JP2015076568A - Method for manufacturing wavelength conversion member - Google Patents

Method for manufacturing wavelength conversion member Download PDF

Info

Publication number
JP2015076568A
JP2015076568A JP2013213569A JP2013213569A JP2015076568A JP 2015076568 A JP2015076568 A JP 2015076568A JP 2013213569 A JP2013213569 A JP 2013213569A JP 2013213569 A JP2013213569 A JP 2013213569A JP 2015076568 A JP2015076568 A JP 2015076568A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
green sheet
opening
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013213569A
Other languages
Japanese (ja)
Other versions
JP6222441B2 (en
Inventor
芳夫 馬屋原
Yoshio Umayahara
芳夫 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013213569A priority Critical patent/JP6222441B2/en
Publication of JP2015076568A publication Critical patent/JP2015076568A/en
Application granted granted Critical
Publication of JP6222441B2 publication Critical patent/JP6222441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing a wavelength conversion member having an opening and a notched portion while suppressing the occurrence of fracture or crack.SOLUTION: A method for manufacturing a wavelength conversion member having an opening and/or a notched portion formed therein comprises the steps of: preparing a green sheet including glass powder and inorganic phosphor powder; processing the green sheet to form the opening and/or the notched portion; and baking the green sheet after the processing.

Description

本発明は、LED(発光ダイオード)、LD(レーザーダイオード)等の半導体発光素子が発する光の一部の波長を別の波長に変換し、主に白色光を照射するための波長変換部材の製造方法に関する。   The present invention manufactures a wavelength conversion member for converting a part of light emitted from a semiconductor light emitting element such as an LED (light emitting diode) or an LD (laser diode) into another wavelength and mainly irradiating white light. Regarding the method.

近年、白色LED等の半導体発光素子デバイスは、白熱電球や蛍光灯に代わる次世代の光源として注目されている。一般に、白色LEDは、無機蛍光体粉末と樹脂の混合物を励起LEDチップ上に被覆モールドした構造を有している。しかしながら、LEDチップから照射される熱や光は、限られた部分に集中的に照射されるため、被覆モールドに用いられる樹脂が容易に着色あるいは変形してしまう。そのため、短期間で発光色の変化が起こり、半導体発光素子デバイスとしての寿命が短いという問題がある。LEDチップの高出力化に伴ってこの問題は深刻化すると考えられており、耐熱性に優れる半導体発光素子デバイスの開発が望まれていた。   In recent years, semiconductor light-emitting element devices such as white LEDs have attracted attention as next-generation light sources that replace incandescent bulbs and fluorescent lamps. In general, a white LED has a structure in which a mixture of an inorganic phosphor powder and a resin is coated and molded on an excitation LED chip. However, since the heat and light emitted from the LED chip are intensively applied to a limited portion, the resin used for the coating mold is easily colored or deformed. Therefore, there is a problem that the emission color changes in a short period of time and the lifetime as a semiconductor light emitting device is short. This problem is considered to be serious with the increase in output of the LED chip, and the development of a semiconductor light emitting element device having excellent heat resistance has been desired.

これに対し、樹脂マトリクスを用いない無機固体からなる波長変換部材を使用したLEDデバイスが提案されている(例えば、特許文献1参照)。当該波長変換部材は優れた耐熱性を有し、熱劣化がほとんど生じない。特許文献1に開示されている波長変換部材は、ガラス粉末及び無機蛍光体粉末の混合物を金型に充填し、軟化点付近で熱処理(焼結)することで、例えば板状成型体として提供される。   On the other hand, the LED device using the wavelength conversion member which consists of inorganic solid which does not use a resin matrix is proposed (for example, refer patent document 1). The wavelength conversion member has excellent heat resistance and hardly undergoes thermal degradation. The wavelength conversion member disclosed in Patent Document 1 is provided, for example, as a plate-shaped molded body by filling a mold with a mixture of glass powder and inorganic phosphor powder and heat-treating (sintering) in the vicinity of the softening point. The

板状の波長変換部材を用いた従来の半導体発光素子デバイスを図5に示す。図5に示すように、半導体発光素子デバイス1において、半導体発光素子2はボンディングワイヤ3を用いて基板4上のリード電極(図示せず)と電気的に接続されている。ここで、波長変換部材5を半導体発光素子2上に実装する場合、ボンディングワイヤ3が波長変換部材5と半導体発光素子2の接近を阻害してしまい、実装の自由度の低下を招く。加えて、半導体発光素子2と波長変換部材5の距離Dが大きくなることにより、半導体発光素子2から発せられた光の、波長変換部材5への入射効率が低下するという問題もある。   FIG. 5 shows a conventional semiconductor light emitting element device using a plate-like wavelength conversion member. As shown in FIG. 5, in the semiconductor light emitting device 1, the semiconductor light emitting device 2 is electrically connected to a lead electrode (not shown) on the substrate 4 using a bonding wire 3. Here, when the wavelength conversion member 5 is mounted on the semiconductor light emitting element 2, the bonding wire 3 obstructs the approach between the wavelength conversion member 5 and the semiconductor light emitting element 2, thereby reducing the degree of mounting freedom. In addition, since the distance D between the semiconductor light emitting element 2 and the wavelength conversion member 5 is increased, there is a problem that the efficiency of incidence of light emitted from the semiconductor light emitting element 2 on the wavelength conversion member 5 is lowered.

