JP5713273B2 - Joining material and member joining method using the same - Google Patents
Joining material and member joining method using the same Download PDFInfo
- Publication number
- JP5713273B2 JP5713273B2 JP2010076535A JP2010076535A JP5713273B2 JP 5713273 B2 JP5713273 B2 JP 5713273B2 JP 2010076535 A JP2010076535 A JP 2010076535A JP 2010076535 A JP2010076535 A JP 2010076535A JP 5713273 B2 JP5713273 B2 JP 5713273B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- bonding
- bonding material
- semiconductor light
- joining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Glass Compositions (AREA)
- Led Device Packages (AREA)
Description
本発明は、例えば半導体発光素子デバイス等の製品において、構成部材の接合に好適な接合材料に関するものである。 The present invention relates to a bonding material suitable for bonding constituent members in a product such as a semiconductor light emitting device.
近年、白色LED等の半導体発光素子デバイスは、白熱電球や蛍光灯に代わる次世代の光源として照明用途への応用が期待されている。一般に、白色LEDは無機蛍光体粉末と樹脂の混合物を励起光源であるLEDチップ上に被覆モールドした構造を有している。しかしながら、LEDチップから照射される熱や光は、限られた部分に集中的に照射されるため、耐熱性に乏しい樹脂が容易に着色あるいは変形してしまう。そのため、短期間で発光色の変化が生じ、半導体発光素子デバイスとしての寿命が短くなるという問題がある。LEDチップの高出力化に伴ってこのような問題は深刻化すると考えられており、耐熱性に優れる半導体発光素子デバイスの開発が望まれていた。 In recent years, semiconductor light-emitting element devices such as white LEDs are expected to be applied to lighting applications as next-generation light sources that replace incandescent bulbs and fluorescent lamps. In general, a white LED has a structure in which a mixture of an inorganic phosphor powder and a resin is coated and molded on an LED chip that is an excitation light source. However, since heat and light emitted from the LED chip are intensively applied to a limited portion, a resin having poor heat resistance is easily colored or deformed. For this reason, there is a problem that a change in emission color occurs in a short period of time, and the lifetime as a semiconductor light emitting element device is shortened. Such a problem is considered to be serious as the output of the LED chip is increased, and development of a semiconductor light emitting element device having excellent heat resistance has been desired.
これに対し、樹脂を用いない無機材料のみからなる波長変換部材を使用した半導体発光素子デバイスが提案されている(例えば、特許文献1参照)。当該波長変換部材には耐熱性に劣る樹脂が使用されておらず無機材料のみからなるため、優れた耐熱性を有し熱劣化がほとんど生じない。 On the other hand, a semiconductor light-emitting element device using a wavelength conversion member made only of an inorganic material that does not use a resin has been proposed (see, for example, Patent Document 1). Since the resin having poor heat resistance is not used for the wavelength conversion member and is made of only an inorganic material, the wavelength conversion member has excellent heat resistance and hardly undergoes thermal degradation.
例えばフリップチップタイプの半導体発光素子デバイスの場合、波長変換部材は半導体発光素子基板上にシリコーン樹脂等の樹脂からなる接合材料を用いて直接接合される。シリコーン樹脂等の樹脂を用いれば、比較的低温で接合が可能であるため、波長変換部材や半導体発光素子等の構成部材が接合時に熱変形することがない。 For example, in the case of a flip-chip type semiconductor light emitting device, the wavelength conversion member is directly bonded onto the semiconductor light emitting device substrate using a bonding material made of a resin such as silicone resin. If a resin such as a silicone resin is used, bonding can be performed at a relatively low temperature, so that components such as a wavelength conversion member and a semiconductor light emitting element are not thermally deformed during bonding.
波長変換部材と半導体発光素子基板の接合を樹脂を用いて行った場合、半導体発光素子から発生する熱によって樹脂が変色し、経時的に励起光の透過率が低下し、光束値が低下しやすくなる。また、熱による樹脂の変質が原因で剥離等の破壊が生じるおそれもある。 When the wavelength conversion member and the semiconductor light emitting element substrate are bonded using a resin, the resin is discolored by heat generated from the semiconductor light emitting element, and the transmittance of the excitation light decreases with time, and the light flux value is likely to decrease. Become. Moreover, there is a possibility that destruction such as peeling may occur due to the alteration of the resin due to heat.
したがって、本発明は、耐熱性および耐候性に優れた半導体発光素子デバイス等の製品を製造することが可能な接合材料を提供することを目的とする。 Accordingly, an object of the present invention is to provide a bonding material capable of manufacturing a product such as a semiconductor light emitting device excellent in heat resistance and weather resistance.
本発明者等は鋭意検討した結果、半導体発光素子デバイス等の製品において構成部材の接合に用いられていた樹脂の代わりに、耐熱性および耐候性に優れた特定の部材を用いることで前記課題を解決できることを見出し、本発明として提案するものである。 As a result of intensive studies, the present inventors have solved the above problem by using a specific member having excellent heat resistance and weather resistance instead of the resin used for joining the structural members in the product such as the semiconductor light emitting device. It has been found that the problem can be solved, and is proposed as the present invention.
すなわち、本発明は、軟化点500℃以下のガラスフィルムからなることを特徴とする接合材料に関する。 That is, the present invention relates to a bonding material comprising a glass film having a softening point of 500 ° C. or lower.
既述のように、例えば半導体発光素子デバイスにおいて、半導体発光素子と波長変換部材を樹脂により接合した場合、半導体発光素子から発生する熱や光により樹脂が変色するという問題があった。一方、本発明の接合材料は、無機材料であるガラスフィルムからなるため、半導体発光素子からの発熱による変色を防止することができる。その結果、経時的な光束値の低下を防止することが可能となる。 As described above, for example, in a semiconductor light emitting element device, when the semiconductor light emitting element and the wavelength conversion member are bonded with resin, there is a problem that the resin is discolored by heat or light generated from the semiconductor light emitting element. On the other hand, since the bonding material of the present invention is made of a glass film that is an inorganic material, discoloration due to heat generated from the semiconductor light emitting element can be prevented. As a result, it is possible to prevent a decrease in luminous flux value over time.
