JP2010219166A - Semiconductor light emitting element device - Google Patents

Semiconductor light emitting element device Download PDF

Info

Publication number
JP2010219166A
JP2010219166A JP2009062086A JP2009062086A JP2010219166A JP 2010219166 A JP2010219166 A JP 2010219166A JP 2009062086 A JP2009062086 A JP 2009062086A JP 2009062086 A JP2009062086 A JP 2009062086A JP 2010219166 A JP2010219166 A JP 2010219166A
Authority
JP
Japan
Prior art keywords
semiconductor light
wavelength conversion
conversion member
emitting element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009062086A
Other languages
Japanese (ja)
Inventor
Katsu Iwao
克 岩尾
Yoshio Mayahara
芳夫 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009062086A priority Critical patent/JP2010219166A/en
Priority to PCT/JP2010/052502 priority patent/WO2010103902A1/en
Publication of JP2010219166A publication Critical patent/JP2010219166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light emitting element device mounted using a bonding wire, a decrease in luminous flux value being small. <P>SOLUTION: The semiconductor light emitting element device includes a semiconductor light emitting element, the bonding wire electrically connecting the semiconductor light emitting element and a lead electrode to each other, and a wavelength conversion member installed above the semiconductor light emitting element and converting a wavelength of part of light emitted by the semiconductor light emitting element, wherein the wavelength conversion member has an opening and/or a notch formed, and at least a part of the bonding wire penetrates the opening and/or notch. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、LED(発光ダイオード)、LD(レーザーダイオード)等の半導体発光素子が発する光の一部の波長を別の波長に変換し、主に白色光を照射するための半導体発光素子デバイスに関するものである。   The present invention relates to a semiconductor light-emitting element device for converting a part of light emitted from a semiconductor light-emitting element such as an LED (light-emitting diode) or LD (laser diode) into another wavelength and mainly irradiating white light. Is.

近年、白色LED等の半導体発光素子デバイスは、白熱電球や蛍光灯に代わる次世代の光源として、照明用途への応用が期待されている。一般に、白色LEDは、無機蛍光体粉末と樹脂の混合物を励起LEDチップ上に被覆モールドした構造を有している。しかしながら、LEDチップから照射される熱や光は、限られた部分に集中的に照射されるため、被覆モールドに用いられる樹脂が容易に着色あるいは変形してしまう。そのため、短期間で発光色の変化が起こり、半導体発光素子デバイスとしての寿命が短くなるという問題がある。LEDチップの高出力化に伴ってこの問題は深刻化すると考えられており、耐熱性に優れる半導体発光素子デバイスの開発が望まれていた。   In recent years, semiconductor light-emitting element devices such as white LEDs are expected to be applied to lighting applications as next-generation light sources that replace incandescent bulbs and fluorescent lamps. In general, a white LED has a structure in which a mixture of an inorganic phosphor powder and a resin is coated and molded on an excitation LED chip. However, since the heat and light emitted from the LED chip are intensively applied to a limited portion, the resin used for the coating mold is easily colored or deformed. Therefore, there is a problem that the emission color changes in a short period of time and the life as a semiconductor light emitting element device is shortened. This problem is considered to be serious with the increase in output of the LED chip, and the development of a semiconductor light emitting element device having excellent heat resistance has been desired.

これに対し、樹脂を用いない完全無機固体からなる波長変換部材を使用したLEDデバイスが提案されている(例えば、特許文献1参照)。当該波長変換部材は、耐熱性に劣る樹脂が使用されておらず、完全無機固体からなるため、優れた耐熱性を有し、熱劣化がほとんど生じない。特許文献1に開示されている波長変換部材は、ガラス粉末および無機蛍光体粉末の混合物を金型に充填し、軟化点付近で熱処理(焼結)することで、例えば板状成型体として提供される。   On the other hand, the LED device using the wavelength conversion member which consists of a perfect inorganic solid which does not use resin is proposed (for example, refer patent document 1). Since the wavelength conversion member does not use a resin having poor heat resistance and is made of a completely inorganic solid, it has excellent heat resistance and hardly undergoes thermal degradation. The wavelength conversion member disclosed in Patent Document 1 is provided, for example, as a plate-shaped molded body by filling a mold with a mixture of glass powder and inorganic phosphor powder and heat-treating (sintering) in the vicinity of the softening point. The

特開2003−258308号公報JP 2003-258308 A

板状の波長変換部材を用いた従来の半導体発光素子デバイスを図8に示す。図8に示すように、半導体発光素子3はボンディングワイヤ5を用いて基板2上のリード電極(図示せず)と電気的に接続されている。ここで、波長変換部材4を半導体発光素子3上に実装する場合、ボンディングワイヤ5が波長変換部材4と半導体発光素子3の接近を阻害してしまい、実装の自由度の低下を招く。加えて、半導体発光素子3と波長変換部材4の距離Dが大きくなることにより、半導体発光素子3から発せられた光が、波長変換部材4に入射する前に減衰するため光束値が低下するという問題もある。   FIG. 8 shows a conventional semiconductor light emitting device using a plate-like wavelength conversion member. As shown in FIG. 8, the semiconductor light emitting element 3 is electrically connected to a lead electrode (not shown) on the substrate 2 using a bonding wire 5. Here, when the wavelength conversion member 4 is mounted on the semiconductor light emitting element 3, the bonding wire 5 obstructs the approach between the wavelength conversion member 4 and the semiconductor light emitting element 3, thereby reducing the degree of mounting freedom. In addition, since the distance D between the semiconductor light emitting element 3 and the wavelength conversion member 4 is increased, the light emitted from the semiconductor light emitting element 3 is attenuated before entering the wavelength conversion member 4, so that the light flux value is reduced. There is also a problem.

さらに、半導体発光素子3と波長変換部材4の間にボンディングワイヤ5が存在することにより、半導体発光素子3から発せられた光をボンディングワイヤ5が吸収したり、ボンディングワイヤ5の影が波長変換部材4に投影されたりして、光束値が低下するという問題もある。   Further, since the bonding wire 5 exists between the semiconductor light emitting element 3 and the wavelength conversion member 4, the bonding wire 5 absorbs the light emitted from the semiconductor light emitting element 3, or the shadow of the bonding wire 5 is changed to the wavelength conversion member. There is also a problem that the luminous flux value is lowered due to projection onto the image.

したがって、本発明は、ボンディングワイヤを用いて実装された半導体発光素子デバイスであって、光束値の低下の少ない半導体発光素子デバイスを提供することを課題とする。   Therefore, an object of the present invention is to provide a semiconductor light-emitting element device that is mounted using a bonding wire and has a low decrease in luminous flux value.

本発明者等は鋭意検討した結果、ボンディングワイヤを用いて実装された半導体発光素子デバイスを、特定の構造を有するものとすることにより、前記課題を解消できることを見出し、本発明を提案するものである。   As a result of intensive studies, the present inventors have found that the above problem can be solved by having a semiconductor light-emitting element device mounted using a bonding wire having a specific structure, and propose the present invention. is there.

すなわち、本発明は、半導体発光素子と、半導体発光素子とリード電極とを電気的に接続するボンディングワイヤと、半導体発光素子の上方に設置され、かつ半導体発光素子が発する光の一部の波長を変換する波長変換部材とを具備する半導体発光素子デバイスであって、波長変換部材には開口部および/または切り欠け部が形成されており、かつボンディングワイヤの少なくとも一部が、当該開口部および/または切り欠け部を貫通していることを特徴とする半導体発光素子デバイスに関する。   That is, the present invention provides a semiconductor light emitting device, a bonding wire that electrically connects the semiconductor light emitting device and the lead electrode, and a wavelength of a part of light emitted from the semiconductor light emitting device that is disposed above the semiconductor light emitting device. And a wavelength conversion member for conversion, wherein the wavelength conversion member has an opening and / or a notch, and at least a part of the bonding wire includes the opening and / or Or it is related with the semiconductor light-emitting device characterized by penetrating the notch part.