さらに、半導体発光素子2と波長変換部材5の間にボンディングワイヤ3が存在することにより、半導体発光素子2から発せられた光をボンディングワイヤ3が吸収したり、ボンディングワイヤ3の影が波長変換部材5に投影されたりして、光束値が低下するという問題もある。   Further, since the bonding wire 3 is present between the semiconductor light emitting element 2 and the wavelength conversion member 5, the bonding wire 3 absorbs light emitted from the semiconductor light emitting element 2, and the shadow of the bonding wire 3 is changed to the wavelength conversion member. There is also a problem that the luminous flux value is lowered due to the projection onto the image.

上記問題を解消するため、ボンディングワイヤを貫通させるための、開口部または切り欠け部が形成された波長変換部材が提案されている(例えば、特許文献2参照)。ボンディングワイヤが波長変換部材に形成された開口部または切り欠け部に貫通するように配置すれば、発光素子と波長変換部材の距離Dを小さくすることが可能となり、光束値の低下を抑制することができる。   In order to solve the above problem, there has been proposed a wavelength conversion member in which an opening or a notch for forming a bonding wire is formed (see, for example, Patent Document 2). If the bonding wire is disposed so as to penetrate through the opening or notch formed in the wavelength conversion member, the distance D between the light emitting element and the wavelength conversion member can be reduced, and the decrease in the luminous flux value can be suppressed. Can do.

特開2003−258308号公報JP 2003-258308 A 特開2010−141273号公報JP 2010-141273 A

特許文献2では、波長変換部材に開口部または切り欠け部を形成する方法として、機械加工やレーザー加工が挙げられている。しかしながら、無機固体からなる波長変換部材に機械加工を施すと、割れやクラックが発生しやすいという問題がある。特に、波長変換部材の厚みが薄い場合は、その問題が顕著に表れやすい。一方、レーザー加工は、割れやクラックの発生が比較的起こりにくいものの、加工に時間がかかり、効率に劣るといった問題がある。   In Patent Document 2, machining or laser processing is cited as a method of forming an opening or notch in the wavelength conversion member. However, when a wavelength conversion member made of an inorganic solid is machined, there is a problem that cracks and cracks are likely to occur. In particular, when the wavelength conversion member is thin, the problem is likely to appear remarkably. On the other hand, although laser processing is relatively difficult to generate cracks and cracks, there is a problem that processing takes time and is inefficient.

以上に鑑み、本発明は、開口部や切り欠け部を有する波長変換部材を、割れやクラックの発生を抑制しつつ、効率良く製造する方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a method for efficiently producing a wavelength conversion member having an opening or a notch while suppressing the occurrence of cracks and cracks.

本発明の波長変換部材の製造方法は、開口部及び/または切り欠け部が形成された波長変換部材を製造するための方法であって、ガラス粉末と無機蛍光体粉末を含有するグリーンシートを準備する工程、グリーンシートに加工を施し、開口部及び/または切り欠け部を形成する工程、及び、加工後のグリーンシートを焼成する工程、を含むことを特徴とする。   The method for producing a wavelength conversion member of the present invention is a method for producing a wavelength conversion member having an opening and / or a notch, and a green sheet containing glass powder and inorganic phosphor powder is prepared. And a step of processing the green sheet to form an opening and / or a notch, and a step of firing the processed green sheet.

本発明の波長変換部材の製造方法において、グリーンシートの加工を、メカニカルパンチングまたはレーザーパンチングにより行うことが好ましい。   In the method for producing a wavelength conversion member of the present invention, the green sheet is preferably processed by mechanical punching or laser punching.

本発明によれば、開口部や切り欠け部を有する波長変換部材を、割れやクラックの発生を抑制しつつ、効率良く製造する方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method of manufacturing efficiently the wavelength conversion member which has an opening part and a notch part, suppressing generation | occurrence | production of a crack and a crack can be provided.

(a)本発明の製造方法により作製された波長変換部材の第一の実施形態を示す平面図である。(b)本発明の製造方法により作製された波長変換部材の第二の実施形態を示す平面図である。(c)本発明の製造方法により作製された波長変換部材の第三の実施形態を示す平面図である。(d)本発明の製造方法により作製された波長変換部材の第四の実施形態を示す平面図である。(A) It is a top view which shows 1st embodiment of the wavelength conversion member produced by the manufacturing method of this invention. (B) It is a top view which shows 2nd embodiment of the wavelength conversion member produced by the manufacturing method of this invention. (C) It is a top view which shows 3rd embodiment of the wavelength conversion member produced by the manufacturing method of this invention. (D) It is a top view which shows 4th embodiment of the wavelength conversion member produced by the manufacturing method of this invention. 図1の波長変換部材を用いた半導体発光素子デバイスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the semiconductor light-emitting device using the wavelength conversion member of FIG. (a)本発明の製造方法により作製された波長変換部材の第五の実施形態を示す平面図である。(b)本発明の製造方法により作製された波長変換部材の第六の実施形態を示す平面図である。(c)本発明の製造方法により作製された波長変換部材の第七の実施形態を示す平面図である。(A) It is a top view which shows 5th embodiment of the wavelength conversion member produced by the manufacturing method of this invention. (B) It is a top view which shows 6th embodiment of the wavelength conversion member produced by the manufacturing method of this invention. (C) It is a top view which shows 7th embodiment of the wavelength conversion member produced by the manufacturing method of this invention. 図3の波長変換部材を用いた半導体発光素子デバイスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the semiconductor light-emitting element device using the wavelength conversion member of FIG. 従来の半導体発光素子デバイスを示す断面図である。It is sectional drawing which shows the conventional semiconductor light-emitting device.

本発明の波長変換部材の製造方法は、開口部及び/または切り欠け部が形成された波長変換部材を製造するための方法に関する。   The manufacturing method of the wavelength conversion member of this invention is related with the method for manufacturing the wavelength conversion member in which the opening part and / or the notch part were formed.

