WO2012008306A1 - Phosphor composite member, led device and method for manufacturing phosphor composite member - Google Patents

Phosphor composite member, led device and method for manufacturing phosphor composite member Download PDF

Info

Publication number
WO2012008306A1
WO2012008306A1 PCT/JP2011/064922 JP2011064922W WO2012008306A1 WO 2012008306 A1 WO2012008306 A1 WO 2012008306A1 JP 2011064922 W JP2011064922 W JP 2011064922W WO 2012008306 A1 WO2012008306 A1 WO 2012008306A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
inorganic
composite member
phosphor
sintered body
Prior art date
Application number
PCT/JP2011/064922
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 藤田
鈴木 良太
忠仁 古山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011022347A external-priority patent/JP2012036367A/en
Priority claimed from JP2011136917A external-priority patent/JP5854367B2/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US13/696,240 priority Critical patent/US20130049575A1/en
Priority to CN2011800114308A priority patent/CN102782082A/en
Publication of WO2012008306A1 publication Critical patent/WO2012008306A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • C04B2111/807Luminescent or fluorescent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Definitions

  • the present invention relates to a phosphor composite member, an LED device, and a method for manufacturing a phosphor composite member for emitting fluorescence by irradiating excitation light and obtaining white light by synthesizing transmitted excitation light and fluorescence.
  • LEDs Light Emitting Diodes
  • RGB red, G: green, B: blue
  • RGB red, G: green, B: blue
  • Technology has been proposed.
  • the light emission outputs of three color LEDs are usually different, it is difficult to obtain white light by adjusting the characteristics of each color LED.
  • a uniform white light source cannot be obtained when the LEDs are viewed at close positions, for example, as a liquid crystal backlight. .
  • the color deterioration speed of each color LED is different, there is a problem in the long-term stability of white light.
  • an LED that combines a blue LED and a YAG phosphor (Y 3 A 15 O 12 ) that emits yellow fluorescence by blue light emitted from the blue LED has been developed (for example, , See Patent Document 1).
  • white light can be obtained by synthesizing the yellow light emitted from the YAG phosphor and the transmitted light of the blue LED.
  • the cost is low and the long-term stability of white light is excellent.
  • the white LED has advantages such as long life, high efficiency, high stability, low power consumption, high response speed, and no environmental load substances compared to conventional light sources such as lighting devices. It has been applied to the LCD backlight of most mobile phones. In recent years, it has been rapidly spreading as a light source for liquid crystal backlights of televisions. In the future, in addition to this, it is expected that the application will be advanced to general lighting.
  • the white LED disclosed in Patent Document 1 has a configuration in which the light emitting surface of an LED chip is molded with a phosphor powder dispersed in an organic binder resin.
  • the organic binder resin deteriorates and causes discoloration due to high-output short-wavelength light in the blue to ultraviolet region, heat generation of the phosphor, or heat of the LED chip.
  • the emission intensity is lowered and the color shift occurs and the life is shortened.
  • the obtained white light is blue and yellow combined light, white light having a high color temperature (daylight color) can be obtained, but white light having a low color temperature (bulb color) cannot be obtained. There is also a problem. Furthermore, since the combined light is composed of two colors, the color rendering properties are low and it is not suitable for lighting applications.
  • a phosphor composite member in which a glass sintered body layer containing an inorganic phosphor powder is formed on the surface of a ceramic substrate that emits fluorescence (see, for example, Patent Document 2). Since the phosphor composite member does not use an organic binder resin with poor heat resistance, it can suppress a decrease in light emission intensity over time, has high color rendering properties, and has various color temperatures from daylight to light bulb color. Corresponding white light can be obtained.
  • SiO 2 —B 2 O 3 -based glass is used as the glass powder contained in the glass sintered body layer, and the ceramic substrate contains YAG crystals. A substrate is used. Since SiO 2 —B 2 O 3 based glass generally has a high melting point, a high firing temperature is required to form a glass sintered body layer (for example, 850 ° C. or higher). For this reason, depending on the phosphor used, the emission intensity may decrease due to thermal degradation during firing. Since the SiO 2 —B 2 O 3 glass has a low refractive index of about 1.6, the refractive index difference with the YAG substrate exceeding the refractive index of 1.8 is large, and light scattering loss tends to occur at the interface. As a result, the emission intensity of the white light obtained tends to decrease.
  • an object of the present invention is to provide a phosphor composite member having excellent heat resistance, high color rendering properties, various chromaticity control properties from daylight colors to light bulb colors, and high emission intensity.
  • the present inventors have a specific composition in a phosphor composite member formed by forming an inorganic powder sintered body layer containing glass powder and inorganic phosphor powder on the surface of a ceramic substrate that emits fluorescence.
  • the present inventors have found that the above problems can be solved by using glass powder, and propose as the present invention.
  • the first phosphor composite member according to the present invention is a phosphor in which an inorganic powder sintered body layer containing SnO—P 2 O 5 glass and inorganic phosphor powder is formed on the surface of a ceramic substrate.
  • the ceramic composite member is characterized in that when the excitation light is irradiated, the ceramic substrate and the inorganic powder sintered body layer emit fluorescence having different wavelengths.
  • the ceramic base material and the inorganic powder sintered body layer emit fluorescence having different wavelengths, and these lights are synthesized with the excitation light transmitted through the phosphor composite member. It has high color rendering properties and can emit white light corresponding to various color temperatures from daylight to light bulb.
  • SnO—P 2 O 5 glass is used as a glass component constituting the inorganic powder sintered body layer.
  • SnO—P 2 O 5 glass can be easily lowered in softening point by optimizing the composition, and the sintering temperature can be lowered. For this reason, deterioration of the inorganic fluorescent substance powder by the heat
  • SnO—P 2 O 5 glass can achieve a refractive index as high as about 1.8 by optimizing the composition.
  • a YAG ceramic substrate when used as the ceramic substrate, it is possible to substantially match the refractive index of the YAG ceramic substrate, and light scattering loss at the interface between the ceramic substrate and the inorganic powder sintered body layer is reduced. Can be reduced. As a result, since it can be set as the fluorescent substance composite member with high light emission intensity
  • to glass refers to glass containing an explicit component as an essential component.
  • the first phosphor composite member of the present invention may be characterized in that the ceramic substrate absorbs excitation light having a wavelength of 400 to 500 nm and emits fluorescence having a wavelength of 450 to 780 nm.
  • the first phosphor composite member of the present invention may be characterized in that the ceramic base material absorbs blue excitation light and emits yellow fluorescence.
  • the first phosphor composite member of the present invention may be characterized in that the ceramic substrate is made of a garnet crystal containing Ce 3+ in the crystal.
  • the first phosphor composite member of the present invention may be characterized in that the garnet crystal is a YAG crystal or a YAG crystal solid solution.
  • the first phosphor composite member of the present invention may be characterized in that the inorganic powder sintered body layer absorbs excitation light having a wavelength of 400 to 500 nm and emits fluorescence having a wavelength of 500 to 780 nm.
  • the first phosphor composite member of the present invention may be characterized in that the inorganic powder sintered body layer absorbs blue excitation light and emits red and / or green fluorescence.
  • blue light means light having a central wavelength at a wavelength of 430 to 480 nm
  • green light means light having a central wavelength at a wavelength of 500 to 535 nm
  • yellow light means light having a wavelength of 535 to 590 nm.
  • the light having a central wavelength and the red light mean light having a central wavelength at a wavelength of 610 to 780 nm.
  • the first phosphor composite member of the present invention is characterized in that the fluorescent light emitted from the ceramic base material and the inorganic powder sintered body layer and the excitation light transmitted through the phosphor composite member are combined to emit white light. It may be.
  • the first phosphor composite member of the present invention may be characterized in that the inorganic powder sintered body layer contains 0.01 to 30% by mass of the inorganic phosphor powder.
  • SnO—P 2 O 5 based glass is composed of SnO 35-80%, P 2 O 5 5-40%, and B 2 O 3 0- It may be characterized by containing 30%.
  • the first phosphor composite member of the present invention may be characterized in that the inorganic powder sintered body layer has a surface roughness Ra of 0.5 ⁇ m or less.
  • the first phosphor composite member of the present invention may be characterized by the scattering coefficient is 1 ⁇ 500 cm -1.
  • the LED device according to the present invention is characterized by using any one of the phosphor composite members.
  • a first method for producing a phosphor composite member according to the present invention is a method for producing any one of the above phosphor composite members, wherein a mixture of SnO—P 2 O 5 glass and inorganic phosphor powder is used.
  • the manufacturing method is referred to as a “thermocompression pressing method” in distinction from the paste method and the green sheet method.
  • thermocompression pressing method the inorganic powder sintered body layer is easily joined firmly to the ceramic substrate, and peeling at the interface can be suppressed.
  • SnO-P 2 O 5 based glass mechanical strength is relatively weak, brittle. For this reason, it is difficult to form a very thin (for example, about 0.1 mm) inorganic powder sintered body layer by a general polishing method. On the other hand, when the thermocompression pressing method is used, a very thin inorganic powder sintered body layer can be easily formed.
  • thermocompression pressing method can form an inorganic powder sintered body layer on a ceramic substrate without using an organic compound such as a solvent or a binder. It is possible to prevent the emission intensity from decreasing.
  • the manufacturing method of the 2nd fluorescent substance composite member which concerns on this invention is the process of mounting the mixed powder containing glass powder and inorganic fluorescent substance powder on an inorganic base material, and heating using a metal mold
  • the second method for producing a phosphor composite member according to the present invention an inorganic group is directly added to a mixed powder containing glass powder and inorganic phosphor powder without adding an organic resin, an organic solvent, or the like. Since it can be press-bonded to the surface of the material, there is no problem of a decrease in light emission intensity caused by a carbon component caused by an organic resin or an organic solvent. Therefore, it is possible to obtain a light emission color conversion member having excellent light emission intensity.
  • the mixed powder can be used for press molding as it is, so that the manufacturing process can be simplified. It is also easy to form a very thin inorganic powder sintered body layer on the inorganic substrate surface.
  • the inorganic base material is preferably YAG-based ceramics, crystallized glass, glass, metal, or a composite of metal and ceramics.
  • the thickness of the inorganic powder sintered body layer is preferably 0.3 mm or less.
  • the inorganic powder sintered body layer By thinning the inorganic powder sintered body layer, light scattering loss in the inorganic powder sintered body layer can be reduced, and as a result, the emission intensity of the phosphor composite member can be improved.
  • the inorganic powder sintered body layer preferably has a surface roughness (Ra) of 0.5 ⁇ m or less.
  • the average particle diameter of the glass powder (D 50) is 100 ⁇ m or less.
  • the dispersed state of the inorganic phosphor powder in the phosphor composite member becomes favorable, and it becomes possible to suppress variations in the emission color.
  • the ratio of the inorganic phosphor powder in the inorganic powder sintered body layer is preferably 0.01 to 90% by mass.
  • the inorganic powder sintered body layer preferably contains 0 to 30% by mass of an inorganic filler.
  • the glass powder is SiO 2 —B 2 O 3 —RO glass powder (R is one or more selected from Mg, Ca, Sr and Ba), SiO 2— TiO 2 —Nb 2 O 5 —R ′ 2 O glass powder (R ′ is one or more selected from Li, Na, K), SnO—P 2 O 5 glass powder, or ZnO—B 2 O 3 It is preferably —SiO 2 glass powder.
  • SnO—P 2 O 5 based glass powder has a glass composition of mol%, SnO 35 to 80%, P 2 O 5 5 to 40% and B 2. It is preferable to contain 0 to 30% of O 3 .
  • the inorganic phosphor powder is an oxide, nitride, oxynitride, sulfide, oxysulfide, oxyfluoride, halide, aluminate or halophosphorus.
  • An acid chloride is preferred.
  • the temperature during press molding is 900 ° C. or lower.
  • the atmosphere during press molding is air, vacuum, nitrogen or argon.
  • the phosphor composite member preferably has a plate shape, a hemispherical shape, or a hemispherical dome shape.
  • the second phosphor composite member of the present invention is manufactured by any one of the manufacturing methods described above.
  • FIG. 1 is a schematic view showing the phosphor composite member of the first embodiment.
  • FIG. 2 is a schematic view showing a method for manufacturing the phosphor composite member of the second embodiment.
  • FIG. 1 the schematic diagram of the fluorescent substance composite member of this embodiment is shown.
  • an inorganic powder sintered body layer 11 containing SnO—P 2 O 5 glass and inorganic phosphor powder is formed on the surface of a ceramic substrate 12.
  • the ceramic substrate 12 and the inorganic powder sintered body layer 11 emit fluorescence having different wavelengths when irradiated with excitation light.
  • the ceramic substrate 12 absorbs light having a wavelength of 400 to 500 nm (preferably, blue light) when irradiated with excitation light, and has a wavelength of 450 to 780 nm. It is preferable to emit fluorescence of light (preferably yellow light).
  • the inorganic powder sintered body layer 11 absorbs light having a wavelength of 400 to 500 nm (preferably, blue light) and emits light having a wavelength of 500 to 780 nm (preferably, red and / or green). preferable.
  • white light (bulb color) having a low color temperature is easily obtained.
  • Ce 2 O 3 in the ceramic substrate 12 is 0.001 to 1 mol%, 0.002 to 0.5 mol%, particularly 0.005 to It is preferable to use a garnet crystal containing 0.2 mol%.
  • Ce 3+ becomes the emission center in the garnet crystal, absorbs blue excitation light, and easily emits yellow fluorescence. If the content of Ce 2 O 3 in the ceramic substrate 12 is too small, the yellow emission intensity tends to decrease, and as a result, it becomes difficult to obtain white light. On the other hand, when the content of Ce 2 O 3 is too large, yellow fluorescence becomes strong, and as a result, it becomes difficult to obtain white light.
  • a YAG (Y 3 Al 5 O 12 ) crystal or a YAG crystal solid solution is particularly preferable because it emits a desired yellow fluorescence.
  • YAG crystal solid solution a part of Y is substituted with at least one element selected from the group consisting of Gd, Sc, Ca and Mg, and / or a part of Al is Ga, Si, Ge and And those substituted with at least one element selected from the group consisting of Sc.
  • the ceramic substrate 12 is preferably a plate having a thickness of 0.01 to 2 mm, 0.05 to 1 mm, particularly 0.1 to 0.5 mm.
  • the inorganic powder sintered body layer 11 can be easily formed on the ceramic substrate 12. If the thickness of the ceramic substrate 12 becomes too thin, the amount of crystals in the ceramic substrate 12 will decrease, and sufficient yellow fluorescence will not be emitted, resulting in difficulty in obtaining white light. On the other hand, when the thickness of the ceramic substrate 12 becomes too thick, yellow light emission becomes strong, and as a result, it becomes difficult to obtain white light.
  • the ceramic substrate 12 in the present embodiment can be produced, for example, by the following method.
  • the oxide raw materials of A, B, and C are weighed so that the stoichiometric composition is as follows, and Ce 2 O 3 is added thereto in an amount of 0.001 to 1 mol%.
  • the obtained powder is press-molded into a desired shape (for example, a plate shape) at a pressure of 100 to 300 MPa.
  • the obtained press-molded body is fired at a temperature of 1500 to 1800 ° C. to obtain a ceramic substrate 12.
  • a homogeneous ceramic base material 12 can be easily obtained by using a high-purity powder having a particle size of about several ⁇ m or less.
  • the SnO—P 2 O 5 glass powder used for the inorganic powder sintered body layer 11 has a role as a medium for stably holding the inorganic phosphor powder. Since the SnO—P 2 O 5 glass powder has a low melting point and can be sintered at a low temperature, thermal deterioration of the inorganic phosphor powder during firing can be suppressed. Examples of the SnO—P 2 O 5 glass powder include SnO—P 2 O 5 —B 2 O 3 glass, SnO—P 2 O 5 —ZnO glass, and the like.
  • the SnO—P 2 O 5 glass preferably contains SnO 35 to 80%, P 2 O 5 5 to 40% and B 2 O 3 0 to 30% in terms of mol% as a composition. .
  • the reason for limiting the glass composition in this way will be described below.
  • SnO is a component that forms a glass skeleton and lowers the softening point.
  • the SnO content is preferably 35 to 80%, 40 to 70%, 50 to 70%, particularly 55 to 65%.
  • the softening point of the glass tends to increase, and the weather resistance tends to deteriorate.
  • the content of SnO exceeds 80%, devitrification bumps due to Sn are precipitated in the glass, and the transmittance of the glass tends to decrease, and as a result, the fluorescence intensity decreases. Moreover, it becomes difficult to vitrify.
  • P 2 O 5 is a component that forms a glass skeleton.
  • the content of P 2 O 5 is preferably 5 to 40%, 10 to 30%, particularly preferably 15 to 24%.
  • the content of P 2 O 5 is less than 5%, vitrification becomes difficult.
  • the content of P 2 O 5 exceeds 40%, the softening point of the glass tends to increase, and the weather resistance tends to decrease remarkably.
  • the value of SnO / P 2 O 5 is 0.9 to 16, 1.5 to 16, 1.5 to 10, particularly in molar ratio. It is preferably 2 to 5.
  • the value of SnO / P 2 O 5 is smaller than 0.9, the glass softening point tends to increase, and the sintering temperature tends to increase.
  • the inorganic phosphor powder is likely to be deteriorated by heat treatment when forming the inorganic phosphor powder layer.
  • B 2 O 3 is a component that improves the weather resistance of the glass and suppresses the reaction between the glass powder and the inorganic phosphor powder. It is also a component that stabilizes the glass. B 2 O content of 3 0-30%, 1-25%, 2-20%, it is preferred that particular from 4 to 18%. If the content of B 2 O 3 exceeds 30%, the weather resistance tends to decrease. Moreover, there exists a tendency for the softening point of glass to rise.
  • SnO-P 2 O 5 based glass powder can be added the following components to other.
  • Al 2 O 3 is a component that stabilizes the glass.
  • the content of Al 2 O 3 is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%.
  • the content of Al 2 O 3 exceeds 10%, the glass softening point tends to increase, and the sintering temperature tends to increase.
  • the inorganic phosphor powder is likely to be deteriorated by heat treatment when forming the inorganic phosphor powder layer.
  • SiO 2 is a component that stabilizes the glass in the same manner as Al 2 O 3 .
  • the content of SiO 2 is preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%.
  • the content of SiO 2 exceeds 10%, the softening point of the glass tends to increase, and the sintering temperature tends to increase.
  • the inorganic phosphor powder is likely to be deteriorated by heat treatment when forming the inorganic phosphor powder layer. Moreover, it becomes easy to phase-separate glass.
  • Li 2 O, Na 2 O and K 2 O is a component to lower the softening point of the glass.
  • Their contents are preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%, respectively. If the content of each of these components exceeds 10%, the glass becomes extremely unstable and becomes difficult to vitrify.
  • the total amount of Li 2 O, Na 2 O and K 2 O is 0 to 10%, 0 to 7%, particularly preferably 1 to 5%. If the total amount of these components is more than 10%, the glass becomes unstable and it is difficult to vitrify.
  • MgO, CaO, SrO, and BaO are components that stabilize glass and facilitate vitrification. Their contents are preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%, respectively. If the content of these components exceeds 10%, the glass tends to devitrify and the transmittance tends to decrease. As a result, the emission intensity tends to decrease.
  • the total amount of MgO, CaO, SrO and BaO is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. If the total amount of these components exceeds 10%, the glass tends to devitrify and the transmittance tends to decrease. As a result, the emission intensity tends to decrease.
  • ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , and La 2 O 3 may be added up to 10% in total.
  • the refractive index (nd) of the SnO—P 2 O 5 glass powder is 1.5 or more, 1.7 or more from the viewpoint of suppressing light scattering loss at the interface between the ceramic substrate and the inorganic powder sintered body layer 11. In particular, it is preferably 1.8 or more.
  • the softening point of SnO—P 2 O 5 glass powder is preferably 500 ° C. or lower, 450 ° C. or lower, and particularly preferably 400 ° C. or lower.
  • the softening point exceeds 500 ° C., the sintering temperature becomes high, and the inorganic phosphor powder tends to be deteriorated by heat treatment when forming the inorganic phosphor powder layer.
  • the average particle diameter D 50 of the SnO—P 2 O 5 glass powder is preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less.
  • the lower limit is not particularly limited, but if the average particle diameter D 50 of the SnO—P 2 O 5 glass powder becomes too small, the cost is likely to rise, so it is 0.1 ⁇ m or more, particularly 1 ⁇ m or more. Is preferred.
  • the inorganic phosphor powder contained in the inorganic powder sintered body layer 11 can be used as long as it is generally available in the market, and can be used as an oxide, nitride, oxynitride, sulfide, oxysulfide, oxyfluoride. , Halides, halophosphates, and the like. Of these, those having an excitation band at a wavelength of 300 to 500 nm and having an emission peak at a wavelength of 500 to 780 nm, particularly those emitting light in red and / or green are preferably used.
  • inorganic phosphor powder that emits red fluorescence when irradiated with blue excitation light
  • CaS Eu 2+ , ZnS: Mn 2+ , Te 2+ , Mg 2 TiO 4 : Mn 4+ , K 2 SiF 6 : Mn 4+
  • SrS Eu 2+ , Na 1.23 K 0.42 Eu 0.12 TiSi4 4 O 11 , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 : Eu 3+
  • CdS In, Te
  • CaAlSiN 3 Eu 2+
  • CaSiN 3 Eu 2+
  • (Ca, Sr) 2 Si 5 N 8 Eu 2+ , Eu 2 W 2 O 7 .
  • an inorganic phosphor powder that emits green fluorescence when irradiated with blue excitation light SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiO N : Eu 2+ .
  • the content of the inorganic phosphor powder in the inorganic powder sintered body layer 11 is preferably 0.01 to 30% by mass, 0.05 to 20% by mass, and particularly preferably 0.08 to 15%.
  • the inorganic powder sintered body layer 11 preferably has a thickness of 0.01 to 1 mm, 0.02 to 0.8 mm, particularly 0.1 to 0.8 mm.
  • the thickness of the inorganic powder sintered body layer 11 is less than 0.01 mm, the fluorescence emitted from the inorganic powder sintered body layer 11 becomes insufficient, and it becomes difficult to obtain white light.
  • the thickness of the inorganic powder sintered body layer 11 exceeds 1 mm, excitation light and fluorescence emitted from the ceramic substrate are difficult to transmit, and as a result, white light is hardly obtained.
  • the inorganic powder sintered compact layer 11 may be formed only in the single side
  • the scattering coefficient is preferably 1 to 500 cm ⁇ 1 , 2 to 250 cm ⁇ 1 , particularly 10 to 200 cm ⁇ 1 .