ところで、ガラスフィルムによる接合は、複数の被接合部材間にガラスフィルムを設置し、必要に応じて外部から圧力を印加した状態で、ガラスフィルムの軟化点付近にまで加熱することにより行われる。このように、ガラスフィルムによる接合は、樹脂を用いた接合と比較して高温下で行われるため、波長変換部材や半導体発光素子等の被接合部材自体の特性が劣化したり、熱変形したりするおそれがある。本発明の接合材料は500℃以下という低軟化点のガラスフィルムを用いているため、ガラス材料にもかかわらず低温接合が可能となり、接合時における被接合部材の特性劣化や熱変形が生じにくい。 By the way, joining by a glass film is performed by installing a glass film between several to-be-joined members, and heating to the softening point vicinity of a glass film in the state which applied the pressure from the outside as needed. As described above, since the bonding with the glass film is performed at a higher temperature than the bonding using the resin, the characteristics of the bonded member itself such as the wavelength conversion member or the semiconductor light emitting element are deteriorated or thermally deformed. There is a risk. Since the bonding material of the present invention uses a glass film having a softening point as low as 500 ° C. or lower, low-temperature bonding is possible regardless of the glass material, and characteristic deterioration and thermal deformation of the bonded members are difficult to occur during bonding.
なお、接合材料としてガラスフリットやゾルゲルガラス等を用いた場合、接合層の厚さを均一に調整することが困難であったり、熱処理後に気泡が発生しやすいという問題がある。例えば半導体発光素子デバイスにおいて、半導体発光素子と波長変換部材の接合層の厚さが不均一であると発光色にばらつきが生じやすく、また接合層に気泡が存在すると光散乱の原因となり、発光効率が低下しやすくなる。なお、ガラスフリットは通常ペースト状で使用されるため、ペースト化工程および脱バインダー工程が必要となり製造工程が煩雑になる。 Note that when glass frit, sol-gel glass, or the like is used as the bonding material, there are problems that it is difficult to uniformly adjust the thickness of the bonding layer or that bubbles are likely to be generated after heat treatment. For example, in a semiconductor light-emitting device, if the thickness of the bonding layer between the semiconductor light-emitting device and the wavelength conversion member is not uniform, the emission color tends to vary, and if bubbles exist in the bonding layer, light scattering may occur, resulting in luminous efficiency. Tends to decrease. Since glass frit is usually used in a paste form, a pasting process and a debinding process are required, and the manufacturing process becomes complicated.
一方、接合材料としてガラスフィルムを用いれば、接合層の厚さを均一にすることが容易であり、気泡も発生しくい。特に、ガラスフィルムの厚さを適宜選択することにより、接合層の厚さを薄く(例えば200μm以下)することも容易である。また、製造工程も非常にシンプルである。 On the other hand, when a glass film is used as the bonding material, it is easy to make the thickness of the bonding layer uniform, and bubbles are not easily generated. In particular, it is easy to reduce the thickness of the bonding layer (for example, 200 μm or less) by appropriately selecting the thickness of the glass film. Also, the manufacturing process is very simple.
また本発明の接合部材を用いれば、従来の樹脂接合剤と比較して接合強度が高く、被接合部材同士の剥離の問題を大幅に改善することができる。 Moreover, if the joining member of this invention is used, joining strength is high compared with the conventional resin bonding agent, and the problem of peeling of to-be-joined members can be improved significantly.
第二に、本発明の接合材料は、ガラスフィルムの厚さが200μm以下であることを特徴とする。 Secondly, the bonding material of the present invention is characterized in that the glass film has a thickness of 200 μm or less.
ガラスフィルムの厚さを200μm以下と非常に薄くすることにより、接合材料内部での光の吸収を抑制できる。したがって、例えば半導体発光素子デバイスにおいて、光の吸収ロスを低減することができ、発光効率を向上させることができる。また、接合材料と各被接合部材との間の線熱膨張係数差が大きくても、発生応力が小さくなるため剥離などの破壊が発生しにくい。 By making the thickness of the glass film as very thin as 200 μm or less, light absorption inside the bonding material can be suppressed. Therefore, for example, in a semiconductor light emitting element device, light absorption loss can be reduced, and luminous efficiency can be improved. In addition, even if the linear thermal expansion coefficient difference between the bonding material and each member to be bonded is large, the generated stress is small, so that breakage such as peeling hardly occurs.
第三に、本発明の接合材料は、ガラスフィルムがスズリン酸塩ガラスからなることを特徴とする。 Thirdly, the bonding material of the present invention is characterized in that the glass film is made of tin phosphate glass.
スズリン酸塩ガラスは、軟化点を低くしやすいため、本発明の接合材料として好適である。 Tin phosphate glass is suitable as the bonding material of the present invention because it tends to lower the softening point.
第四に、本発明の接合材料は、スズリン酸塩ガラスが、組成としてモル%で、SnO 35〜80%、P2O5 5〜40%、B2O3 1〜30%を含有することを特徴とする。 Fourth, in the bonding material of the present invention, the tin phosphate glass contains, as a composition, mol%, SnO 35 to 80%, P 2 O 5 5 to 40%, and B 2 O 3 1 to 30%. It is characterized by.
スズリン酸塩ガラスが上記組成を有することにより、低軟化点であり、かつ耐候性に優れた接合材料を得ることができる。 When the tin phosphate glass has the above composition, a bonding material having a low softening point and excellent weather resistance can be obtained.
第五に、本発明は、前記いずれかに記載の接合材料を被接合部材間に設置し、接合材料の軟化点より低い温度で加熱接合することを特徴とする部材の接合方法に関する。 Fifth, the present invention relates to a method for joining members, characterized in that any one of the above-mentioned joining materials is installed between the members to be joined and heat-joined at a temperature lower than the softening point of the joining material.
本発明の接合材料に用いられるガラスフィルムとしては、軟化点が500℃以下、好ましくは450℃以下のものであれば材質は特に限定されず、例えばスズリン酸塩ガラスや亜鉛ホウ酸ガラス等が使用可能である。特にスズリン酸塩ガラスは軟化点を低くしやすいため好ましい。 The glass film used for the bonding material of the present invention is not particularly limited as long as it has a softening point of 500 ° C. or lower, preferably 450 ° C. or lower. For example, tin phosphate glass or zinc borate glass is used. Is possible. In particular, tin phosphate glass is preferred because it tends to lower the softening point.
スズリン酸塩ガラスとしては、組成としてモル%で、SnO 35〜80%、P2O5 5〜40%、B2O3 1〜30%を含有するものであることが好ましい。ガラスの組成を上記のように限定した理由は以下の通りである。 The Suzurin glasses, in mole percent composition, SnO 35~80%, P 2 O 5 5~40%, it is preferable that contain 2 O 3 1~30% B. The reason for limiting the glass composition as described above is as follows.