開口部及び/または切り欠け部が形成された波長変換部材の第一〜第四の実施形態を図1(a)〜(d)に示す。図1に示すように、波長変換部材5には開口部Oまたは切り欠け部Cが設けられている。   1st-4th embodiment of the wavelength conversion member in which the opening part and / or the notch part were formed is shown to Fig.1 (a)-(d). As shown in FIG. 1, the wavelength conversion member 5 is provided with an opening O or a notch C.

図2に、図1の波長変換部材を用いた半導体発光素子デバイスの一実施形態を示す断面図を示す。図2に示すように、半導体発光素子2は基板4上に設置されており、2本のアーチ状のボンディングワイヤ3により基板4上のリード電極(図示せず)と電気的に接続されている。さらに、板状の波長変換部材5が半導体発光素子2の上方に設置されている。なお、図2では示していないが、通常、波長変換部材5は、ケーシングやカップ上に設置して用いられる。ここで、半導体発光素子2と接続したボンディングワイヤ3は、一旦開口部Oまたは切り欠け部Cを貫通した後、波長変換部材5上でアーチ状に屈曲し、再び開口部Oまたは切り欠け部Cを貫通して基板4上のリード電極と接続する構造を有している。   FIG. 2 is a sectional view showing an embodiment of a semiconductor light emitting device using the wavelength conversion member of FIG. As shown in FIG. 2, the semiconductor light emitting element 2 is installed on the substrate 4 and is electrically connected to a lead electrode (not shown) on the substrate 4 by two arch-shaped bonding wires 3. . Further, a plate-like wavelength conversion member 5 is installed above the semiconductor light emitting element 2. Although not shown in FIG. 2, the wavelength conversion member 5 is usually used by being installed on a casing or a cup. Here, the bonding wire 3 connected to the semiconductor light emitting element 2 once passes through the opening O or the notch C, then bends in an arch shape on the wavelength conversion member 5, and again opens the opening O or the notch C. Is connected to the lead electrode on the substrate 4.

開口部及び/または切り欠け部が形成された波長変換部材の第五〜第七の実施形態を図3(a)〜(d)に示す。図3に示すように、波長変換部材1には開口部Oまたは切り欠け部Cが設けられている。   FIGS. 3A to 3D show fifth to seventh embodiments of the wavelength conversion member in which the opening and / or the notch are formed. As shown in FIG. 3, the wavelength conversion member 1 is provided with an opening O or a notch C.

図4に、図3の波長変換部材を用いた半導体発光素子デバイスの一実施形態を示す断面図を示す。本実施形態では、2本のボンディングワイヤ3がそれぞれ1箇所ずつの開口部Oまたは切り欠け部Cを貫通して波長変換部材5の上方に突出し、アーチ状に屈曲した後、波長変換部材5の外側を通って、すなわち、再び開口部Oや切り欠け部Cを貫通することなくリード電極と接続している。   FIG. 4 is a cross-sectional view showing one embodiment of a semiconductor light emitting device using the wavelength conversion member of FIG. In the present embodiment, the two bonding wires 3 pass through one opening O or notch C, protrude above the wavelength conversion member 5, bend in an arch shape, and then the wavelength conversion member 5. The lead electrode is connected to the lead electrode through the outside, that is, without penetrating the opening O and the notch C again.

なお、波長変換部材に形成される開口部の形状は特に限定されず、円形や楕円形以外に、長方形、三角形等の多角形であってもよい。また、切り欠け部の形状も特に限定されず、円形の一部(半円形等)、楕円形の一部(半楕円形等)、三角形、長方形等の多角形等から適宜選択される。   In addition, the shape of the opening part formed in a wavelength conversion member is not specifically limited, Polygons, such as a rectangle and a triangle, may be sufficient besides circular and an ellipse. Further, the shape of the cutout portion is not particularly limited, and is appropriately selected from a part of a circle (such as a semicircle), a part of an ellipse (such as a half ellipse), a polygon such as a triangle and a rectangle.

既述のように、波長変換部材に形成される開口部及び切り欠け部の大きさは、光変換効率の観点からなるべく小さいほうが好ましい。例えば、開口部(または切り欠け部)が円形(または円形の一部)の場合、直径は100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましい。下限は特に限定されないが、現実的には、10μm以上、さらには30μm以上である。開口部(または切り欠け部)が楕円形(または楕円形の一部)の場合、短径は100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましい。下限は特に限定されないが、現実的には、10μm以上、さらには30μm以上である。開口部(または切り欠け部)が長方形の場合、短辺は100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましい。下限は特に限定されないが、現実的には、10μm以上、さらには30μm以上である。   As described above, it is preferable that the size of the opening and notch formed in the wavelength conversion member is as small as possible from the viewpoint of light conversion efficiency. For example, when the opening (or notch) is circular (or part of a circle), the diameter is preferably 100 μm or less, more preferably 80 μm or less, and even more preferably 60 μm or less. Although a minimum is not specifically limited, Actually, it is 10 micrometers or more, Furthermore, it is 30 micrometers or more. When the opening (or notch) is elliptical (or part of an elliptical shape), the minor axis is preferably 100 μm or less, more preferably 80 μm or less, and even more preferably 60 μm or less. Although a minimum is not specifically limited, Actually, it is 10 micrometers or more, Furthermore, it is 30 micrometers or more. When the opening (or notch) is rectangular, the short side is preferably 100 μm or less, more preferably 80 μm or less, and even more preferably 60 μm or less. Although a minimum is not specifically limited, Actually, it is 10 micrometers or more, Furthermore, it is 30 micrometers or more.

なお、波長変換部材には開口部と切り欠け部の両方が形成されていても構わない。   In addition, both the opening part and the notch part may be formed in the wavelength conversion member.