  • the scattering coefficient is less than 1 cm ⁇ 1 , excitation light is not sufficiently scattered in the phosphor composite member, and most of it is transmitted. As a result, sufficient fluorescence is not emitted in the ceramic substrate and the inorganic powder sintered body layer 11 and the excitation efficiency is lowered, so that the emission intensity is likely to be lowered.
  • the scattering coefficient is increased, the excitation light is scattered in the phosphor composite member to increase the amount of fluorescence generated and the excitation efficiency is improved.
  • the scattering coefficient exceeds 500 cm ⁇ 1 , the light scattering loss increases. Too much, the emission intensity tends to decrease.
  • the surface roughness Ra of the inorganic powder sintered body layer 11 is preferably 0.5 ⁇ m or less, 0.2 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
  • the surface roughness of the inorganic powder sintered body layer 11 exceeds 0.5 ⁇ m, the light scattering loss increases, the transmittance of excitation light and fluorescence tends to decrease, and the emission intensity tends to decrease.
  • the inorganic powder sintered body layer 11 is not formed between the ceramic base 12 and the inorganic powder sintered body layer 11 without interposing an adhesive layer or a space layer. It is preferable that they are brought into close contact by being fused and integrated on the material 12.
  • the light reflection loss at the interface between the ceramic substrate 12 and the inorganic powder sintered body layer 11 is reduced. A decrease in emission intensity can be suppressed, and mechanical strength can be improved.
  • this makes it possible to produce the phosphor composite member of this embodiment without using an organic resin adhesive that causes discoloration due to heat.
  • It is preferable that 5 ppm / ° C. ⁇ ⁇ 1 ⁇ 2 ⁇ 5 ppm / ° C., particularly ⁇ 1 ppm / ° C. ⁇ ⁇ 1 ⁇ 2 ⁇ 1 ppm / ° C.
  • ⁇ 1- ⁇ 2 is out of the above range, the inorganic powder sintered body layer 11 is easily peeled off from the ceramic substrate 12.
  • the inorganic powder sintered body layer 11 preferably contains an inorganic filler powder.
  • the inorganic filler powder include zirconium phosphate, zirconium phosphate tungstate, zirconium tungstate, NZP type crystals and solid solutions thereof having low expansion characteristics, and these can be used alone or in combination.
  • the “NZP type crystal” includes, for example, a crystal having a basic structure of NbZr (PO 4 ) 3 or [AB 2 (MO 4 ) 3 ].
  • A Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Mn, etc.
  • B Zr, Ti, Sn, Nb, Al, Sc, Y, etc.
  • M P, Si, W, Mo, etc.
  • inorganic filler powder containing a Zr component it is preferable to use the inorganic filler powder containing a Zr component.
  • the thermal expansion coefficient of the inorganic filler powder is preferably 50 ⁇ 10 ⁇ 7 / ° C. or lower, particularly 30 ⁇ 10 ⁇ 7 / ° C. or lower in the temperature range of 30 to 380 ° C.
  • the thermal expansion coefficient of the inorganic filler powder is larger than 50 ⁇ 10 ⁇ 7 / ° C., it is difficult to obtain the effect of reducing the thermal expansion coefficient of the inorganic powder sintered body layer 11.
  • the lower limit of the thermal expansion coefficient of the inorganic filler powder is not particularly limited, but in reality, it is ⁇ 100 ⁇ 10 ⁇ 7 / ° C. or higher.
  • the content of the inorganic filler powder in the inorganic powder sintered body layer 11 is preferably 1 to 30% by mass, 1.5 to 25% by mass, and particularly preferably 2 to 20% by mass.
  • the said effect is hard to be acquired as content of an inorganic filler powder is less than 1 mass%.
  • the content of the inorganic filler powder exceeds 30% by mass, the content of the glass powder that softens and flows at the time of firing becomes relatively small, so that the fusion strength with respect to the ceramic substrate 12 tends to decrease.
  • the light scattering loss at the interface between the glass matrix and the inorganic filler powder in the inorganic powder sintered body layer 11 tends to increase, and the light emission intensity tends to decrease.
  • the average particle diameter D 50 of the inorganic filler powder is preferably 0.1 to 50 ⁇ m, particularly 3 to 20 ⁇ m.
  • the average particle diameter D 50 of the inorganic filler powder is smaller than 0.1 ⁇ m, the effect of reducing the thermal expansion coefficient tends to be inferior. Alternatively, it may be dissolved in the glass during firing and no longer serve as a filler. If the average particle diameter D 50 of the inorganic filler powder is larger than 50 ⁇ m, cracks are likely to occur at the boundary between the SnO—P 2 O 5 glass powder and the inorganic filler powder.
  • the difference between the refractive index of the inorganic filler powder and the SnO—P 2 O 5 glass powder is preferably 0.2 or less, particularly preferably 0.1 or less.
  • the refractive index of the inorganic filler powder is preferably 1.6 to 2, particularly 1.7 to 1.9.
  • the inorganic powder sintered body layer 11 was kneaded by adding a binder, a plasticizer, a solvent, etc. to a mixture containing SnO—P 2 O 5 glass powder and inorganic phosphor powder, and further, if necessary, an inorganic filler.
  • a thing can be produced by baking in the form of a paste, for example.
  • the ratio of the glass powder and the inorganic phosphor powder in the entire paste is generally about 30 to 90% by mass.
  • the binder is a component that increases the film strength after drying and imparts flexibility, and its content is generally about 0.1 to 20% by mass.
  • the binder include polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose, nitrocellulose, and the like, and these can be used alone or in combination.
  • the plasticizer is a component that controls the drying speed of the film and imparts flexibility to the dried film, and the content thereof is generally about 0 to 10% by mass.
  • the plasticizer include dibutyl phthalate, butyl benzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, and dibutyl phthalate, and these can be used alone or in combination.
  • Solvent is a component for pasting raw material powder, and its content is generally about 10 to 50% by mass.
  • Solvents include terpineol, isoamyl acetate, toluene, methyl ethyl ketone, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate, 2,4-diethyl-1,5-pentanediol, etc. These can be used alone or in combination.
  • a paste is applied on the ceramic substrate 12 using a screen printing method, a batch coating method, a dispensing method, etc., a coating layer having a predetermined thickness is formed, dried, and then fired to obtain a predetermined inorganic powder firing.
  • the consolidated layer 11 can be obtained.
  • the inorganic powder sintered body layer 11 may be formed by pressing and pressing a heating plate over the paste.
  • the firing temperature is preferably 250 to 600 ° C., particularly 300 to 500 ° C.
  • the firing temperature is less than 250 ° C.
  • the inorganic powder sintered body layer 11 is easily peeled off from the ceramic substrate 12.
  • the firing temperature exceeds 600 ° C., the inorganic phosphor powder reacts with the glass powder and deteriorates, making it difficult to obtain a phosphor composite member that emits desired light.
  • the firing atmosphere is preferably a reduced pressure or vacuum or an inert gas atmosphere such as nitrogen or argon in order to suppress oxidation in the glass powder, particularly oxidation of the Sn component.
  • an inert gas atmosphere such as nitrogen or argon
  • the inorganic powder sintered body layer 11 can also be produced using a green sheet.
  • a green sheet As a general method for producing a green sheet, the above glass powder, inorganic phosphor powder, binder, plasticizer, etc. are prepared, and a solvent is added to these to form a slurry. This slurry is obtained by a doctor blade method. Then, a sheet is formed on a film of polyethylene terephthalate (PET) or the like. Subsequently, after forming the sheet, the organic solvent or the like is removed by drying to obtain a green sheet.
  • PET polyethylene terephthalate
  • the proportion of glass powder and inorganic phosphor powder in the green sheet is generally about 50 to 80% by mass.
  • the mixing ratio of the binder is generally about 0.1 to 30% by mass
  • the mixing ratio of the plasticizer is about 0 to 10% by mass
  • the mixing ratio of the solvent is generally about 1 to 40% by mass.
  • the inorganic powder sintered body layer 11 can be obtained by laminating the green sheet obtained as described above on the ceramic substrate 12 and thermocompression bonding, followed by firing in the same manner as in the case of the paste described above.
  • a sintered body is prepared in advance by firing a mixture of SnO—P 2 O 5 glass and inorganic phosphor powder, and the sintered body is pressed onto the ceramic substrate 12 by thermocompression bonding. It is also possible to form the combined layer 11.
  • the thermocompression pressing is performed, for example, by sandwiching the ceramic substrate 12 and the sintered body between heated dies. You may perform a thermocompression-bonding press in the state which inserted mold release materials, such as a glass substrate, between a metal mold
  • the press temperature may be a temperature at which SnO—P 2 O 5 glass can be sufficiently softened and fixed to the surface of the ceramic substrate 12. Specifically, it is preferably 200 ° C. or higher, particularly 250 ° C. or higher.
  • the upper limit is not particularly limited, but is preferably 900 ° C. or lower, 700 ° C. or lower, particularly 500 ° C. or lower from the viewpoint of preventing the deactivation of the inorganic phosphor powder and the modification of SnO—P 2 O 5 glass.
  • the pressing pressure is appropriately adjusted in the range of 30 kPa / cm 2 or more and 50 kPa / cm 2 or more depending on the thickness of the target inorganic powder sintered body layer 11.
  • the upper limit is not particularly limited, to prevent damage to the phosphor composite member, 400 kPa / cm 2 or less, it is preferable that the particular 300 kPa / cm 2 or less.
  • the pressing time is not particularly limited, but is suitably adjusted in 0.1 to 30 minutes, 0.5 to 10 minutes, particularly 1 to 5 minutes so that the inorganic powder sintered body layer 11 is sufficiently fixed to the surface of the ceramic substrate 12. do it.
  • the atmosphere at the time of thermocompression pressing considers the inert gas atmosphere, especially the running cost, in order to suppress the deactivation of the inorganic phosphor powder, the modification of SnO—P 2 O 5 glass, and the deterioration due to the oxidation of the press device.
  • a nitrogen atmosphere is preferable.
  • the phosphor composite member of this embodiment may be produced by fusing and integrating.
  • the phosphor composite member produced as described above may be cut and polished to be processed into an arbitrary shape, for example, a disc shape, a column shape, a rod shape, or the like. (Example)
  • Example 1 (1) Preparation of ceramic substrate First, using a raw material having a high purity and a particle size of 2 ⁇ m or less, Y 2 O in mol% so as to have a stoichiometric composition of YAG (Y 3 Al 5 O 12 ). 3 37.4625%, Al 2 O 3 62.5%, Ce 2 O 3 0.0375% were weighed, and 0.6% by mass of tetraethoxysilane was added thereto as a sintering aid. Next, using a ball mill, the prepared raw materials were stirred and mixed in ethanol for 17 hours, and then dried under reduced pressure to obtain a powder.
  • YAG Y 3 Al 5 O 12
  • 3 37.4625%, Al 2 O 3 62.5%, Ce 2 O 3 0.0375% were weighed, and 0.6% by mass of tetraethoxysilane was added thereto as a sintering aid.
  • the prepared raw materials were stirred and mixed in ethanol for 17 hours, and then dried
  • the obtained powder was press-molded at a pressure of 200 MPa to produce a press-molded body having a diameter of 10 mm ⁇ and a thickness of 3 mm, and this was fired at 1750 ° C. for 10 hours in a vacuum atmosphere to obtain a fired body. It was. Then, the ceramic base material was obtained by carrying out double-side polishing of the fired body so that it might become a thickness of 0.1 mm.
  • the emission spectrum was measured as follows. Inside the calibrated integrating sphere, the ceramic substrate is excited by a blue LED lit at a current of 600 mA, the emitted light is taken into a small spectroscope (Ocean Optics USB-4000) through an optical fiber, and the emission spectrum (on the control PC) Energy distribution curve).
  • a blue LED lit at a current of 600 mA the emitted light is taken into a small spectroscope (Ocean Optics USB-4000) through an optical fiber, and the emission spectrum (on the control PC) Energy distribution curve).
  • CaS: Eu 2+ as an inorganic phosphor powder and NbZr (PO 4 ) 3 as an inorganic filler powder are added at a mass ratio of 80:10:10 to the produced glass powder, and vibration mixing is performed.
  • a paste is obtained by adding 50 parts by mass of 2,4-diethyl-1,5-pentanediol (MARS manufactured by Nippon Kayaku Yakuhin Co., Ltd.) as a solvent to 100 parts by mass of the obtained mixed powder. It was.
  • An inorganic powder sintered body layer was prepared using the above paste, and the emission spectrum was measured. As a result, red fluorescence having a center near a wavelength of 650 nm and a peak due to blue excitation light having a center near a wavelength of 465 nm were observed. .
  • the inorganic powder sintered compact layer for light emission spectrum measurement was produced as follows. First, it apply
  • the paste for the inorganic powder sintered body layer obtained in (2) is about 50 ⁇ m thick by the dispensing method. It was applied as follows. Next, the solvent was removed by heat treatment on a hot plate at about 250 ° C. Then, it baked at 430 degreeC for 10 minute (s) in nitrogen atmosphere, and also hot-pressed from on the inorganic powder sintered compact layer, the surface shape was adjusted, and the fluorescent substance composite member was obtained. The thickness of the inorganic powder sintered body layer was about 20 ⁇ m.
  • the emission spectrum of the phosphor composite member thus obtained was measured by the above method. Using control software (OP Wave manufactured by Ocean Photonics), a total luminous flux value (lm) and chromaticity were calculated from the emission spectrum. The results are shown in Table 1.
  • Example 2 (1) Production of Green Sheet for Inorganic Powder Sintered Body Layer
  • SrS: Eu 2+ (average particle size: 8 ⁇ m) and SrBaSiO 4 : Eu 2+ (average particle) (Diameter: 8 ⁇ m) was added at a mass ratio of 94: 3: 3 and mixed to prepare a mixed powder.
  • 12 parts by mass of polyvinyl butyral resin as a binder, 3 parts by mass of dibutyl phthalate as a plasticizer, and 40 parts by mass of toluene as a solvent are added to 100 parts by mass of the prepared mixed powder, and the slurry is mixed. Produced. Subsequently, the slurry was formed into a sheet on a PET film by a doctor blade method and dried to obtain a green sheet having a thickness of 50 ⁇ m.
  • the inorganic powder sintered compact layer for light emission spectrum measurement was produced as follows. First, the green sheet produced by the above method was laminated on a porous mullite ceramic substrate and integrated by thermocompression bonding to produce a laminate, and then degreased at 300 ° C. for 1 hour. Subsequently, after baking at 400 degreeC for 30 minutes, it cooled and the mullite board
  • Example 3 (1) Production of sintered body for inorganic powder sintered body layer
  • CaAlSiN 3 : Eu 2+ was used as the inorganic phosphor powder
  • NbZr (PO 4 ) 3 was used as the inorganic filler powder.
  • the mixed powder was press-molded and fired at 400 ° C. in a vacuum to obtain a sintered body.
  • red fluorescence having a center near a wavelength of 650 nm and a peak due to blue excitation light having a center near a wavelength of 465 nm were observed.
  • the sample for measuring the emission spectrum was prepared by grinding the sintered body to 8 mm square, cutting it to a thickness of 1 mm, and mirror polishing both sides.
  • CaS: Eu 2+ as an inorganic phosphor powder and NbZr (PO 4 ) 3 as an inorganic filler powder are added at a mass ratio of 80:10:10 to the produced glass powder, and vibration mixing is performed.
  • a paste is obtained by adding 50 parts by mass of 2,4-diethyl-1,5-pentanediol (MARS manufactured by Nippon Kayaku Yakuhin Co., Ltd.) as a solvent to 100 parts by mass of the obtained mixed powder. It was.
  • the phosphor composite members of Examples 1 and 2 are capable of obtaining light bulb-colored white light and a high emission intensity of 18.3 lm or more.
  • the emission intensity was as low as 10.4 lm.
  • the white LED disclosed in Patent Document 3 has a configuration in which a light emitting surface of an LED chip is coated with a mold in which an inorganic phosphor powder is dispersed in an organic binder resin.
  • the organic binder resin deteriorates and causes discoloration due to high-output short-wavelength light in the blue to ultraviolet region, heat generation of the inorganic phosphor powder, or heat of the LED chip. As a result, there is a problem in that the emission intensity is lowered and the color shift occurs and the life is shortened.
  • Patent Document 4 a phosphor composite member obtained by mixing and sintering inorganic phosphor powder and glass powder has been proposed (see, for example, Patent Document 4). Since the phosphor composite member is formed by dispersing the inorganic phosphor powder in an inorganic glass powder having high heat resistance, it is possible to suppress a decrease in emission intensity over time.
  • Patent Document 4 in order to obtain a phosphor composite member having a desired size, a cutting and polishing process is required. For example, in order to obtain a thin phosphor composite member, the inorganic phosphor powder and the glass powder are once sintered to produce a relatively thick member, and then the member is cut and polished to reduce the thickness. There is a need. Therefore, in this production method, the material yield of the inorganic phosphor powder and the glass powder is poor, and as a result, the production cost of the phosphor composite member tends to increase.
  • a phosphor composite member has been proposed in which a glass sintered body layer containing an inorganic phosphor powder is formed on the surface of an inorganic substrate (see, for example, Patent Document 5 or 6).
  • the phosphor composite member is formed by forming a sintered body layer containing an inorganic phosphor powder on an inorganic substrate by a paste method or a green sheet method. Therefore, a thin phosphor composite member can be produced without going through steps such as cutting and polishing.
  • a light emitting color conversion member having a desired shape can be manufactured with a high yield, but there is a problem that the light emission intensity of the member is low.
  • the manufacturing process of the paste and the green sheet is required, there is a problem that the manufacturing process is complicated.
  • an object of the present embodiment is to provide a method for easily manufacturing a phosphor composite member having higher emission intensity than the conventional one.
  • FIG. 1 the schematic diagram of the manufacturing method of the fluorescent substance composite member of 2nd Embodiment is shown.
  • the inorganic base material 2 is allowed to stand on the lower mold 3b, and a predetermined amount of the mixed powder 1 containing the inorganic phosphor powder and the glass powder is placed on the inorganic base material 2. To do.
  • the mixed powder 1 is heated using the upper mold 3 a while being pressed to sinter the mixed powder 1.
  • the fluorescent substance composite member 5 by which the inorganic powder sintered compact layer 4 was formed on the inorganic base material 2 is obtained.
  • the heating method is not particularly limited, and pressing may be performed using a mold heated to a predetermined temperature, or pressing may be performed in an atmosphere set at a predetermined temperature (for example, in an electric furnace).
  • SiO 2 —B 2 O 3 —RO-based glass powder (R is one or more selected from Mg, Ca, Sr and Ba), SiO 2 —TiO 2 —Nb 2 O 5 —R ′ 2 O glass powder (R ′ is one or more selected from Li, Na, K), SnO—P 2 O 5 glass powder, or ZnO—B 2 O 3 —SiO 2 glass powder.
  • R is one or more selected from Mg, Ca, Sr and Ba
  • SiO 2 —TiO 2 —Nb 2 O 5 —R ′ 2 O glass powder (R ′ is one or more selected from Li, Na, K)
  • SnO—P 2 O 5 glass powder or ZnO—B 2 O 3 —SiO 2 glass powder.
  • SnO—P 2 O 5 glass powder having a relatively low softening point is preferable because the press molding temperature is lowered and the deactivation of the inorganic phosphor powder can be suppressed.
  • the SnO—P 2 O 5 glass powder preferably contains SnO 35 to 80%, P 2 O 5 5 to 40%, and B 2 O 3 0 to 30% in terms of glass composition. The reason for limiting the glass composition in this way will be described below.
  • SnO is a component that forms a glass skeleton and lowers the softening point.
  • the SnO content is preferably 35 to 80%, 40 to 70%, 50 to 70%, particularly 55 to 65%.
  • SnO When there is too little content of SnO, it exists in the tendency for the softening point of glass to rise, and there exists a tendency for a weather resistance to deteriorate.
  • the content of SnO is too large, devitrification bumps resulting from Sn are deposited in the glass and the transmittance tends to decrease, and as a result, the emission intensity of the phosphor composite member 5 tends to decrease. . Moreover, it becomes difficult to vitrify.
  • P 2 O 5 is a component that forms a glass skeleton.
  • the content of P 2 O 5 is preferably 5 to 40%, 10 to 30%, particularly preferably 15 to 24%.
  • the content of P 2 O 5 is too small, it is difficult to vitrify.
  • the content of P 2 O 5 is too large, or the softening point rises, there is a tendency that weather resistance is significantly lowered.
  • B 2 O 3 is a component that improves the weather resistance and suppresses the reaction between the glass powder and the inorganic phosphor powder. It is also a component that stabilizes the glass.
  • the content of B 2 O 3 is preferably 0 to 30%, 1 to 25%, 2 to 20%, particularly 4 to 18%. If the B 2 O 3 content is too large, the weather resistance tends to lower. Also, the softening point tends to increase.
  • the glass composition is mass%, SiO 2 30 to 70%, B 2 O 3 1 to 15%, MgO 0 to 10%, CaO 0 to 25%, Preferred are those containing SrO 0-10%, BaO 8-40%, MgO + CaO + SrO + BaO 10-45%, Al 2 O 3 0-20% and ZnO 0-10%.
  • the SiO 2 —TiO 2 —Nb 2 O 5 —R ′ 2 O-based glass powder includes, as a mass percentage, SiO 2 20 to 50%, Li 2 O 0 to 10%, Na 2 O 0 to 15%, K 2. O 0-20%, Li 2 O + Na 2 O + K 2 O 1-30%, B 2 O 3 1-20%, MgO 0-10%, CaO 0-20%, SrO 0-20%, BaO 0-15% Al 2 O 3 0-20%, ZnO 0-15%, TiO 2 0.01-20%, Nb 2 O 5 0.01-20%, La 2 O 3 0-15% and TiO 2 + Nb 2 O 5 + La 2 O 3 1-30% is preferred.
  • the ZnO—B 2 O 3 —SiO 2 -based glass powder preferably contains ZnO 5 to 60%, B 2 O 3 5 to 50% and SiO 2 2 to 30% by mass% as a glass composition.
  • the average particle diameter (D 50 ) of the glass powder is preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less.
  • the lower limit is not particularly limited, but if the average particle size of the glass powder is too small, the production cost is likely to increase, so that it is preferably 0.1 ⁇ m or more, particularly 1 ⁇ m or more.
  • average particle diameter (D 50 ) refers to a value measured by a laser diffraction method.
  • the difference in refractive index between the two is small.
  • the refractive index (nd) of the glass powder is preferably 1.5 or more, 1.7 or more, particularly 1.8 or more.
  • the softening point of the glass powder is preferably 500 ° C. or lower, 450 ° C. or lower, and particularly preferably 400 ° C. or lower. If the softening point is too high, the sintering temperature becomes high and the inorganic phosphor powder tends to deteriorate.