既述のように、従来の半導体発光素子デバイスでは、板状(特に、平板状)の波長変換部材を半導体発光素子上に実装する場合、ボンディングワイヤが波長変換部材と半導体発光素子の接近を阻害してしまうという問題があった。本発明の構成によれば、波長変換部材に形成された開口部および/または切り欠け部を、ボンディングワイヤが貫通する構造となっているため、波長変換部材を半導体発光素子に対して、より接近させることが可能となる。その結果、パッケージへの実装の自由度が向上するとともに、半導体発光素子から発せられた光が効率良く波長変換部材に入射するため、光束値を増加させることができる。さらに、ボンディングワイヤの光の吸収や、ボンディングワイヤの影が波長変換部材に投影されるという問題も大幅に改善することができる。   As described above, in a conventional semiconductor light emitting device, when a plate-shaped (particularly flat plate) wavelength conversion member is mounted on a semiconductor light-emitting device, the bonding wire hinders the proximity of the wavelength conversion member and the semiconductor light-emitting device. There was a problem of doing. According to the configuration of the present invention, since the bonding wire penetrates the opening and / or the notch formed in the wavelength conversion member, the wavelength conversion member is closer to the semiconductor light emitting device. It becomes possible to make it. As a result, the degree of freedom of mounting on the package is improved, and light emitted from the semiconductor light emitting element is efficiently incident on the wavelength conversion member, so that the light flux value can be increased. Furthermore, the problem of light absorption of the bonding wire and the projection of the shadow of the bonding wire onto the wavelength conversion member can be greatly improved.

第二に、本発明の半導体発光素子デバイスは、波長変換部材と半導体発光素子の距離が800μm以下であることが好ましい。   Secondly, in the semiconductor light emitting device of the present invention, the distance between the wavelength conversion member and the semiconductor light emitting device is preferably 800 μm or less.

当該構成によれば、半導体発光素子から発せられた光を効率良く波長変換部材に入射させることができるため、光束値増加の効果を享受しやすくなる。   According to this configuration, light emitted from the semiconductor light emitting element can be efficiently incident on the wavelength conversion member, so that it is easy to enjoy the effect of increasing the light flux value.

第三に、本発明の半導体発光素子デバイスは、開口部および/または切り欠け部が、レーザー加工により形成されたものであることが好ましい。   Thirdly, in the semiconductor light-emitting element device of the present invention, it is preferable that the opening and / or the notch is formed by laser processing.

波長変換部材が有する開口部および/または切り欠け部が必要以上に大きければ、半導体発光素子から発せられた光の波長変換ロスにつながる。その結果、変換効率の低下を引き起こし、所望の色の光が得られないおそれがある。したがって、波長変換部材が有する開口部および/または切り欠け部は、少なくともボンディングワイヤが貫通可能な程度であればよい。この場合、レーザー光を用いれば、波長変換部材に対して微細加工を施すことができるため、波長変換部材に微細な開口部および/または切り欠け部を形成することができる。よって、変換効率の高い半導体発光素子デバイスを得ることが可能となる。   If the opening and / or the notch portion of the wavelength conversion member is larger than necessary, the wavelength conversion loss of the light emitted from the semiconductor light emitting element will result. As a result, the conversion efficiency is lowered, and there is a possibility that light of a desired color cannot be obtained. Therefore, the opening and / or the cutout portion of the wavelength conversion member may be at least as long as the bonding wire can penetrate. In this case, if the laser beam is used, the wavelength conversion member can be finely processed, so that a fine opening and / or notch can be formed in the wavelength conversion member. Therefore, it is possible to obtain a semiconductor light emitting element device with high conversion efficiency.

例えば、半導体発光素子デバイスの実装には、直径50μm程度またはそれ以下のボンディングワイヤが用いられるが、レーザー加工によると、従来の切削加工ツールでは不可能であった直径100μm以下の開口部を形成することが可能となる。   For example, a bonding wire having a diameter of about 50 μm or less is used for mounting a semiconductor light emitting element device, but according to laser processing, an opening having a diameter of 100 μm or less, which was impossible with a conventional cutting tool, is formed. It becomes possible.

第四に、本発明の半導体発光素子デバイスは、波長変換部材が、ガラス粉末と無機蛍光体粉末を含む混合粉末の焼結物からなることが好ましい。   Fourthly, in the semiconductor light emitting device of the present invention, it is preferable that the wavelength conversion member is made of a sintered product of mixed powder containing glass powder and inorganic phosphor powder.

既述のように、波長変換部材がガラス粉末と無機蛍光体粉末の混合粉末を焼成することで得られる完全無機固体からなることにより、樹脂製の波長変換部材と比較して優れた耐熱性を有し、熱劣化が生じにくい。具体的には、ガラス中に無機蛍光体粉末を分散させることにより、無機蛍光体粉末を保護する効果が高められると同時に、ガラスは、エポキシ樹脂、シリコーン樹脂等の樹脂材料と比較して、熱、紫外線に対する耐久性が高いため、波長変換部材の寿命を長くすることが可能となる。   As described above, the wavelength conversion member is made of a completely inorganic solid obtained by firing a mixed powder of glass powder and inorganic phosphor powder, thereby providing superior heat resistance compared to a resin wavelength conversion member. And is less susceptible to thermal degradation. Specifically, by dispersing the inorganic phosphor powder in the glass, the effect of protecting the inorganic phosphor powder is enhanced, and at the same time, the glass is heated compared to a resin material such as an epoxy resin or a silicone resin. Since the durability against ultraviolet rays is high, the life of the wavelength conversion member can be extended.

第五に、本発明は、半導体発光素子デバイスにおける半導体発光素子の上方に設置して用いられ、半導体発光素子が発する光の一部の波長を変換するための波長変換部材であって、半導体発光素子とリード電極とを電気的に接続するボンディングワイヤを貫通させるための開口部および/または切り欠け部が形成されていることを特徴とする波長変換部材に関する。   Fifth, the present invention is a wavelength conversion member that is used by being installed above a semiconductor light emitting element in a semiconductor light emitting element device, and converts the wavelength of a part of the light emitted by the semiconductor light emitting element. The present invention relates to a wavelength conversion member characterized in that an opening and / or a notch for penetrating a bonding wire that electrically connects an element and a lead electrode is formed.

本発明の波長変換部材は、ボンディングワイヤを用いて実装された半導体発光素子デバイスに用いることにより、既述のような効果を享受することができる。   By using the wavelength conversion member of the present invention for a semiconductor light emitting device mounted using a bonding wire, the effects as described above can be obtained.

第六に、本発明の波長変換部材は、開口部および/または切り欠け部が、レーザー加工により形成されたものであることを特徴とする。   Sixth, the wavelength conversion member of the present invention is characterized in that the opening and / or the notch is formed by laser processing.

第七に、本発明の波長変換部材は、ガラス粉末と無機蛍光体粉末を含む混合粉末の焼結物からなることを特徴とする。   Seventh, the wavelength conversion member of the present invention is characterized by comprising a sintered product of a mixed powder containing glass powder and inorganic phosphor powder.

本発明の半導体発光素子デバイスの第一の実施形態を示す断面図である。It is sectional drawing which shows 1st embodiment of the semiconductor light-emitting device of this invention. (a)図1の半導体発光素子デバイスに用いられる波長変換部材の第一の実施形態を示す平面図である。(b)図1の半導体発光素子デバイスに用いられる波長変換部材の第二の実施形態を示す平面図である。(c)図1の半導体発光素子デバイス用いられる波長変換部材の第三の実施形態を示す平面図である。(d)図1の半導体発光素子デバイスに用いられる波長変換部材の第四の実施形態を示す平面図である。(A) It is a top view which shows 1st embodiment of the wavelength conversion member used for the semiconductor light-emitting device of FIG. (B) It is a top view which shows 2nd embodiment of the wavelength conversion member used for the semiconductor light-emitting device of FIG. (C) It is a top view which shows 3rd embodiment of the wavelength conversion member used for the semiconductor light-emitting device of FIG. (D) It is a top view which shows 4th embodiment of the wavelength conversion member used for the semiconductor light-emitting device of FIG. 本発明の半導体発光素子デバイスの第二の実施形態を示す断面図である。It is sectional drawing which shows 2nd embodiment of the semiconductor light-emitting device of this invention. (a)図3の半導体発光素子デバイスに用いられる波長変換部材の第一の実施形態を示す平面図である。(b)図3の半導体発光素子デバイスに用いられる波長変換部材の第二の実施形態を示す平面図である。(c)図3の半導体発光素子デバイス用いられる波長変換部材の第三の実施形態を示す平面図である。(A) It is a top view which shows 1st embodiment of the wavelength conversion member used for the semiconductor light-emitting device of FIG. (B) It is a top view which shows 2nd embodiment of the wavelength conversion member used for the semiconductor light-emitting device of FIG. (C) It is a top view which shows 3rd embodiment of the wavelength conversion member used for the semiconductor light-emitting device of FIG. 本発明の半導体発光素子デバイスの第三の実施形態を示す断面図である。It is sectional drawing which shows 3rd embodiment of the semiconductor light-emitting device of this invention. (a)図5の半導体発光素子デバイスに用いられる波長変換部材の第一の実施形態を示す平面図である。(b)図5の半導体発光素子デバイスに用いられる波長変換部材の第二の実施形態を示す平面図である。(c)図5の半導体発光素子デバイス用いられる波長変換部材の第三の実施形態を示す平面図である。(A) It is a top view which shows 1st embodiment of the wavelength conversion member used for the semiconductor light-emitting device of FIG. (B) It is a top view which shows 2nd embodiment of the wavelength conversion member used for the semiconductor light-emitting device of FIG. (C) It is a top view which shows 3rd embodiment of the wavelength conversion member used for the semiconductor light-emitting device of FIG. 本発明の半導体発光素子デバイスの第四の実施形態を示す断面図である。It is sectional drawing which shows 4th embodiment of the semiconductor light-emitting element device of this invention. 従来の半導体発光素子デバイスを示す断面図である。It is sectional drawing which shows the conventional semiconductor light-emitting device.