波長変換部材の厚みは特に限定されないが、0.05〜1mmが好ましく、0.08〜0.5mmがより好ましく、0.1〜0.2mmがさらに好ましい。波長変換部材の厚みが小さすぎると、機械的強度に劣るとともに、製造及び加工が困難となる。一方、波長変換部材の厚みが大きすぎると、半導体発光素子から照射される光が透過しにくくなり、光束値が低下する傾向がある。   Although the thickness of a wavelength conversion member is not specifically limited, 0.05-1 mm is preferable, 0.08-0.5 mm is more preferable, 0.1-0.2 mm is further more preferable. When the thickness of the wavelength conversion member is too small, the mechanical strength is inferior, and manufacturing and processing become difficult. On the other hand, when the thickness of the wavelength conversion member is too large, the light emitted from the semiconductor light emitting element is difficult to transmit and the light flux value tends to decrease.

波長変換部材の大きさは特に限定されず、半導体発光素子デバイスに要求される仕様に応じて適宜選択される。具体的には、波長変換部材の大きさ(面積)は、0.1〜10000mm、0.5〜1000mm、特に1〜100mmの範囲で選択される。例えば、平面形状が長方形の場合、0.5×0.5mm〜50×50mm、0.6×0.6mm〜10×10mm、特に0.8×0.8mm〜5×5mmの範囲で選択される。平面形状が円形の場合、直径が0.5〜50mm、0.6〜10mm、特に0.8〜5mmの範囲で選択される。 The size of the wavelength conversion member is not particularly limited, and is appropriately selected according to specifications required for the semiconductor light emitting device. Specifically, the size of the wavelength conversion member (area), 0.1~10000mm 2, 0.5~1000mm 2, in particular selected in the range of 1 to 100 mm 2. For example, when the planar shape is rectangular, it is selected in the range of 0.5 × 0.5 mm to 50 × 50 mm, 0.6 × 0.6 mm to 10 × 10 mm, particularly 0.8 × 0.8 mm to 5 × 5 mm. The When the planar shape is circular, the diameter is selected in the range of 0.5 to 50 mm, 0.6 to 10 mm, particularly 0.8 to 5 mm.

本発明の波長変換部材の製造方法は、ガラス粉末と無機蛍光体粉末を含有するグリーンシートを準備する工程、グリーンシートに加工を施し、開口部及び/または切り欠け部を形成する工程、及び、加工後のグリーンシートを焼成する工程、を含むことを特徴とする。以下、本発明の波長変換部材の製造方法を、各工程毎に詳細に説明する。   The method for producing a wavelength conversion member of the present invention includes a step of preparing a green sheet containing glass powder and inorganic phosphor powder, a step of processing the green sheet to form an opening and / or a notch, and A step of firing the green sheet after processing. Hereinafter, the manufacturing method of the wavelength conversion member of this invention is demonstrated in detail for every process.

(グリーンシート準備工程)
本発明において使用するガラス粉末には、無機蛍光体粉末を安定に保持するための媒体としての役割がある。使用するガラス組成系によって無機蛍光体粉末との反応性に差が出るため、種々の条件を考慮して、使用するガラス組成を選択する必要がある。
(Green sheet preparation process)
The glass powder used in the present invention has a role as a medium for stably holding the inorganic phosphor powder. Since the reactivity with the inorganic phosphor powder varies depending on the glass composition system to be used, it is necessary to select the glass composition to be used in consideration of various conditions.

ガラス粉末としては、無機蛍光体粉末と反応しにくいものであれば、特に制限はないが、850℃以下、好ましくは800℃以下の軟化点を有するものを用いることが好ましい。ガラス粉末の軟化点が高くなると、焼成温度も高くなるため、無機蛍光体粉末が劣化して、発光効率の高い波長変換部材が得られにくくなる。   The glass powder is not particularly limited as long as it does not easily react with the inorganic phosphor powder, but a glass powder having a softening point of 850 ° C. or lower, preferably 800 ° C. or lower is preferably used. When the softening point of the glass powder is increased, the firing temperature is also increased, so that the inorganic phosphor powder is deteriorated and it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

ガラス粉末としては、例えば、SiO−B系ガラス、SiO−RO系ガラス(Rは、Mg、Ca、Sr及びBaから選択される少なくとも1種)、SiO−B−RO系ガラス、SiO−B−R’O系ガラス(R’は、Li、Na及びKから選択される少なくとも1種)、SiO−B−Al系ガラス、SiO−B−ZnO系ガラス、ZnO−B系ガラス等を用いることができる。なお、低温焼成を目的とする場合は、比較的低い軟化点(例えば、400℃以下、さらには380℃以下)が得られやすいZnO−B系ガラスまたはSnO−P系ガラスを選択することが好ましい。波長変換部材の耐候性を向上させたい場合は、SiO−B系ガラス、SiO−RO系ガラス、SiO−B−RO系ガラス、SiO−B−R’O系ガラス、SiO−B−Al系ガラスまたはSiO−B−ZnO系ガラスを選択すればよい。 Examples of the glass powder include SiO 2 —B 2 O 3 glass, SiO 2 —RO glass (R is at least one selected from Mg, Ca, Sr and Ba), SiO 2 —B 2 O 3. -RO based glass, SiO 2 -B 2 O 3 -R '2 O -based glass (R' is at least one selected Li, from Na and K), SiO 2 -B 2 O 3 -Al 2 O 3 Glass, SiO 2 —B 2 O 3 —ZnO glass, ZnO—B 2 O 3 glass, or the like can be used. Incidentally, for the purpose of low-temperature firing is relatively low softening point (e.g., 400 ° C. or less, more 380 ° C. or less) is obtained easily ZnO-B 2 O 3 based glass or SnO-P 2 O 5 based glass Is preferably selected. When it is desired to improve the weather resistance of the wavelength conversion member, SiO 2 —B 2 O 3 glass, SiO 2 —RO glass, SiO 2 —B 2 O 3 —RO glass, SiO 2 —B 2 O 3 — R ′ 2 O glass, SiO 2 —B 2 O 3 —Al 2 O 3 glass, or SiO 2 —B 2 O 3 —ZnO glass may be selected.