  • Examples of the inorganic phosphor powder include oxides, nitrides, oxynitrides, sulfides, oxysulfides, oxyfluorides, halides, aluminates, and halophosphates. Of these, those having an excitation band at a wavelength of 300 to 500 nm and having an emission peak at a wavelength of 500 to 780 nm, particularly those emitting light in red, yellow or green are preferably used.
  • CaS: Eu 2+ , SrS: Eu 2+ , CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ and the like can be mentioned.
  • the content of the inorganic phosphor powder in the inorganic powder sintered body layer 4 is preferably 0.01 to 90% by mass, 0.05 to 30% by mass, and particularly preferably 0.08 to 15%.
  • content of glass powder there exists a tendency for content of glass powder to decrease relatively and for porosity to become large.
  • the strength of the inorganic powder sintered body layer 4 decreases and the light scattering loss increases.
  • an inorganic filler powder may be added to the mixed powder 1 (inorganic powder sintered body layer 4).
  • a glass powder having a large thermal expansion coefficient such as SnO—P 2 O 5 glass powder
  • the difference in thermal expansion coefficient between the inorganic base material 2 and the inorganic powder sintered body layer 4 is increased, resulting in an inorganic Since the surface of the powder sintered body layer 4 is easily cracked or peeled off, it is effective to add an inorganic filler powder having low expansion characteristics.
  • the inorganic filler powder examples include zirconium phosphate, zirconium phosphate tungstate, zirconium tungstate, NZP type crystals and solid solutions thereof having low expansion characteristics, and these may be used alone or in combination. it can.
  • the “NZP type crystal” includes, for example, a crystal having a basic structure of NbZr (PO 4 ) 3 or [AB 2 (MO 4 ) 3 ].
  • A Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Mn, etc.
  • B Zr, Ti, Sn, Nb, Al, Sc, Y, etc.
  • M P, Si, W, Mo, etc.
  • the inorganic filler powder containing a Zr component it is preferable to use the inorganic filler powder containing a Zr component.
  • Inorganic filler powder containing Zr component compatibility with SnO-P 2 O 5 based glass is satisfactory, i.e. low reactivity with the SnO-P 2 O 5 based glass, a glass powder was devitrification during press molding This is because it has difficult properties.
  • the content of the inorganic filler powder in the sintered inorganic powder layer 4 is preferably 0 to 30% by mass, 1.5 to 25% by mass, and particularly preferably 2 to 20% by mass.
  • content of glass powder will decrease relatively and it will become easy to reduce mechanical strength.
  • light scattering loss at the interface between the glass matrix and the inorganic filler powder increases, and the light emission intensity tends to decrease.
  • the thermal expansion coefficient of the inorganic filler powder is preferably 50 ⁇ 10 ⁇ 7 / ° C. or lower, particularly 30 ⁇ 10 ⁇ 7 / ° C. or lower in the temperature range of 30 to 380 ° C. If the thermal expansion coefficient of the inorganic filler powder is too large, it is difficult to obtain the effect of reducing the thermal expansion coefficient of the inorganic powder sintered body layer 4.
  • the lower limit of the thermal expansion coefficient of the inorganic filler powder is not particularly limited, but in reality, it is ⁇ 100 ⁇ 10 ⁇ 7 / ° C. or higher.
  • the average particle diameter (D 50 ) of the inorganic filler powder is preferably 0.1 to 50 ⁇ m, particularly 3 to 20 ⁇ m. If the average particle size of the inorganic filler powder is too small, the effect of reducing the thermal expansion coefficient of the inorganic powder sintered body layer 4 tends to be inferior. Alternatively, it may be dissolved in the glass powder at the time of press molding and may not serve as a filler. If the average particle size of the inorganic filler powder is too large, cracks are likely to occur at the boundary between the glass powder and the inorganic filler powder.
  • the thermal expansion coefficient of the inorganic base material 2 is ⁇ 1, and the thermal expansion coefficient of the inorganic powder sintered body layer 4 is ⁇ 2.
  • Examples of the inorganic substrate 2 include YAG-based ceramics, crystallized glass, glass, metal, or a composite of metal and ceramic.
  • the YAG ceramics can be used regardless of whether they are transparent or translucent.
  • white light can be obtained by a combination of transmitted light of excitation light and fluorescence emitted from the inorganic phosphor powder. Is possible.
  • a reflective phosphor composite member can be obtained as the inorganic base material 2, by using a metal or a composite of metal and ceramics.
  • the metal include Al, Cu, and Ag.
  • the composite of metal and ceramic include a composite (sintered body) of Al and SiC or AlN.
  • a reflective layer (not shown) such as Ag or Al may be provided on the interface between the inorganic base material 2 and the inorganic powder sintered body 4 as necessary.
  • Metals and composites of metals and ceramics are excellent in thermal conductivity, so it is possible to efficiently dissipate heat generated from phosphors when exposed to high-intensity excitation light such as blue LD. Temperature quenching of the phosphor powder can be reduced.
  • the thickness of the inorganic substrate 2 is not particularly limited, but is preferably 0.1 to 10.0 mm, for example. If the thickness of the inorganic substrate 2 is too small, the mechanical strength tends to be insufficient. On the other hand, when the thickness of the inorganic base material 2 is too large, the excitation light is difficult to transmit, and the light emission efficiency tends to decrease, or the weight of the phosphor composite member 5 tends to be unreasonably large.
  • the press temperature is preferably 900 ° C. or lower, 700 ° C. or lower, particularly 500 ° C. or lower, from the viewpoint of preventing the deactivation of the inorganic phosphor powder and the glass denaturation.
  • the lower limit is preferably 200 ° C. or higher, particularly 250 ° C. or higher.
  • Pressing pressure depending on the thickness of the inorganic powder sintered body layer 4 for the purpose, 1N / mm 2 or more, particularly suitably adjusted 3N / mm 2 or more.
  • an upper limit is not specifically limited, In order to prevent the damage of the inorganic base material 2, it is preferable to set it as 100 N / mm ⁇ 2 > or less, especially 50 N / mm ⁇ 2 > or less.
  • the pressing time is not particularly limited, but is appropriately adjusted for 0.1 to 30 minutes, 0.5 to 10 minutes, particularly 1 to 5 minutes so that the inorganic powder sintered body layer 4 is sufficiently fixed to the surface of the inorganic substrate 2. do it.
  • the atmosphere at the time of press molding includes air, vacuum, nitrogen or argon.
  • air in order to suppress the deactivation of the inorganic phosphor powder, the modification of the glass powder, and the deterioration due to the oxidation of the press mold, it should be an inert gas such as nitrogen or argon, especially considering the running cost. Is preferred.
  • the thickness of the inorganic powder sintered body layer 4 is preferably 0.3 mm or less, 0.25 mm or less, particularly preferably 0.2 mm or less.
  • the thickness of the inorganic powder sintered body layer 4 is too large, the excitation light is hardly transmitted, and it becomes difficult to obtain light having a desired color.
  • the thickness of the inorganic powder sintered body layer 4 is too small, the mechanical durability tends to be insufficient, so the lower limit is 0.01 mm or more, 0.03 mm or more, particularly 0.05 mm or more. Is preferred.
  • the surface roughness (Ra) of the inorganic powder sintered body layer 4 is preferably 0.5 ⁇ m or less, 0.2 ⁇ m or less, particularly preferably 0.1 ⁇ m or less.
  • the surface roughness of the inorganic powder sintered body layer 4 is too large, the light scattering loss increases, and the transmittance of excitation light and fluorescence tends to decrease and the emission intensity tends to decrease.
  • the shape of the phosphor composite member 5 is not particularly limited, and examples thereof include a plate shape, a hemispherical shape, and a hemispherical dome shape. (Example)
  • Example 4 (1) Preparation of ceramic substrate First, using a raw material having a high purity and a particle size of 2 ⁇ m or less, Y 2 O in mol% so as to have a stoichiometric composition of YAG (Y 3 Al 5 O 12 ). 3 37.4625%, Al 2 O 3 62.5%, Ce 2 O 3 0.0375% were weighed, and 0.6% by mass of tetraethoxysilane was added thereto as a sintering aid. Next, using a ball mill, the prepared raw materials were stirred and mixed in ethanol for 17 hours, and then dried under reduced pressure to obtain a powder.
  • YAG Y 3 Al 5 O 12
  • 3 37.4625%, Al 2 O 3 62.5%, Ce 2 O 3 0.0375% were weighed, and 0.6% by mass of tetraethoxysilane was added thereto as a sintering aid.
  • the prepared raw materials were stirred and mixed in ethanol for 17 hours, and then dried
  • the obtained powder was press-molded at a pressure of 200 MPa to produce a press-molded body having a diameter of 10 mm and a thickness of 3 mm, and this was fired at 1750 ° C. in a vacuum atmosphere for 10 hours to obtain a sintered body. Obtained.
  • the ceramic base material was obtained by carrying out double-side polish so that the sintered compact might be set to 0.12 mm in thickness.
  • the glass powder was produced as follows. First, glass raw materials prepared so as to have the compositions shown in Table 2 were put into an alumina crucible and melted in an electric furnace at 950 ° C. in a nitrogen atmosphere for 1 hour. Thereafter, the glass melt was formed into a film and pulverized with a rough machine to obtain glass powder. The average particle diameter (D 50 ) of the obtained powder was 32 ⁇ m.
  • the YAG ceramic substrate obtained in (1) was allowed to stand on a hot plate, and a predetermined amount of the mixed powder was further placed thereon. Next, a metal mold is pressed against the mixed powder, and press molding is performed for 3 minutes in a nitrogen atmosphere at the pressing pressure and pressing temperature shown in Table 2, so that an inorganic powder sintered body layer is formed on the surface of the YAG ceramic substrate. To obtain a phosphor composite member.
  • the paste for the inorganic powder sintered body layer obtained in (1) is about 300 ⁇ m thick by the dispensing method. It was applied as follows. Next, the solvent was removed by heat treatment on a hot plate at about 250 ° C. Then, it baked for 10 minutes at 430 degreeC in nitrogen atmosphere, and also hot-pressed by the pressure of 1 N / mm ⁇ 2 >, and surface shape was adjusted, and the fluorescent substance composite member was obtained.
  • the total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as in Example 4. The results are shown in Table 2. As is clear from Table 2, the total luminous flux value of the phosphor composite member obtained in Comparative Example 2 was inferior to that of Example 4.
  • the total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as in Example 4. The results are shown in Table 2. As is clear from Table 2, as in Comparative Example 2, the phosphor composite member obtained in Comparative Example 3 was inferior to Example 4 in total luminous flux value.
  • Example 5 The glass powder, inorganic phosphor powder and inorganic filler powder listed in Table 2 were mixed at a predetermined ratio to obtain a mixed powder.
  • the glass powder was produced as follows. First, a glass raw material prepared so as to have a composition containing 72% SnO and 28% P 2 O 5 in mol% was put into an alumina crucible and melted in an electric furnace at 950 ° C. in a nitrogen atmosphere for 1 hour. Thereafter, the glass melt was formed into a film and pulverized with a rough machine to obtain glass powder. The average particle diameter (D 50 ) of the obtained powder was 36 ⁇ m.
  • the YAG ceramic substrate obtained in Example 4 was allowed to stand on a hot plate, and a predetermined amount of the mixed powder was further placed thereon. Next, a metal mold is pressed against the mixed powder, and press molding is performed for 3 minutes in a nitrogen atmosphere at the pressing pressure and pressing temperature shown in Table 2, so that an inorganic powder sintered body layer is formed on the surface of the YAG ceramic substrate. To obtain a phosphor composite member.
  • Example 6 Glass powder, inorganic phosphor powder, and inorganic filler powder listed in Table 3 were mixed at a predetermined ratio to obtain a mixed powder.
  • a cover glass substrate (manufactured by Matsunami Glass Co., Ltd.) having a thickness of 0.15 mm was placed on a hot plate, and a predetermined amount of the mixed powder was placed thereon. Next, a metal mold is pressed against the mixed powder, and press molding and press temperature shown in Table 3 are performed in a nitrogen atmosphere for 3 minutes to form an inorganic powder sintered body layer on the surface of the cover glass substrate. To obtain a phosphor composite member.
  • the sintered inorganic powder layer was very fragile and was damaged when removed from the hot plate, so the total luminous flux and chromaticity could not be measured.
  • the phosphor composite member of the present invention is not limited to an LED application, and can also be used as a wavelength conversion member in an LED device that emits high-power excitation light such as a laser diode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)

Abstract

Disclosed is a phosphor composite member having excellent heat resistance and colour rendering properties etc. and having colour control capabilities for various colours from daylight colours to light-bulb colours. The phosphor composite member is constituted by forming an inorganic powder sintered body layer containing an inorganic phosphor powder and SnO-P2O5 based glass on the surface of a ceramic substrate. When excitation light is irradiated, the ceramic substrate and the inorganic powder sintered body layer emit fluorescence having mutually different wavelengths.

Description

蛍光体複合部材、LEDデバイス及び蛍光体複合部材の製造方法Phosphor composite member, LED device, and method for manufacturing phosphor composite member
 本発明は、励起光を照射することにより蛍光を発し、透過励起光と蛍光との合成により白色光を得るための蛍光体複合部材、LEDデバイス及び蛍光体複合部材の製造方法に関するものである。 The present invention relates to a phosphor composite member, an LED device, and a method for manufacturing a phosphor composite member for emitting fluorescence by irradiating excitation light and obtaining white light by synthesizing transmitted excitation light and fluorescence.
 青色の発光ダイオード(LED:Light Emitting Diode)の開発により、光の3原色RGB(R:赤色、G:緑色、B:青色)のLEDが揃い、これらのLEDを並べて用いることによって白色光を得る技術が提案されている。しかし、通常、三色のLEDの発光出力は異なるため、各色LEDの特性を調整して白色光を得ることは困難である。また、三原色のLEDを集合させて同一平面上に並べても、例えば、液晶用バックライト用途のように、それらのLEDを接近した位置で視認する場合には、均質な白色光源を得ることはできない。また、各色LEDの色劣化速度が異なるため、白色光の長期安定性に問題がある。 Development of blue light emitting diodes (LEDs: Light Emitting Diodes) brings together the three primary colors RGB (R: red, G: green, B: blue) LEDs, and obtains white light by using these LEDs side by side. Technology has been proposed. However, since the light emission outputs of three color LEDs are usually different, it is difficult to obtain white light by adjusting the characteristics of each color LED. Also, even if the three primary color LEDs are assembled and arranged on the same plane, a uniform white light source cannot be obtained when the LEDs are viewed at close positions, for example, as a liquid crystal backlight. . Moreover, since the color deterioration speed of each color LED is different, there is a problem in the long-term stability of white light.
 これらの問題を解決するために、青色LEDと、青色LEDから発せられた青色光によって黄色の蛍光を光するYAG蛍光体(Yl512)を組み合わせたLEDが開発されている(例えば、特許文献1参照)。当該LEDによれば、YAG蛍光体が発する黄色光と青色LEDの透過光との合成により白色光が得られる。この方式であれば、励起光源のLEDとしては1種類ですむため、低コストであり、白色光の長期安定性にも優れる。 In order to solve these problems, an LED that combines a blue LED and a YAG phosphor (Y 3 A 15 O 12 ) that emits yellow fluorescence by blue light emitted from the blue LED has been developed (for example, , See Patent Document 1). According to the LED, white light can be obtained by synthesizing the yellow light emitted from the YAG phosphor and the transmitted light of the blue LED. With this method, since only one type of LED as the excitation light source is required, the cost is low and the long-term stability of white light is excellent.
 上記白色LEDは、従来の照明装置等の光源に比べ、長寿命、高効率、高安定性、低消費電力、高応答速度、環境負荷物質を含まない等の利点を有しているため、現在、ほとんどの携帯電話の液晶バックライトに適用されている。また、近年ではテレビの液晶バックライト用光源として急速に普及が広まってきている。今後は、これに加えて一般照明にも応用が進むと期待されている。 The white LED has advantages such as long life, high efficiency, high stability, low power consumption, high response speed, and no environmental load substances compared to conventional light sources such as lighting devices. It has been applied to the LCD backlight of most mobile phones. In recent years, it has been rapidly spreading as a light source for liquid crystal backlights of televisions. In the future, in addition to this, it is expected that the application will be advanced to general lighting.
 ところで、特許文献1に開示されている白色LEDは、LEDチップの発光面を有機系バインダー樹脂に蛍光体粉末を分散したものをモールド被覆してなる構成を有している。そのため、青色~紫外線領域の高出力の短波長の光や、蛍光体の発熱、あるいはLEDチップの熱によって、上記有機系バインダー樹脂が劣化し、変色を引き起こす。その結果、発光強度の低下や色ずれが起こり、寿命が短くなるという問題がある。 Incidentally, the white LED disclosed in Patent Document 1 has a configuration in which the light emitting surface of an LED chip is molded with a phosphor powder dispersed in an organic binder resin. For this reason, the organic binder resin deteriorates and causes discoloration due to high-output short-wavelength light in the blue to ultraviolet region, heat generation of the phosphor, or heat of the LED chip. As a result, there is a problem in that the emission intensity is lowered and the color shift occurs and the life is shortened.
 また、得られる白色光は、青色と黄色の合成光であるため、色温度の高い白色光(昼光色)を得ることはできるが、色温度の低い白色光(電球色)を得ることができないという問題もある。さらに、2色による合成光であるため、演色性が低く、照明用途には不向きである。 Moreover, since the obtained white light is blue and yellow combined light, white light having a high color temperature (daylight color) can be obtained, but white light having a low color temperature (bulb color) cannot be obtained. There is also a problem. Furthermore, since the combined light is composed of two colors, the color rendering properties are low and it is not suitable for lighting applications.
 これらの問題に対し、蛍光を発するセラミック基材表面に、無機蛍光体粉末を含有するガラス焼結体層を形成してなる蛍光体複合部材が提案されている(例えば、特許文献2参照)。当該蛍光体複合部材は、耐熱性に乏しい有機系バインダー樹脂を使用していないため、経時的な発光強度の低下を抑制でき、演色性が高く、しかも昼光色から電球色までの様々な色温度に対応した白色光を得ることが可能である。 For these problems, there has been proposed a phosphor composite member in which a glass sintered body layer containing an inorganic phosphor powder is formed on the surface of a ceramic substrate that emits fluorescence (see, for example, Patent Document 2). Since the phosphor composite member does not use an organic binder resin with poor heat resistance, it can suppress a decrease in light emission intensity over time, has high color rendering properties, and has various color temperatures from daylight to light bulb color. Corresponding white light can be obtained.
特開2000-208815号公報JP 2000-208815 A 特開2008-169348号公報JP 2008-169348 A 特開2000-208815号公報JP 2000-208815 A 特開2003-258308号公報JP 2003-258308 A 特開2007-48864号公報JP 2007-48864 A 特開2008-169348号公報JP 2008-169348 A
 特許文献2に記載の蛍光体複合部材には、ガラス焼結体層に含まれるガラス粉末としてSiO-B系ガラスが使用されており、セラミック基材には、YAG結晶を含有する基材が使用されている。SiO-B系ガラスは一般に融点が高いため、ガラス焼結体層を形成するためには高い焼成温度が要求される(例えば、850℃以上)。このため、使用する蛍光体によっては焼成時に熱劣化して発光強度が低下する場合がある。また、SiO-B系ガラスは屈折率が1.6程度と低いため、屈折率1.8を超えるYAG基板との屈折率差が大きく、その界面で光散乱損失が生じやすい。その結果、得られる白色光の発光強度が低下する傾向がある。 In the phosphor composite member described in Patent Document 2, SiO 2 —B 2 O 3 -based glass is used as the glass powder contained in the glass sintered body layer, and the ceramic substrate contains YAG crystals. A substrate is used. Since SiO 2 —B 2 O 3 based glass generally has a high melting point, a high firing temperature is required to form a glass sintered body layer (for example, 850 ° C. or higher). For this reason, depending on the phosphor used, the emission intensity may decrease due to thermal degradation during firing. Since the SiO 2 —B 2 O 3 glass has a low refractive index of about 1.6, the refractive index difference with the YAG substrate exceeding the refractive index of 1.8 is large, and light scattering loss tends to occur at the interface. As a result, the emission intensity of the white light obtained tends to decrease.
 したがって、本発明は、優れた耐熱性や高演色性、昼光色から電球色までの多様な色度制御性を有し、しかも発光強度の高い蛍光体複合部材を提供することを目的とする。 Therefore, an object of the present invention is to provide a phosphor composite member having excellent heat resistance, high color rendering properties, various chromaticity control properties from daylight colors to light bulb colors, and high emission intensity.
 本発明者は鋭意検討した結果、蛍光を発するセラミック基材表面に、ガラス粉末および無機蛍光体粉末を含有する無機粉末焼結体層を形成してなる蛍光体複合部材において、特定の組成を有するガラス粉末を使用することにより前記課題を解決できることを見出し、本発明として提案するものである。 As a result of intensive studies, the present inventors have a specific composition in a phosphor composite member formed by forming an inorganic powder sintered body layer containing glass powder and inorganic phosphor powder on the surface of a ceramic substrate that emits fluorescence. The present inventors have found that the above problems can be solved by using glass powder, and propose as the present invention.
 すなわち、本発明に係る第1の蛍光体複合部材は、セラミック基材の表面に、SnO-P系ガラスおよび無機蛍光体粉末を含有する無機粉末焼結体層が形成されてなる蛍光体複合部材であって、励起光が照射されたときに、セラミック基材および無機粉末焼結体層が互いに異なる波長の蛍光を発することを特徴とする。 That is, the first phosphor composite member according to the present invention is a phosphor in which an inorganic powder sintered body layer containing SnO—P 2 O 5 glass and inorganic phosphor powder is formed on the surface of a ceramic substrate. The ceramic composite member is characterized in that when the excitation light is irradiated, the ceramic substrate and the inorganic powder sintered body layer emit fluorescence having different wavelengths.
 本発明の第1の蛍光体複合部材では、従来の部材で使用されていた有機バインダー樹脂等の有機物が使用されていないため、経時的な発光強度の低下を抑制できる。また、励起光が照射されたときに、セラミック基材および無機粉末焼結体層が互いに異なる波長の蛍光を発し、これらの光が蛍光体複合部材中を透過する励起光と合成されるため、演色性が高く、昼光色から電球色までの様々な色温度に対応した白色光を発することができる。 In the first phosphor composite member of the present invention, since organic substances such as organic binder resins used in conventional members are not used, it is possible to suppress a decrease in light emission intensity over time. In addition, when the excitation light is irradiated, the ceramic base material and the inorganic powder sintered body layer emit fluorescence having different wavelengths, and these lights are synthesized with the excitation light transmitted through the phosphor composite member. It has high color rendering properties and can emit white light corresponding to various color temperatures from daylight to light bulb.