SnOはガラス骨格を形成するとともに、軟化点を低下させる成分である。SnOの含有量は35〜80%、40〜70%、50〜70%、特に55〜65%であることが好ましい。SnOの含有量が少なくなると、軟化点が上昇して低温接合が困難となる傾向がある。一方、SnOの含有量が多くなると、ガラス中にSnに起因する失透ブツが析出し、透過率が低下する傾向にある。また、ガラス化しにくくなる。 SnO is a component that forms a glass skeleton and lowers the softening point. The SnO content is preferably 35 to 80%, 40 to 70%, 50 to 70%, particularly 55 to 65%. When the content of SnO decreases, the softening point increases and low temperature bonding tends to be difficult. On the other hand, when the content of SnO increases, devitrification bumps resulting from Sn precipitate in the glass, and the transmittance tends to decrease. Moreover, it becomes difficult to vitrify.
P2O5はガラス骨格を形成する成分である。P2O5の含有量は5〜40%、10〜30%、特に15〜24%であることが好ましい。P2O5の含有量が少なくなると、ガラス化しにくくなる。一方、P2O5の含有量が多くなると、軟化点が上昇して低温接合が困難となる傾向がある。また、耐候性が著しく低下する傾向にある。 P 2 O 5 is a component that forms a glass skeleton. The content of P 2 O 5 is preferably 5 to 40%, 10 to 30%, particularly preferably 15 to 24%. When the content of P 2 O 5 is reduced, it is difficult to vitrify. On the other hand, when the content of P 2 O 5 is increased, the softening point is increased and low temperature bonding tends to be difficult. Further, the weather resistance tends to be remarkably lowered.
なお、SnO/P2O5の値はモル比で0.9〜16、1.5〜16、1.5〜10、特に2〜5の範囲であることが好ましい。SnO/P2O5の値が0.9より小さくなると、軟化点が上昇して低温接合が困難となる傾向がある。また、耐候性が著しく低下する傾向にある。一方、SnO/P2O5の値が16より大きくなると、ガラス中にSnに起因する失透ブツが析出し、ガラスの透過率が低下する傾向にある。 It is preferable the value of SnO / P 2 O 5 is 0.9~16,1.5~16,1.5~10 molar ratio, in particular in the range of 2-5. If the value of SnO / P 2 O 5 is smaller than 0.9, the softening point tends to increase and low temperature bonding tends to be difficult. Further, the weather resistance tends to be remarkably lowered. On the other hand, when the value of SnO / P 2 O 5 is larger than 16, devitrification particles due to Sn are precipitated in the glass, and the transmittance of the glass tends to be lowered.
B2O3は耐候性を向上させる成分である。また、ガラスを安定化させる成分でもある。B2O3の含有量は1〜30%、2〜20%、特に4〜18%であることが好ましい。B2O3の含有量が少なくなると、上記効果が得られにくくなる。一方、B2O3の含有量が多くなると、逆に耐候性が低下しやすくなる。また、軟化点が上昇して低温接合が困難となる傾向がある。 B 2 O 3 is a component that improves weather resistance. It is also a component that stabilizes the glass. The content of B 2 O 3 is preferably 1 to 30%, 2 to 20%, particularly 4 to 18%. When the content of B 2 O 3 is reduced, the above effect is hardly obtained. On the other hand, when the content of B 2 O 3 increases, the weather resistance tends to decrease. Moreover, there is a tendency that the softening point increases and low-temperature bonding becomes difficult.
なお、上記成分以外にも下記の成分を添加することが可能である。 In addition to the above components, the following components can be added.
Al2O3はガラスを安定化させる成分である。Al2O3の含有量は0〜10%、0〜7%、特に1〜5%であることが好ましい。Al2O3の含有量が多くなると、軟化点が上昇して低温接合が困難となる傾向がある。 Al 2 O 3 is a component that stabilizes the glass. The content of Al 2 O 3 is preferably 0 to 10%, 0 to 7%, particularly preferably 1 to 5%. When the content of Al 2 O 3 increases, the softening point tends to increase and low temperature bonding tends to be difficult.
SiO2はAl2O3と同様にガラスを安定化させる成分である。SiO2の含有量は0〜10%、0〜7%、特に0.1〜5%であることが好ましい。SiO2の含有量が多くなると、軟化点が上昇して低温接合が困難となる傾向がある。また、ガラスが分相しやすくなる。 SiO 2 is a component that stabilizes the glass in the same manner as Al 2 O 3 . The content of SiO 2 is preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%. When the content of SiO 2 increases, the softening point tends to increase and low temperature bonding tends to be difficult. Moreover, it becomes easy to phase-separate glass.
Li2Oは軟化点を著しく低下させる成分である。Li2Oの含有量は0〜10%、0〜7%、特に1〜5%であることが好ましい。Li2Oの含有量が多くなると、ガラスが著しく不安定になってガラス化しにくくなる。 Li 2 O is a component that significantly lowers the softening point. The content of Li 2 O is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. When the content of Li 2 O increases, the glass becomes extremely unstable and becomes difficult to vitrify.
Na2Oはガラスの軟化点を低下させる成分である。Na2Oの含有量は0〜10%、0〜7%、特に0.1〜5%であることが好ましい。Na2Oの含有量が多くなると、ガラスが不安定になってガラス化しにくくなる。 Na 2 O is a component that lowers the softening point of glass. The content of Na 2 O is preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%. When the content of Na 2 O increases, the glass becomes unstable and becomes difficult to vitrify.
K2Oはガラスの軟化点を若干低下させる成分である。K2Oの含有量は0〜10%、0〜7%、特に1〜5%であることが好ましい。K2Oの含有量が多くなると、ガラスが不安定になってガラス化しにくくなる。 K 2 O is a component that slightly lowers the softening point of the glass. The content of K 2 O is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. When the content of K 2 O increases, the glass becomes unstable and becomes difficult to vitrify.
なお、Li2O、Na2O、K2Oは合量で0〜10%、0〜7%、特に1〜5%であることが好ましい。これら成分の合量が10%より多くなると、ガラスが不安定になってガラス化しにくくなる。 Incidentally, Li 2 O, Na 2 O , K 2 O is 0 to 10% in total 0 to 7%, particularly preferably 1-5%. If the total amount of these components exceeds 10%, the glass becomes unstable and it is difficult to vitrify.