SiO−B−RO系ガラスは、質量%で、SiO 30〜70%、B 1〜15%、MgO 0〜10%、CaO 0〜25%、SrO 0〜10%、BaO 8〜40%、RO 10〜45%、Al 0〜20%、及び、ZnO 0〜10%を含有することが好ましい。また、上記成分以外にも、本発明の主旨を損なわない範囲で種々の成分を含有させることができる。例えば、R’O、P、La等を合量で30%以下の範囲で添加してもよい。 SiO 2 -B 2 O 3 -RO based glass, in mass%, SiO 2 30~70%, B 2 O 3 1~15%, 0~10% MgO, CaO 0~25%, SrO 0~10% BaO 8 to 40%, RO 10 to 45%, Al 2 O 3 0 to 20%, and ZnO 0 to 10% are preferably contained. In addition to the above components, various components can be contained within a range that does not impair the gist of the present invention. For example, R ′ 2 O, P 2 O 5 , La 2 O 3 or the like may be added in a total amount of 30% or less.

SnO−P系ガラスの組成範囲は、質量%で、SnO 30〜90%、及び、P 10〜60%を含有することが好ましい。また、上記成分以外にBを0〜30%含有させることができる。その他、本発明の主旨を損なわない範囲で種々の成分を含有させることができる。例えば、SiO、Al、RO、R’O等を合量で30%まで含有させてもよい。 The composition range of the SnO—P 2 O 5 glass is mass%, and preferably contains SnO 30 to 90% and P 2 O 5 10 to 60%. Further, the B 2 O 3 in addition to the above-mentioned components may contain 0-30%. In addition, various components can be contained within a range not impairing the gist of the present invention. For example, SiO 2 , Al 2 O 3 , RO, R ′ 2 O, etc. may be contained up to 30% in total.

ガラス粉末の平均粒子径D50は0.1〜300μmが好ましく、0.7〜250μmがより好ましい。平均粒子径D50が小さすぎると、焼成時に発泡して、波長変換部材の気孔率(残存泡の割合)が大きくなり、発光効率が低下したり、波長変換部材の機械的強度が低下するおそれがある。一方、ガラス粉末の平均粒子径D50が大きすぎると、低温焼成が困難となる傾向がある。また、開口部及び/または切り欠け部を精度良く形成することが困難になる傾向がある。精度良く加工を行う観点からは、ガラス粉末の平均粒子径D50は、開口部及び/または切り欠け部の大きさ(円形の場合は直径、楕円形(または楕円形の一部)の場合は短径、長方形の場合は短辺)の10分の1以下程度であることが好ましい。なお、本発明において、平均粒子径D50はレーザー回折法により測定したものをいう。 The average of the glass powder the particle diameter D 50 is preferably 0.1~300μm, 0.7~250μm is more preferable. When the average particle diameter D 50 is too small, foaming during firing, the porosity of the wavelength conversion member (ratio of residual bubbles) is increased, or the luminous efficiency is lowered, the mechanical strength of the wavelength conversion member is reduced risk There is. On the other hand, when the average particle diameter D 50 of the glass powder is too large, there is a tendency for low-temperature firing becomes difficult. Further, it tends to be difficult to form the opening and / or the cutout with high accuracy. From the viewpoint of performing high precision machining, the average particle diameter D 50 of the glass powder in the case of the opening and / or cutout size (in the case of circular diameter, oval (or a portion of an ellipse) It is preferably about 1/10 or less of the short diameter and the short side in the case of a rectangle. In the present invention, the average particle diameter D 50 refers to a value measured by a laser diffraction method.

無機蛍光体粉末としては、一般的に市中で入手できるものであれば使用できる。無機蛍光体粉末には、酸化物(YAG等のガーネット系を含む)、窒化物、酸窒化物、硫化物、希土類酸硫化物、ハロゲン化物、アルミン酸塩化物、ハロリン酸塩化物等からなるものが挙げられる。酸化物蛍光体粉末は、ガラス粉末と混合して高温で加熱しても安定であるという特徴を有する。窒化物、酸窒化物、硫化物、希土類酸硫化物、ハロゲン化物、アルミン酸塩化物、ハロリン酸塩化物の各蛍光体粉末は、焼成時にガラス粉末と反応して、発泡や変色等の異常反応を起こしやすい。その程度は、焼成温度が高いほど顕著になる傾向がある。これらの無機蛍光体粉末を用いる場合、焼成温度とガラス粉末組成を最適化することで、ガラス粉末との反応を抑制することができる。   Any inorganic phosphor powder can be used as long as it is generally available in the market. Inorganic phosphor powders comprising oxides (including garnets such as YAG), nitrides, oxynitrides, sulfides, rare earth oxysulfides, halides, aluminate chlorides, halophosphates, etc. Is mentioned. The oxide phosphor powder has a feature that it is stable even when mixed with glass powder and heated at a high temperature. Each phosphor powder of nitride, oxynitride, sulfide, rare earth oxysulfide, halide, aluminate chloride, and halophosphate chloride reacts with glass powder during firing, and abnormal reactions such as foaming and discoloration It is easy to cause. The degree tends to become more prominent as the firing temperature is higher. When using these inorganic phosphor powders, the reaction with the glass powder can be suppressed by optimizing the firing temperature and the glass powder composition.