以下に、本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の半導体発光素子デバイスの第一の実施形態の断面図であり、図2は図1の半導体発光素子デバイスにおける波長変換部材を示す平面図である。図1に示すように、半導体発光素子3は基板2上に設置されており、2本のアーチ状のボンディングワイヤ5により基板2上のリード電極(図示せず)と電気的に接続されている。さらに、板状の波長変換部材4が半導体発光素子3の上方に設置されている。なお、図1では示していないが、通常、波長変換部材4は、ケーシングやカップ上に設置して用いられる。ここで、図2に示すように、波長変換部材4には開口部Oまたは切り欠け部Cが設けられている。半導体発光素子3と接続したボンディングワイヤ5は、一旦開口部Oまたは切り欠け部Cを貫通した後、波長変換部材4上でアーチ状に屈曲し、再び開口部Oまたは切り欠け部Cを貫通して基板2上のリード電極と接続する構造を有している。   FIG. 1 is a cross-sectional view of a first embodiment of the semiconductor light emitting device of the present invention, and FIG. 2 is a plan view showing a wavelength conversion member in the semiconductor light emitting device of FIG. As shown in FIG. 1, the semiconductor light emitting element 3 is installed on a substrate 2 and is electrically connected to a lead electrode (not shown) on the substrate 2 by two arched bonding wires 5. . Further, a plate-like wavelength conversion member 4 is installed above the semiconductor light emitting element 3. In addition, although not shown in FIG. 1, the wavelength conversion member 4 is normally installed and used on a casing or a cup. Here, as shown in FIG. 2, the wavelength conversion member 4 is provided with an opening O or a notch C. The bonding wire 5 connected to the semiconductor light emitting element 3 once passes through the opening O or notch C, then bends in an arch shape on the wavelength conversion member 4, and again passes through the opening O or notch C. In this way, the lead electrode on the substrate 2 is connected.

図2の(a)に示すように、図1における波長変換部材4の第一の実施形態では、波長変換部材4の平面形状が長方形であり、各ボンディングワイヤ5が貫通するための楕円形の開口部Oが、左右にそれぞれ1箇所ずつ形成されている。この実施形態では、半導体発光素子3とリード電極とを接続するアーチ状のボンディングワイヤ5の頂部が、開口部Oにて波長変換部材4の上方に突出する構成となっている。   As shown in FIG. 2A, in the first embodiment of the wavelength conversion member 4 in FIG. 1, the planar shape of the wavelength conversion member 4 is a rectangle, and an elliptical shape through which each bonding wire 5 penetrates. One opening O is formed on each of the left and right sides. In this embodiment, the top of the arch-shaped bonding wire 5 that connects the semiconductor light emitting element 3 and the lead electrode protrudes above the wavelength conversion member 4 at the opening O.

図2の(b)に示すように、図1における波長変換部材4の第二の実施形態では、各ボンディングワイヤ5が貫通するための円形の開口部Oが、左右にそれぞれ2箇所ずつ形成されている。この実施形態では、半導体発光素子3と接続したボンディングワイヤ5が、開口部Oの一つを貫通して波長変換部材4上に突出するとともに、波長変換部材4上でアーチ状に屈曲し、別の開口部Oを貫通してリード電極と接続する構成となっている。   As shown in FIG. 2B, in the second embodiment of the wavelength conversion member 4 in FIG. 1, two circular openings O through which the bonding wires 5 pass are formed on the left and right sides. ing. In this embodiment, the bonding wire 5 connected to the semiconductor light emitting element 3 passes through one of the openings O and protrudes onto the wavelength conversion member 4 and bends in an arch shape on the wavelength conversion member 4. It is the structure which penetrates this opening part O and is connected with a lead electrode.

図2の(c)に示すように、図1における波長変換部材4の第三の実施形態では、各ボンディングワイヤ5が貫通するための半楕円形の切り欠け部Cが、左右にそれぞれ1箇所ずつ形成されている。この実施形態では、半導体発光素子3とリード電極とを接続するアーチ状のボンディングワイヤ5の頂部が、切り欠け部Cにて波長変換部材4の上方に突出する構成となる。   As shown in FIG. 2 (c), in the third embodiment of the wavelength conversion member 4 in FIG. 1, the semi-elliptical cutout portions C through which the bonding wires 5 pass are provided on the left and right sides, respectively. It is formed one by one. In this embodiment, the top of the arch-shaped bonding wire 5 that connects the semiconductor light emitting element 3 and the lead electrode protrudes above the wavelength conversion member 4 at the notch C.

図2の(d)に示すように、図1における波長変換部材4の第六の実施形態では、波長変換部材4の平面形状が円形であり、(a)と同様に、各ボンディングワイヤ5が貫通するための楕円形状の開口部Oが、左右にそれぞれ1箇所ずつ形成されている。   As shown in FIG. 2 (d), in the sixth embodiment of the wavelength conversion member 4 in FIG. 1, the planar shape of the wavelength conversion member 4 is circular, and each bonding wire 5 is formed as in (a). An elliptical opening O for penetrating is formed on each of the left and right sides.

図3は本発明の半導体発光素子デバイスの第二の実施形態の断面図であり、図4は図3の半導体発光素子デバイスにおける波長変換部材の平面図である。本実施形態では、2本のボンディングワイヤ5がアーチ形状を形成しており、各ボンディングワイヤ5がそれぞれ1箇所ずつの開口部Oまたは切り欠け部Cを貫通して波長変換部材4の上方に突出、アーチ状に屈曲した後、波長変換部材4の外側を通って、すなわち、再び開口部Oや切り欠け部Cを貫通することなくリード電極と接続する構造を有している。   FIG. 3 is a cross-sectional view of a second embodiment of the semiconductor light-emitting element device of the present invention, and FIG. 4 is a plan view of a wavelength conversion member in the semiconductor light-emitting element device of FIG. In the present embodiment, the two bonding wires 5 form an arch shape, and each bonding wire 5 protrudes above the wavelength conversion member 4 through one opening O or notch C. After being bent in an arch shape, the structure is connected to the lead electrode through the outside of the wavelength conversion member 4, that is, without penetrating the opening O and the notch C again.

図4の(a)に示すように、図3における波長変換部材4の第一の実施形態では、各ボンディングワイヤ5が貫通するための円形の開口部Oが、左右にそれぞれ1箇所ずつ形成されている。   As shown in FIG. 4A, in the first embodiment of the wavelength conversion member 4 in FIG. 3, a circular opening O through which each bonding wire 5 penetrates is formed at one place on each side. ing.

図4の(b)に示すように、図3における波長変換部材4の第二の実施形態では、各ボンディングワイヤ5が貫通するための三角形の切り欠け部Cが、左上隅と右下隅にそれぞれ1箇所ずつ形成されている。   As shown in FIG. 4 (b), in the second embodiment of the wavelength conversion member 4 in FIG. 3, the triangular cutout portions C through which the bonding wires 5 penetrate are respectively formed in the upper left corner and the lower right corner. It is formed one by one.

