 mA is irradiated onto a wavelength conversion member, and the obtained light is taken into a small spectroscope (Ocean Optics USB-4000) through an optical fiber and emitted onto a control PC. A spectrum (energy distribution curve) was obtained. The fluorescence intensity was calculated from the obtained emission spectrum.

表1は蛍光体粉末として、Y(Al,Gd)12:Ce2+(YAG)を用いた例を示す。表1から明らかなように、実施例である試料No.1〜4の波長変換部材では、平行光線透過率が10.1%以下と低く、ヘイズが82.3%以上と大きいため、蛍光強度が高かった。ここで、ガラスマトリックとフィラー粉末の屈折率差が大きいほど、また、フィラー粉末の含有量が多いほど、蛍光強度が高いことがわかる。一方、比較例である試料No.5の波長変換部材はガラスフィラー粉末を含有していなかったため、平行光線透過率が19.3%と高く、ヘイズが69.7%と大きいため、蛍光強度が低かった。 Table 1 shows an example in which Y 3 (Al, Gd) 5 O 12 : Ce 2+ (YAG) is used as the phosphor powder. As is clear from Table 1, sample No. In the wavelength conversion members 1 to 4, the parallel light transmittance was as low as 10.1% or less and the haze was as large as 82.3% or more, so the fluorescence intensity was high. Here, it can be seen that the greater the refractive index difference between the glass matrix and the filler powder, and the greater the filler powder content, the higher the fluorescence intensity. On the other hand, sample No. which is a comparative example. Since the wavelength converting member 5 contained no glass filler powder, the parallel light transmittance was as high as 19.3% and the haze was as large as 69.7%, so that the fluorescence intensity was low.

蛍光体粉末としてSrBaSiO:Eu2+を使用した場合(No.6〜8)についても、上記と同様の傾向が見られた。蛍光体粉末として(Ca,Sr)Si:Eu2+を使用した場合(No.9〜13)については、ガラスフィラー粉末の含有量が5%までは蛍光強度が増加するが、それ以降は含有量が増えるにつれて蛍光強度が低下することがわかる。ガラスフィラー粉末の含有量が10%以上では、光散乱が過剰になったため、散乱損失によって蛍光強度が低下したことがわかる。一方、比較例である試料No.13の波長変換部材はガラスフィラー粉末を含有していなかったため蛍光強度が低かった。 The same tendency as above was also observed when SrBaSiO 4 : Eu 2+ was used as the phosphor powder (Nos. 6 to 8). When (Ca, Sr) 2 Si 5 N 8 : Eu 2+ is used as the phosphor powder (No. 9 to 13), the fluorescence intensity increases up to a glass filler powder content of 5%. Thereafter, it can be seen that the fluorescence intensity decreases as the content increases. It can be seen that when the content of the glass filler powder is 10% or more, light scattering becomes excessive, and the fluorescence intensity is reduced due to scattering loss. On the other hand, since the wavelength conversion member of sample No. 13 as a comparative example did not contain glass filler powder, the fluorescence intensity was low.

なお表4は、屈折率が同等であるガラスフィラー粉末とアルミナ粉末を用いた場合について、各特性を比較した結果を示している。表4から明らかなように、ガラスフィラー粉末を用いたNo.14の波長変換部材は、アルミナ粉末を用いたNo.15の波長変換部材と比較して、平行光線透過率が低く、かつ、ヘイズが大きいため、蛍光強度が高かった。これは、アルミナ粉末自身が光吸収の要因となったためである。   Table 4 shows the results of comparing the characteristics of the glass filler powder and the alumina powder having the same refractive index. As is apparent from Table 4, No. using glass filler powder. No. 14 wavelength conversion member is No. 14 using alumina powder. Compared with 15 wavelength conversion members, the parallel light transmittance was low and the haze was large, so the fluorescence intensity was high. This is because the alumina powder itself caused light absorption.