なお、励起光の波長域や発光させたい色に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して、白色光を得ようとする場合は、青色、緑色及び赤色の蛍光を発する無機蛍光体粉末を混合して使用すればよい。   A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of the excitation light and the color to be emitted. For example, in order to obtain white light by irradiating ultraviolet excitation light, inorganic phosphor powders emitting blue, green, and red fluorescence may be mixed and used.

無機蛍光体粉末の平均粒子径D50は1〜75μmが好ましく、1〜50μmがより好ましい。平均粒子径D50が小さすぎると、焼成時にガラス粉末と反応したり、発泡したりして、波長変換部材中の気孔率が大きくなる傾向がある。一方、無機蛍光体粉末の平均粒子径D50が大きすぎると、励起光が波長変換部材内部まで透過しにくくなり、発光効率が低下しやすくなる。 The average particle diameter D 50 of the inorganic phosphor powder is preferably 1~75μm, 1~50μm is more preferable. When the average particle diameter D 50 is too small, or react with the glass powder during firing, or by foaming, there is a tendency that the porosity in the wavelength converting member increases. On the other hand, when the average particle diameter D 50 of the inorganic phosphor powder is too large, the excitation light is hardly transmitted to the inner wavelength conversion member, the light emission efficiency tends to decrease.

波長変換部材の発光効率は、無機蛍光体粉末の種類や含有量、及び、波長変換部材の肉厚等によって変化する。波長変換部材の発光効率を高めたい場合、肉厚を薄くして励起光や波長変換された光の透過率を高めたり、無機蛍光体粉末の含有量を多くして、発光量を増大させることで調整すればよい。ただし、無機蛍光体粉末の含有量が多すぎると、焼結しにくくなって、波長変換部材の気孔率が大きくなる傾向がある。一方、無機蛍光体粉末の含有量が少なすぎると、発光強度が低下する傾向がある。したがって、波長変換部材中の無機蛍光体粉末の含有量は0.01〜30質量%、0.05〜20質量%、特に0.08〜15質量%の範囲で調整することが好ましい。   The luminous efficiency of the wavelength conversion member varies depending on the type and content of the inorganic phosphor powder, the thickness of the wavelength conversion member, and the like. If you want to increase the light emission efficiency of the wavelength conversion member, increase the transmittance of excitation light or wavelength converted light by increasing the thickness, or increase the content of inorganic phosphor powder to increase the light emission amount You can adjust with. However, when there is too much content of inorganic fluorescent substance powder, it will become difficult to sinter and there exists a tendency for the porosity of a wavelength conversion member to become large. On the other hand, if the content of the inorganic phosphor powder is too small, the emission intensity tends to decrease. Therefore, the content of the inorganic phosphor powder in the wavelength conversion member is preferably adjusted in the range of 0.01 to 30% by mass, 0.05 to 20% by mass, and particularly 0.08 to 15% by mass.

ガラス粉末と無機蛍光体粉末を混合して混合粉末を調製する。混合粉末としては、ガラス粉末及び無機蛍光体粉末のみからなるものを用いてもよいが、それ以外にも、高軟化点ガラス粉末、シリカ粉末、あるいはアルミナ粉末等の結晶粉末等の無機粉末を、波長変換部材の強度向上や色合い、配向性、散乱性の調節等の目的で含有させても構わない。無機粉末の含有量は、波長変換部材中において、合量で0.01〜50質量%が好ましく、0.05〜20質量%がより好ましい。   Glass powder and inorganic phosphor powder are mixed to prepare a mixed powder. As the mixed powder, you may use what consists only of glass powder and inorganic phosphor powder, but besides that, inorganic powder such as crystal powder such as high softening point glass powder, silica powder, or alumina powder, You may make it contain for the purpose of the intensity | strength improvement of a wavelength conversion member, adjustment of hue, orientation, scattering property, etc. In the wavelength conversion member, the total content of the inorganic powder is preferably 0.01 to 50% by mass, and more preferably 0.05 to 20% by mass.

上記混合粉末に、所定量の樹脂、可塑剤、溶剤等を含む樹脂バインダーを添加してスラリーとする。スラリーを、ドクターブレード法等によって、ポリエチレンテレフタレート(PET)等のフィルムの上に、シート状に成形する。シート状に成形したスラリーを乾燥させることによって、グリーンシートが得られる。   A resin binder containing a predetermined amount of resin, plasticizer, solvent and the like is added to the mixed powder to form a slurry. The slurry is formed into a sheet on a film of polyethylene terephthalate (PET) or the like by a doctor blade method or the like. A green sheet is obtained by drying the slurry formed into a sheet.