MgO、CaO、SrOはガラスを安定化させてガラス化しやすくする成分である。これらの成分の含有量はそれぞれ0〜10%、0〜7%、特に1〜5%であることが好ましい。各成分の含有量が上記範囲より多くなると、失透しやすくなり透過率低下の原因となる。 MgO, CaO, and SrO are components that stabilize glass and facilitate vitrification. The content of these components is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%, respectively. When the content of each component is larger than the above range, devitrification is likely to occur, causing a decrease in transmittance.
BaOもガラスを安定化させてガラス化しやすくする成分である。BaOの含有量は0〜5%、0〜3%、特に0.1〜1%であることが好ましい。BaOの含有量が多くなると、ガラスが著しく失透して透過率低下の原因になりやすい。 BaO is also a component that stabilizes glass and facilitates vitrification. The content of BaO is preferably 0 to 5%, 0 to 3%, particularly preferably 0.1 to 1%. When the content of BaO is increased, the glass is extremely devitrified and tends to cause a decrease in transmittance.
なお、MgO、CaO、SrO、BaOは合量で0〜10%、0〜7%、特に1〜5%であることが好ましい。これら成分の合量が10%より多くなると、失透して透過率低下の原因となるおそれがある。 In addition, MgO, CaO, SrO, and BaO are preferably 0 to 10%, 0 to 7%, particularly 1 to 5% in total. If the total amount of these components exceeds 10%, devitrification may occur and cause a decrease in transmittance.
また、上記成分以外にも、本発明の主旨を損なわない範囲で種々の成分を添加することができる。例えば、耐候性を向上させるために、ZnO、Ta2O5、TiO2、Nb2O5、Gd2O3、La2O3を合量で10%まで添加してもよい。 In addition to the above components, various components can be added as long as the gist of the present invention is not impaired. For example, in order to improve the weather resistance, ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 may be added up to 10% in total.
ただし、Fe2O3、Cr2O3、CoO、CuO、NiO等の着色成分は、ガラスを着色させて、ガラスの内部透過率を低下させるため、これら成分は合量で0.02%以下に抑えることが好ましい。 However, since coloring components such as Fe 2 O 3 , Cr 2 O 3 , CoO, CuO, and NiO color the glass and reduce the internal transmittance of the glass, these components are combined in an amount of 0.02% or less. It is preferable to suppress to.
ガラスフィルムの厚さは200μm以下、100μm以下、特に50μm以下であることが好ましい。ガラスフィルムの厚さが200μmを超えると、接合材料内部での光の吸収が大きくなる。例えば、半導体発光素子デバイスの構成部材の接合に使用した場合、発光効率の低下の原因となる。また、接合材料と各被接合部材との間の線熱膨張係数差が大きい場合に、発生応力が大きくなって剥離などの破壊が発生しやすくなる。一方、ガラスフィルムの厚さが薄すぎると、破損しやすく取り扱いが困難になるため、下限は1μm以上、特に5μm以上であることが好ましい。 The thickness of the glass film is preferably 200 μm or less, 100 μm or less, and particularly preferably 50 μm or less. When the thickness of the glass film exceeds 200 μm, light absorption inside the bonding material increases. For example, when used for joining constituent members of a semiconductor light emitting element device, it causes a decrease in luminous efficiency. In addition, when the difference in coefficient of linear thermal expansion between the bonding material and each member to be bonded is large, the generated stress increases and breakage such as peeling tends to occur. On the other hand, if the glass film is too thin, it is easy to break and difficult to handle, so the lower limit is preferably 1 μm or more, particularly 5 μm or more.
本発明の接合材料は、上記材質からなる略矩形状の母材ガラスを所定条件で加熱しながら延伸する方法や、上記材質の溶融ガラスをオーバーフローダウンドロー法やスロットダウンドロー法により成形する方法によって作製することができる。 The bonding material of the present invention is obtained by a method of stretching a substantially rectangular base glass made of the above material while heating under a predetermined condition, or a method of forming a molten glass of the above material by an overflow down draw method or a slot down draw method. Can be produced.
本発明の接合材料を用いて部材の接合を行う際の接合温度は、接合材料の軟化点より低いことが好ましい。具体的には、接合材料の軟化点と接合温度の差(接合材料の軟化点−接合温度)は0℃超、さらには5℃以上、特に10℃以上であることが好ましい。接合温度が接合材料の軟化点以上であると、接合時に接合材料が流動して気泡や空隙が発生しやすくなったり、接合層の厚さが不均一になりやすくなる。一方、接合温度が接合材料の軟化点と比較して低すぎる場合は、接合材料の軟化状態が不十分となり、接合が困難になる傾向がある。したがって、接合材料の軟化点と接合温度の差は35℃以下、特に30℃以下であることが好ましい。 The bonding temperature when the members are bonded using the bonding material of the present invention is preferably lower than the softening point of the bonding material. Specifically, the difference between the softening point of the bonding material and the bonding temperature (the softening point of the bonding material−the bonding temperature) is preferably over 0 ° C., more preferably 5 ° C. or more, and particularly preferably 10 ° C. or more. When the bonding temperature is equal to or higher than the softening point of the bonding material, the bonding material flows during bonding and bubbles and voids are likely to be generated, and the thickness of the bonding layer is likely to be uneven. On the other hand, when the bonding temperature is too low as compared with the softening point of the bonding material, the softening state of the bonding material becomes insufficient and the bonding tends to be difficult. Therefore, the difference between the softening point of the bonding material and the bonding temperature is preferably 35 ° C. or lower, particularly 30 ° C. or lower.
なお本発明の接合材料の軟化点は被接合部材の軟化点よりも低いことが好ましく、それにより接合時の被接合部材の軟化変形を抑制することができる。具体的には、接合材料の軟化点は、被接合部材の軟化点よりも50℃以上、特に100℃以上低いことが好ましい。 Note that the softening point of the bonding material of the present invention is preferably lower than the softening point of the member to be bonded, whereby the softening deformation of the member to be bonded at the time of bonding can be suppressed. Specifically, the softening point of the joining material is preferably 50 ° C. or more, particularly 100 ° C. or less, lower than the softening point of the member to be joined.
接合材料と各被接合部材との線熱膨張係数差が小さいほど、接合時の熱や得られた製品の使用時に発生する熱(例えば、半導体発光素子デバイスにおける半導体発光素子が発する熱)による各材料間の発生応力が小さく、剥離などの破壊が発生しにくい。具体的には、接合部材と各被接合部材の各線熱膨張係数差は50×10−7以下、特に30×10−7以下であることが好ましい。 The smaller the difference in coefficient of linear thermal expansion between the bonding material and each member to be bonded, the more the heat generated during bonding and the heat generated during use of the resulting product (for example, the heat generated by the semiconductor light emitting element in the semiconductor light emitting element device). The stress generated between materials is small, and breakage such as peeling is unlikely to occur. Specifically, the difference in coefficient of linear thermal expansion between the joining member and each joined member is preferably 50 × 10 −7 or less, particularly preferably 30 × 10 −7 or less.