図4の(c)に示すように、図3における波長変換部材4の第三の実施形態では、各ボンディングワイヤ5が貫通するための長方形の切り欠け部Cが、左上隅と右上隅にそれぞれ1箇所ずつ形成されている。   As shown in FIG. 4 (c), in the third embodiment of the wavelength conversion member 4 in FIG. 3, the rectangular cutouts C through which the bonding wires 5 pass are respectively formed in the upper left corner and the upper right corner. It is formed one by one.

図5は本発明の半導体発光素子デバイスの第三の実施形態の断面図であり、図6は図5の半導体発光素子デバイスにおける波長変換部材の平面図である。本実施形態では、1本のボンディングワイヤ5がアーチ形状を形成しており、ボンディングワイヤ5が波長変換部材4に形成された開口部Oまたは切り欠け部Cを貫通して波長変換部材4の上方に突出、アーチ状に屈曲した後、波長変換部材4の外側を通って、すなわち、再度開口部Oや切り欠け部Cを貫通することなくリード電極と接続する構造を有している。また、半導体発光素子3の下面は、基板2上に形成されたリード電極(図示せず)と電気的に接続されている。   FIG. 5 is a cross-sectional view of a third embodiment of the semiconductor light emitting device of the present invention, and FIG. 6 is a plan view of a wavelength conversion member in the semiconductor light emitting device of FIG. In the present embodiment, one bonding wire 5 forms an arch shape, and the bonding wire 5 passes through the opening O or notch C formed in the wavelength conversion member 4 and above the wavelength conversion member 4. After being bent and bent in an arch shape, it is connected to the lead electrode through the outside of the wavelength conversion member 4, that is, without penetrating the opening O and the notch C again. The lower surface of the semiconductor light emitting element 3 is electrically connected to a lead electrode (not shown) formed on the substrate 2.

図6の(a)に示すように、図5における波長変換部材4の第一の実施形態では、ボンディングワイヤ5が貫通するための円形の開口部Oが1箇所形成されている。   As shown in FIG. 6A, in the first embodiment of the wavelength conversion member 4 in FIG. 5, one circular opening O through which the bonding wire 5 passes is formed.

図6の(b)に示すように、図5における波長変換部材4の第二の実施形態では、ボンディングワイヤ5が貫通するための半楕円形の切り欠け部Cが1箇所形成されている。   As shown in FIG. 6B, in the second embodiment of the wavelength conversion member 4 in FIG. 5, one semi-elliptical notch C for allowing the bonding wire 5 to pass therethrough is formed.

図6の(c)に示すように、図5における波長変換部材4の第三の実施形態では、ボンディングワイヤ5が貫通するための長方形の切り欠け部Cが、右上隅に1箇所形成されている。   As shown in FIG. 6 (c), in the third embodiment of the wavelength conversion member 4 in FIG. 5, a rectangular cutout C for allowing the bonding wire 5 to pass therethrough is formed at one place in the upper right corner. Yes.

図7は本発明の半導体発光素子デバイスの第四の実施形態の断面図である。本実施形態では、基板2は半導体発光素子3が発する光および波長変換部材4により波長変換された光を反射集光させるリフレクターの役割を兼ね備えている。半導体発光素子3はケーシング状の基板2の底部に設置されており、ボンディングワイヤ5を用いて基板2上のリード電極(図示せず)と外部のリード電極6にそれぞれ電気的に接続されている。さらに、波長変換部材4が半導体発光素子3の上方に設置されている。ここで、波長変換部材4には左右に一箇所ずつ開口部Oまたは切り欠け部C(例えば、図4の(a)〜(c))が設けられており、半導体発光素子3に接続されたボンディングワイヤ5が、開口部Oまたは切り欠け部C(波長変換部材4とケーシング状の基板2との間に形成された空隙)を貫通して波長変換部材4の上方に突出、アーチ状に屈曲した後、波長変換部材4の外側を通って、すなわち、再び開口部Oや切り欠け部Cを貫通することなくリード電極と接続する構造を有している。   FIG. 7 is a cross-sectional view of a fourth embodiment of the semiconductor light-emitting device of the present invention. In the present embodiment, the substrate 2 also serves as a reflector that reflects and collects light emitted from the semiconductor light emitting element 3 and light converted in wavelength by the wavelength conversion member 4. The semiconductor light emitting device 3 is installed at the bottom of the casing-like substrate 2 and is electrically connected to a lead electrode (not shown) on the substrate 2 and an external lead electrode 6 using bonding wires 5. . Further, the wavelength conversion member 4 is installed above the semiconductor light emitting element 3. Here, the wavelength conversion member 4 is provided with an opening O or a notch C (for example, (a) to (c) in FIG. 4) on each of the left and right sides and connected to the semiconductor light emitting element 3. The bonding wire 5 passes through the opening O or the notch C (a gap formed between the wavelength conversion member 4 and the casing-like substrate 2), protrudes above the wavelength conversion member 4, and bends in an arch shape. After that, the structure is connected to the lead electrode through the outside of the wavelength conversion member 4, that is, without penetrating the opening O and the notch C again.

本発明の半導体発光素子デバイスは、以上のような構成により、半導体発光素子と波長変換部材の距離を小さくすることが可能となる。半導体発光素子と波長変換部材の距離は、800μm以下、500μm以下、特に300μm以下が好ましい。下限は特に限定されないが、例えば、10μm以上、特に50μm以上で適宜調整される。また、半導体発光素子と波長変換部材が接触していても構わない。なお、半導体発光素子と波長変換部材の距離とは、図1に示すように、半導体発光素子3の上面と波長変換部材4の下面の距離Dを指す。   The semiconductor light-emitting element device of the present invention can reduce the distance between the semiconductor light-emitting element and the wavelength conversion member by the configuration as described above. The distance between the semiconductor light emitting element and the wavelength conversion member is preferably 800 μm or less, 500 μm or less, and particularly preferably 300 μm or less. Although a minimum is not specifically limited, For example, it adjusts suitably in 10 micrometers or more, especially 50 micrometers or more. Further, the semiconductor light emitting element and the wavelength conversion member may be in contact with each other. Note that the distance between the semiconductor light emitting element and the wavelength conversion member indicates a distance D between the upper surface of the semiconductor light emitting element 3 and the lower surface of the wavelength conversion member 4 as shown in FIG.

なお、波長変換部材に形成される開口部の形状は特に限定されず、円形や楕円形以外に、長方形、三角形等の多角形であってもよい。また、切り欠け部の形状も特に限定されず、円形の一部(半円形等)、楕円形の一部(半楕円形等)、三角形、長方形等の多角形などから適宜選択される。   In addition, the shape of the opening part formed in a wavelength conversion member is not specifically limited, Polygons, such as a rectangle and a triangle, may be sufficient besides circular and an ellipse. Further, the shape of the notch is not particularly limited, and is appropriately selected from a part of a circle (such as a semicircle), a part of an ellipse (such as a half ellipse), a polygon such as a triangle and a rectangle.

既述のように、波長変換部材に形成される開口部および切り欠け部の大きさは、光変換効率の観点からなるべく小さいほうが好ましい。例えば、開口部(または切り欠け部)が円形(または円形の一部)の場合、直径が100μm以下、80μm以下、特に60μm以下であることが好ましい。下限は特に限定されないが、現実的には、10μm以上、さらには30μm以上である。開口部(または切り欠け部)が楕円形(または楕円形の一部)の場合、短径が100μm以下、80μm以下、特に60μm以下(下限は、10μm以上、さらには30μm以上)であることが好ましい。開口部(または切り欠け部)が長方形の場合、短辺が100μm以下、80μm以下、特に60μm以下(下限は、10μm以上、さらには30μm以上)であることが好ましい。   As described above, it is preferable that the size of the opening and notch formed in the wavelength conversion member is as small as possible from the viewpoint of light conversion efficiency. For example, when the opening (or notch) is circular (or part of a circle), the diameter is preferably 100 μm or less, 80 μm or less, and particularly preferably 60 μm or less. Although a minimum is not specifically limited, Actually, it is 10 micrometers or more, Furthermore, it is 30 micrometers or more. When the opening (or notch) is elliptical (or part of an elliptical shape), the minor axis may be 100 μm or less, 80 μm or less, particularly 60 μm or less (the lower limit is 10 μm or more, and further 30 μm or more). preferable. When the opening (or notch) is rectangular, the short side is preferably 100 μm or less, 80 μm or less, particularly 60 μm or less (the lower limit is 10 μm or more, more preferably 30 μm or more).