(グリーンシート加工工程)
上記で得られたグリーンシートに加工を施し、開口部及び/または切り欠け部を形成する。加工方法としては、例えば金属ピンによるメカニカルパンチングや、炭酸ガスレーザーによるレーザーパンチングが挙げられる。既述の通り、無機固体からなる波長変換部材に機械加工を施すと、割れやクラックが発生しやすいという問題がある。一方、無機固体からなる波長変換部材へのレーザー加工は、割れやクラックの発生が比較的起こりにくいものの、加工に時間がかかり、効率に劣る(ひいてはコストアップにつながる)といった問題がある。本発明においては、グリーンシートに対して加工を行うため、割れやクラックの発生を抑制しつつ、短時間で開口部及び/または切り欠け部を設けることができる。特に、メカニカルパンチングやレーザーパンチングによれば、高速かつ位置精度の高い加工が可能となる。例えば、グリーンシートに対して、炭酸ガスレーザーによるレーザーパンチングを行うと、瞬時に樹脂バインダーを焼切ることができるため、開口部及び/または切り欠け部を寸法精度よく、かつ短時間で形成することができる。
(Green sheet processing process)
The green sheet obtained above is processed to form openings and / or notches. Examples of the processing method include mechanical punching using a metal pin and laser punching using a carbon dioxide laser. As described above, when machining is performed on a wavelength conversion member made of an inorganic solid, there is a problem that cracks and cracks are likely to occur. On the other hand, laser processing of a wavelength conversion member made of an inorganic solid has a problem that although cracks and cracks are relatively unlikely to occur, the processing takes time and is inefficient (and consequently increases costs). In this invention, since it processes with respect to a green sheet, an opening part and / or a notch part can be provided in a short time, suppressing generation | occurrence | production of a crack and a crack. In particular, mechanical punching and laser punching enable high-speed and high-positioning processing. For example, when the green sheet is laser punched with a carbon dioxide laser, the resin binder can be burned out instantaneously, so that the opening and / or the cutout can be formed with high dimensional accuracy and in a short time. Can do.

なお、グリーンシートは1枚のみ用いてもよく、2枚以上を積層、あるいは積層圧着させた状態で加工を行ってもよい。これにより、生産効率を向上させたり、所望の厚みを有する波長変換部材を容易に作製することが可能となる。また、グリーンシートを所望の形状に切断した後に、開口部及び/または切り欠け部を形成しても良く、あるいは、グリーンシートに開口部及び/または切り欠け部を形成した後に、所望の形状に切断しても良い。   Note that only one green sheet may be used, or processing may be performed in a state where two or more green sheets are laminated or laminated and pressure-bonded. Thereby, it becomes possible to improve the production efficiency and to easily produce a wavelength conversion member having a desired thickness. Further, the opening and / or notch may be formed after the green sheet is cut into a desired shape, or the opening and / or notch is formed in the green sheet and then the desired shape is obtained. It may be cut.

(グリーンシート焼成工程)
上記で加工されたグリーンシートを焼成することにより、波長変換部材を得る。具体的には、まずグリーンシートを200〜550℃程度で熱処理することにより脱脂を行い、その後、750〜1000℃程度で熱処理することにより焼結させる。これにより、波長変換部材を得る。
(Green sheet firing process)
A wavelength conversion member is obtained by baking the green sheet processed above. Specifically, the green sheet is first degreased by heat treatment at about 200 to 550 ° C., and then sintered by heat treatment at about 750 to 1000 ° C. Thereby, a wavelength conversion member is obtained.

なお、グリーンシートは熱処理時に収縮しやすいため、アルミナ基材等の拘束部材の間に挟持した状態で熱処理を施すことが好ましい。また、得られた波長変換部材に対し、所望の形状となるよう切断、研磨の加工を施しても良い。   In addition, since a green sheet tends to shrink at the time of heat processing, it is preferable to heat-process in the state pinched | interposed between restraining members, such as an alumina base material. Further, the obtained wavelength conversion member may be cut and polished so as to have a desired shape.

以下に本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   The present invention will be described in detail below based on examples, but the present invention is not limited to these examples.

(実施例)
質量%で、SiO 60%、B 10%、BaO 10%、及び、CaO 20%の組成を有するSiO−B−RO系ガラス粉末(軟化点820℃、平均粒子径D50:2.5μm)90質量%に対して、YAG蛍光体粉末10質量%を添加して混合粉末とし、さらにアクリルバインダー、可塑剤及び溶剤を適宜混合してスラリーを作製した。得られたスラリーを、ドクターブレード法によりPETフィルム上にシート成形してグリーンシートを得た。
(Example)
SiO 2 —B 2 O 3 —RO glass powder having a composition of 60% by mass, SiO 2 60%, B 2 O 3 10%, BaO 10%, and CaO 20% (softening point 820 ° C., average particle size) D 50 : 2.5 μm) To 90% by mass, 10% by mass of YAG phosphor powder was added to obtain a mixed powder, and an acrylic binder, a plasticizer and a solvent were appropriately mixed to prepare a slurry. The obtained slurry was formed into a sheet on a PET film by a doctor blade method to obtain a green sheet.

得られたグリーンシートにメカニカルパンチングマシン(UHT社製MP−7150Z)を用いて、直径80μmの円形貫通孔を複数個所に形成した。加工に要した時間は1秒未満であった。加工後のグリーンシートを830℃で焼成し、図1(b)に示すような波長変換部材(厚み0.2mm)を得た。   A circular punching hole having a diameter of 80 μm was formed at a plurality of locations on the obtained green sheet using a mechanical punching machine (MP-7150Z manufactured by UHT). The time required for processing was less than 1 second. The green sheet after processing was fired at 830 ° C. to obtain a wavelength conversion member (thickness 0.2 mm) as shown in FIG.

(比較例1)
グリーンシートに加工を施さなかったこと以外は、実施例と同様にして波長変換部材を得た。得られた波長変換部材にメカニカルパンチングマシンを用いて貫通孔を形成しようとしたところ、割れやクラックが発生した。
(Comparative Example 1)
A wavelength conversion member was obtained in the same manner as in the example except that the green sheet was not processed. When trying to form a through-hole using the mechanical punching machine in the obtained wavelength conversion member, the crack and the crack generate | occur | produced.