 さらに、本発明の第1の蛍光体複合部材では、無機粉末焼結体層を構成するガラス成分として、SnO-P系ガラスが使用されている。SnO-P系ガラスは組成の最適化によって低軟化点化させることが容易であり、焼結温度を低くすることができる。このため、焼成時の熱による無機蛍光体粉末の劣化を抑制することができる。また、SnO-P系ガラスは、組成の最適化によって1.8程度の高い屈折率を達成することができる。よって、例えばセラミック基材としてYAGセラミック基材を用いた場合、当該YAGセラミック基材の屈折率とほぼ整合させることが可能となり、セラミック基材と無機粉末焼結体層の界面における光散乱損失を低減させることができる。その結果、発光強度が高い蛍光体複合部材とすることができるため、照明、ディスプレイ等の発光装置、自動車等の前照灯に使用されるLEDデバイス用部材として好適である。 Further, in the first phosphor composite member of the present invention, SnO—P 2 O 5 glass is used as a glass component constituting the inorganic powder sintered body layer. SnO—P 2 O 5 glass can be easily lowered in softening point by optimizing the composition, and the sintering temperature can be lowered. For this reason, deterioration of the inorganic fluorescent substance powder by the heat | fever at the time of baking can be suppressed. In addition, SnO—P 2 O 5 glass can achieve a refractive index as high as about 1.8 by optimizing the composition. Therefore, for example, when a YAG ceramic substrate is used as the ceramic substrate, it is possible to substantially match the refractive index of the YAG ceramic substrate, and light scattering loss at the interface between the ceramic substrate and the inorganic powder sintered body layer is reduced. Can be reduced. As a result, since it can be set as the fluorescent substance composite member with high light emission intensity | strength, it is suitable as a member for LED devices used for light-emitting devices, such as illumination and a display, and headlamps, such as a motor vehicle.
 なお、本発明において「~系ガラス」とは、明示の成分を必須成分として含有するガラスをいう。 In the present invention, “to glass” refers to glass containing an explicit component as an essential component.
 本発明の第1の蛍光体複合部材は、セラミック基材が、波長400~500nmの励起光を吸収し、波長450~780nmの蛍光を発することを特徴としていてもよい。 The first phosphor composite member of the present invention may be characterized in that the ceramic substrate absorbs excitation light having a wavelength of 400 to 500 nm and emits fluorescence having a wavelength of 450 to 780 nm.
 本発明の第1の蛍光体複合部材は、セラミック基材が、青色の励起光を吸収し、黄色の蛍光を発することを特徴としていてもよい。 The first phosphor composite member of the present invention may be characterized in that the ceramic base material absorbs blue excitation light and emits yellow fluorescence.
 本発明の第1の蛍光体複合部材は、セラミック基材が、結晶中にCe3+を含むガーネット結晶からなることを特徴としていてもよい。 The first phosphor composite member of the present invention may be characterized in that the ceramic substrate is made of a garnet crystal containing Ce 3+ in the crystal.
 本発明の第1の蛍光体複合部材は、ガーネット結晶が、YAG結晶またはYAG結晶固溶体であることを特徴としていてもよい。 The first phosphor composite member of the present invention may be characterized in that the garnet crystal is a YAG crystal or a YAG crystal solid solution.
 本発明の第1の蛍光体複合部材は、無機粉末焼結体層が、波長400~500nmの励起光を吸収し、波長500~780nmの蛍光を発することを特徴としていてもよい。 The first phosphor composite member of the present invention may be characterized in that the inorganic powder sintered body layer absorbs excitation light having a wavelength of 400 to 500 nm and emits fluorescence having a wavelength of 500 to 780 nm.
 本発明の第1の蛍光体複合部材は、無機粉末焼結体層が、青色の励起光を吸収し、赤色および/または緑色の蛍光を発することを特徴としていてもよい。 The first phosphor composite member of the present invention may be characterized in that the inorganic powder sintered body layer absorbs blue excitation light and emits red and / or green fluorescence.
 なお、本発明において、青色光とは、波長430~480nmに中心波長を有する光を、緑色光とは、波長500~535nmに中心波長を有する光を、黄色光とは、波長535~590nmに中心波長を有する光を、赤色光とは、波長610~780nmに中心波長を有する光をそれぞれ意味する。 In the present invention, blue light means light having a central wavelength at a wavelength of 430 to 480 nm, green light means light having a central wavelength at a wavelength of 500 to 535 nm, and yellow light means light having a wavelength of 535 to 590 nm. The light having a central wavelength and the red light mean light having a central wavelength at a wavelength of 610 to 780 nm.
 本発明の第1の蛍光体複合部材は、セラミック基材および無機粉末焼結体層から発せられる蛍光と、蛍光体複合部材中を透過する励起光とが合成されて白色光を発することを特徴としていてもよい。 The first phosphor composite member of the present invention is characterized in that the fluorescent light emitted from the ceramic base material and the inorganic powder sintered body layer and the excitation light transmitted through the phosphor composite member are combined to emit white light. It may be.
 本発明の第1の蛍光体複合部材は、無機粉末焼結体層が、無機蛍光体粉末を0.01~30質量%含有することを特徴としていてもよい。 The first phosphor composite member of the present invention may be characterized in that the inorganic powder sintered body layer contains 0.01 to 30% by mass of the inorganic phosphor powder.
 本発明の第1の蛍光体複合部材は、SnO-P系ガラスが、組成としてモル%表示で、SnO 35~80%、P 5~40%及びB 0~30%を含有することを特徴としていてもよい。 In the first phosphor composite member of the present invention, SnO—P 2 O 5 based glass is composed of SnO 35-80%, P 2 O 5 5-40%, and B 2 O 3 0- It may be characterized by containing 30%.
 本発明の第1の蛍光体複合部材は、無機粉末焼結体層の表面粗さRaが0.5μm以下であることを特徴としていてもよい。 The first phosphor composite member of the present invention may be characterized in that the inorganic powder sintered body layer has a surface roughness Ra of 0.5 μm or less.
 本発明の第1の蛍光体複合部材は、散乱係数が1~500cm-1であることを特徴としていてもよい。 The first phosphor composite member of the present invention may be characterized by the scattering coefficient is 1 ~ 500 cm -1.
 本発明に係るLEDデバイスは、前記いずれかの蛍光体複合部材を用いたことを特徴とする。 The LED device according to the present invention is characterized by using any one of the phosphor composite members.
 本発明に係る第1の蛍光体複合部材の製造方法は、前記いずれかの蛍光体複合部材を製造するための方法であって、SnO-P系ガラスおよび無機蛍光体粉末の混合物を焼成して焼結体を得る工程、セラミック基材上に前記焼結体を熱圧着プレスすることにより、無機粉末焼結体層を形成する工程、を含むことを特徴とする。なお便宜上、本明細書において当該製造方法を、ペースト法やグリーンシート法とは区別して、「熱圧着プレス法」という。 A first method for producing a phosphor composite member according to the present invention is a method for producing any one of the above phosphor composite members, wherein a mixture of SnO—P 2 O 5 glass and inorganic phosphor powder is used. A step of obtaining a sintered body by firing, and a step of forming an inorganic powder sintered body layer by thermocompression-pressing the sintered body on a ceramic substrate. For the sake of convenience, in the present specification, the manufacturing method is referred to as a “thermocompression pressing method” in distinction from the paste method and the green sheet method.
 熱圧着プレス法によれば、無機粉末焼結体層がセラミック基材に強固に接合されやすく、界面での剥離を抑制することができる。 According to the thermocompression pressing method, the inorganic powder sintered body layer is easily joined firmly to the ceramic substrate, and peeling at the interface can be suppressed.
 また、SnO-P系ガラスは機械的強度が比較的弱く、脆い。このため、一般的な研磨法で非常に薄い(例えば、0.1mm程度)無機粉末焼結体層を形成することは困難である。一方、熱圧着プレス法を用いると、非常に薄い無機粉末焼結体層を容易に形成することができる。 Further, SnO-P 2 O 5 based glass mechanical strength is relatively weak, brittle. For this reason, it is difficult to form a very thin (for example, about 0.1 mm) inorganic powder sintered body layer by a general polishing method. On the other hand, when the thermocompression pressing method is used, a very thin inorganic powder sintered body layer can be easily formed.
 なお、ペースト法やグリーンシート法により焼結体層を形成する場合は、溶剤や結合剤等に起因する炭素成分が焼結体中に残留し、発光強度低下の原因となる場合がある。それに対し、熱圧着プレス法であれば、溶剤や結合剤等の有機化合物を使用しなくとも、セラミック基材上に無機粉末焼結体層を形成することが可能であるため、炭素成分に起因する発光強度低下を未然に防止することが可能となる。
 本発明に係る第2の蛍光体複合部材の製造方法は、無機基材上に、ガラス粉末および無機蛍光体粉末を含有する混合粉末を載置する工程、および、金型を用いて加熱しながら混合粉末をプレス成型し、無機基材表面上に無機粉末焼結体層を形成する工程、を含むことを特徴とする。
In addition, when forming a sintered compact layer by a paste method or a green sheet method, the carbon component resulting from a solvent, a binder, etc. remains in a sintered compact, and it may become a cause of emitted light intensity fall. In contrast, the thermocompression pressing method can form an inorganic powder sintered body layer on a ceramic substrate without using an organic compound such as a solvent or a binder. It is possible to prevent the emission intensity from decreasing.
The manufacturing method of the 2nd fluorescent substance composite member which concerns on this invention is the process of mounting the mixed powder containing glass powder and inorganic fluorescent substance powder on an inorganic base material, and heating using a metal mold | die. A step of pressing the mixed powder to form an inorganic powder sintered body layer on the surface of the inorganic base material.
 無機基材上に、無機蛍光体粉末を含有するガラス焼結体層をペースト法やグリーンシート法により形成した場合、有機樹脂や有機溶剤等に起因する炭素成分が焼結体中に残留し、発光強度低下の原因となる。一方、本発明に係る第2の蛍光体複合部材の製造方法によれば、ガラス粉末および無機蛍光体粉末を含有する混合粉末に対し、有機樹脂や有機溶剤等を添加することなく、直接無機基材表面にプレス融着させることができるため、有機樹脂や有機溶剤等に起因する炭素成分が原因となる発光強度低下の問題がない。よって、発光強度に優れた発光色変換部材を得ることが可能となる。 When the glass sintered body layer containing the inorganic phosphor powder is formed on the inorganic base material by the paste method or the green sheet method, the carbon component resulting from the organic resin or the organic solvent remains in the sintered body, This causes a decrease in emission intensity. On the other hand, according to the second method for producing a phosphor composite member according to the present invention, an inorganic group is directly added to a mixed powder containing glass powder and inorganic phosphor powder without adding an organic resin, an organic solvent, or the like. Since it can be press-bonded to the surface of the material, there is no problem of a decrease in light emission intensity caused by a carbon component caused by an organic resin or an organic solvent. Therefore, it is possible to obtain a light emission color conversion member having excellent light emission intensity.
 また、原料粉末をペースト化したりグリーンシート化する必要がなく、混合粉末をそのままプレス成型に用いることができるため、製造工程を簡素化することが可能となる。また、無機基材表面に非常に薄い無機粉末焼結体層を形成することも容易である。 Also, it is not necessary to paste the raw material powder or green sheet, and the mixed powder can be used for press molding as it is, so that the manufacturing process can be simplified. It is also easy to form a very thin inorganic powder sintered body layer on the inorganic substrate surface.
 本発明の第2の蛍光体複合部材の製造方法では、無機基材が、YAG系セラミックス、結晶化ガラス、ガラス、金属または金属とセラミックスの複合体であることが好ましい。 In the second method for producing a phosphor composite member of the present invention, the inorganic base material is preferably YAG-based ceramics, crystallized glass, glass, metal, or a composite of metal and ceramics.
 本発明の第2の蛍光体複合部材の製造方法では、無機粉末焼結体層の厚みが0.3mm以下であることが好ましい。 In the second method for producing a phosphor composite member of the present invention, the thickness of the inorganic powder sintered body layer is preferably 0.3 mm or less.
 無機粉末焼結体層を薄型化することにより、無機粉末焼結体層における光散乱損失を低減することができ、結果として蛍光体複合部材の発光強度を向上させることが可能となる。 By thinning the inorganic powder sintered body layer, light scattering loss in the inorganic powder sintered body layer can be reduced, and as a result, the emission intensity of the phosphor composite member can be improved.
 本発明の第2の蛍光体複合部材の製造方法では、無機粉末焼結体層の表面粗さ(Ra)が0.5μm以下であることが好ましい。 In the second method for manufacturing a phosphor composite member of the present invention, the inorganic powder sintered body layer preferably has a surface roughness (Ra) of 0.5 μm or less.
 当該構成によれば、無機粉末焼結層表面での光散乱損失を低減することができ、励起光および蛍光が透過しやすくなる。その結果、蛍光体複合部材の発光強度を向上させることが可能となる。 According to this configuration, light scattering loss on the surface of the inorganic powder sintered layer can be reduced, and excitation light and fluorescence are easily transmitted. As a result, the emission intensity of the phosphor composite member can be improved.
 本発明の第2の蛍光体複合部材の製造方法では、ガラス粉末の平均粒径(D50)が100μm以下であることが好ましい。 In the manufacturing method of the second phosphor composite member of the present invention, it is preferable that the average particle diameter of the glass powder (D 50) is 100μm or less.
 当該構成によれば、蛍光体複合部材中における無機蛍光体粉末の分散状態が良好なものとなり、発光色のばらつきを抑制することが可能となる。 According to this configuration, the dispersed state of the inorganic phosphor powder in the phosphor composite member becomes favorable, and it becomes possible to suppress variations in the emission color.
 本発明の第2の蛍光体複合部材の製造方法では、無機粉末焼結体層における無機蛍光体粉末の割合が0.01~90質量%であることが好ましい。 In the second method for producing a phosphor composite member of the present invention, the ratio of the inorganic phosphor powder in the inorganic powder sintered body layer is preferably 0.01 to 90% by mass.
 本発明の第2の蛍光体複合部材の製造方法では、無機粉末焼結体層が、無機フィラーを0~30質量%含有することが好ましい。 In the second method for producing a phosphor composite member of the present invention, the inorganic powder sintered body layer preferably contains 0 to 30% by mass of an inorganic filler.
 無機粉末焼結体層中に無機フィラーを添加することにより、無機基材との膨張係数差を低減して、剥離やクラックの発生を抑制することが可能となる。 By adding an inorganic filler to the inorganic powder sintered body layer, it is possible to reduce the difference in expansion coefficient from the inorganic base material and suppress the occurrence of peeling and cracking.
 本発明の第2の蛍光体複合部材の製造方法では、ガラス粉末が、SiO-B-RO系ガラス粉末(RはMg、Ca、SrおよびBaから選ばれる1種以上)、SiO-TiO-Nb-R’O系ガラス粉末(R’はLi、Na、Kから選ばれる1種以上)、SnO-P系ガラス粉末またはZnO-B-SiO系ガラス粉末であることが好ましい。 In the second method for producing a phosphor composite member of the present invention, the glass powder is SiO 2 —B 2 O 3 —RO glass powder (R is one or more selected from Mg, Ca, Sr and Ba), SiO 2— TiO 2 —Nb 2 O 5 —R ′ 2 O glass powder (R ′ is one or more selected from Li, Na, K), SnO—P 2 O 5 glass powder, or ZnO—B 2 O 3 It is preferably —SiO 2 glass powder.
 本発明の第2の蛍光体複合部材の製造方法では、SnO-P系ガラス粉末が、ガラス組成としてモル%で、SnO 35~80%、P 5~40%及びB 0~30%を含有することが好ましい。 In the second method for producing a phosphor composite member of the present invention, SnO—P 2 O 5 based glass powder has a glass composition of mol%, SnO 35 to 80%, P 2 O 5 5 to 40% and B 2. It is preferable to contain 0 to 30% of O 3 .
 本発明の第2の蛍光体複合部材の製造方法では、無機蛍光体粉末が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、酸フッ化物、ハロゲン化物、アルミン酸塩またはハロリン酸塩化物であることが好ましい。 In the second method for producing a phosphor composite member of the present invention, the inorganic phosphor powder is an oxide, nitride, oxynitride, sulfide, oxysulfide, oxyfluoride, halide, aluminate or halophosphorus. An acid chloride is preferred.
 本発明の第2の蛍光体複合部材の製造方法では、プレス成型時の温度が900℃以下であることが好ましい。 In the second method for producing a phosphor composite member of the present invention, it is preferable that the temperature during press molding is 900 ° C. or lower.
 当該構成によれば、熱による無機蛍光体粉末の失活やガラス粉末の変性を抑制することが可能となる。 According to this configuration, it is possible to suppress the deactivation of the inorganic phosphor powder and the denaturation of the glass powder due to heat.
 本発明の第2の蛍光体複合部材の製造方法では、プレス成型時の雰囲気が空気、真空、窒素またはアルゴンであることが好ましい。 In the second method for producing a phosphor composite member of the present invention, it is preferable that the atmosphere during press molding is air, vacuum, nitrogen or argon.
 本発明の第2の蛍光体複合部材の製造方法では、蛍光体複合部材の形状が、板状、半球状、半球ドーム状であることが好ましい。 In the second method for producing a phosphor composite member of the present invention, the phosphor composite member preferably has a plate shape, a hemispherical shape, or a hemispherical dome shape.
 本発明の第2の蛍光体複合部材は、前記いずれかの製造方法により作製されたことを特徴とする。 The second phosphor composite member of the present invention is manufactured by any one of the manufacturing methods described above.
図1は、第1の実施形態の蛍光体複合部材を示す模式図である。FIG. 1 is a schematic view showing the phosphor composite member of the first embodiment. 図2は、第2の実施形態の蛍光体複合部材の製造方法を示す模式図である。FIG. 2 is a schematic view showing a method for manufacturing the phosphor composite member of the second embodiment.
 (第1の実施形態)
 図1に、本実施形態の蛍光体複合部材の模式図を示す。図1に示すように、本実施形態の蛍光体複合部材は、セラミックス基材12の表面に、SnO-P系ガラスおよび無機蛍光体粉末を含有する無機粉末焼結体層11が形成されてなるものであり、励起光が照射されたときに、セラミック基材12および無機粉末焼結体層11が互いに異なる波長の蛍光を発することを特徴とする。
(First embodiment)
In FIG. 1, the schematic diagram of the fluorescent substance composite member of this embodiment is shown. As shown in FIG. 1, in the phosphor composite member of this embodiment, an inorganic powder sintered body layer 11 containing SnO—P 2 O 5 glass and inorganic phosphor powder is formed on the surface of a ceramic substrate 12. The ceramic substrate 12 and the inorganic powder sintered body layer 11 emit fluorescence having different wavelengths when irradiated with excitation light.
 具体的には、本実施形態の蛍光体複合部材において、セラミックス基材12は、励起光を照射したときに、波長400~500nmの光(好ましくは、青色光)を吸収し、波長450~780nmの光(好ましくは、黄色光)の蛍光を発することが好ましい。また、無機粉末焼結体層11は、波長400~500nmの光(好ましくは、青色光)を吸収し、波長500~780nmの光(好ましくは、赤色および/または緑色)の蛍光を発することが好ましい。セラミック基材12および無機粉末焼結体層11が、上記の吸収波長および蛍光波長を有することにより、色温度の低い白色光(電球色)が得られやすくなる。 Specifically, in the phosphor composite member of this embodiment, the ceramic substrate 12 absorbs light having a wavelength of 400 to 500 nm (preferably, blue light) when irradiated with excitation light, and has a wavelength of 450 to 780 nm. It is preferable to emit fluorescence of light (preferably yellow light). In addition, the inorganic powder sintered body layer 11 absorbs light having a wavelength of 400 to 500 nm (preferably, blue light) and emits light having a wavelength of 500 to 780 nm (preferably, red and / or green). preferable. When the ceramic base material 12 and the inorganic powder sintered body layer 11 have the above absorption wavelength and fluorescence wavelength, white light (bulb color) having a low color temperature is easily obtained.
 本実施形態の蛍光体複合部材におけるセラミック基材12としては、セラミック基材12中にCeを0.001~1モル%、0.002~0.5モル%、特に0.005~0.2モル%含有するガーネット結晶からなるものを用いることが好ましい。これにより、ガーネット結晶中においてCe3+が発光中心となり、青色の励起光を吸収し、黄色の蛍光を発しやすくなる。セラミック基材12中におけるCeの含有量が少なすぎると、黄色の発光強度が低下する傾向にあり、結果として、白色光が得られにくくなる。一方、Ceの含有量が多すぎると、黄色の蛍光が強くなり、結果として、白色光が得られにくくなる。 As the ceramic substrate 12 in the phosphor composite member of the present embodiment, Ce 2 O 3 in the ceramic substrate 12 is 0.001 to 1 mol%, 0.002 to 0.5 mol%, particularly 0.005 to It is preferable to use a garnet crystal containing 0.2 mol%. As a result, Ce 3+ becomes the emission center in the garnet crystal, absorbs blue excitation light, and easily emits yellow fluorescence. If the content of Ce 2 O 3 in the ceramic substrate 12 is too small, the yellow emission intensity tends to decrease, and as a result, it becomes difficult to obtain white light. On the other hand, when the content of Ce 2 O 3 is too large, yellow fluorescence becomes strong, and as a result, it becomes difficult to obtain white light.
 なお、ガーネット結晶とは、一般的にA12で表される結晶(A=Mg、Mn、Fe、Ca、Y、Gd等;B=Al、Cr、Fe、Ga、Sc等;C=Al、Si、Ga、Ge等)をいう。ガーネット結晶のうち、特にYAG(YAl12)結晶またはYAG結晶固溶体は、所望の黄色の蛍光を発するため好ましい。YAG結晶固溶体としては、Yの一部をGd、Sc、CaおよびMgからなる群から選択された少なくとも1種の元素で置換したもの、および/または、Alの一部をGa、Si、GeおよびScからなる群から選択された少なくとも1種の元素で置換したものが挙げられる。 The garnet crystal is a crystal generally represented by A 3 B 2 C 3 O 12 (A = Mg, Mn, Fe, Ca, Y, Gd, etc .; B = Al, Cr, Fe, Ga, Sc) Etc .; C = Al, Si, Ga, Ge, etc.). Among garnet crystals, a YAG (Y 3 Al 5 O 12 ) crystal or a YAG crystal solid solution is particularly preferable because it emits a desired yellow fluorescence. As the YAG crystal solid solution, a part of Y is substituted with at least one element selected from the group consisting of Gd, Sc, Ca and Mg, and / or a part of Al is Ga, Si, Ge and And those substituted with at least one element selected from the group consisting of Sc.