また、接合材料と各被接合部材との屈折率nd差が小さいほど、各材料界面での光の散乱ロスを抑制することができる。これにより、例えば本発明の接合材料を半導体発光素子デバイスに適用した場合、発光効率を向上させることが可能となる。したがって、接合部材と各被接合部材の屈折率nd差は0.5以下、特に0.3以下であることが好ましい。 Further, the smaller the refractive index nd difference between the bonding material and each member to be bonded, the more the light scattering loss at each material interface can be suppressed. Thereby, for example, when the bonding material of the present invention is applied to a semiconductor light emitting device, the light emission efficiency can be improved. Therefore, the refractive index nd difference between the bonding member and each member to be bonded is preferably 0.5 or less, particularly 0.3 or less.
次に、本発明の接合材料の実施形態の一例として、本発明の接合材料を用いたフリップチップタイプの半導体発光素子デバイスについて図1の模式図を用いて説明する。 Next, as an example of the embodiment of the bonding material of the present invention, a flip-chip type semiconductor light emitting device using the bonding material of the present invention will be described with reference to the schematic diagram of FIG.
半導体発光素子デバイス1は、基体7上に半導体発光素子3がボンディング8により接着され、また半導体発光素子3の上部には接合材料6を介して波長変換部材2が接合された構造を有している。ここで、半導体発光素子3は、基板4と、基板4上に形成された半導体層5から形成されており、基板4が接合材料6により波長変換部材2と、半導体層5がボンディング8により基体7とそれぞれ接合されている。 The semiconductor light emitting device 1 has a structure in which a semiconductor light emitting device 3 is bonded to a base 7 by bonding 8 and a wavelength conversion member 2 is bonded to the upper portion of the semiconductor light emitting device 3 through a bonding material 6. Yes. Here, the semiconductor light emitting element 3 is formed of a substrate 4 and a semiconductor layer 5 formed on the substrate 4. The substrate 4 is a base material by the bonding material 6 and the semiconductor layer 5 is bonded by the bonding 8. 7 respectively.
半導体発光素子デバイス1は、例えば波長変換部材2と半導体発光素子3における基板4とを、接合材料6を介して設置した状態で加熱処理を施すことにより波長変換部材2と基板4を接合し、その後、半導体発光素子3における半導体層5と基体7をボンディング8により接着することにより作製することができる。ここで、波長変換部材2と半導体発光素子3の間に接合材料6を設置し、外部から圧力を印加した状態で加熱処理することにより接合状態が強固なものとなる。 The semiconductor light-emitting element device 1 joins the wavelength conversion member 2 and the substrate 4 by performing a heat treatment in a state where, for example, the wavelength conversion member 2 and the substrate 4 in the semiconductor light-emitting element 3 are installed via the bonding material 6, Thereafter, the semiconductor layer 5 and the substrate 7 in the semiconductor light emitting element 3 can be manufactured by bonding them by bonding 8. Here, the bonding material 6 is placed between the wavelength conversion member 2 and the semiconductor light emitting element 3, and the heat treatment is performed with pressure applied from the outside, so that the bonding state becomes strong.
基板4と波長変換部材2の接合は、基板4に対してエピタキシャル成長処理を施して半導体層5を形成する前に行ってもよいし、基板4に対して半導体層5を形成した後に行ってもよい。また、波長変換部材2と基板4の接合を、半導体発光素子3と基体7をボンディング8により接着した後に行っても構わない。 Bonding of the substrate 4 and the wavelength conversion member 2 may be performed before the semiconductor layer 5 is formed by performing an epitaxial growth process on the substrate 4 or after the semiconductor layer 5 is formed on the substrate 4. Good. Further, the wavelength conversion member 2 and the substrate 4 may be bonded after the semiconductor light emitting element 3 and the substrate 7 are bonded together by bonding 8.
なお、波長変換部材2と接合材料6または接合材料6と基板4の間に異物が存在すると気泡や空隙の発生原因となるため、加熱処理はクラス1000以下のクリーンルームで行うことが好ましい。 In addition, if foreign matter exists between the wavelength conversion member 2 and the bonding material 6 or between the bonding material 6 and the substrate 4, bubbles and voids are generated, and therefore, the heat treatment is preferably performed in a clean room of class 1000 or less.
半導体発光素子の基板側に波長変換部材を接合した半導体発光素子デバイス(フリップチップタイプ)はハイパワーLED等に採用されている。フリップチップタイプ実装時の電極接合には300〜350℃で加熱処理が行われるが、半導体発光素子と波長変換部材を無機材料であるガラスフィルムからなる接合材料により接合することにより、実装時の加熱処理によって変色や変形が生じることがない。また、ガラスフィルムの軟化点が500℃以下であるため、低温接合が可能となり、接合時に半導体発光素子や波長変換部材の特性が劣化したり、変形するといった問題が生じにくい。 2. Description of the Related Art A semiconductor light emitting device (flip chip type) in which a wavelength conversion member is bonded to the substrate side of a semiconductor light emitting device is adopted for a high power LED or the like. Heat treatment is performed at 300 to 350 ° C. for electrode bonding at the time of flip chip type mounting, and heating at the time of mounting by bonding the semiconductor light emitting element and the wavelength conversion member with a bonding material made of a glass film that is an inorganic material. No discoloration or deformation occurs due to processing. Moreover, since the softening point of the glass film is 500 ° C. or lower, low-temperature bonding is possible, and problems such as deterioration or deformation of the characteristics of the semiconductor light-emitting element and the wavelength conversion member are unlikely to occur during bonding.
なお、波長変換部材としては、ガラスマトリクス中に無機蛍光体粉末が分散してなるものであると、耐熱性に優れるため好ましい。具体的には、無機蛍光体粉末とガラス粉末を含む混合粉末の焼結体からなるものや、蛍光体含有結晶化ガラスなどが挙げられる。 In addition, as a wavelength conversion member, since it is excellent in heat resistance, it is preferable that an inorganic fluorescent substance powder is disperse | distributed in a glass matrix. Specific examples include those made of a sintered powder of a mixed powder containing inorganic phosphor powder and glass powder, and phosphor-containing crystallized glass.