(比較例2)
グリーンシートに加工を施さなかったこと以外は、実施例と同様にして波長変換部材を得た。得られた波長変換部材にフェムト秒レーザー照射装置(サイバーレーザー社製)を用いて、直径80μmの円形貫通孔を形成することにより、図1(b)に示すような波長変換部材(厚み0.2mm)を得た。加工に要した時間は5分であった。
(Comparative Example 2)
A wavelength conversion member was obtained in the same manner as in the example except that the green sheet was not processed. By using a femtosecond laser irradiation device (manufactured by Cyber Laser Co., Ltd.) on the obtained wavelength conversion member, a circular through hole having a diameter of 80 μm is formed, whereby a wavelength conversion member (thickness 0. 0 mm) as shown in FIG. 2 mm). The time required for processing was 5 minutes.

1 半導体発光素子デバイス
2 半導体発光素子
3 ボンディングワイヤ
4 基板
5 波長変換部材
O 開口部
C 切り欠け部
DESCRIPTION OF SYMBOLS 1 Semiconductor light-emitting device 2 Semiconductor light-emitting device 3 Bonding wire 4 Substrate 5 Wavelength conversion member O Opening part C Notch

Claims (2)

開口部及び/または切り欠け部が形成された波長変換部材を製造するための方法であって、
ガラス粉末と無機蛍光体粉末を含有するグリーンシートを準備する工程、
グリーンシートに加工を施し、開口部及び/または切り欠け部を形成する工程、及び、
加工後のグリーンシートを焼成する工程、
を含むことを特徴とする、波長変換部材の製造方法。
A method for producing a wavelength conversion member in which an opening and / or a notch is formed,
Preparing a green sheet containing glass powder and inorganic phosphor powder,
Processing the green sheet to form openings and / or notches, and
A step of firing the green sheet after processing;
A method for producing a wavelength conversion member, comprising:
グリーンシートの加工を、メカニカルパンチングまたはレーザーパンチングにより行うことを特徴とする、請求項1に記載の波長変換部材の製造方法。   The method for manufacturing a wavelength conversion member according to claim 1, wherein the green sheet is processed by mechanical punching or laser punching.
JP2013213569A 2013-10-11 2013-10-11 Method for manufacturing wavelength conversion member Active JP6222441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213569A JP6222441B2 (en) 2013-10-11 2013-10-11 Method for manufacturing wavelength conversion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213569A JP6222441B2 (en) 2013-10-11 2013-10-11 Method for manufacturing wavelength conversion member

Publications (2)

Publication Number Publication Date
JP2015076568A true JP2015076568A (en) 2015-04-20
JP6222441B2 JP6222441B2 (en) 2017-11-01

Family

ID=53001178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213569A Active JP6222441B2 (en) 2013-10-11 2013-10-11 Method for manufacturing wavelength conversion member

Country Status (1)

Country Link
JP (1) JP6222441B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111214A (en) * 2015-12-15 2017-06-22 日本電気硝子株式会社 Method for manufacturing wavelength conversion member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306550A (en) * 1999-04-16 2000-11-02 Ushio Inc Fluorescent lamp
JP2002033539A (en) * 2000-07-18 2002-01-31 Nec Corp Drilling apparatus for green sheet
JP2004071389A (en) * 2002-08-07 2004-03-04 Fujitsu Ltd Manufacturing method of arc tube
JP2007182529A (en) * 2005-05-11 2007-07-19 Nippon Electric Glass Co Ltd Fluorescent composite glass, fluorescent composite glass green sheet and process for production of fluorescent composite glass
JP2010219166A (en) * 2009-03-13 2010-09-30 Nippon Electric Glass Co Ltd Semiconductor light emitting element device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306550A (en) * 1999-04-16 2000-11-02 Ushio Inc Fluorescent lamp
JP2002033539A (en) * 2000-07-18 2002-01-31 Nec Corp Drilling apparatus for green sheet
JP2004071389A (en) * 2002-08-07 2004-03-04 Fujitsu Ltd Manufacturing method of arc tube
JP2007182529A (en) * 2005-05-11 2007-07-19 Nippon Electric Glass Co Ltd Fluorescent composite glass, fluorescent composite glass green sheet and process for production of fluorescent composite glass
JP2010219166A (en) * 2009-03-13 2010-09-30 Nippon Electric Glass Co Ltd Semiconductor light emitting element device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111214A (en) * 2015-12-15 2017-06-22 日本電気硝子株式会社 Method for manufacturing wavelength conversion member

Also Published As

Publication number Publication date
JP6222441B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
WO2010103902A1 (en) Semiconductor light-emitting element device
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2012191218A (en) Light-emitting element mounting substrate
EP1979434A1 (en) Sheet type phosphors, preparation method thereof, and light emitting devices using these phosphors
KR102258536B1 (en) Wavelength-conversion member and light-emitting device
KR20220104272A (en) Wavelength conversion member, and light emitting device using same
EP3553573A1 (en) Method for manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
KR102108210B1 (en) Rare earth ion added glass-phosphor composite and light emitting diode comprising the same
JP2011210911A (en) Method for manufacturing semiconductor light emitting element device
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
JP6222441B2 (en) Method for manufacturing wavelength conversion member
JP6252982B2 (en) Glass member and manufacturing method thereof
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
CN109564309B (en) Wavelength conversion member and method for manufacturing same
JP6617948B2 (en) Wavelength conversion member and light emitting device
JP2014003070A (en) Light-emitting device and lighting apparatus
JP2006013157A (en) Light emitting apparatus
JP5713273B2 (en) Joining material and member joining method using the same
WO2018074170A1 (en) Light emitting device
JP2019029648A (en) Wavelength conversion member and light emitting device
JP6861952B2 (en) Wavelength conversion member and light emitting device using it
JP2013105647A (en) Light source device, emission chromaticity adjusting method, and manufacturing method for light source device
KR20190032275A (en) Wavelength conversion member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R150 Certificate of patent or registration of utility model

Ref document number: 6222441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150