 セラミック基材12は、0.01~2mm、0.05~1mm、特に0.1~0.5mmの厚さを有する板状であることが好ましい。セラミック基材12が板状であると、セラミック基材12上に無機粉末焼結体層11を形成しやすくなる。セラミック基材12の厚さが薄くなりすぎると、セラミック基材12中の結晶量が少なくなり、十分な黄色の蛍光が発せられず、結果として、白色光が得られにくくなる。一方、セラミック基材12の厚さが厚くなりすぎると、黄色の発光が強くなり、結果として、白色光が得られにくくなる。 The ceramic substrate 12 is preferably a plate having a thickness of 0.01 to 2 mm, 0.05 to 1 mm, particularly 0.1 to 0.5 mm. When the ceramic substrate 12 is plate-shaped, the inorganic powder sintered body layer 11 can be easily formed on the ceramic substrate 12. If the thickness of the ceramic substrate 12 becomes too thin, the amount of crystals in the ceramic substrate 12 will decrease, and sufficient yellow fluorescence will not be emitted, resulting in difficulty in obtaining white light. On the other hand, when the thickness of the ceramic substrate 12 becomes too thick, yellow light emission becomes strong, and as a result, it becomes difficult to obtain white light.
 本実施形態におけるセラミック基材12は、例えば以下のような方法により作製することができる。まず、A12(A=Mg、Mn、Fe、Ca、Y、Gd等:B=Al、Cr、Fe、Ga、Sc等:C=Al、Si、Ga、Ge等)の量論組成となるように、A、BおよびCの酸化物原料を秤量し、これにCeを0.001~1モル%添加する。次に、ボールミル等により十分に攪拌混合した後、得られた粉体を100~300MPaの圧力で所望の形状(例えば板状)にプレス成型する。続いて、得られたプレス成型体を1500~1800℃の温度で焼成することにより、セラミック基材12を得る。なお、酸化物原料粉末としては、数μm程度あるいはそれ以下の粒径を有し、かつ高純度のものを用いることにより、均質なセラミック基材12が得られやすくなる。 The ceramic substrate 12 in the present embodiment can be produced, for example, by the following method. First, A 3 B 2 C 3 O 12 (A = Mg, Mn, Fe, Ca, Y, Gd, etc .: B = Al, Cr, Fe, Ga, Sc, etc .: C = Al, Si, Ga, Ge, etc.) The oxide raw materials of A, B, and C are weighed so that the stoichiometric composition is as follows, and Ce 2 O 3 is added thereto in an amount of 0.001 to 1 mol%. Next, after sufficiently stirring and mixing with a ball mill or the like, the obtained powder is press-molded into a desired shape (for example, a plate shape) at a pressure of 100 to 300 MPa. Subsequently, the obtained press-molded body is fired at a temperature of 1500 to 1800 ° C. to obtain a ceramic substrate 12. As the oxide raw material powder, a homogeneous ceramic base material 12 can be easily obtained by using a high-purity powder having a particle size of about several μm or less.
 無機粉末焼結体層11に用いられるSnO-P系ガラス粉末には、無機蛍光体粉末を安定に保持するための媒体としての役割がある。SnO-P系ガラス粉末は融点が低く、低温で焼結可能であるため、焼成時における無機蛍光体粉末の熱劣化を抑制することができる。SnO-P系ガラス粉末としては、SnO-P-B系ガラス、SnO-P-ZnO系ガラス等が挙げられる。 The SnO—P 2 O 5 glass powder used for the inorganic powder sintered body layer 11 has a role as a medium for stably holding the inorganic phosphor powder. Since the SnO—P 2 O 5 glass powder has a low melting point and can be sintered at a low temperature, thermal deterioration of the inorganic phosphor powder during firing can be suppressed. Examples of the SnO—P 2 O 5 glass powder include SnO—P 2 O 5 —B 2 O 3 glass, SnO—P 2 O 5 —ZnO glass, and the like.
 SnO-P系ガラスとしては、組成としてモル%表示で、SnO 35~80%、P 5~40%及びB 0~30%を含有するものであることが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SnO—P 2 O 5 glass preferably contains SnO 35 to 80%, P 2 O 5 5 to 40% and B 2 O 3 0 to 30% in terms of mol% as a composition. . The reason for limiting the glass composition in this way will be described below.
 SnOはガラス骨格を形成するとともに、軟化点を低下させる成分である。SnOの含有量は35~80%、40~70%、50~70%、特に55~65%であることが好ましい。SnOの含有量が35%未満であると、ガラスの軟化点が上昇する傾向にあり、耐候性が悪化する傾向がある。一方、SnOの含有量が80%を超えると、ガラス中にSnに起因する失透ブツが析出し、ガラスの透過率が低下する傾向にあり、結果として、蛍光強度が低下する。また、ガラス化しにくくなる。 SnO is a component that forms a glass skeleton and lowers the softening point. The SnO content is preferably 35 to 80%, 40 to 70%, 50 to 70%, particularly 55 to 65%. When the SnO content is less than 35%, the softening point of the glass tends to increase, and the weather resistance tends to deteriorate. On the other hand, when the content of SnO exceeds 80%, devitrification bumps due to Sn are precipitated in the glass, and the transmittance of the glass tends to decrease, and as a result, the fluorescence intensity decreases. Moreover, it becomes difficult to vitrify.
 Pはガラス骨格を形成する成分である。Pの含有量は5~40%、10~30%、特に15~24%であることが好ましい。Pの含有量が5%未満であると、ガラス化しにくくなる。一方、Pの含有量が40%を超えると、ガラスの軟化点が上昇する傾向にあり、耐候性が著しく低下する傾向にある。 P 2 O 5 is a component that forms a glass skeleton. The content of P 2 O 5 is preferably 5 to 40%, 10 to 30%, particularly preferably 15 to 24%. When the content of P 2 O 5 is less than 5%, vitrification becomes difficult. On the other hand, when the content of P 2 O 5 exceeds 40%, the softening point of the glass tends to increase, and the weather resistance tends to decrease remarkably.
 なお、軟化点を低下させ、かつガラスを安定化させるには、SnO/Pの値が、モル比で、0.9~16、1.5~16、1.5~10、特に2~5であることが好ましい。SnO/Pの値が0.9より小さくなると、ガラスの軟化点が上昇する傾向にあり、焼結温度が上昇する傾向がある。結果として、無機蛍光体粉末層を形成する際の熱処理により無機蛍光体粉末が劣化しやすくなる。また、ガラスの耐候性が著しく低下する傾向にある。一方、SnO/Pの値が16より大きくなると、ガラス中にSnに起因する失透ブツが析出し、ガラスの透過率が低下する傾向にあり、結果として、高い発光効率を有する蛍光体複合部材が得られにくくなる。 In order to lower the softening point and stabilize the glass, the value of SnO / P 2 O 5 is 0.9 to 16, 1.5 to 16, 1.5 to 10, particularly in molar ratio. It is preferably 2 to 5. When the value of SnO / P 2 O 5 is smaller than 0.9, the glass softening point tends to increase, and the sintering temperature tends to increase. As a result, the inorganic phosphor powder is likely to be deteriorated by heat treatment when forming the inorganic phosphor powder layer. Moreover, it exists in the tendency for the weather resistance of glass to fall remarkably. On the other hand, when the value of SnO / P 2 O 5 is larger than 16, devitrification bumps due to Sn are precipitated in the glass, and the transmittance of the glass tends to be lowered. As a result, the fluorescent light having high luminous efficiency. It becomes difficult to obtain a body composite member.
 Bは、ガラスの耐候性を向上させるとともに、ガラス粉末と無機蛍光体粉末の反応を抑制する成分である。また、ガラスを安定化させる成分でもある。Bの含有量は0~30%、1~25%、2~20%、特に4~18%であることが好ましい。Bの含有量が30%を超えると、耐候性が低下しやすくなる。また、ガラスの軟化点が上昇する傾向がある。 B 2 O 3 is a component that improves the weather resistance of the glass and suppresses the reaction between the glass powder and the inorganic phosphor powder. It is also a component that stabilizes the glass. B 2 O content of 3 0-30%, 1-25%, 2-20%, it is preferred that particular from 4 to 18%. If the content of B 2 O 3 exceeds 30%, the weather resistance tends to decrease. Moreover, there exists a tendency for the softening point of glass to rise.
 なお、SnO-P系ガラス粉末には、その他にも下記の成分を添加することができる。 Note that the SnO-P 2 O 5 based glass powder, can be added the following components to other.
 Alはガラスを安定化させる成分である。Alの含有量は0~10%、0~7%、特に1~5%であることが好ましい。Alの含有量が10%を超えると、ガラスの軟化点が上昇する傾向にあり、焼結温度が上昇する傾向がある。結果として、無機蛍光体粉末層を形成する際の熱処理により無機蛍光体粉末が劣化しやすくなる。 Al 2 O 3 is a component that stabilizes the glass. The content of Al 2 O 3 is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. When the content of Al 2 O 3 exceeds 10%, the glass softening point tends to increase, and the sintering temperature tends to increase. As a result, the inorganic phosphor powder is likely to be deteriorated by heat treatment when forming the inorganic phosphor powder layer.
 SiOはAlと同様にガラスを安定化させる成分である。SiOの含有量は0~10%、0~7%、特に0.1~5%であることが好ましい。SiOの含有量が10%を超えると、ガラスの軟化点が上昇する傾向にあり、焼結温度が上昇する傾向がある。結果として、無機蛍光体粉末層を形成する際の熱処理により無機蛍光体粉末が劣化しやすくなる。また、ガラスが分相しやすくなる。 SiO 2 is a component that stabilizes the glass in the same manner as Al 2 O 3 . The content of SiO 2 is preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%. When the content of SiO 2 exceeds 10%, the softening point of the glass tends to increase, and the sintering temperature tends to increase. As a result, the inorganic phosphor powder is likely to be deteriorated by heat treatment when forming the inorganic phosphor powder layer. Moreover, it becomes easy to phase-separate glass.
 LiO、NaOおよびKOは、ガラスの軟化点を低下させる成分である。その含有量はそれぞれ0~10%、0~7%、特に0.1~5%であることが好ましい。これら成分の含有量がそれぞれ10%を超えると、ガラスが著しく不安定になり、ガラス化しにくくなる。 Li 2 O, Na 2 O and K 2 O is a component to lower the softening point of the glass. Their contents are preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%, respectively. If the content of each of these components exceeds 10%, the glass becomes extremely unstable and becomes difficult to vitrify.
 なお、LiO、NaOおよびKOを合量で0~10%、0~7%であり、特に1~5%にすることが好ましい。これら成分の合量が10%より多くなると、ガラスが不安定になり、ガラス化しにくくなる。 Incidentally, the total amount of Li 2 O, Na 2 O and K 2 O is 0 to 10%, 0 to 7%, particularly preferably 1 to 5%. If the total amount of these components is more than 10%, the glass becomes unstable and it is difficult to vitrify.
 MgO、CaO、SrO、BaOはガラスを安定化させてガラス化しやすくする成分である。その含有量はそれぞれ0~10%、0~7%、特に0.1~5%であることが好ましい。これら成分の含有量がそれぞれ10%を超えると、ガラスが失透しやすく、透過率が低下する傾向にある。その結果、発光強度が低下しやすくなる。 MgO, CaO, SrO, and BaO are components that stabilize glass and facilitate vitrification. Their contents are preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%, respectively. If the content of these components exceeds 10%, the glass tends to devitrify and the transmittance tends to decrease. As a result, the emission intensity tends to decrease.
 なお、MgO、CaO、SrOおよびBaOを合量で0~10%、0~7%、特に1~5%にすることが好ましい。これら成分の合量が10%を超えると、ガラスが失透しやすくなり、透過率が低下する傾向にある。その結果、発光強度が低下しやすくなる。 Note that the total amount of MgO, CaO, SrO and BaO is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. If the total amount of these components exceeds 10%, the glass tends to devitrify and the transmittance tends to decrease. As a result, the emission intensity tends to decrease.
 また、耐候性を向上させるために、ZnO、Ta、TiO、Nb、Gd、Laを合量で10%まで添加してもよい。 In order to improve the weather resistance, ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , and La 2 O 3 may be added up to 10% in total.
 SnO-P系ガラス粉末の屈折率(nd)は、セラミックス基板と無機粉末焼結体層11との界面における光散乱損失を抑制する観点から、1.5以上、1.7以上、特に1.8以上であることが好ましい。 The refractive index (nd) of the SnO—P 2 O 5 glass powder is 1.5 or more, 1.7 or more from the viewpoint of suppressing light scattering loss at the interface between the ceramic substrate and the inorganic powder sintered body layer 11. In particular, it is preferably 1.8 or more.
 また、SnO-P系ガラス粉末の軟化点は500℃以下、450℃以下、特に400℃以下であることが好ましい。軟化点が500℃を超えると、焼結温度が高くなり、無機蛍光体粉末層を形成する際の熱処理により無機蛍光体粉末が劣化しやすくなる。 The softening point of SnO—P 2 O 5 glass powder is preferably 500 ° C. or lower, 450 ° C. or lower, and particularly preferably 400 ° C. or lower. When the softening point exceeds 500 ° C., the sintering temperature becomes high, and the inorganic phosphor powder tends to be deteriorated by heat treatment when forming the inorganic phosphor powder layer.
 また、SnO-P系ガラス粉末の平均粒径D50が大きすぎると、無機粉末焼結体層11中の無機蛍光体粉末の分散状態に劣り、発光色にばらつきが生じやすくなる。そのため、SnO-P系ガラス粉末の平均粒径D50は100μm以下、特に50μm以下であることが好ましい。なお、下限については特に限定されないが、SnO-P系ガラス粉末の平均粒径D50が小さくなりすぎると、コストが高騰しやすくなるため、0.1μm以上、特に1μm以上であることが好ましい。 If the average particle diameter D 50 of the SnO—P 2 O 5 glass powder is too large, the dispersed state of the inorganic phosphor powder in the inorganic powder sintered body layer 11 is inferior and the emission color tends to vary. Therefore, the average particle diameter D 50 of the SnO—P 2 O 5 glass powder is preferably 100 μm or less, particularly preferably 50 μm or less. The lower limit is not particularly limited, but if the average particle diameter D 50 of the SnO—P 2 O 5 glass powder becomes too small, the cost is likely to rise, so it is 0.1 μm or more, particularly 1 μm or more. Is preferred.
 無機粉末焼結体層11に含まれる無機蛍光体粉末としては、一般に市中で入手できるものであれば使用でき、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、酸フッ化物、ハロゲン化物、ハロリン酸塩化物などからなるものが挙げられる。なかでも、波長300~500nmに励起帯を有し、波長500~780nmに発光ピークを有するもの、特に、赤色および/または緑色に発光するものを用いることが好ましい。 The inorganic phosphor powder contained in the inorganic powder sintered body layer 11 can be used as long as it is generally available in the market, and can be used as an oxide, nitride, oxynitride, sulfide, oxysulfide, oxyfluoride. , Halides, halophosphates, and the like. Of these, those having an excitation band at a wavelength of 300 to 500 nm and having an emission peak at a wavelength of 500 to 780 nm, particularly those emitting light in red and / or green are preferably used.
 具体的には、青色励起光を照射すると赤色の蛍光を発する無機蛍光体粉末として、CaS:Eu2+、ZnS:Mn2+,Te2+、MgTiO:Mn4+、KSiF:Mn4+、SrS:Eu2+、Na1.230.42Eu0.12TiSi411、Na1.230.42Eu0.12TiSi13:Eu3+、CdS:In,Te、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、Euが挙げられる。 Specifically, as inorganic phosphor powder that emits red fluorescence when irradiated with blue excitation light, CaS: Eu 2+ , ZnS: Mn 2+ , Te 2+ , Mg 2 TiO 4 : Mn 4+ , K 2 SiF 6 : Mn 4+ , SrS: Eu 2+ , Na 1.23 K 0.42 Eu 0.12 TiSi4 4 O 11 , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 : Eu 3+ , CdS: In, Te, CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , Eu 2 W 2 O 7 .
 また、青色励起光を照射すると緑色の蛍光を発する無機蛍光体粉末として、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、SrSiO:Eu2+が挙げられる。 Further, as an inorganic phosphor powder that emits green fluorescence when irradiated with blue excitation light, SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiO N : Eu 2+ .
 無機粉末焼結体層11における無機蛍光体粉末の含有量が多くなりすぎると、焼結しにくくなり、気孔率が大きくなって、光散乱損失が大きくなるなどの問題が生じる。一方、無機蛍光体粉末の含有量が少なすぎると、十分な発光が得られにくくなる。よって、無機粉末焼結体層11における無機蛍光体粉末の含有量は、0.01~30質量%、0.05~20質量%、特に0.08~15%であることが好ましい。 If the content of the inorganic phosphor powder in the inorganic powder sintered body layer 11 is excessively increased, sintering becomes difficult, the porosity increases, and the light scattering loss increases. On the other hand, when there is too little content of inorganic fluorescent substance powder, it becomes difficult to obtain sufficient light emission. Therefore, the content of the inorganic phosphor powder in the inorganic powder sintered body layer 11 is preferably 0.01 to 30% by mass, 0.05 to 20% by mass, and particularly preferably 0.08 to 15%.
 無機粉末焼結体層11は、0.01~1mm、0.02~0.8mm、特に0.1~0.8mmの厚さを有することが好ましい。無機粉末焼結体層11の厚さが0.01mm未満であると、無機粉末焼結体層11から発せられる蛍光が不十分となり、白色光が得られにくくなる。一方、無機粉末焼結体層11の厚さが1mmを超えると、励起光やセラミックス基板が発する蛍光が透過しにくくなり、結果として、白色光が得られにくくなる。 The inorganic powder sintered body layer 11 preferably has a thickness of 0.01 to 1 mm, 0.02 to 0.8 mm, particularly 0.1 to 0.8 mm. When the thickness of the inorganic powder sintered body layer 11 is less than 0.01 mm, the fluorescence emitted from the inorganic powder sintered body layer 11 becomes insufficient, and it becomes difficult to obtain white light. On the other hand, when the thickness of the inorganic powder sintered body layer 11 exceeds 1 mm, excitation light and fluorescence emitted from the ceramic substrate are difficult to transmit, and as a result, white light is hardly obtained.
 なお、セラミック基材12が板状である場合、無機粉末焼結体層11はセラミック基材12の片面のみに形成してもよいし、両面に形成してもよい。 In addition, when the ceramic base material 12 is plate shape, the inorganic powder sintered compact layer 11 may be formed only in the single side | surface of the ceramic base material 12, and may be formed in both surfaces.
 本実施形態の蛍光体複合部材では、散乱係数が1~500cm-1、2~250cm-1、特に10~200cm-1であることが好ましい。散乱係数が1cm-1未満であると、励起光が蛍光体複合部材中で十分に散乱されず、その大部分が透過してしまう。その結果、セラミックス基板および無機粉末焼結体層11において十分な蛍光が発せられず、励起効率が低下するため、発光強度が低下しやすくなる。一方、散乱係数が大きくなると、励起光が蛍光体複合部材内で散乱して蛍光の発生量が増え、励起効率が向上するが、散乱係数が500cm-1を超えると、光散乱損失が大きくなりすぎて、発光強度が低下する傾向がある。 In the phosphor composite member of this embodiment, the scattering coefficient is preferably 1 to 500 cm −1 , 2 to 250 cm −1 , particularly 10 to 200 cm −1 . When the scattering coefficient is less than 1 cm −1 , excitation light is not sufficiently scattered in the phosphor composite member, and most of it is transmitted. As a result, sufficient fluorescence is not emitted in the ceramic substrate and the inorganic powder sintered body layer 11 and the excitation efficiency is lowered, so that the emission intensity is likely to be lowered. On the other hand, when the scattering coefficient is increased, the excitation light is scattered in the phosphor composite member to increase the amount of fluorescence generated and the excitation efficiency is improved. However, when the scattering coefficient exceeds 500 cm −1 , the light scattering loss increases. Too much, the emission intensity tends to decrease.
 また、本実施形態の蛍光体複合部材では、無機粉末焼結体層11の表面粗さRaが0.5μm以下、0.2μm以下、特に0.1μm以下であることが好ましい。無機粉末焼結体層11の表面粗さが0.5μmを超えると、光散乱損失が大きくなり、励起光および蛍光の透過率が低下して発光強度が低下する傾向がある。 Moreover, in the phosphor composite member of this embodiment, the surface roughness Ra of the inorganic powder sintered body layer 11 is preferably 0.5 μm or less, 0.2 μm or less, and particularly preferably 0.1 μm or less. When the surface roughness of the inorganic powder sintered body layer 11 exceeds 0.5 μm, the light scattering loss increases, the transmittance of excitation light and fluorescence tends to decrease, and the emission intensity tends to decrease.
 本実施形態の蛍光体複合部材においては、セラミック基材12と無機粉末焼結体層11の間には、接着剤層や空間層を介在させずに、無機粉末焼結体層11をセラミック基材12上に融着一体化させることにより密着してなることが好ましい。セラミック基材12と無機粉末焼結体層11との間に空間がなく密着した構造にすることで、セラミック基材12と無機粉末焼結体層11の界面での光反射損失を低減して発光強度の低下を抑制することができ、しかも、機械的強度を向上させることができる。また、このようにすれば、熱による変色の原因となる有機系樹脂接着剤を使用せずとも、本実施形態の蛍光体複合部材を作製することが可能となる。 In the phosphor composite member of the present embodiment, the inorganic powder sintered body layer 11 is not formed between the ceramic base 12 and the inorganic powder sintered body layer 11 without interposing an adhesive layer or a space layer. It is preferable that they are brought into close contact by being fused and integrated on the material 12. By adopting a structure in which there is no space between the ceramic substrate 12 and the inorganic powder sintered body layer 11, the light reflection loss at the interface between the ceramic substrate 12 and the inorganic powder sintered body layer 11 is reduced. A decrease in emission intensity can be suppressed, and mechanical strength can be improved. In addition, this makes it possible to produce the phosphor composite member of this embodiment without using an organic resin adhesive that causes discoloration due to heat.
 セラミック基材12からの無機粉末焼結体層11の剥離を防止するには、セラミック基材12の熱膨張係数をα1、無機粉末焼結体層11の熱膨張係数をα2としたとき、-5ppm/℃≦α1-α2≦5ppm/℃、特に-1ppm/℃≦α1-α2≦1ppm/℃であることが好ましい。α1-α2が上記範囲外になると、無機粉末焼結体層11がセラミック基材12から剥離しやすくなる。 In order to prevent the inorganic powder sintered body layer 11 from peeling from the ceramic base material 12, when the thermal expansion coefficient of the ceramic base material 12 is α1 and the thermal expansion coefficient of the inorganic powder sintered body layer 11 is α2, − It is preferable that 5 ppm / ° C. ≦ α 1 −α 2 ≦ 5 ppm / ° C., particularly −1 ppm / ° C. ≦ α 1 −α 2 ≦ 1 ppm / ° C. When α1-α2 is out of the above range, the inorganic powder sintered body layer 11 is easily peeled off from the ceramic substrate 12.