なお、波長変換部材には開口部と切り欠け部の両方が形成されていても構わない。   In addition, both the opening part and the notch part may be formed in the wavelength conversion member.

レーザー光を用いれば、波長変換部材に対して微細加工を施すことができるため、波長変換部材に微細な開口部および/または切り欠け部を形成することができる。レーザー光としては、フェムト秒レーザー光を用いることが好ましい。フェムト秒レーザーを用いると、多光子吸収を利用して熱を発生させずに被加工物に対して加工を行うことができる。したがって、波長変換部材への熱劣化によるダメージがない。また通常のレーザー加工のように光吸収を利用しないため、ガラスなどの透明材料でも加工可能である。さらにレーザー照射範囲が狭いため微細加工に適している。   If laser light is used, the wavelength conversion member can be finely processed, so that a fine opening and / or notch can be formed in the wavelength conversion member. As the laser light, femtosecond laser light is preferably used. When a femtosecond laser is used, the workpiece can be processed without generating heat by utilizing multiphoton absorption. Therefore, there is no damage to the wavelength conversion member due to thermal deterioration. Moreover, since light absorption is not used unlike normal laser processing, it is possible to process even transparent materials such as glass. Furthermore, since the laser irradiation range is narrow, it is suitable for fine processing.

波長変換部材の厚みは特に限定されないが、50〜1000μm、80〜500μm、特に100〜200μmが好ましい。波長変換部材の厚みが50μm以下であると、機械的強度に劣るとともに、製造および加工が困難となる。一方、波長変換部材の厚みが1000μmを超えると、半導体発光素子から照射される光が透過しにくくなり、光束値が低下する傾向がある。   Although the thickness of a wavelength conversion member is not specifically limited, 50-1000 micrometers, 80-500 micrometers, and especially 100-200 micrometers are preferable. When the thickness of the wavelength conversion member is 50 μm or less, the mechanical strength is inferior and manufacturing and processing become difficult. On the other hand, when the thickness of the wavelength conversion member exceeds 1000 μm, the light emitted from the semiconductor light emitting element is difficult to transmit, and the light flux value tends to decrease.

波長変換部材の大きさは特に限定されず、半導体発光素子デバイスに要求される仕様に応じて適宜選択される。具体的には、波長変換部材の大きさ(面積)は、0.1〜10000mm、0.5〜1000mm、特に1〜100mmの範囲で選択される。例えば、平面形状が長方形の場合、0.5×0.5mm〜50×50mm、0.6×0.6mm〜10×10mm、特に0.8×0.8mm〜5×5mmの範囲で選択される。平面形状が円形の場合、直径が0.5〜50mm、0.6〜10mm、特に0.8〜5mmの範囲で選択される。 The size of the wavelength conversion member is not particularly limited, and is appropriately selected according to specifications required for the semiconductor light emitting device. Specifically, the size of the wavelength conversion member (area), 0.1~10000mm 2, 0.5~1000mm 2, in particular selected in the range of 1 to 100 mm 2. For example, when the planar shape is rectangular, it is selected in the range of 0.5 × 0.5 mm to 50 × 50 mm, 0.6 × 0.6 mm to 10 × 10 mm, particularly 0.8 × 0.8 mm to 5 × 5 mm. The When the planar shape is circular, the diameter is selected in the range of 0.5 to 50 mm, 0.6 to 10 mm, particularly 0.8 to 5 mm.

なお、1つの波長変換部材に対して、複数の半導体発光素子を設置しても構わない。大面積の波長変換部材に対して複数の半導体発光素子を設置することにより、色のばらつきが抑制された面状照明を作製することが可能である。   A plurality of semiconductor light emitting elements may be installed for one wavelength conversion member. By installing a plurality of semiconductor light emitting elements on a wavelength conversion member having a large area, it is possible to produce a planar illumination with suppressed color variation.

波長変換部材の材質は特に限定されず、例えば、ガラスや樹脂などのマトリクスに無機蛍光体粉末を分散させたものや、YAG等のガーネット結晶を含む多結晶体などが挙げられる。なかでも、波長変換部材は無機蛍光体粉末とガラス粉末を含む混合粉末の焼結体からなることが好ましい。既述のように、当該構成とすることにより、耐熱性に優れた信頼性の高い波長変換部材を得ることができる。   The material of the wavelength conversion member is not particularly limited, and examples thereof include a material in which an inorganic phosphor powder is dispersed in a matrix such as glass or resin, or a polycrystalline body containing a garnet crystal such as YAG. Especially, it is preferable that a wavelength conversion member consists of a sintered compact of the mixed powder containing inorganic fluorescent substance powder and glass powder. As described above, with this configuration, a highly reliable wavelength conversion member having excellent heat resistance can be obtained.

無機蛍光体粉末としては、一般的に市中で入手できるものであれば使用できる。無機蛍光体粉末には、YAG、酸化物、窒化物、酸窒化物、硫化物、希土類酸硫化物、ハロゲン化物、アルミン酸塩化物、ハロリン酸塩化物などからなるものがある。YAG、酸化物の各蛍光体は、ガラスと混合して高温に加熱しても安定であるという特徴を有する。窒化物、酸窒化物、硫化物、希土類酸硫化物、ハロゲン化物、アルミン酸塩化物、ハロリン酸塩化物の各蛍光体は、焼結時の加熱によりガラスと反応しやすく、発泡や変色などの異常反応を起こしやすく、その程度は、焼結温度が高温であればあるほど顕著になる傾向がある。これらの無機蛍光体を用いる場合、焼成温度とガラス組成を最適化することで、ガラスとの反応を抑制することができる。   Any inorganic phosphor powder can be used as long as it is generally available in the market. Inorganic phosphor powders include those composed of YAG, oxides, nitrides, oxynitrides, sulfides, rare earth oxysulfides, halides, aluminate chlorides, halophosphates, and the like. Each phosphor of YAG and oxide has a feature that it is stable even when mixed with glass and heated to a high temperature. Nitrides, oxynitrides, sulfides, rare earth oxysulfides, halides, aluminate chlorides, and halophosphates can easily react with glass by heating during sintering, such as foaming and discoloration. Abnormal reactions are likely to occur, and the extent tends to become more pronounced the higher the sintering temperature. When these inorganic phosphors are used, reaction with glass can be suppressed by optimizing the firing temperature and the glass composition.

なお、励起光の波長域や発光させたい色に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して、白色光を得ようとする場合は、青色、緑色および赤色の蛍光を発する無機蛍光体粉末を混合して使用すればよい。   A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of the excitation light and the color to be emitted. For example, when obtaining white light by irradiating ultraviolet excitation light, inorganic phosphor powders emitting blue, green and red fluorescence may be mixed and used.

無機蛍光体粉末の平均粒径D50は1〜75μm、特に1〜50μmであることが好ましい。無機蛍光体粉末の平均粒径D50が75μmを超えると、励起光が、波長変換部材4の内部まで透過しにくくなり、発光効率が低下しやすくなる。一方、平均粒径D50が1μmより小さくなると、焼成時に、ガラスと反応したり発泡したりして、波長変換部材4中の気孔率(残存泡の割合)が大きくなり、発光効率が低下しやすくなる。なお、本発明において、平均粒径D50はレーザー回折法により測定したものをいう。 The average particle diameter D50 of the inorganic phosphor powder is preferably 1 to 75 μm, particularly preferably 1 to 50 μm. When the average particle diameter D 50 of the inorganic phosphor powder exceeds 75 [mu] m, the excitation light is less likely to penetrate into the inside of the wavelength conversion member 4, the luminous efficiency tends to decrease. On the other hand, when the average particle diameter D 50 is smaller than 1 [mu] m, at the time of firing, or by reaction or foamed glass, the porosity of the wavelength conversion member 4 (the proportion of the residual foam) increases, luminous efficiency decreases It becomes easy. In the present invention, the average particle diameter D 50 refers to a value measured by a laser diffraction method.