無機蛍光体粉末としては、一般的に市中で入手できるものであれば使用できる。無機蛍光体粉末には、YAG等の酸化物や、窒化物、酸窒化物、硫化物、希土類酸硫化物、ハロゲン化物、アルミン酸塩化物、ハロリン酸塩化物などからなるものがある。 Any inorganic phosphor powder can be used as long as it is generally available in the market. Inorganic phosphor powders include oxides such as YAG, nitrides, oxynitrides, sulfides, rare earth oxysulfides, halides, aluminate chlorides, halophosphates, and the like.
なお、励起光や発光の波長域に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色等の蛍光を発する無機蛍光体粉末を混合して使用すればよい。 A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders that emit fluorescence such as blue, green, yellow, and red may be mixed and used.
ガラス粉末には、無機蛍光体粉末を安定に保持するための媒体としての役割がある。また、ガラス粉末のガラス組成によって波長変換部材の色調が異なり、また無機蛍光体粉末との反応性に差が出るため、これらの条件を考慮して使用するガラス組成を選択することが好ましい。さらに、ガラス組成に適した無機蛍光体粉末の添加量や、波長変換部材の厚さを決定することも重要である。 The glass powder has a role as a medium for stably holding the inorganic phosphor powder. Moreover, since the color tone of the wavelength conversion member varies depending on the glass composition of the glass powder and the reactivity with the inorganic phosphor powder varies, it is preferable to select the glass composition to be used in consideration of these conditions. Furthermore, it is also important to determine the addition amount of the inorganic phosphor powder suitable for the glass composition and the thickness of the wavelength conversion member.
ガラス粉末としては、例えば、SiO2−B2O3−RO系ガラス(RはMg、Ca、Sr、Baを示す)、SiO2−B2O3−R’2O系ガラス(R’はLi、Na、Kを示す)、SiO2−B2O3−Al2O3系ガラス、SiO2−B2O3−ZnO系ガラス、ZnO−B2O3系ガラス、SnO−P2O5系ガラスを用いることができる。これらのガラスは目的とする特性に応じて適宜選択すればよい。例えば低温で焼成したい場合は、比較的軟化点が低いZnO−B2O3系ガラス、SnO−P2O5系ガラスを選択すればよく、波長変換部材の耐候性を向上させたい場合は、SiO2−B2O3−RO系ガラス、SiO2−B2O3−R’2O系ガラス、SiO2−B2O3−Al2O3系ガラス、SiO2−B2O3−ZnO系ガラスを選択すればよい。 Examples of the glass powder include SiO 2 —B 2 O 3 —RO-based glass (R represents Mg, Ca, Sr, Ba), and SiO 2 —B 2 O 3 —R ′ 2 O-based glass (R ′ represents Li, Na, and K), SiO 2 —B 2 O 3 —Al 2 O 3 glass, SiO 2 —B 2 O 3 —ZnO glass, ZnO—B 2 O 3 glass, SnO—P 2 O 5 type glass can be used. What is necessary is just to select these glasses suitably according to the characteristic made into the objective. For example, when firing at a low temperature, a ZnO—B 2 O 3 system glass or SnO—P 2 O 5 system glass having a relatively low softening point may be selected, and when it is desired to improve the weather resistance of the wavelength conversion member, SiO 2 —B 2 O 3 —RO glass, SiO 2 —B 2 O 3 —R ′ 2 O glass, SiO 2 —B 2 O 3 —Al 2 O 3 glass, SiO 2 —B 2 O 3 — A ZnO-based glass may be selected.
ガラス粉末の平均粒径D50は、0.1〜100μm、特に1〜50μmであることが好ましい。ガラス粉末の平均粒径D50が小さすぎると、焼成する際に気泡の発生量が多くなる。波長変換部材中に気泡が多く含まれると光散乱の原因となり発光効率が低下する傾向がある。好ましい気孔率は2%以下、特に1%以下である。一方、平均粒径D50が大きすぎると、波長変換部材中に無機蛍光体粉末が均一に分散されにくくなり、結果として、波長変換部材の発光色にばらつきが生じやすくなる。 The average particle diameter D50 of the glass powder is preferably from 0.1 to 100 μm, particularly preferably from 1 to 50 μm. When the average particle diameter D 50 of the glass powder is too small, the greater the amount of generation of bubbles during the firing. If many bubbles are contained in the wavelength conversion member, light emission is likely to be caused and light emission efficiency tends to be reduced. The preferred porosity is 2% or less, particularly 1% or less. On the other hand, when the average particle diameter D 50 is too large, the inorganic phosphor powder is less likely to be uniformly dispersed in the wavelength conversion member, as a result, variation tends to occur in the emission color of the wavelength conversion member.
波長変換部材の発光効率(lm/W)は、ガラスマトリクス中に分散した無機蛍光体粉末の種類や含有量、さらには発光色変換部材の肉厚によって変化する。波長変換部材の発光効率を高めたい場合、肉厚を薄くして励起光や蛍光の透過率を高めたり、無機蛍光体粉末の含有量を多くして、変換させる光量を増加させることで調整すればよい。しかしながら、無機蛍光体粉末の含有量が多くなりすぎると、緻密な構造が得られにくくなり気孔率が大きくなる傾向がある。また、白色光を得るために厚みを薄くする必要が生じる。結果として、励起光が効率良く無機蛍光体粉末に照射されにくくなったり、波長変換部材の機械的強度が低下しやすくなるなどの問題が生じる。一方、無機蛍光体粉末の含有量が少なすぎると、十分な発光が得られにくくなる。したがって、波長変換部材における無機蛍光体粉末の含有量は、質量%で、0.01〜30%、0.05〜20%、特に0.08〜15%であることが好ましい。 The luminous efficiency (lm / W) of the wavelength conversion member varies depending on the type and content of the inorganic phosphor powder dispersed in the glass matrix and the thickness of the luminescent color conversion member. If you want to increase the luminous efficiency of the wavelength conversion member, adjust the thickness by reducing the thickness to increase the transmittance of excitation light or fluorescence, or increase the content of inorganic phosphor powder to increase the amount of light to be converted. That's fine. However, when the content of the inorganic phosphor powder is too large, it is difficult to obtain a dense structure and the porosity tends to increase. In addition, it is necessary to reduce the thickness in order to obtain white light. As a result, problems such as it becomes difficult for the excitation light to be efficiently applied to the inorganic phosphor powder, and the mechanical strength of the wavelength conversion member tends to decrease. On the other hand, when there is too little content of inorganic fluorescent substance powder, it becomes difficult to obtain sufficient light emission. Therefore, the content of the inorganic phosphor powder in the wavelength conversion member is preferably 0.01% to 30%, 0.05% to 20%, and particularly preferably 0.08% to 15% in mass%.