 セラミック基材12と無機粉末焼結体層11の膨張係数を整合させるために、無機粉末焼結体層11には無機フィラー粉末を含有させることが好ましい。無機フィラー粉末としては、低膨張特性を有するリン酸ジルコニウム、リン酸タングステン酸ジルコニウム、タングステン酸ジルコニウム、NZP型結晶およびこれらの固溶体等が挙げられ、これらを単独あるいは混合して使用することができる。ここで、「NZP型結晶」とは、例えば、NbZr(POや[AB(MO]の基本構造をもつ結晶が含まれる。 In order to match the expansion coefficients of the ceramic substrate 12 and the inorganic powder sintered body layer 11, the inorganic powder sintered body layer 11 preferably contains an inorganic filler powder. Examples of the inorganic filler powder include zirconium phosphate, zirconium phosphate tungstate, zirconium tungstate, NZP type crystals and solid solutions thereof having low expansion characteristics, and these can be used alone or in combination. Here, the “NZP type crystal” includes, for example, a crystal having a basic structure of NbZr (PO 4 ) 3 or [AB 2 (MO 4 ) 3 ].
 A:Li、Na、K、Mg、Ca、Sr、Ba、Zn、Cu、Ni、Mn等
 B:Zr、Ti、Sn、Nb、Al、Sc、Y等
 M:P、Si、W、Mo等
A: Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Mn, etc. B: Zr, Ti, Sn, Nb, Al, Sc, Y, etc. M: P, Si, W, Mo, etc.
 なお、無機フィラー粉末はZr成分を含有するものを使用することが好ましい。Zr成分を含有する無機フィラー粉末は、SnO-P系ガラスと適合性が良好、つまりSnO-P系ガラスとの反応性が低く、焼結時にガラスを失透させにくい性質を有している。 In addition, it is preferable to use the inorganic filler powder containing a Zr component. Inorganic filler powder containing Zr component, SnO-P 2 O 5 based glass compatible good, i.e. low reactivity with SnO-P 2 O 5 based glass, hard nature of the glass was devitrified during sintering have.
 無機フィラー粉末の熱膨張係数は、30~380℃の温度範囲で50×10-7/℃以下、特に30×10-7/℃以下であることが好ましい。無機フィラー粉末の熱膨張係数が50×10-7/℃より大きいと、無機粉末焼結体層11の熱膨張係数を低下させる効果が得られにくい。なお、無機フィラー粉末の熱膨張係数の下限については特に限定されないが、現実的には-100×10-7/℃以上である。 The thermal expansion coefficient of the inorganic filler powder is preferably 50 × 10 −7 / ° C. or lower, particularly 30 × 10 −7 / ° C. or lower in the temperature range of 30 to 380 ° C. When the thermal expansion coefficient of the inorganic filler powder is larger than 50 × 10 −7 / ° C., it is difficult to obtain the effect of reducing the thermal expansion coefficient of the inorganic powder sintered body layer 11. The lower limit of the thermal expansion coefficient of the inorganic filler powder is not particularly limited, but in reality, it is −100 × 10 −7 / ° C. or higher.
 無機粉末焼結体層11における無機フィラー粉末の含有量は、1~30質量%、1.5~25質量%、特に2~20質量%であることが好ましい。無機フィラー粉末の含有量が1質量%未満であると、上記効果が得られにくい。一方、無機フィラー粉末の含有量が30質量%を超えると、焼成時に軟化流動するガラス粉末の含有量が相対的に少なくなるため、セラミック基材12に対する融着強度が低下しやすくなる。また、無機粉末焼結体層11におけるガラスマトリクスと無機フィラー粉末の界面における光散乱損失が大きくなり、発光強度が低下する傾向がある。 The content of the inorganic filler powder in the inorganic powder sintered body layer 11 is preferably 1 to 30% by mass, 1.5 to 25% by mass, and particularly preferably 2 to 20% by mass. The said effect is hard to be acquired as content of an inorganic filler powder is less than 1 mass%. On the other hand, when the content of the inorganic filler powder exceeds 30% by mass, the content of the glass powder that softens and flows at the time of firing becomes relatively small, so that the fusion strength with respect to the ceramic substrate 12 tends to decrease. Moreover, the light scattering loss at the interface between the glass matrix and the inorganic filler powder in the inorganic powder sintered body layer 11 tends to increase, and the light emission intensity tends to decrease.
 無機フィラー粉末の平均粒子径D50は、0.1~50μm、特に3~20μmであることが好ましい。無機フィラー粉末の平均粒子径D50が0.1μmより小さいと、熱膨張係数を低下させる効果に劣る傾向がある。あるいは、焼成時にガラスに溶け込み、フィラーとしての役割を果たさなくなるおそれがある。無機フィラー粉末の平均粒子径D50が50μmより大きいと、SnO-P系ガラス粉末と無機フィラー粉末の境界にクラックが発生しやすくなる。 The average particle diameter D 50 of the inorganic filler powder is preferably 0.1 to 50 μm, particularly 3 to 20 μm. When the average particle diameter D 50 of the inorganic filler powder is smaller than 0.1 μm, the effect of reducing the thermal expansion coefficient tends to be inferior. Alternatively, it may be dissolved in the glass during firing and no longer serve as a filler. If the average particle diameter D 50 of the inorganic filler powder is larger than 50 μm, cracks are likely to occur at the boundary between the SnO—P 2 O 5 glass powder and the inorganic filler powder.
 なお、無機フィラー粉末とSnO-P系ガラス粉末の屈折率差が小さいほど、両者の界面での光散乱損失が小さくなり、発光強度が向上しやすくなる。具体的には、無機フィラー粉末とSnO-P系ガラス粉末の屈折率との差は0.2以下、特に0.1以下であることが好ましい。例えば、SnO-P系ガラスの屈折率が1.8程度である場合は、無機フィラー粉末の屈折率は1.6~2、特に1.7~1.9であることが好ましい。 Note that the smaller the refractive index difference between the inorganic filler powder and the SnO—P 2 O 5 glass powder, the smaller the light scattering loss at the interface between them, and the easier it is to improve the emission intensity. Specifically, the difference between the refractive index of the inorganic filler powder and the SnO—P 2 O 5 glass powder is preferably 0.2 or less, particularly preferably 0.1 or less. For example, when the refractive index of SnO—P 2 O 5 based glass is about 1.8, the refractive index of the inorganic filler powder is preferably 1.6 to 2, particularly 1.7 to 1.9.
 無機粉末焼結体層11は、SnO-P系ガラス粉末と無機蛍光体粉末、さらに必要に応じて無機フィラーを含む混合物に、結合剤、可塑剤、溶剤等を加えて混錬したものを、例えばペーストの形態にして、焼成することで作製することができる。ペースト全体に占めるガラス粉末と無機蛍光体粉末の割合としては、30~90質量%程度が一般的である。 The inorganic powder sintered body layer 11 was kneaded by adding a binder, a plasticizer, a solvent, etc. to a mixture containing SnO—P 2 O 5 glass powder and inorganic phosphor powder, and further, if necessary, an inorganic filler. A thing can be produced by baking in the form of a paste, for example. The ratio of the glass powder and the inorganic phosphor powder in the entire paste is generally about 30 to 90% by mass.
 結合剤は、乾燥後の膜強度を高め、また柔軟性を付与する成分であり、その含有量は、0.1~20質量%程度が一般的である。結合剤としては、ポリブチルメタアクリレート、ポリビニルブチラール、ポリメチルメタアクリレート、ポリエチルメタアクリレート、エチルセルロース、ニトロセルロース等が挙げられ、これらを単独あるいは混合して使用することができる。 The binder is a component that increases the film strength after drying and imparts flexibility, and its content is generally about 0.1 to 20% by mass. Examples of the binder include polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose, nitrocellulose, and the like, and these can be used alone or in combination.
 可塑剤は、膜の乾燥速度をコントロールするとともに、乾燥膜に柔軟性を与える成分であり、その含有量は0~10質量%程度が一般的である。可塑剤としては、フタル酸ジブチル、ブチルベンジルフタレート、ジオクチルフタレート、ジイソオクチルフタレート、ジカプリルフタレート、ジブチルフタレート等が挙げられ、これらを単独あるいは混合して使用することができる。 The plasticizer is a component that controls the drying speed of the film and imparts flexibility to the dried film, and the content thereof is generally about 0 to 10% by mass. Examples of the plasticizer include dibutyl phthalate, butyl benzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, and dibutyl phthalate, and these can be used alone or in combination.
 溶剤は、原料粉末をペースト化するための成分であり、その含有量は10~50質量%程度が一般的である。溶剤としては、テルピネオール、酢酸イソアミル、トルエン、メチルエチルケトン、ジエチレングリコールモノブチルエーテルアセテート、2,2,4-トリメチル-1,3-ペンタジオールモノイソブチレート、2、4-ジエチル-1,5-ペンタンジオール等が挙げられ、これらを単独または混合して使用することができる。 Solvent is a component for pasting raw material powder, and its content is generally about 10 to 50% by mass. Solvents include terpineol, isoamyl acetate, toluene, methyl ethyl ketone, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate, 2,4-diethyl-1,5-pentanediol, etc. These can be used alone or in combination.
 スクリーン印刷法や一括コート法、ディスペンス法等を用いてセラミック基材12上にペーストを塗布し、所定の膜厚の塗布層を形成し、乾燥させた後、焼成することで所定の無機粉末焼結体層11を得ることができる。ここで、ペーストの上から加熱プレートを押し当て、加圧することにより、無機粉末焼結体層11を形成してもよい。 A paste is applied on the ceramic substrate 12 using a screen printing method, a batch coating method, a dispensing method, etc., a coating layer having a predetermined thickness is formed, dried, and then fired to obtain a predetermined inorganic powder firing. The consolidated layer 11 can be obtained. Here, the inorganic powder sintered body layer 11 may be formed by pressing and pressing a heating plate over the paste.
 焼成温度は、250~600℃、特に300~500℃であることが好ましい。焼成温度が250℃未満であると、セラミック基材12から無機粉末焼結体層11が剥離しやすくなる。また、緻密な無機粉末焼結体層11が得られにくくなり、結果として、無機粉末焼結体層11の発光強度が低下し、所望の光を発する蛍光体複合部材が得られにくくなる。一方、焼成温度が600℃を超えると、無機蛍光体粉末がガラス粉末と反応して劣化し、所望の光を発する蛍光体複合部材が得られにくくなる。 The firing temperature is preferably 250 to 600 ° C., particularly 300 to 500 ° C. When the firing temperature is less than 250 ° C., the inorganic powder sintered body layer 11 is easily peeled off from the ceramic substrate 12. Moreover, it becomes difficult to obtain the dense inorganic powder sintered body layer 11, and as a result, the emission intensity of the inorganic powder sintered body layer 11 is lowered, and it becomes difficult to obtain a phosphor composite member that emits desired light. On the other hand, if the firing temperature exceeds 600 ° C., the inorganic phosphor powder reacts with the glass powder and deteriorates, making it difficult to obtain a phosphor composite member that emits desired light.
 焼成雰囲気としては、ガラス粉末中の酸化、特にSn成分の酸化を抑制するため減圧または真空中、あるいは窒素やアルゴンなどの不活性ガス雰囲気中が好ましい。ガラス粉末中のSn成分が酸化すると、ガラス粉末が焼結しにくくなり、セラミックス基板への融着が不十分になる傾向がある。 The firing atmosphere is preferably a reduced pressure or vacuum or an inert gas atmosphere such as nitrogen or argon in order to suppress oxidation in the glass powder, particularly oxidation of the Sn component. When the Sn component in the glass powder is oxidized, the glass powder is difficult to sinter and tends to be insufficiently fused to the ceramic substrate.
 ペースト以外にもグリーンシートを用いて無機粉末焼結体層11を作製することもできる。グリーンシートを作製するための一般的な方法としては、上記ガラス粉末、無機蛍光体粉末、結合剤、可塑剤等を用意し、これらに溶剤を添加してスラリーとし、このスラリーをドクターブレード法によって、ポリエチレンテレフタレート(PET)等のフィルムの上にシート成形する。続いて、シート成形後、乾燥させることによって有機系溶剤等を除去することでグリーンシートとすることができる。 In addition to the paste, the inorganic powder sintered body layer 11 can also be produced using a green sheet. As a general method for producing a green sheet, the above glass powder, inorganic phosphor powder, binder, plasticizer, etc. are prepared, and a solvent is added to these to form a slurry. This slurry is obtained by a doctor blade method. Then, a sheet is formed on a film of polyethylene terephthalate (PET) or the like. Subsequently, after forming the sheet, the organic solvent or the like is removed by drying to obtain a green sheet.
 ガラス粉末と無機蛍光体粉末のグリーンシート中に占める割合は、50~80質量%程度が一般的である。 The proportion of glass powder and inorganic phosphor powder in the green sheet is generally about 50 to 80% by mass.
 結合剤、可塑剤および溶剤としては、上記と同様のものを用いることができる。結合剤の混合割合としては0.1~30質量%程度、可塑剤の混合割合としては0~10質量%程度、溶剤の混合割合としては1~40質量%程度が一般的である。 As the binder, plasticizer and solvent, the same ones as described above can be used. The mixing ratio of the binder is generally about 0.1 to 30% by mass, the mixing ratio of the plasticizer is about 0 to 10% by mass, and the mixing ratio of the solvent is generally about 1 to 40% by mass.
 以上のようにして得られたグリーンシートをセラミック基材12上に積層し、熱圧着した後、上述のペーストの場合と同様に焼成することで無機粉末焼結体層11を得ることができる。 The inorganic powder sintered body layer 11 can be obtained by laminating the green sheet obtained as described above on the ceramic substrate 12 and thermocompression bonding, followed by firing in the same manner as in the case of the paste described above.
 さらに、SnO-P系ガラスおよび無機蛍光体粉末の混合物を焼成して焼結体を予め作製し、セラミック基材12上に当該焼結体を熱圧着プレスすることにより、無機粉末焼結体層11を形成することも可能である。熱圧着プレスは、例えば加熱した金型の間にセラミック基材12と焼結体を挟み込むことにより行われる。金型と焼結体の間に、ガラス基板等の離型材を挿入した状態で熱圧着プレスを行ってもよい。 Furthermore, a sintered body is prepared in advance by firing a mixture of SnO—P 2 O 5 glass and inorganic phosphor powder, and the sintered body is pressed onto the ceramic substrate 12 by thermocompression bonding. It is also possible to form the combined layer 11. The thermocompression pressing is performed, for example, by sandwiching the ceramic substrate 12 and the sintered body between heated dies. You may perform a thermocompression-bonding press in the state which inserted mold release materials, such as a glass substrate, between a metal mold | die and a sintered compact.
 当該方法によれば、既述の通り、非常に薄い(例えば、0.01~0.30mm)無機粉末焼結体層11を容易に形成することができる。 According to this method, as described above, it is possible to easily form a very thin (for example, 0.01 to 0.30 mm) inorganic powder sintered body layer 11.
 プレス温度は、SnO-P系ガラスが十分に軟化してセラミック基材12表面に固着できる温度であれば構わない。具体的には、200℃以上、特に250℃以上であることが好ましい。上限は特に限定されないが、無機蛍光体粉末の失活や、SnO-P系ガラスの変性を防止する観点から、900℃以下、700℃以下、特に500℃以下であることが好ましい。 The press temperature may be a temperature at which SnO—P 2 O 5 glass can be sufficiently softened and fixed to the surface of the ceramic substrate 12. Specifically, it is preferably 200 ° C. or higher, particularly 250 ° C. or higher. The upper limit is not particularly limited, but is preferably 900 ° C. or lower, 700 ° C. or lower, particularly 500 ° C. or lower from the viewpoint of preventing the deactivation of the inorganic phosphor powder and the modification of SnO—P 2 O 5 glass.
 プレス圧は、目的とする無機粉末焼結体層11の厚みに応じて30kPa/cm以上、50kPa/cm以上の範囲で適宜調整される。一方、上限は特に限定されないが、蛍光体複合部材の破損を防止するため、400kPa/cm以下、特に300kPa/cm以下とすることが好ましい。 The pressing pressure is appropriately adjusted in the range of 30 kPa / cm 2 or more and 50 kPa / cm 2 or more depending on the thickness of the target inorganic powder sintered body layer 11. On the other hand, the upper limit is not particularly limited, to prevent damage to the phosphor composite member, 400 kPa / cm 2 or less, it is preferable that the particular 300 kPa / cm 2 or less.
 プレス時間は特に限定されないが、無機粉末焼結体層11がセラミック基材12表面に十分に固着するよう、0.1~30分間、0.5~10分間、特に1~5分間で適宜調整すればよい。 The pressing time is not particularly limited, but is suitably adjusted in 0.1 to 30 minutes, 0.5 to 10 minutes, particularly 1 to 5 minutes so that the inorganic powder sintered body layer 11 is sufficiently fixed to the surface of the ceramic substrate 12. do it.
 熱圧着プレス時の雰囲気は、無機蛍光体粉末の失活、SnO-P系ガラスの変性、および、プレス装置の酸化による劣化を抑制するため、不活性ガス雰囲気、特にランニングコストを考慮して窒素雰囲気であることが好ましい。 The atmosphere at the time of thermocompression pressing considers the inert gas atmosphere, especially the running cost, in order to suppress the deactivation of the inorganic phosphor powder, the modification of SnO—P 2 O 5 glass, and the deterioration due to the oxidation of the press device. Thus, a nitrogen atmosphere is preferable.
 なお、予め無機粉末焼結体層11のみを作製し、その後、無機粉末焼結体層11をセラミック基材12上に設置し、無機粉末焼結体層11の軟化点付近の温度まで加熱し、融着一体化することにより本実施形態の蛍光体複合部材を作製してもよい。 Note that only the inorganic powder sintered body layer 11 is prepared in advance, and then the inorganic powder sintered body layer 11 is placed on the ceramic substrate 12 and heated to a temperature near the softening point of the inorganic powder sintered body layer 11. The phosphor composite member of this embodiment may be produced by fusing and integrating.
 上記のようにして作製した蛍光体複合部材を、切断、研磨加工して、任意の形状、例えば、円盤状、柱状、棒状等の形状に加工してもよい。
(実施例)
The phosphor composite member produced as described above may be cut and polished to be processed into an arbitrary shape, for example, a disc shape, a column shape, a rod shape, or the like.
(Example)
 以下、実施例に基づき、本発明の蛍光体複合部材を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the phosphor composite member of the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 (実施例1)
 (1)セラミック基材の作製
 まず、高純度かつ2μm以下の粒経を有する原料を用いて、YAG(YAl12)の量論組成となるように、モル%で、Y 37.4625%、Al 62.5%、Ce 0.0375%を秤量し、これに対し焼結助剤としてテトラエトキシシランを0.6質量%添加した。次に、ボールミルを用いて、調合した原料をエタノール中で17時間攪拌混合した後、減圧乾燥して粉体を得た。続いて、得られた粉体を200MPaの圧力でプレス成型して直径10mmφ、厚さ3mmのプレス成型体を作製し、これを真空雰囲気中1750℃で10時間焼成を行うことで焼成体を得た。その後、その焼成体を0.1mmの厚さとなるように両面研磨することでセラミック基材を得た。
Example 1
(1) Preparation of ceramic substrate First, using a raw material having a high purity and a particle size of 2 μm or less, Y 2 O in mol% so as to have a stoichiometric composition of YAG (Y 3 Al 5 O 12 ). 3 37.4625%, Al 2 O 3 62.5%, Ce 2 O 3 0.0375% were weighed, and 0.6% by mass of tetraethoxysilane was added thereto as a sintering aid. Next, using a ball mill, the prepared raw materials were stirred and mixed in ethanol for 17 hours, and then dried under reduced pressure to obtain a powder. Subsequently, the obtained powder was press-molded at a pressure of 200 MPa to produce a press-molded body having a diameter of 10 mmφ and a thickness of 3 mm, and this was fired at 1750 ° C. for 10 hours in a vacuum atmosphere to obtain a fired body. It was. Then, the ceramic base material was obtained by carrying out double-side polishing of the fired body so that it might become a thickness of 0.1 mm.
 このようにして得られたセラミック基材について、X線粉末回折装置を用いて析出結晶の同定を行ったところYAG結晶が単相で析出していることが確認された。 For the ceramic base material obtained in this manner, when the precipitated crystals were identified using an X-ray powder diffractometer, it was confirmed that the YAG crystals were precipitated in a single phase.
 得られたセラミック基材について、発光スペクトルを測定したところ、波長550nm付近に中心を有する黄色の蛍光と、波長465nm付近に中心を有する青色励起光(セラミック基材を透過した励起光)によるピークが観測された。 When the emission spectrum of the obtained ceramic substrate was measured, there was a peak due to yellow fluorescence having a center near a wavelength of 550 nm and blue excitation light having a center near a wavelength of 465 nm (excitation light transmitted through the ceramic substrate). Observed.
 発光スペクトルは次のようにして測定した。校正された積分球内で、600mAの電流で点灯した青色LEDによってセラミック基材を励起し、光ファイバーを通じてその発光を小型分光器(オーシャンオプティクス製 USB-4000)に取り込み、制御PC上に発光スペクトル(エネルギー分布曲線)を得た。 The emission spectrum was measured as follows. Inside the calibrated integrating sphere, the ceramic substrate is excited by a blue LED lit at a current of 600 mA, the emitted light is taken into a small spectroscope (Ocean Optics USB-4000) through an optical fiber, and the emission spectrum (on the control PC) Energy distribution curve).
 (2)無機粉末焼結体層用ペーストの作製
 モル%で、SnO 62%、P 21.5%、B 11%、MgO 3%、Al 2.5%を含有する組成になるように調合したガラス原料をアルミナ坩堝に投入し、電気炉内950℃で窒素雰囲気にて1時間溶融した。その後、ガラス融液をフィルム成形し、らいかい機で粉砕することによりガラス粉末を得た。
(2) Preparation of inorganic powder sintered body layer paste In mol%, SnO 62%, P 2 O 5 21.5%, B 2 O 3 11%, MgO 3%, Al 2 O 3 2.5% The glass raw material prepared so as to have the contained composition was put into an alumina crucible and melted in an electric furnace at 950 ° C. in a nitrogen atmosphere for 1 hour. Thereafter, the glass melt was formed into a film and pulverized with a rough machine to obtain glass powder.
 次に、作製したガラス粉末に対し、無機蛍光体粉末としてCaS:Eu2+を、また無機フィラー粉末としてNbZr(POを、質量比で80:10:10の割合で添加し、振動混合機で混合した。得られた混合粉末100質量部に対して、溶媒として50質量部の2,4-ジエチル-1,5-ペンタンジオール(日本香料薬品株式会社製 MARS)を添加して混合することでペーストを得た。 Next, CaS: Eu 2+ as an inorganic phosphor powder and NbZr (PO 4 ) 3 as an inorganic filler powder are added at a mass ratio of 80:10:10 to the produced glass powder, and vibration mixing is performed. Mixed in the machine. A paste is obtained by adding 50 parts by mass of 2,4-diethyl-1,5-pentanediol (MARS manufactured by Nippon Kayaku Yakuhin Co., Ltd.) as a solvent to 100 parts by mass of the obtained mixed powder. It was.