本発明において使用するガラス粉末には、無機蛍光体粉末を安定に保持するための媒体としての役割がある。使用するガラス組成系によって、波長変換部材の色調が異なり、また無機蛍光体粉末との反応性に差が出るため、種々の条件を考慮して使用するガラス組成を選択する必要がある。さらに、ガラス組成に適した無機蛍光体粉末の含有量や部材の厚みを決定することも重要である。   The glass powder used in the present invention has a role as a medium for stably holding the inorganic phosphor powder. Since the color tone of the wavelength conversion member varies depending on the glass composition system to be used and the reactivity with the inorganic phosphor powder varies, it is necessary to select the glass composition to be used in consideration of various conditions. It is also important to determine the content of the inorganic phosphor powder suitable for the glass composition and the thickness of the member.

ガラス粉末としては、無機蛍光体粉末と反応しにくいものであれば、特に制限はないが、850℃以下、好ましくは800℃以下の軟化点を有するものを用いることが好ましい。ガラス粉末の軟化点が高くなると、焼成温度も高くなるため、無機蛍光体粉末が劣化して、発光効率の高い波長変換部材が得られにくくなる。   The glass powder is not particularly limited as long as it does not easily react with the inorganic phosphor powder, but a glass powder having a softening point of 850 ° C. or lower, preferably 800 ° C. or lower is preferably used. When the softening point of the glass powder is increased, the firing temperature is also increased, so that the inorganic phosphor powder is deteriorated and it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

ガラス粉末としては、例えば、SiO−B系ガラス、SiO−RO系ガラス(ROは、MgO、CaO、SrO、BaOの少なくとも1種を表す)、SiO−B−RO系ガラス、SiO−B−RO系ガラス(ROは、LiO、NaO、KOの少なくとも1種を表す)、SiO−B−Al系ガラス、SiO−B−ZnO系ガラス、ZnO−B系ガラス等を用いることができる。なお、低温焼成を目的とする場合は、比較的低い軟化点(例えば、400℃以下、さらには380℃以下)が得られやすいZnO−B系ガラスまたはSnO−P系ガラスを選択することが好ましい。波長変換部材の耐候性を向上させたい場合は、SiO−B系ガラス、SiO−RO系ガラス、SiO−B2O−RO系ガラス、SiO−B−RO系ガラス、SiO−B−Al系ガラスまたはSiO−B−ZnO系ガラスを選択すればよい。なお本発明において、「〜系ガラス」とは該当する成分を合計50質量%以上含有するガラスをいう。 Examples of the glass powder include SiO 2 —B 2 O 3 glass, SiO 2 —RO glass (RO represents at least one of MgO, CaO, SrO, and BaO), SiO 2 —B 2 O 3 —. RO glass, SiO 2 —B 2 O 3 —R 2 O glass (R 2 O represents at least one of Li 2 O, Na 2 O, and K 2 O), SiO 2 —B 2 O 3 —. Al 2 O 3 glass, SiO 2 —B 2 O 3 —ZnO glass, ZnO—B 2 O 3 glass, or the like can be used. Incidentally, for the purpose of low-temperature firing is relatively low softening point (e.g., 400 ° C. or less, more 380 ° C. or less) is obtained easily ZnO-B 2 O 3 based glass or SnO-P 2 O 5 based glass Is preferably selected. If you want to improve the weather resistance of the wavelength conversion member, SiO 2 -B 2 O 3 based glass, SiO 2 -RO based glass, SiO 2 -B2O 3 -RO based glass, SiO 2 -B 2 O 3 -R 2 O-based glass, SiO 2 -B 2 O 3 -Al 2 O 3 based glass or SiO 2 -B 2 O 3 may be selected -ZnO based glass. In addition, in this invention, "... series glass" means the glass which contains 50 mass% or more of applicable components in total.

SiO−B−RO系ガラスの組成範囲は、質量%で、SiO 30〜70%、B 1〜15%、MgO 0〜10%、CaO 0〜25%、SrO 0〜10%、BaO 8〜40%、RO 10〜45%、Al 0〜20%、ZnO 0〜10%であることが好ましい。また、上記成分以外にも、本発明の主旨を損なわない範囲で種々の成分を添加することができる。例えば、アルカリ金属酸化物(LiO、NaO、KOの少なくとも1種)、P、La等を合量で30%以下の範囲で添加してもよい。 The composition range of the SiO 2 —B 2 O 3 —RO-based glass is mass%, SiO 2 30 to 70%, B 2 O 3 1 to 15%, MgO 0 to 10%, CaO 0 to 25%, SrO 0. ~10%, BaO 8~40%, RO 10~45%, Al 2 O 3 0~20%, is preferably 0% ZnO. In addition to the above components, various components can be added as long as the gist of the present invention is not impaired. For example, an alkali metal oxide (at least one of Li 2 O, Na 2 O, K 2 O), P 2 O 5 , La 2 O 3 and the like may be added in a total amount of 30% or less.

SnO−P系ガラスの組成範囲は、質量%で、SnO 30〜90%、P 10〜60%であることが好ましい。また、上記成分以外にBを0〜30%添加することができる。その他、本発明の主旨を損なわない範囲で種々の成分を添加することができる。例えば、SiO、Al、P、アルカリ金属酸化物、アルカリ土類金属酸化物(MgO、CaO、SrO、BaOの少なくとも1種)等を合量で30%まで添加してもよい。 The composition range of the SnO—P 2 O 5 glass is mass%, and is preferably 30 to 90% SnO and 10 to 60% P 2 O 5 . Further, the B 2 O 3 in addition to the above-mentioned components may be added 0-30%. In addition, various components can be added as long as the gist of the present invention is not impaired. For example, SiO 2 , Al 2 O 3 , P 2 O 5 , alkali metal oxide, alkaline earth metal oxide (at least one of MgO, CaO, SrO, BaO), etc. are added up to a total amount of 30%. Also good.

ガラス粉末の平均粒径D50は0.1〜300μm、特に0.7〜250μmであることが好ましい。ガラス粉末の平均粒径D50が300μmより大きくなると、低温焼成が困難となる傾向がある。一方、平均粒径D50が0.1μmより小さくなると、焼成時に発泡して、波長変換部材の気孔率が大きくなり、発光効率が低下しやすくなる。 The average particle diameter D 50 of the glass powder is 0.1 to 300, it particularly preferably 0.7~250Myuemu. When the average particle diameter D 50 of the glass powder is larger than 300 [mu] m, there is a tendency that low-temperature firing becomes difficult. On the other hand, when the average particle diameter D 50 is smaller than 0.1 [mu] m, and foaming during firing, the porosity of the wavelength conversion member is increased, the emission efficiency tends to decrease.

波長変換部材の発光効率は、ガラス中に分散した無機蛍光体粉末の種類や含有量、および波長変換部材の肉厚によって変化する。波長変換部材の発光効率を高めたい場合、肉厚を薄くして励起光や波長変換された光の透過率を高めたり、無機蛍光体粉末の含有量を増加させて、発光量を増大させることで調整すればよい。ただし、無機蛍光体粉末の含有量が多くなりすぎると、焼結しにくくなって、波長変換部材の気孔率が大きくなる。その結果、励起光が効率良く無機蛍光体粉末に照射されにくくなったり、波長変換部材の機械的強度が低下するおそれがある。一方、無機蛍光体粉末の含有量が少なくなりすぎると、十分に発光が得られにくくなる。したがって、波長変換部材中の無機蛍光体粉末の含有量は0.01〜30質量%、0.05〜20質量%、特に0.08〜15質量%の範囲で調整することが好ましい。   The luminous efficiency of the wavelength conversion member varies depending on the type and content of the inorganic phosphor powder dispersed in the glass and the thickness of the wavelength conversion member. If you want to increase the light emission efficiency of the wavelength conversion member, increase the light emission by increasing the transmittance of excitation light or wavelength converted light by increasing the thickness, or increasing the content of inorganic phosphor powder You can adjust with. However, if the content of the inorganic phosphor powder is too large, sintering becomes difficult and the porosity of the wavelength conversion member increases. As a result, the excitation light may not be efficiently irradiated to the inorganic phosphor powder, and the mechanical strength of the wavelength conversion member may be reduced. On the other hand, if the content of the inorganic phosphor powder is too small, it becomes difficult to obtain sufficient light emission. Therefore, the content of the inorganic phosphor powder in the wavelength conversion member is preferably adjusted in the range of 0.01 to 30% by mass, 0.05 to 20% by mass, and particularly 0.08 to 15% by mass.