Claims (9)

ガラスマトリックス中に蛍光体粉末が分散してなる波長変換部材であって、ガラスマトリックスと異なる屈折率を有するガラスフィラー粉末を含有することを特徴とする波長変換部材。   A wavelength conversion member formed by dispersing phosphor powder in a glass matrix, comprising a glass filler powder having a refractive index different from that of the glass matrix. ガラスマトリックスとガラスフィラー粉末の屈折率差が0.001〜1であることを特徴とする請求項1または2に記載の波長変換部材。   The wavelength conversion member according to claim 1 or 2, wherein a difference in refractive index between the glass matrix and the glass filler powder is 0.001 to 1. ガラスフィラー粉末の軟化点が、ガラスマトリックスの軟化点より30℃以上高いことを特徴とする請求項1〜3のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 3, wherein the softening point of the glass filler powder is 30 ° C or more higher than the softening point of the glass matrix. ガラスマトリックスがSnO−P系ガラス、SiO−B−RO(RはMg、Ca、SrまたはBa)系ガラス、SiO−B−R’O(R’はLi、NaまたはKa)系ガラスまたはSiO−B−RO−R’O系ガラスからなることを特徴とする請求項1に記載の波長変換部材。 The glass matrix is SnO—P 2 O 5 based glass, SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr or Ba) based glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ 2. The wavelength conversion member according to claim 1, comprising Li, Na, or Ka) glass or SiO 2 —B 2 O 3 —RO—R ′ 2 O glass. ガラスマトリックスの原料となるガラス粉末、ガラスフィラー粉末および蛍光体粉末を含む混合粉末の焼結体からなることを特徴とする請求項1〜4のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 4, wherein the wavelength conversion member comprises a sintered body of a mixed powder containing glass powder, glass filler powder, and phosphor powder as a raw material of the glass matrix. JIS K7105に準拠して測定した平行光線透過率が20%以下、ヘイズが70%以上であることを特徴とする請求項1〜5のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 5, wherein the parallel light transmittance measured in accordance with JIS K7105 is 20% or less and the haze is 70% or more. 蛍光体粉末が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物から選ばれた少なくとも1種からなることを特徴とする請求項1〜6のいずれか一項に記載の波長変換部材。   The phosphor powder is made of at least one selected from oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, and halophosphate chlorides. Item 7. The wavelength conversion member according to any one of Items 1 to 6. 蛍光体粉末 1〜30体積%およびガラスフィラー粉末 0.05〜50体積%を含有することを特徴とする請求項1〜7のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 7, comprising 1 to 30% by volume of phosphor powder and 0.05 to 50% by volume of glass filler powder. 請求項1〜8のいずれか一項に記載の波長変換部材と、波長変換部材に対して、蛍光体粉末の励起光を照射する光源と、を備えることを特徴とする発光デバイス。   A light emitting device comprising: the wavelength conversion member according to claim 1; and a light source that irradiates the wavelength conversion member with excitation light of a phosphor powder.
JP2012063105A 2012-03-21 2012-03-21 Wavelength conversion member and light emitting device Active JP6004250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063105A JP6004250B2 (en) 2012-03-21 2012-03-21 Wavelength conversion member and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063105A JP6004250B2 (en) 2012-03-21 2012-03-21 Wavelength conversion member and light emitting device

Publications (2)

Publication Number Publication Date
JP2013197325A true JP2013197325A (en) 2013-09-30
JP6004250B2 JP6004250B2 (en) 2016-10-05

Family

ID=49395907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063105A Active JP6004250B2 (en) 2012-03-21 2012-03-21 Wavelength conversion member and light emitting device

Country Status (1)