 上記ペーストを用いて無機粉末焼結体層を作製し、発光スペクトルを測定したところ、波長650nm付近に中心を有する赤色の蛍光と、波長465nm付近に中心を有する青色励起光によるピークが観測された。 An inorganic powder sintered body layer was prepared using the above paste, and the emission spectrum was measured. As a result, red fluorescence having a center near a wavelength of 650 nm and a peak due to blue excitation light having a center near a wavelength of 465 nm were observed. .
 なお、発光スペクトル測定用の無機粉末焼結体層は次のようにして作製した。まず、多孔質ムライトセラミック基板上に一括コート法で厚さ50μmとなるように塗布し、300℃で1時間脱脂した。次いで、400℃で30分焼成した後、冷却し、ムライト基板を除去することにより、厚さ40μmの無機粉末焼結体層を得た。 In addition, the inorganic powder sintered compact layer for light emission spectrum measurement was produced as follows. First, it apply | coated so that it might become thickness of 50 micrometers on the porous mullite ceramic substrate by the lump coat method, and degreased | defatted at 300 degreeC for 1 hour. Subsequently, after baking at 400 degreeC for 30 minutes, it cooled and the mullite board | substrate was removed and the inorganic powder sintered compact layer of thickness 40 micrometers was obtained.
 (3)蛍光体複合部材の作製
 上記(1)で得られたセラミック基材の表面に、上記(2)で得られた無機粉末焼結体層用ペーストをディスペンス法で厚さ約50μmとなるように塗布した。次いで、約250℃のホットプレート上で熱処理することによって脱溶媒を行った。その後、窒素雰囲気中にて430℃で10分間焼成し、さらに無機粉末焼結体層の上からホットプレスして表面形状を整え、蛍光体複合部材を得た。無機粉末焼結体層の厚みは約20μmであった。
(3) Production of phosphor composite member On the surface of the ceramic substrate obtained in (1) above, the paste for the inorganic powder sintered body layer obtained in (2) is about 50 μm thick by the dispensing method. It was applied as follows. Next, the solvent was removed by heat treatment on a hot plate at about 250 ° C. Then, it baked at 430 degreeC for 10 minute (s) in nitrogen atmosphere, and also hot-pressed from on the inorganic powder sintered compact layer, the surface shape was adjusted, and the fluorescent substance composite member was obtained. The thickness of the inorganic powder sintered body layer was about 20 μm.
 このようにして得られた蛍光体複合部材について、上記方法により発光スペクトルを測定した。制御ソフト(オーシャンフォトニクス製 OP Wave)を用いて、発光スペクトルから全光束値(lm)および色度を算出した。結果を表1に示す。 The emission spectrum of the phosphor composite member thus obtained was measured by the above method. Using control software (OP Wave manufactured by Ocean Photonics), a total luminous flux value (lm) and chromaticity were calculated from the emission spectrum. The results are shown in Table 1.
 (実施例2)
 (1)無機粉末焼結体層用グリーンシートの作製
 実施例1で作製したガラス粉末に、無機蛍光体粉末として、SrS:Eu2+(平均粒径:8μm)およびSrBaSiO:Eu2+(平均粒径:8μm)を、質量比で94:3:3の割合で添加し、混合して混合粉末を作製した。次いで、作製した混合粉末100質量部に対して、結合剤としてポリビニルブチラール樹脂を12質量部、可塑剤としてフタル酸ジブチルを3質量部、溶剤としてトルエンを40質量部添加し、混合してスラリーを作製した。続けて、上記スラリーをドクターブレード法によって、PETフィルム上にシート成形し、乾燥して、厚さ50μmのグリーンシートを得た。
(Example 2)
(1) Production of Green Sheet for Inorganic Powder Sintered Body Layer To the glass powder produced in Example 1, as the inorganic phosphor powder, SrS: Eu 2+ (average particle size: 8 μm) and SrBaSiO 4 : Eu 2+ (average particle) (Diameter: 8 μm) was added at a mass ratio of 94: 3: 3 and mixed to prepare a mixed powder. Next, 12 parts by mass of polyvinyl butyral resin as a binder, 3 parts by mass of dibutyl phthalate as a plasticizer, and 40 parts by mass of toluene as a solvent are added to 100 parts by mass of the prepared mixed powder, and the slurry is mixed. Produced. Subsequently, the slurry was formed into a sheet on a PET film by a doctor blade method and dried to obtain a green sheet having a thickness of 50 μm.
 上記グリーンシートを用いて作製した無機粉末焼結体層について、実施例1と同様の方法により発光スペクトルを測定したところ、波長525nm付近に中心を有する緑色の蛍光および波長650nm付近に中心を有する赤色の蛍光と、波長465nm付近に中心を有する青色励起光によるピークが観測された。 When the emission spectrum of the inorganic powder sintered body layer produced using the green sheet was measured by the same method as in Example 1, green fluorescence having a center near a wavelength of 525 nm and red having a center near a wavelength of 650 nm And a peak due to blue excitation light having a center near a wavelength of 465 nm were observed.
 なお、発光スペクトル測定用の無機粉末焼結体層は次のようにして作製した。まず、上記方法で作製したグリーンシートを、多孔質ムライトセラミック基板上に積層し熱圧着によって一体化して積層体を作製した後、300℃で1時間脱脂した。次いで、400℃で30分焼成した後、冷却し、ムライト基板を除去することにより、厚さ40μmの無機粉末焼結体層を得た。 In addition, the inorganic powder sintered compact layer for light emission spectrum measurement was produced as follows. First, the green sheet produced by the above method was laminated on a porous mullite ceramic substrate and integrated by thermocompression bonding to produce a laminate, and then degreased at 300 ° C. for 1 hour. Subsequently, after baking at 400 degreeC for 30 minutes, it cooled and the mullite board | substrate was removed and the inorganic powder sintered compact layer of thickness 40 micrometers was obtained.
 (2)蛍光体複合部材の作製
 上記(1)で作製したグリーンシートを、実施例1で得られたセラミック基材の表面に積層し、熱圧着によって一体化して積層体を作製し、350℃で1時間脱脂した。次いで、400℃で20分焼成した後、冷却して蛍光体複合部材を得た。
(2) Production of phosphor composite member The green sheet produced in (1) above is laminated on the surface of the ceramic substrate obtained in Example 1, and is integrated by thermocompression bonding to produce a laminate, at 350 ° C. For 1 hour. Subsequently, after baking for 20 minutes at 400 degreeC, it cooled and the fluorescent substance composite member was obtained.
 このようにして得られた蛍光体複合部材の全光束および色度を上記と同じ方法で測定した。結果を表1に示す。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as described above. The results are shown in Table 1.
 (実施例3)
 (1)無機粉末焼結体層用焼結体の作製
 実施例1で得られたガラス粉末に対し、無機蛍光体粉末としてCaAlSiN:Eu2+を、また無機フィラー粉末としてNbZr(POを、質量比で80:10:10の割合で添加し、振動混合機で混合した。混合粉末をプレス成型し、真空中400℃で焼成して焼結体を得た。
(Example 3)
(1) Production of sintered body for inorganic powder sintered body layer For the glass powder obtained in Example 1, CaAlSiN 3 : Eu 2+ was used as the inorganic phosphor powder, and NbZr (PO 4 ) 3 was used as the inorganic filler powder. Was added at a mass ratio of 80:10:10 and mixed with a vibration mixer. The mixed powder was press-molded and fired at 400 ° C. in a vacuum to obtain a sintered body.
 得られた焼結体の発光スペクトルを測定したところ、波長650nm付近に中心を有する赤色の蛍光と、波長465nm付近に中心を有する青色励起光によるピークが観測された。 When an emission spectrum of the obtained sintered body was measured, red fluorescence having a center near a wavelength of 650 nm and a peak due to blue excitation light having a center near a wavelength of 465 nm were observed.
 なお、発光スペクトル測定用試料は、焼結体を8mm角に研削した後、1mmの厚さに切断し、両面を鏡面研磨加工することにより作製した。 The sample for measuring the emission spectrum was prepared by grinding the sintered body to 8 mm square, cutting it to a thickness of 1 mm, and mirror polishing both sides.
 (2)蛍光体複合部材の作製
 実施例1で得られたセラミック基材の表面に、上記(1)で得られた無機粉末焼結体層用焼結体を載置し、約400℃のホットプレート上で、窒素雰囲気中、100kPa/cmの圧力で3分間プレスすることにより、蛍光体複合部材を得た。無機粉末焼結体層の厚みは約50μmであった。
(2) Production of phosphor composite member The inorganic powder sintered body layer sintered body obtained in (1) above was placed on the surface of the ceramic base material obtained in Example 1, and the temperature was about 400 ° C. A phosphor composite member was obtained by pressing on a hot plate in a nitrogen atmosphere at a pressure of 100 kPa / cm 2 for 3 minutes. The thickness of the inorganic powder sintered body layer was about 50 μm.
 このようにして得られた蛍光体複合部材の全光束および色度を上記と同じ方法で測定した。結果を表1に示す。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as described above. The results are shown in Table 1.
 (比較例1)
 (1)無機粉末焼結体層用ペーストの作製
 モル%で、SiO 60%、B 5%、CaO 10%、BaO 15%、Al 5%、ZnO 5%含有する組成になるように調合したガラス原料を白金坩堝に投入し、1400℃で2時間溶融して均一なガラスを得た。次いで、これをアルミナボールで粉砕し、分級して平均粒径が2.5μmのSiO-B系ガラス粉末を得た。
(Comparative Example 1)
(1) Preparation of inorganic powder sintered body layer paste Composition containing, in mol%, SiO 2 60%, B 2 O 3 5%, CaO 10%, BaO 15%, Al 2 O 3 5%, ZnO 5%. The glass raw material thus prepared was put into a platinum crucible and melted at 1400 ° C. for 2 hours to obtain a uniform glass. Next, this was pulverized with alumina balls and classified to obtain SiO 2 —B 2 O 3 glass powder having an average particle diameter of 2.5 μm.
 次に、作製したガラス粉末に対し、無機蛍光体粉末としてCaS:Eu2+を、また無機フィラー粉末としてNbZr(POを、質量比で80:10:10の割合で添加し、振動混合機で混合した。得られた混合粉末100質量部に対して、溶媒として50質量部の2,4-ジエチル-1,5-ペンタンジオール(日本香料薬品株式会社製 MARS)を添加して混合することでペーストを得た。 Next, CaS: Eu 2+ as an inorganic phosphor powder and NbZr (PO 4 ) 3 as an inorganic filler powder are added at a mass ratio of 80:10:10 to the produced glass powder, and vibration mixing is performed. Mixed in the machine. A paste is obtained by adding 50 parts by mass of 2,4-diethyl-1,5-pentanediol (MARS manufactured by Nippon Kayaku Yakuhin Co., Ltd.) as a solvent to 100 parts by mass of the obtained mixed powder. It was.
 (2)蛍光体複合部材の作製
 実施例1で得られたセラミック基材の表面に、上記(1)で作製したペーストをディスペンス法で厚さ約50μmとなるように塗布し、300℃で1時間脱脂した。次いで、850℃で20分焼成して蛍光体複合部材を作製した。
(2) Production of phosphor composite member The paste produced in (1) above was applied to the surface of the ceramic base material obtained in Example 1 to a thickness of about 50 μm by a dispensing method, and 1 at 300 ° C. Degreased for hours. Subsequently, it baked at 850 degreeC for 20 minutes, and produced the fluorescent substance composite member.
 このようにして得られた蛍光体複合部材の全光束および色度を上記と同じ方法で測定した。結果を表1に示す。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1および2の蛍光体複合部材は、電球色の白色光が得られ、発光強度が18.3lm以上と高いことがわかる。一方、比較例1の蛍光体複合部材は、電球色の白色光が得られたものの、発光強度が10.4lmと低かった。 As is clear from Table 1, it can be seen that the phosphor composite members of Examples 1 and 2 are capable of obtaining light bulb-colored white light and a high emission intensity of 18.3 lm or more. On the other hand, in the phosphor composite member of Comparative Example 1, although light bulb color white light was obtained, the emission intensity was as low as 10.4 lm.
 (第2の実施形態)
 白色LEDは、近年、高効率、高信頼性の白色光源として注目され、既に実用化されている。白色LEDは、従来の照明装置等の光源に比べ、長寿命、高効率、高安定性、低消費電力、高応答速度、環境負荷物質を含まない等の利点を有しているため、携帯電話やテレビの液晶バックライト用光源として急速に普及が広まってきている。今後は、これに加えて一般照明にも応用が進むと期待されている。
 ところで、特許文献3に開示されている白色LEDは、LEDチップの発光面を有機系バインダー樹脂に無機蛍光体粉末を分散したものをモールド被覆してなる構成を有している。そのため、青色~紫外線領域の高出力の短波長の光や、無機蛍光体粉末の発熱、あるいはLEDチップの熱によって、上記有機系バインダー樹脂が劣化し、変色を引き起こす。その結果、発光強度の低下や色ずれが起こり、寿命が短くなるという問題がある。
(Second Embodiment)
In recent years, white LEDs have attracted attention as a highly efficient and highly reliable white light source and have already been put into practical use. White LEDs have advantages such as long life, high efficiency, high stability, low power consumption, high response speed, and no environmental load substances compared to conventional light sources such as lighting devices. As a light source for liquid crystal backlights for TVs and TVs, it is rapidly spreading. In the future, in addition to this, it is expected that the application will be advanced to general lighting.
By the way, the white LED disclosed in Patent Document 3 has a configuration in which a light emitting surface of an LED chip is coated with a mold in which an inorganic phosphor powder is dispersed in an organic binder resin. Therefore, the organic binder resin deteriorates and causes discoloration due to high-output short-wavelength light in the blue to ultraviolet region, heat generation of the inorganic phosphor powder, or heat of the LED chip. As a result, there is a problem in that the emission intensity is lowered and the color shift occurs and the life is shortened.
 これらの問題に対し、無機蛍光体粉末とガラス粉末を混合、焼結して得られる蛍光体複合部材が提案されている(例えば、特許文献4参照)。当該蛍光体複合部材は、耐熱性の高い無機系ガラス粉末中に無機蛍光体粉末を分散してなるため、経時的な発光強度の低下を抑制することが可能である。しかしながら、特許文献4では、所望の大きさの蛍光体複合部材を得るために、切削研磨加工が必要となる。例えば、薄型の蛍光体複合部材を得るためには、一旦、無機蛍光体粉末とガラス粉末を焼結して比較的厚みの大きい部材を作製した後、当該部材を切削、研磨して薄型化する必要がある。したがって、この製造方法では、無機蛍光体粉末とガラス粉末の材料歩留まりが悪く、その結果、蛍光体複合部材の製造コストが高くなる傾向があった。 For these problems, a phosphor composite member obtained by mixing and sintering inorganic phosphor powder and glass powder has been proposed (see, for example, Patent Document 4). Since the phosphor composite member is formed by dispersing the inorganic phosphor powder in an inorganic glass powder having high heat resistance, it is possible to suppress a decrease in emission intensity over time. However, in Patent Document 4, in order to obtain a phosphor composite member having a desired size, a cutting and polishing process is required. For example, in order to obtain a thin phosphor composite member, the inorganic phosphor powder and the glass powder are once sintered to produce a relatively thick member, and then the member is cut and polished to reduce the thickness. There is a need. Therefore, in this production method, the material yield of the inorganic phosphor powder and the glass powder is poor, and as a result, the production cost of the phosphor composite member tends to increase.
 そこで、無機基材表面に、無機蛍光体粉末を含有するガラス焼結体層を形成してなる蛍光体複合部材が提案されている(例えば、特許文献5または6参照)。当該蛍光体複合部材は、ペースト法やグリーンシート法により、無機蛍光体粉末を含有する焼結体層が無機基板上に形成されてなる。したがって、切削や研磨等の工程を経ることなく、薄型の蛍光体複合部材を作製することができる。
 特許文献5または6に記載の方法では、所望の形状を有する発光色変換部材を歩留まりよく製造することができるが、部材の発光強度が低いという問題があった。また、ペーストやグリーンシートの作製工程が必要であるため、製造工程が煩雑であるという問題があった。
Therefore, a phosphor composite member has been proposed in which a glass sintered body layer containing an inorganic phosphor powder is formed on the surface of an inorganic substrate (see, for example, Patent Document 5 or 6). The phosphor composite member is formed by forming a sintered body layer containing an inorganic phosphor powder on an inorganic substrate by a paste method or a green sheet method. Therefore, a thin phosphor composite member can be produced without going through steps such as cutting and polishing.
In the method described in Patent Document 5 or 6, a light emitting color conversion member having a desired shape can be manufactured with a high yield, but there is a problem that the light emission intensity of the member is low. Moreover, since the manufacturing process of the paste and the green sheet is required, there is a problem that the manufacturing process is complicated.
 このような状況を鑑みて、本実施形態は、従来よりも発光強度の高い蛍光体複合部材を容易に製造する方法を提供することを目的とする。
 図1に、第2の実施形態の蛍光体複合部材の製造方法の模式図を示す。
In view of such a situation, an object of the present embodiment is to provide a method for easily manufacturing a phosphor composite member having higher emission intensity than the conventional one.
In FIG. 1, the schematic diagram of the manufacturing method of the fluorescent substance composite member of 2nd Embodiment is shown.
 まず、図1(a)において、下金型3bの上に無機基材2を静置し、無機基材2上に無機蛍光体粉末およびガラス粉末を含有する所定量の混合粉末1を載置する。 First, in FIG. 1A, the inorganic base material 2 is allowed to stand on the lower mold 3b, and a predetermined amount of the mixed powder 1 containing the inorganic phosphor powder and the glass powder is placed on the inorganic base material 2. To do.
 次に、図1(b)において、上金型3aを用いて混合粉末1をプレスしながら加熱し、混合粉末1を焼結する。これにより、図1(c)に示すように、無機基材2上に無機粉末焼結体層4が形成された蛍光体複合部材5が得られる。ここで、加熱方法は特に限定されず、所定温度に加熱した金型を用いてプレスしてもよいし、所定温度に設定した雰囲気中(例えば電気炉内)でプレスしても構わない。 Next, in FIG. 1 (b), the mixed powder 1 is heated using the upper mold 3 a while being pressed to sinter the mixed powder 1. Thereby, as shown in FIG.1 (c), the fluorescent substance composite member 5 by which the inorganic powder sintered compact layer 4 was formed on the inorganic base material 2 is obtained. Here, the heating method is not particularly limited, and pressing may be performed using a mold heated to a predetermined temperature, or pressing may be performed in an atmosphere set at a predetermined temperature (for example, in an electric furnace).
 本実施形態において使用されるガラス粉末としては、SiO-B-RO系ガラス粉末(RはMg、Ca、SrおよびBaから選ばれる1種以上)、SiO-TiO-Nb-R’O系ガラス粉末(R’はLi、Na、Kから選ばれる1種以上)、SnO-P系ガラス粉末またはZnO-B-SiO系ガラス粉末が挙げられる。なかでも、軟化点が比較的低いSnO-P2O5系ガラス粉末を用いれば、プレス成型温度が低くなり、無機蛍光体粉末の失活を抑制することができるため好ましい。 As the glass powder used in the present embodiment, SiO 2 —B 2 O 3 —RO-based glass powder (R is one or more selected from Mg, Ca, Sr and Ba), SiO 2 —TiO 2 —Nb 2 O 5 —R ′ 2 O glass powder (R ′ is one or more selected from Li, Na, K), SnO—P 2 O 5 glass powder, or ZnO—B 2 O 3 —SiO 2 glass powder. Can be mentioned. Among these, SnO—P 2 O 5 glass powder having a relatively low softening point is preferable because the press molding temperature is lowered and the deactivation of the inorganic phosphor powder can be suppressed.
 SnO-P系ガラス粉末としては、ガラス組成としてモル%で、SnO 35~80%、P 5~40%、B 0~30%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SnO—P 2 O 5 glass powder preferably contains SnO 35 to 80%, P 2 O 5 5 to 40%, and B 2 O 3 0 to 30% in terms of glass composition. The reason for limiting the glass composition in this way will be described below.
 SnOはガラス骨格を形成するとともに、軟化点を低下させる成分である。SnOの含有量は35~80%、40~70%、50~70%、特に55~65%であることが好ましい。SnOの含有量が少なすぎると、ガラスの軟化点が上昇する傾向にあり、耐候性が悪化する傾向がある。一方、SnOの含有量が多すぎると、ガラス中にSnに起因する失透ブツが析出して透過率が低下する傾向にあり、結果として、蛍光体複合部材5の発光強度が低下しやすくなる。また、ガラス化しにくくなる。 SnO is a component that forms a glass skeleton and lowers the softening point. The SnO content is preferably 35 to 80%, 40 to 70%, 50 to 70%, particularly 55 to 65%. When there is too little content of SnO, it exists in the tendency for the softening point of glass to rise, and there exists a tendency for a weather resistance to deteriorate. On the other hand, when the content of SnO is too large, devitrification bumps resulting from Sn are deposited in the glass and the transmittance tends to decrease, and as a result, the emission intensity of the phosphor composite member 5 tends to decrease. . Moreover, it becomes difficult to vitrify.
 Pはガラス骨格を形成する成分である。Pの含有量は5~40%、10~30%、特に15~24%であることが好ましい。Pの含有量が少なすぎると、ガラス化しにくくなる。一方、Pの含有量が多すぎると、軟化点が上昇したり、耐候性が著しく低下する傾向にある。 P 2 O 5 is a component that forms a glass skeleton. The content of P 2 O 5 is preferably 5 to 40%, 10 to 30%, particularly preferably 15 to 24%. When the content of P 2 O 5 is too small, it is difficult to vitrify. On the other hand, when the content of P 2 O 5 is too large, or the softening point rises, there is a tendency that weather resistance is significantly lowered.
 Bは耐候性を向上させるとともに、ガラス粉末と無機蛍光体粉末の反応を抑制する成分である。また、ガラスを安定化させる成分でもある。Bの含有量は0~30%、1~25%、2~20%、特に4~18%であることが好ましい。Bの含有量が多すぎると、耐候性が低下しやすくなる。また、軟化点が上昇する傾向がある。 B 2 O 3 is a component that improves the weather resistance and suppresses the reaction between the glass powder and the inorganic phosphor powder. It is also a component that stabilizes the glass. The content of B 2 O 3 is preferably 0 to 30%, 1 to 25%, 2 to 20%, particularly 4 to 18%. If the B 2 O 3 content is too large, the weather resistance tends to lower. Also, the softening point tends to increase.