混合粉末としては、ガラス粉末および無機蛍光体粉末のみからなるものを用いてもよいが、それ以外にも、本発明の効果を損なわない範囲で、高軟化点ガラス、あるいはアルミナ、シリカ等の結晶粉末などの無機粉末を、波長変換部材の強度向上や色合い、配向性、散乱性の調節等の目的で含有しても構わない。これらの無機粉末の含有量は、波長変換部材中において、合量で0.01〜50質量%、特に0.05〜20質量%であることが好ましい。   As the mixed powder, one composed only of glass powder and inorganic phosphor powder may be used, but other than that, high softening point glass or crystals such as alumina and silica are used as long as the effects of the present invention are not impaired. You may contain inorganic powders, such as a powder, for the purpose of the intensity | strength improvement of a wavelength conversion member, adjustment of a hue, orientation, scattering property, etc. The content of these inorganic powders in the wavelength conversion member is preferably 0.01 to 50% by mass, particularly 0.05 to 20% by mass in total.

半導体発光素子は、波長350〜430nmの紫外光あるいは近紫外光や波長430〜480nmの青色光のLEDまたはLDであることが好ましい。無機蛍光体のなかには紫外光(あるいは近紫外光)または青色光により励起され発光し、効率的に白色光が得られるものが多数存在するため、LEDおよびLDによる狭い波長帯域の光で効率よく励起することができる。   The semiconductor light emitting element is preferably an LED or LD of ultraviolet light with a wavelength of 350 to 430 nm or near ultraviolet light or blue light with a wavelength of 430 to 480 nm. Many inorganic phosphors emit light when excited by ultraviolet light (or near ultraviolet light) or blue light, and can efficiently obtain white light, so they are efficiently excited by light in a narrow wavelength band by LEDs and LDs. can do.

ボンディングワイヤの直径は、強度、作業性、コストなどの観点から、10〜50μm、さらには20〜40μmであることが好ましい。ボンディングワイヤの材質としては、電気伝導性や機械的強度等の観点から、銅、金、白金、アルミニウム、またはこれらの合金などを用いることが好ましい。   The diameter of the bonding wire is preferably 10 to 50 μm, more preferably 20 to 40 μm, from the viewpoints of strength, workability, cost, and the like. As a material for the bonding wire, it is preferable to use copper, gold, platinum, aluminum, or an alloy thereof from the viewpoint of electrical conductivity, mechanical strength, and the like.

以下に本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1〜3および比較例1、2)
質量%で、SiO 60%、B 10%、BaO 10%、CaO 20%の組成を有するSiO−B−RO系ガラス粉末(軟化点820℃、平均粒径D50:2.5μm)、または、質量%で、SnO 70%、P 20%、B 5%、MgO 5%の組成を有するSnO−P系ガラス粉末(軟化点350℃、平均粒径D50:15μm)に対して、表1および2に記載の無機蛍光体粉末を添加して混合粉末とし、円柱状にプレス成型して予備成型体を得た。得られた予備成型体を、200Paの減圧雰囲気下にて表1および2に記載の焼成温度で30分間焼結し、平板状(円盤状)の波長変換部材を得た。
The present invention will be described in detail below based on examples, but the present invention is not limited to these examples.
(Examples 1 to 3 and Comparative Examples 1 and 2)
SiO 2 —B 2 O 3 —RO glass powder (softening point 820 ° C., average particle diameter D 50) having a composition of 60% by mass, SiO 2 60%, B 2 O 3 10%, BaO 10%, CaO 20%. : 2.5 μm), or SnO—P 2 O 5 glass powder (softening point 350) having a composition of SnO 70%, P 2 O 5 20%, B 2 O 3 5%, MgO 5% in mass%. ° C., an average particle diameter D 50: with respect to 15 [mu] m), with the addition of inorganic phosphor powder according to tables 1 and 2 and mixed powder to obtain a preform by press molding into a cylindrical shape. The obtained preform was sintered for 30 minutes at a firing temperature described in Tables 1 and 2 under a reduced-pressure atmosphere of 200 Pa to obtain a plate-shaped (disc-shaped) wavelength conversion member.

得られた波長変換部材に対して、フェムト秒レーザー照射装置(サイバーレーザー社製)を用いて切削加工を行うことにより、図2(d)に示すような楕円形の開口部(短径50μm)を形成した。一方、比較例1および2では波長変換部材に開口部を形成しなかった。上記方法にて作製した波長変換部材を、実施例1〜3については図1に示すように、比較例1および2については図8に示すように、ワイヤーボンディングで実装された青色半導体発光素子(励起波長450nm)上に設置し、白色半導体発光素子デバイスを作製した。半導体発光素子と波長変換部材の距離は電子顕微鏡(SEM)にて観察し測定した。   The obtained wavelength conversion member is cut using a femtosecond laser irradiation device (manufactured by Cyber Laser Co., Ltd.), so that an elliptical opening (short diameter: 50 μm) as shown in FIG. Formed. On the other hand, in Comparative Examples 1 and 2, no opening was formed in the wavelength conversion member. As shown in FIG. 1 for Examples 1 to 3 and as shown in FIG. 8 for Comparative Examples 1 and 2, the wavelength conversion member produced by the above method was mounted on a blue semiconductor light emitting element (see FIG. 8). (Excitation wavelength: 450 nm), and a white semiconductor light emitting device was produced. The distance between the semiconductor light emitting element and the wavelength conversion member was observed and measured with an electron microscope (SEM).

得られた白色半導体発光素子デバイスを校正された積分球内で発光させ、その発光スペクトルを小型分光機(オーシャンフォトニクス社製、USB2000)を通してPC上に取り込んだ。得られた発光スペクトルから標準比視感度を掛け合わせた後、全光束値(lm)を算出した。発光効率は、全光束値を光源の電力で除することにより算出した。結果を表1および2示す。   The obtained white semiconductor light-emitting element device was allowed to emit light in a calibrated integrating sphere, and the emission spectrum was captured on a PC through a small spectroscope (Ocean Photonics, USB2000). After multiplying the standard luminous efficiency from the obtained emission spectrum, the total luminous flux value (lm) was calculated. The luminous efficiency was calculated by dividing the total luminous flux value by the power of the light source. The results are shown in Tables 1 and 2.

表1および2から明らかなように、実施例1〜3の半導体発光素子デバイスは、波長変換部材と半導体発光素子の距離を小さくすることができるため、優れた発光効率を示すことがわかる。   As is clear from Tables 1 and 2, it can be seen that the semiconductor light emitting device of Examples 1 to 3 has excellent luminous efficiency because the distance between the wavelength conversion member and the semiconductor light emitting device can be reduced.

1 半導体発光素子デバイス
2 基板
3 半導体発光素子
4 波長変換部材
5 ボンディングワイヤ
6 リード電極
O 開口部
C 切り欠け部
DESCRIPTION OF SYMBOLS 1 Semiconductor light-emitting device 2 Board | substrate 3 Semiconductor light-emitting device 4 Wavelength conversion member 5 Bonding wire 6 Lead electrode O Opening part C Notch part

Claims (7)