半導体発光素子の基板としては、一般的にはAl2O3(サファイア)が用いられるが、その他にSi(シリコン)、GaAs(ガリウム砒素)、SiC(シリコンカーバイド)などが挙げられる。 Al 2 O 3 (sapphire) is generally used as the substrate of the semiconductor light emitting device, but other examples include Si (silicon), GaAs (gallium arsenide), and SiC (silicon carbide).
以下に本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in detail below based on examples, but the present invention is not limited to these examples.
表1は本発明の接合材料を半導体発光素子デバイスの製造に適用した場合の実施例および比較例を示している。 Table 1 shows examples and comparative examples when the bonding material of the present invention is applied to the manufacture of a semiconductor light emitting device.
まず波長変換部材は以下のようにして作製した。SiO2−B2O3−RO系ガラス組成となるように原料粉末を調製し、白金坩堝において900〜1400℃で1時間溶融してガラス化した。溶融ガラスをフィルム状に成形し、得られたフィルム状ガラスをボールミルで粉砕した後、325メッシュの篩に通して分級し、平均粒径D50が45μmのガラス粉末(軟化点 850℃、屈折率nd 1.56)を得た。 First, the wavelength conversion member was produced as follows. SiO 2 -B 2 O 3 to prepare a raw material powder so that -RO based glass composition was vitrified by melting 1 hour at 900-1400 ° C. in a platinum crucible. The molten glass was formed into a film, and the obtained film was pulverized with a ball mill and then passed through a 325-mesh sieve to classify the glass powder (softening point 850 ° C., refractive index, average particle diameter D 50: 45 μm) nd 1.56).
次に、ガラス粉末に対してYAG蛍光体粉末を混合し、金型を用いて加圧成形して直径1cmのボタン状の予備成形体を作製した。この予備成形体を800℃で焼成し焼結体を得た。焼結体に対して荒削り研磨処理を施して直径8mm、厚さ0.2mmに加工した。続いて、ダイヤモンド砥粒と繊維を織り込んだクロス材を表面にもつ定盤を用いて両面鏡面研磨を行い、波長変換部材を得た。 Next, YAG phosphor powder was mixed with glass powder, and pressure-molded using a mold to prepare a button-shaped preform having a diameter of 1 cm. The preform was fired at 800 ° C. to obtain a sintered body. The sintered body was rough-polished and processed to have a diameter of 8 mm and a thickness of 0.2 mm. Subsequently, double-sided mirror polishing was performed using a surface plate having a cloth material woven with diamond abrasive grains and fibers on the surface to obtain a wavelength conversion member.
あらかじめ清浄されたアルミナ製セッター上に、単結晶サファイア基板(屈折率nd 1.76)、接合材料、波長変換部材をこの順に積層させて設置し、クリーンオーブンにて加熱処理を行うことにより接合を行った。なお、単結晶サファイア基板、接合材料、波長変換部材は、予め純水による精密洗浄を行ったものを用いた。加熱処理は20℃/分で250℃まで昇温、380℃で30分保持し、その後常温まで自然冷却することによって行った。 A single crystal sapphire substrate (refractive index nd 1.76), a bonding material, and a wavelength conversion member are stacked in this order on an alumina setter that has been cleaned in advance and bonded by heat treatment in a clean oven. went. In addition, the single crystal sapphire substrate, the bonding material, and the wavelength conversion member used those that had been precision cleaned with pure water in advance. The heat treatment was performed by raising the temperature up to 250 ° C. at 20 ° C./min, holding at 380 ° C. for 30 minutes, and then naturally cooling to room temperature.
接合材料は、実施例1および2についてはスズリン酸塩ガラス板(ガラス組成(モル%):SnO 62%、P2O5 21%、B2O3 11%、MgO 3%、Al2O3 3%)を、比較例1についてはケイ酸塩ガラス板を所定の温度で加熱延伸成形して作製したガラスフィルムを用いた。なお比較例2では、2液性シリコーン樹脂を指定比率で混合して単結晶サファイア基板と波長変換部材間に塗布し、密着させ、120℃で1時間硬化させることにより接合を行った。ガラスフィルムの軟化点は、ガラスフィルムを粉砕して得られたガラス粉末について、マクロ型示差熱分析(DTA)装置を用いて測定した。 The bonding materials were tin phosphate glass plates for Examples 1 and 2 (glass composition (mol%): SnO 62%, P 2 O 5 21%, B 2 O 3 11%, MgO 3%, Al 2 O 3 3%), for Comparative Example 1, a glass film produced by heating and stretching a silicate glass plate at a predetermined temperature was used. In Comparative Example 2, two-component silicone resin was mixed at a specified ratio, applied between the single crystal sapphire substrate and the wavelength conversion member, adhered, and cured by curing at 120 ° C. for 1 hour. The softening point of the glass film was measured using a macro-type differential thermal analysis (DTA) apparatus for the glass powder obtained by pulverizing the glass film.
本実施例では、上記のようにして得られた単結晶サファイア基板と波長変換部材の接合体に対して青色LEDを組み合わせて模擬的な半導体発光素子デバイスを作製し、発光効率を測定した。 In this example, a simulated semiconductor light-emitting device was fabricated by combining a blue LED with the single crystal sapphire substrate and wavelength conversion member obtained as described above, and the light emission efficiency was measured.
また、接合体に対して、フリップチップ実装時の電極接合に必要とされる温度を想定した350℃で10分間の再加熱を行い、同様に発光効率を測定した。加熱にはホットプレートを用いた。 The joined body was reheated at 350 ° C. for 10 minutes assuming the temperature required for electrode joining during flip chip mounting, and the luminous efficiency was measured in the same manner. A hot plate was used for heating.