Country Link
JP (1) JP6004250B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071699A (en) * 2013-10-03 2015-04-16 日本電気硝子株式会社 Wavelength conversion material, wavelength conversion member and light-emitting device
JP2018178111A (en) * 2017-04-11 2018-11-15 日本特殊陶業株式会社 Wavelength conversion member and manufacturing method therefor
WO2020137780A1 (en) * 2018-12-27 2020-07-02 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2020106831A (en) * 2018-12-27 2020-07-09 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
WO2020208754A1 (en) * 2019-04-10 2020-10-15 日立化成株式会社 Wavelength conversion member, backlight unit, and image display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263448A (en) * 2008-04-23 2009-11-12 Hitachi Chem Co Ltd Inorganic particle-containing resin composition and inorganic layer using the same
JP2010108965A (en) * 2008-10-28 2010-05-13 Nippon Electric Glass Co Ltd Wavelength conversion member
JP2010219166A (en) * 2009-03-13 2010-09-30 Nippon Electric Glass Co Ltd Semiconductor light emitting element device
JP2010229002A (en) * 2009-03-30 2010-10-14 Nippon Electric Glass Co Ltd SnO-P2O5 GLASS USED FOR PHOSPHOR COMPOSITE MATERIAL
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263448A (en) * 2008-04-23 2009-11-12 Hitachi Chem Co Ltd Inorganic particle-containing resin composition and inorganic layer using the same
JP2010108965A (en) * 2008-10-28 2010-05-13 Nippon Electric Glass Co Ltd Wavelength conversion member
JP2010219166A (en) * 2009-03-13 2010-09-30 Nippon Electric Glass Co Ltd Semiconductor light emitting element device
JP2010229002A (en) * 2009-03-30 2010-10-14 Nippon Electric Glass Co Ltd SnO-P2O5 GLASS USED FOR PHOSPHOR COMPOSITE MATERIAL
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071699A (en) * 2013-10-03 2015-04-16 日本電気硝子株式会社 Wavelength conversion material, wavelength conversion member and light-emitting device
JP2018178111A (en) * 2017-04-11 2018-11-15 日本特殊陶業株式会社 Wavelength conversion member and manufacturing method therefor
JP7019496B2 (en) 2017-04-11 2022-02-15 日本特殊陶業株式会社 Wavelength conversion member and its manufacturing method
WO2020137780A1 (en) * 2018-12-27 2020-07-02 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2020106831A (en) * 2018-12-27 2020-07-09 日本電気硝子株式会社 Wavelength conversion member and light-emitting device
CN113227320A (en) * 2018-12-27 2021-08-06 日本电气硝子株式会社 Wavelength conversion member and light emitting device
WO2020208754A1 (en) * 2019-04-10 2020-10-15 日立化成株式会社 Wavelength conversion member, backlight unit, and image display device

Also Published As

Publication number Publication date
JP6004250B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
WO2011111462A1 (en) Wavelength conversion member, optical device, and process for production of wavelength conversion member
JP2014234487A (en) Wavelength conversion member and light-emitting device
KR102588721B1 (en) Wavelength conversion member, and light emitting device using same
KR102588722B1 (en) Wavelength conversion member, and light emitting device using same
JP6425001B2 (en) Wavelength conversion material, wavelength conversion member and light emitting device
WO2014106923A1 (en) Glass used in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP6222452B2 (en) Wavelength conversion member and light emitting device
JP6004250B2 (en) Wavelength conversion member and light emitting device
JP2013055269A (en) Wavelength conversion member and light-emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2014041984A (en) Wavelength conversion material
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
JP2011222751A (en) Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP2013095849A (en) Wavelength conversion member and light emitting device using the same
JP6617948B2 (en) Wavelength conversion member and light emitting device
WO2020184216A1 (en) Wavelength-conversion member and light-emitting device
WO2020059499A1 (en) Powder material for wavelength conversion member
JP5807780B2 (en) Wavelength converting member and light emitting device using the same
JP6830750B2 (en) Wavelength conversion member and light emitting device
JP7382013B2 (en) Wavelength conversion member and light emitting device using the same
WO2020137780A1 (en) Wavelength conversion member and light emitting device
JP2016074822A (en) Raw material powder for wavelength conversion member
JP2020106831A (en) Wavelength conversion member and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160825

R150 Certificate of patent or registration of utility model

Ref document number: 6004250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150