半導体発光素子と、半導体発光素子とリード電極とを電気的に接続するボンディングワイヤと、半導体発光素子の上方に設置され、かつ半導体発光素子が発する光の一部の波長を変換する波長変換部材とを具備する半導体発光素子デバイスであって、
波長変換部材には開口部および/または切り欠け部が形成されており、かつボンディングワイヤの少なくとも一部が、当該開口部および/または切り欠け部を貫通していることを特徴とする半導体発光素子デバイス。
A semiconductor light-emitting element; a bonding wire that electrically connects the semiconductor light-emitting element and the lead electrode; and a wavelength conversion member that is installed above the semiconductor light-emitting element and converts a part of the wavelength of light emitted from the semiconductor light-emitting element. A semiconductor light emitting device comprising:
An opening and / or a notch is formed in the wavelength conversion member, and at least a part of the bonding wire penetrates the opening and / or the notch. device.
波長変換部材と半導体発光素子の距離が800μm以下であることを特徴とする請求項1に記載の半導体発光素子デバイス。   The semiconductor light emitting element device according to claim 1, wherein a distance between the wavelength conversion member and the semiconductor light emitting element is 800 μm or less. 開口部および/または切り欠け部が、レーザー加工により形成されたものであることを特徴とする請求項1または2に記載の半導体発光素子デバイス。   3. The semiconductor light-emitting element device according to claim 1, wherein the opening and / or the notch is formed by laser processing. 波長変換部材が、ガラス粉末と無機蛍光体粉末を含む混合粉末の焼結物からなることを特徴とする請求項1〜3のいずれかに記載の半導体発光素子デバイス。   The semiconductor light-emitting element device according to any one of claims 1 to 3, wherein the wavelength conversion member is made of a sintered product of mixed powder containing glass powder and inorganic phosphor powder. 半導体発光素子デバイスにおける半導体発光素子の上方に設置して用いられ、半導体発光素子が発する光の一部の波長を変換するための波長変換部材であって、半導体発光素子とリード電極とを電気的に接続するボンディングワイヤを貫通させるための開口部および/または切り欠け部が形成されていることを特徴とする波長変換部材。   A wavelength conversion member that is used by being installed above a semiconductor light emitting element in a semiconductor light emitting element device and converts a part of the wavelength of light emitted from the semiconductor light emitting element, and electrically connects the semiconductor light emitting element and the lead electrode. A wavelength conversion member, wherein an opening and / or a notch for penetrating a bonding wire connected to the substrate is formed. 開口部および/または切り欠け部が、レーザー加工により形成されたものであることを特徴とする請求項5に記載の波長変換部材。   The wavelength conversion member according to claim 5, wherein the opening and / or the notch is formed by laser processing. ガラス粉末と無機蛍光体粉末を含む混合粉末の焼結物からなることを特徴とする請求項5または6に記載の波長変換部材。   The wavelength conversion member according to claim 5 or 6, comprising a sintered product of a mixed powder containing glass powder and inorganic phosphor powder.
JP2009062086A 2009-03-13 2009-03-13 Semiconductor light emitting element device Pending JP2010219166A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009062086A JP2010219166A (en) 2009-03-13 2009-03-13 Semiconductor light emitting element device
PCT/JP2010/052502 WO2010103902A1 (en) 2009-03-13 2010-02-19 Semiconductor light-emitting element device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009062086A JP2010219166A (en) 2009-03-13 2009-03-13 Semiconductor light emitting element device

Publications (1)

Publication Number Publication Date
JP2010219166A true JP2010219166A (en) 2010-09-30

Family

ID=42728194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009062086A Pending JP2010219166A (en) 2009-03-13 2009-03-13 Semiconductor light emitting element device

Country Status (2)

Country Link
JP (1) JP2010219166A (en)
WO (1) WO2010103902A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119407A (en) * 2010-11-30 2012-06-21 Nippon Electric Glass Co Ltd Wavelength conversion element and light source equipped with it
JP2013016588A (en) * 2011-07-01 2013-01-24 Citizen Electronics Co Ltd Led light-emitting device
JP2013197325A (en) * 2012-03-21 2013-09-30 Nippon Electric Glass Co Ltd Wavelength conversion member and light-emitting device
WO2014119295A1 (en) * 2013-01-31 2014-08-07 パナソニック株式会社 Light emitting device fabrication method and fabrication device
JP2014203899A (en) * 2013-04-03 2014-10-27 日本電気硝子株式会社 Wavelength conversion material, wavelength conversion member and light-emitting device
JP2015046513A (en) * 2013-08-28 2015-03-12 日亜化学工業株式会社 Wavelength conversion member, light-emitting device, and method of manufacturing light-emitting device
JP2015076568A (en) * 2013-10-11 2015-04-20 日本電気硝子株式会社 Method for manufacturing wavelength conversion member
US9638396B2 (en) 2010-11-18 2017-05-02 Nippon Electric Glass Co., Ltd. Wavelength conversion element and light source provided with same
JP2018148206A (en) * 2017-03-03 2018-09-20 光感動股▲ふん▼有限公司Ison Corporation Optical semiconductor device and package of optical semiconductor device
US10972707B2 (en) 2017-01-24 2021-04-06 Olympus Corporation Endoscope and method of manufacturing endoscope

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095849A (en) * 2011-11-01 2013-05-20 Nippon Electric Glass Co Ltd Wavelength conversion member and light emitting device using the same
DE102013207564A1 (en) * 2013-04-25 2014-10-30 Osram Opto Semiconductors Gmbh Wavelength-converting element, optoelectronic component and printing template

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158012B2 (en) * 2002-03-06 2008-10-01 日本電気硝子株式会社 Luminescent color conversion member
JP2007053320A (en) * 2005-08-19 2007-03-01 Matsushita Electric Works Ltd Led lighting device
CN101248535B (en) * 2005-08-24 2011-09-07 皇家飞利浦电子股份有限公司 Light emitting diodes and lasers diodes with color converters

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638396B2 (en) 2010-11-18 2017-05-02 Nippon Electric Glass Co., Ltd. Wavelength conversion element and light source provided with same
JP2012119407A (en) * 2010-11-30 2012-06-21 Nippon Electric Glass Co Ltd Wavelength conversion element and light source equipped with it
JP2013016588A (en) * 2011-07-01 2013-01-24 Citizen Electronics Co Ltd Led light-emitting device
JP2013197325A (en) * 2012-03-21 2013-09-30 Nippon Electric Glass Co Ltd Wavelength conversion member and light-emitting device
JPWO2014119295A1 (en) * 2013-01-31 2017-01-26 パナソニックIpマネジメント株式会社 Method for manufacturing light emitting device
CN104956503A (en) * 2013-01-31 2015-09-30 松下知识产权经营株式会社 Light emitting device fabrication method and fabrication device
US9553230B2 (en) 2013-01-31 2017-01-24 Panasonic Intellectual Property Management Co., Ltd. Method and apparatus for fabricating light emitting apparatus
WO2014119295A1 (en) * 2013-01-31 2014-08-07 パナソニック株式会社 Light emitting device fabrication method and fabrication device
JP2014203899A (en) * 2013-04-03 2014-10-27 日本電気硝子株式会社 Wavelength conversion material, wavelength conversion member and light-emitting device
JP2015046513A (en) * 2013-08-28 2015-03-12 日亜化学工業株式会社 Wavelength conversion member, light-emitting device, and method of manufacturing light-emitting device
JP2015076568A (en) * 2013-10-11 2015-04-20 日本電気硝子株式会社 Method for manufacturing wavelength conversion member
US10972707B2 (en) 2017-01-24 2021-04-06 Olympus Corporation Endoscope and method of manufacturing endoscope
JP2018148206A (en) * 2017-03-03 2018-09-20 光感動股▲ふん▼有限公司Ison Corporation Optical semiconductor device and package of optical semiconductor device

Also Published As

Publication number Publication date
WO2010103902A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
WO2010103902A1 (en) Semiconductor light-emitting element device
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
JP5147997B2 (en) Light emitting device, light bulb shaped lamp and lighting device
WO2012053134A1 (en) Mounting board, light emitting device and lamp
WO2009128468A1 (en) White light-emitting device, backlight, liquid crystal display device and illuminating device
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP5842178B2 (en) Light source device and lighting device
KR102422065B1 (en) Wavelength conversion member and light emitting device using same
JP5828065B2 (en) Light source device and lighting device
WO2010021367A1 (en) Light-emitting device
JP2014197707A (en) White led lamp, backlight and luminaire
JP2004115633A (en) Silicate phosphor and light-emitting unit therewith
KR20220104069A (en) Wavelength conversion member, and light emitting device using same
JP2007165787A (en) Light emitting device and method for manufacturing the same
JP5505864B2 (en) Manufacturing method of semiconductor light emitting device
TW201108470A (en) Light-emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2009070892A (en) Led light source
JP2009277997A (en) Mixed glass powder for coating light-emitting element, glass-coated light-emitting element, and glass-coated light-emitting device
JP6222441B2 (en) Method for manufacturing wavelength conversion member
JP2014003070A (en) Light-emitting device and lighting apparatus
WO2014068907A1 (en) Phosphor, wavelength conversion member, and fluorescence device
JP2019029648A (en) Wavelength conversion member and light emitting device
US11072555B2 (en) Glass member
JP6861952B2 (en) Wavelength conversion member and light emitting device using it