発光効率は次のようにして評価した。青色LED上に、上記接合体を単結晶サファイア基板が青色LED発光面と接するように設置し、校正された積分球内で青色LEDを点灯させ、接合体を介して発せられる光を小型分光器で受光し、CCDを通してPC上に発光スペクトルを得た。得られたスペクトルから全光束値(lm)を解析ソフト(オーシャンフォトニクス社製 OP−Wave)から算出し、青色LEDに印加した電力(W)で除して発光効率を算出した。 The luminous efficiency was evaluated as follows. On the blue LED, the above-mentioned joined body is placed so that the single crystal sapphire substrate is in contact with the blue LED light emitting surface, the blue LED is turned on in the calibrated integrating sphere, and the light emitted through the joined body is compact spectroscope. The emission spectrum was obtained on a PC through a CCD. From the obtained spectrum, the total luminous flux value (lm) was calculated from analysis software (OP-Wave manufactured by Ocean Photonics), and the luminous efficiency was calculated by dividing by the power (W) applied to the blue LED.
表1から明らかなように、実施例1、2では、単結晶サファイア基板と波長変換部材を低温接合することができ、しかもフリップチップ実装時の電極接合を想定した350℃での加熱処理後にも発光効率の低下が小さく、耐熱性に優れていることがわかる。 As is clear from Table 1, in Examples 1 and 2, the single crystal sapphire substrate and the wavelength conversion member can be bonded at low temperature, and after heat treatment at 350 ° C. assuming electrode bonding during flip-chip mounting. It can be seen that the decrease in luminous efficiency is small and the heat resistance is excellent.
一方、比較例1では、接合材料の軟化点が高く、500℃以下の低温接合はできなかった。また比較例2では、350℃での加熱処理後に発光効率が著しく低下していることがわかる。 On the other hand, in Comparative Example 1, the softening point of the bonding material was high, and low-temperature bonding at 500 ° C. or lower was not possible. Further, in Comparative Example 2, it can be seen that the light emission efficiency is remarkably lowered after the heat treatment at 350 ° C.
なお本実施例では、本発明の接合材料を半導体発光素子デバイスの製造に適用した例を示したが、本発明は当該用途に限定されるものではなく、部材の低温接合が要求される種々の用途に適用することができる。 In this example, the example in which the bonding material of the present invention was applied to the manufacture of a semiconductor light emitting device was shown. However, the present invention is not limited to this application, and various members that require low temperature bonding of members are required. It can be applied for use.
本発明の接合材料は、例えばフリップチップタイプの半導体素子発光デバイスにおける半導体発光素子と波長変換部材の接合に使用できるほか、有機EL照明、太陽電池、有機ELディスプレイ等のデバイスの基板間のシール材としても好適である。 The bonding material of the present invention can be used, for example, for bonding a semiconductor light emitting element and a wavelength conversion member in a flip chip type semiconductor element light emitting device, as well as a sealing material between substrates of devices such as organic EL lighting, solar cells, and organic EL displays. It is also suitable.
1 半導体発光素子デバイス
2 波長変換部材
3 半導体発光素子
4 基板
5 半導体層
6 接合材料(ガラスフィルム)
7 基体
8 ボンディング
DESCRIPTION OF SYMBOLS 1 Semiconductor light-emitting device 2 Wavelength conversion member 3 Semiconductor light-emitting device 4 Substrate 5 Semiconductor layer 6 Joining material (glass film)
7 Substrate 8 Bonding
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010076535A JP5713273B2 (en) | 2010-03-30 | 2010-03-30 | Joining material and member joining method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010076535A JP5713273B2 (en) | 2010-03-30 | 2010-03-30 | Joining material and member joining method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011207655A JP2011207655A (en) | 2011-10-20 |
JP5713273B2 true JP5713273B2 (en) | 2015-05-07 |
Family
ID=44939146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010076535A Active JP5713273B2 (en) | 2010-03-30 | 2010-03-30 | Joining material and member joining method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5713273B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015090887A (en) * | 2013-11-05 | 2015-05-11 | 株式会社日本セラテック | Light-emitting element and light-emitting device |
KR101977394B1 (en) * | 2017-07-06 | 2019-05-10 | 이지스코 주식회사 | Method of manufacturing ceramic electrostatic chuck using liquid sintering method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58100436A (en) * | 1981-12-11 | 1983-06-15 | Hitachi Ltd | Manufacture of semiconductor device |
JPH0345572A (en) * | 1989-07-11 | 1991-02-27 | Nippon Cement Co Ltd | Bonding of ceramics |
JP2004059366A (en) * | 2002-07-29 | 2004-02-26 | Asahi Techno Glass Corp | Lead-free low melting glass and sealing material |
JP4262975B2 (en) * | 2002-12-27 | 2009-05-13 | マイクロ化学技研株式会社 | Manufacturing method of glass substrate microchip |
JP5477756B2 (en) * | 2006-07-07 | 2014-04-23 | 日本電気硝子株式会社 | Semiconductor encapsulating material and semiconductor element encapsulated using the same |
-
2010
- 2010-03-30 JP JP2010076535A patent/JP5713273B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011207655A (en) | 2011-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4895541B2 (en) | Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member | |
JP5505864B2 (en) | Manufacturing method of semiconductor light emitting device | |
JP6273799B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
US20130049575A1 (en) | Phosphor composite member, led device and method for manufacturing phosphor composite member | |
WO2011111462A1 (en) | Wavelength conversion member, optical device, and process for production of wavelength conversion member | |
JP2007161944A (en) | Phosphor | |
JP2014234487A (en) | Wavelength conversion member and light-emitting device | |
JP2007039303A (en) | Luminescent color-converting member | |
JP5532508B2 (en) | Wavelength conversion member and manufacturing method thereof | |
JP5854367B2 (en) | Method for manufacturing phosphor composite member | |
JP2013219123A (en) | Wavelength conversion member and method for producing the same | |
KR20220104272A (en) | Wavelength conversion member, and light emitting device using same | |
JP2010229002A (en) | SnO-P2O5 GLASS USED FOR PHOSPHOR COMPOSITE MATERIAL | |
JP2012036367A (en) | Phosphor composite member | |
KR20160063245A (en) | Phosphor-dispersed glass | |
JP2010261048A (en) | Light-emitting device and its manufacturing method | |
KR101593582B1 (en) | Quantum dot formed glass composite for color converter, preparation method thereof and white light emitting diode | |
JP2011222751A (en) | Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member | |
JP2012052061A (en) | Phosphor composite member | |
WO2012008306A1 (en) | Phosphor composite member, led device and method for manufacturing phosphor composite member | |
JP2013095849A (en) | Wavelength conversion member and light emitting device using the same | |
JP5713273B2 (en) | Joining material and member joining method using the same | |
JP2019019011A (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device | |
JP2014203899A (en) | Wavelength conversion material, wavelength conversion member and light-emitting device | |
JP2010248530A (en) | Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140303 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140421 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150114 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5713273 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150301 |