 SiO-B-RO系ガラス粉末としては、ガラス組成として質量%で、SiO 30~70%、B 1~15%、MgO 0~10%、CaO 0~25%、SrO 0~10%、BaO 8~40%、MgO+CaO+SrO+BaO 10~45%、Al 0~20%及びZnO 0~10%を含有するものが好ましい。 As the SiO 2 —B 2 O 3 —RO-based glass powder, the glass composition is mass%, SiO 2 30 to 70%, B 2 O 3 1 to 15%, MgO 0 to 10%, CaO 0 to 25%, Preferred are those containing SrO 0-10%, BaO 8-40%, MgO + CaO + SrO + BaO 10-45%, Al 2 O 3 0-20% and ZnO 0-10%.
 SiO-TiO-Nb-R’O系ガラス粉末としては、質量百分率で、SiO 20~50%、LiO 0~10%、NaO 0~15%、KO 0~20%、LiO+NaO+KO 1~30%、B 1~20%、MgO 0~10%、CaO 0~20%、SrO 0~20%、BaO 0~15%、Al 0~20%、ZnO 0~15%、TiO 0.01~20%、Nb 0.01~20%、La 0~15%及びTiO+Nb+La 1~30%を含有するものが好ましい。 The SiO 2 —TiO 2 —Nb 2 O 5 —R ′ 2 O-based glass powder includes, as a mass percentage, SiO 2 20 to 50%, Li 2 O 0 to 10%, Na 2 O 0 to 15%, K 2. O 0-20%, Li 2 O + Na 2 O + K 2 O 1-30%, B 2 O 3 1-20%, MgO 0-10%, CaO 0-20%, SrO 0-20%, BaO 0-15% Al 2 O 3 0-20%, ZnO 0-15%, TiO 2 0.01-20%, Nb 2 O 5 0.01-20%, La 2 O 3 0-15% and TiO 2 + Nb 2 O 5 + La 2 O 3 1-30% is preferred.
 ZnO-B-SiO系ガラス粉末としては、ガラス組成として質量%で、ZnO 5~60%、B 5~50%及びSiO 2~30%を含有するものが好ましい。 The ZnO—B 2 O 3 —SiO 2 -based glass powder preferably contains ZnO 5 to 60%, B 2 O 3 5 to 50% and SiO 2 2 to 30% by mass% as a glass composition.
 ガラス粉末の平均粒径(D50)は100μm以下、特に50μm以下であることが好ましい。ガラス粉末の平均粒径が大きすぎると、蛍光体複合部材5中における無機蛍光体粉末の分散状態に劣り、発光色にばらつきが生じやすくなる。なお、下限については特に限定されないが、ガラス粉末の平均粒径が小さくなりすぎると、製造コストが高騰しやすくなるため、0.1μm以上、特に1μm以上であることが好ましい。 The average particle diameter (D 50 ) of the glass powder is preferably 100 μm or less, particularly preferably 50 μm or less. When the average particle diameter of the glass powder is too large, the dispersed state of the inorganic phosphor powder in the phosphor composite member 5 is inferior, and the emission color tends to vary. The lower limit is not particularly limited, but if the average particle size of the glass powder is too small, the production cost is likely to increase, so that it is preferably 0.1 μm or more, particularly 1 μm or more.
 なお、本明細書において、「平均粒径(D50)」はレーザー回折法により測定した値を指す。 In the present specification, “average particle diameter (D 50 )” refers to a value measured by a laser diffraction method.
 無機基材2と無機粉末焼結体層4との界面における光散乱損失を抑制するため、両者の屈折率差は小さいほうが好ましい。例えば、無機基材2としてYAGセラミックスを用いた場合、ガラス粉末の屈折率(nd)は1.5以上、1.7以上、特に1.8以上であることが好ましい。 In order to suppress light scattering loss at the interface between the inorganic base material 2 and the inorganic powder sintered body layer 4, it is preferable that the difference in refractive index between the two is small. For example, when YAG ceramics is used as the inorganic base material 2, the refractive index (nd) of the glass powder is preferably 1.5 or more, 1.7 or more, particularly 1.8 or more.
 ガラス粉末の軟化点は500℃以下、450℃以下、特に400℃以下であることが好ましい。軟化点が高すぎると、焼結温度が高くなって無機蛍光体粉末が劣化しやすくなる。 The softening point of the glass powder is preferably 500 ° C. or lower, 450 ° C. or lower, and particularly preferably 400 ° C. or lower. If the softening point is too high, the sintering temperature becomes high and the inorganic phosphor powder tends to deteriorate.
 無機蛍光体粉末としては、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、酸フッ化物、ハロゲン化物、アルミン酸塩またはハロリン酸塩化物が挙げられる。なかでも、波長300~500nmに励起帯を有し、波長500~780nmに発光ピークを有するもの、特に、赤色、黄色または緑色に発光するものを用いることが好ましい。 Examples of the inorganic phosphor powder include oxides, nitrides, oxynitrides, sulfides, oxysulfides, oxyfluorides, halides, aluminates, and halophosphates. Of these, those having an excitation band at a wavelength of 300 to 500 nm and having an emission peak at a wavelength of 500 to 780 nm, particularly those emitting light in red, yellow or green are preferably used.
 青色励起光を照射すると赤色の蛍光を発する無機蛍光体粉末として、CaS:Eu2+、SrS:Eu2+、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca、Sr)Si:Eu2+等が挙げられる。 As inorganic phosphor powders that emit red fluorescence when irradiated with blue excitation light, CaS: Eu 2+ , SrS: Eu 2+ , CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ and the like can be mentioned.
 青色励起光を照射すると黄色の蛍光を発する無機蛍光体粉末として、(Sr,Ba,Ca)SiO:Eu2+、(Y,Gd)(Al,Ga)12:Ce3+、CaGa:Eu2+、LaSi11:Ce3+等が挙げられる。 As inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light, (Sr, Ba, Ca) 2 SiO 4 : Eu 2+ , (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ , CaGa 2 S 4 : Eu 2+ , La 3 Si 6 N 11 : Ce 3+ and the like.
 青色励起光を照射すると緑色の蛍光を発する無機蛍光体粉末として、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、BaSi12:Eu2+、SiAl:Eu2+、SrSi13Al21:Eu2+、CaScSi12:Ce3+、CaSc:Ce3+等が挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with blue excitation light, SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Ba 3 Si 6 O 12 N 2 : Eu 2+ Si 2 Al 4 O 4 N 4 : Eu 2+ , Sr 3 Si 13 Al 3 O 2 N 21 : Eu 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , CaSc 2 O 4 : Ce 3+ .
 無機粉末焼結体層4における無機蛍光体粉末の含有量は0.01~90質量%、0.05~30質量%、特に0.08~15%であることが好ましい。無機蛍光体粉末の含有量が多すぎると、相対的にガラス粉末の含有量が少なくなって気孔率が大きくなる傾向がある。その結果、無機粉末焼結体層4の強度が低下したり、光散乱損失が大きくなる。一方、無機蛍光体粉末の含有量が少なすぎると、十分な発光強度が得られにくくなる。 The content of the inorganic phosphor powder in the inorganic powder sintered body layer 4 is preferably 0.01 to 90% by mass, 0.05 to 30% by mass, and particularly preferably 0.08 to 15%. When there is too much content of inorganic fluorescent substance powder, there exists a tendency for content of glass powder to decrease relatively and for porosity to become large. As a result, the strength of the inorganic powder sintered body layer 4 decreases and the light scattering loss increases. On the other hand, when there is too little content of inorganic fluorescent substance powder, it becomes difficult to obtain sufficient light emission intensity.
 無機粉末焼結体層4の膨張係数を調整するために、混合粉末1(無機粉末焼結体層4)中に無機フィラー粉末を添加してもよい。特に、SnO-P系ガラス粉末等の熱膨張係数が大きいガラス粉末を用いた場合は、無機基材2と無機粉末焼結体層4との熱膨張係数差が大きくなって、無機粉末焼結体層4の表面にクラックが生じたり、剥離したりしやすいため、低膨張特性を有する無機フィラー粉末を添加するのが有効である。 In order to adjust the expansion coefficient of the inorganic powder sintered body layer 4, an inorganic filler powder may be added to the mixed powder 1 (inorganic powder sintered body layer 4). In particular, when a glass powder having a large thermal expansion coefficient, such as SnO—P 2 O 5 glass powder, is used, the difference in thermal expansion coefficient between the inorganic base material 2 and the inorganic powder sintered body layer 4 is increased, resulting in an inorganic Since the surface of the powder sintered body layer 4 is easily cracked or peeled off, it is effective to add an inorganic filler powder having low expansion characteristics.
 無機フィラー粉末としては、低膨張特性を有するリン酸ジルコニウム、リン酸タングステン酸ジルコニウム、タングステン酸ジルコニウム、NZP型結晶およびこれらの固溶体等が挙げられ、これらを単独で、または混合して使用することができる。ここで、「NZP型結晶」とは、例えば、NbZr(POや[AB(MO]の基本構造をもつ結晶が含まれる。
 A:Li、Na、K、Mg、Ca、Sr、Ba、Zn、Cu、Ni、Mn等
 B:Zr、Ti、Sn、Nb、Al、Sc、Y等
 M:P、Si、W、Mo等
Examples of the inorganic filler powder include zirconium phosphate, zirconium phosphate tungstate, zirconium tungstate, NZP type crystals and solid solutions thereof having low expansion characteristics, and these may be used alone or in combination. it can. Here, the “NZP type crystal” includes, for example, a crystal having a basic structure of NbZr (PO 4 ) 3 or [AB 2 (MO 4 ) 3 ].
A: Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Mn, etc. B: Zr, Ti, Sn, Nb, Al, Sc, Y, etc. M: P, Si, W, Mo, etc.
 なお、無機フィラー粉末はZr成分を含有するものを使用することが好ましい。Zr成分を含有する無機フィラー粉末は、SnO-P系ガラスとの適合性が良好、つまりSnO-P系ガラスとの反応性が低く、プレス成型時にガラス粉末を失透させにくい性質を有しているためである。 In addition, it is preferable to use the inorganic filler powder containing a Zr component. Inorganic filler powder containing Zr component, compatibility with SnO-P 2 O 5 based glass is satisfactory, i.e. low reactivity with the SnO-P 2 O 5 based glass, a glass powder was devitrification during press molding This is because it has difficult properties.
 無機フィラー粉末の含有量は、無機粉末焼結体層4において0~30質量%、1.5~25質量%、特に2~20質量%であることが好ましい。無機フィラー粉末の含有量が多すぎると、ガラス粉末の含有量が相対的に少なくなって機械的強度が低下しやすくなる。
 また、ガラスマトリクスと無機フィラー粉末の界面における光散乱損失が大きくなり、発光強度が低下する傾向がある。
The content of the inorganic filler powder in the sintered inorganic powder layer 4 is preferably 0 to 30% by mass, 1.5 to 25% by mass, and particularly preferably 2 to 20% by mass. When there is too much content of an inorganic filler powder, content of glass powder will decrease relatively and it will become easy to reduce mechanical strength.
In addition, light scattering loss at the interface between the glass matrix and the inorganic filler powder increases, and the light emission intensity tends to decrease.
 無機フィラー粉末の熱膨張係数は、30~380℃の温度範囲で50×10-7/℃以下、特に30×10-7/℃以下であることが好ましい。無機フィラー粉末の熱膨張係数が大きすぎると、無機粉末焼結体層4の熱膨張係数を低下させる効果が得られにくい。なお、無機フィラー粉末の熱膨張係数の下限については特に限定されないが、現実的には-100×10-7/℃以上である。 The thermal expansion coefficient of the inorganic filler powder is preferably 50 × 10 −7 / ° C. or lower, particularly 30 × 10 −7 / ° C. or lower in the temperature range of 30 to 380 ° C. If the thermal expansion coefficient of the inorganic filler powder is too large, it is difficult to obtain the effect of reducing the thermal expansion coefficient of the inorganic powder sintered body layer 4. The lower limit of the thermal expansion coefficient of the inorganic filler powder is not particularly limited, but in reality, it is −100 × 10 −7 / ° C. or higher.
 無機フィラー粉末の平均粒径(D50)は0.1~50μm、特に3~20μmであることが好ましい。無機フィラー粉末の平均粒径が小さすぎると、無機粉末焼結体層4の熱膨張係数を低下させる効果に劣る傾向がある。あるいは、プレス成型時にガラス粉末に溶け込み、フィラーとしての役割を果たさなくなるおそれがある。無機フィラー粉末の平均粒径が大きすぎると、ガラス粉末と無機フィラー粉末の境界にクラックが発生しやすくなる。 The average particle diameter (D 50 ) of the inorganic filler powder is preferably 0.1 to 50 μm, particularly 3 to 20 μm. If the average particle size of the inorganic filler powder is too small, the effect of reducing the thermal expansion coefficient of the inorganic powder sintered body layer 4 tends to be inferior. Alternatively, it may be dissolved in the glass powder at the time of press molding and may not serve as a filler. If the average particle size of the inorganic filler powder is too large, cracks are likely to occur at the boundary between the glass powder and the inorganic filler powder.
 なお、無機基材2からの無機粉末焼結体層4の剥離を防止するためには、無機基材2の熱膨張係数をα1、無機粉末焼結体層4の熱膨張係数をα2としたとき、-5ppm/℃≦α1-α2≦5ppm/℃、特に-1ppm/℃≦α1-α2≦1ppm/℃であることが好ましい。α1-α2が上記範囲外になると、無機粉末焼結体層4が無機基材2から剥離しやすくなる。 In order to prevent peeling of the inorganic powder sintered body layer 4 from the inorganic base material 2, the thermal expansion coefficient of the inorganic base material 2 is α1, and the thermal expansion coefficient of the inorganic powder sintered body layer 4 is α2. In this case, it is preferable that −5 ppm / ° C. ≦ α1-α2 ≦ 5 ppm / ° C., particularly preferably −1 ppm / ° C. ≦ α1-α2 ≦ 1 ppm / ° C. When α1-α2 is out of the above range, the inorganic powder sintered body layer 4 is easily peeled off from the inorganic substrate 2.
 無機基材2としては、YAG系セラミックス、結晶化ガラス、ガラス、金属または金属とセラミックスの複合体等が挙げられる。なお、YAG系セラミックスとしては、透明または半透明のいずれのものであっても使用することが可能である。 Examples of the inorganic substrate 2 include YAG-based ceramics, crystallized glass, glass, metal, or a composite of metal and ceramic. The YAG ceramics can be used regardless of whether they are transparent or translucent.
 ここで、無機基材2として、励起光や蛍光を透過させる材料を用いることで、例えば、励起光の透過光と、無機蛍光体粉末から発せられた蛍光の組み合わせにより、白色光を得ることが可能である。 Here, by using a material that transmits excitation light or fluorescence as the inorganic base material 2, for example, white light can be obtained by a combination of transmitted light of excitation light and fluorescence emitted from the inorganic phosphor powder. Is possible.
 なお、無機基材2として、金属や金属とセラミックスとの複合体を用いることで、反射型の蛍光体複合部材とすることが可能である。金属としてはAl、Cu、Ag等が挙げられる。金属とセラミックスの複合体としては、例えばAlとSiCまたはAlNの複合体(焼結体)等が挙げられる。無機基材2と無機粉末焼結体4の界面にAg、Al等の反射層(図示せず)を必要に応じて設けても構わない。金属や金属とセラミックスとの複合体は熱伝導性に優れるため、青色LD等の高強度な励起光に曝されるときに蛍光体から発生する熱を効率よく放熱させることが可能であり、無機蛍光体粉末の温度消光を軽減させることができる。 It should be noted that, as the inorganic base material 2, by using a metal or a composite of metal and ceramics, a reflective phosphor composite member can be obtained. Examples of the metal include Al, Cu, and Ag. Examples of the composite of metal and ceramic include a composite (sintered body) of Al and SiC or AlN. A reflective layer (not shown) such as Ag or Al may be provided on the interface between the inorganic base material 2 and the inorganic powder sintered body 4 as necessary. Metals and composites of metals and ceramics are excellent in thermal conductivity, so it is possible to efficiently dissipate heat generated from phosphors when exposed to high-intensity excitation light such as blue LD. Temperature quenching of the phosphor powder can be reduced.
 無機基材2の厚みは特に限定されないが、例えば0.1~10.0mmであることが好ましい。無機基材2の厚みが小さすぎると、機械的強度が不十分になる傾向にある。一方、無機基材2の厚みが大きすぎると、励起光が透過しにくくなって、発光効率が低下しやすくなったり、蛍光体複合部材5の重量が不当に大きくなる傾向がある。 The thickness of the inorganic substrate 2 is not particularly limited, but is preferably 0.1 to 10.0 mm, for example. If the thickness of the inorganic substrate 2 is too small, the mechanical strength tends to be insufficient. On the other hand, when the thickness of the inorganic base material 2 is too large, the excitation light is difficult to transmit, and the light emission efficiency tends to decrease, or the weight of the phosphor composite member 5 tends to be unreasonably large.
 プレス温度は、無機蛍光体粉末の失活や、ガラスの変性を防止する観点から、900℃以下、700℃以下、特に500℃以下であることが好ましい。一方、ガラス粉末が十分に軟化して無機基材2表面に固着する必要があるため、下限は200℃以上、特に250℃以上であることが好ましい。 The press temperature is preferably 900 ° C. or lower, 700 ° C. or lower, particularly 500 ° C. or lower, from the viewpoint of preventing the deactivation of the inorganic phosphor powder and the glass denaturation. On the other hand, since the glass powder needs to be sufficiently softened and fixed to the surface of the inorganic substrate 2, the lower limit is preferably 200 ° C. or higher, particularly 250 ° C. or higher.
 プレス圧は、目的とする無機粉末焼結体層4の厚みに応じて、1N/mm以上、特に3N/mm以上で適宜調整される。一方、上限は特に限定されないが、無機基材2の破損を防止するため、100N/mm以下、特に50N/mm以下とすることが好ましい。 Pressing pressure, depending on the thickness of the inorganic powder sintered body layer 4 for the purpose, 1N / mm 2 or more, particularly suitably adjusted 3N / mm 2 or more. On the other hand, although an upper limit is not specifically limited, In order to prevent the damage of the inorganic base material 2, it is preferable to set it as 100 N / mm < 2 > or less, especially 50 N / mm < 2 > or less.
 プレス時間は特に限定されないが、無機粉末焼結体層4が無機基材2表面に十分に固着するよう、0.1~30分間、0.5~10分間、特に1~5分間で適宜調整すればよい。 The pressing time is not particularly limited, but is appropriately adjusted for 0.1 to 30 minutes, 0.5 to 10 minutes, particularly 1 to 5 minutes so that the inorganic powder sintered body layer 4 is sufficiently fixed to the surface of the inorganic substrate 2. do it.
 プレス成型時の雰囲気としては、空気、真空、窒素またはアルゴンが挙げられる。なかでも、無機蛍光体粉末の失活やガラス粉末の変性、さらにはプレス金型の酸化による劣化を抑制するため、窒素やアルゴン等の不活性ガス、特にランニングコストを考慮して窒素であることが好ましい。 The atmosphere at the time of press molding includes air, vacuum, nitrogen or argon. Among them, in order to suppress the deactivation of the inorganic phosphor powder, the modification of the glass powder, and the deterioration due to the oxidation of the press mold, it should be an inert gas such as nitrogen or argon, especially considering the running cost. Is preferred.
 無機粉末焼結体層4の厚みは0.3mm以下、0.25mm以下、特に0.2mm以下であることが好ましい。無機粉末焼結体層4の厚みが大きすぎると、励起光が透過しにくくなり、所望の色を有する光が得られにくくなる。一方、無機粉末焼結体層4の厚みが小さすぎると、機械的耐久性が不十分となる傾向があるため、下限は0.01mm以上、0.03mm以上、特に0.05mm以上であることが好ましい。 The thickness of the inorganic powder sintered body layer 4 is preferably 0.3 mm or less, 0.25 mm or less, particularly preferably 0.2 mm or less. When the thickness of the inorganic powder sintered body layer 4 is too large, the excitation light is hardly transmitted, and it becomes difficult to obtain light having a desired color. On the other hand, if the thickness of the inorganic powder sintered body layer 4 is too small, the mechanical durability tends to be insufficient, so the lower limit is 0.01 mm or more, 0.03 mm or more, particularly 0.05 mm or more. Is preferred.
 無機粉末焼結体層4の表面粗さ(Ra)は0.5μm以下、0.2μm以下、特に0.1μm以下であることが好ましい。無機粉末焼結体層4の表面粗さが大きすぎると、光散乱損失が大きくなり、励起光および蛍光の透過率が低下して発光強度が低下する傾向がある。 The surface roughness (Ra) of the inorganic powder sintered body layer 4 is preferably 0.5 μm or less, 0.2 μm or less, particularly preferably 0.1 μm or less. When the surface roughness of the inorganic powder sintered body layer 4 is too large, the light scattering loss increases, and the transmittance of excitation light and fluorescence tends to decrease and the emission intensity tends to decrease.
 蛍光体複合部材5の形状は特に限定されず、板状、半球状、半球ドーム状等が挙げられる。
(実施例)
The shape of the phosphor composite member 5 is not particularly limited, and examples thereof include a plate shape, a hemispherical shape, and a hemispherical dome shape.
(Example)
 以下、実施例に基づき、本発明の蛍光体複合部材を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the phosphor composite member of the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
 (実施例4)
 (1)セラミック基材の作製
 まず、高純度かつ2μm以下の粒経を有する原料を用いて、YAG(YAl12)の量論組成となるように、モル%で、Y 37.4625%、Al 62.5%、Ce 0.0375%を秤量し、これに対し焼結助剤としてテトラエトキシシランを0.6質量%添加した。次に、ボールミルを用いて、調合した原料をエタノール中で17時間攪拌混合した後、減圧乾燥して粉体を得た。続いて、得られた粉体を200MPaの圧力でプレス成型して直径10mm、厚さ3mmのプレス成型体を作製し、これを真空雰囲気中1750℃で10時間焼成を行うことで焼結体を得た。その後、その焼結体を0.12mmの厚さとなるように両面研磨することでセラミック基材を得た。
Example 4
(1) Preparation of ceramic substrate First, using a raw material having a high purity and a particle size of 2 μm or less, Y 2 O in mol% so as to have a stoichiometric composition of YAG (Y 3 Al 5 O 12 ). 3 37.4625%, Al 2 O 3 62.5%, Ce 2 O 3 0.0375% were weighed, and 0.6% by mass of tetraethoxysilane was added thereto as a sintering aid. Next, using a ball mill, the prepared raw materials were stirred and mixed in ethanol for 17 hours, and then dried under reduced pressure to obtain a powder. Subsequently, the obtained powder was press-molded at a pressure of 200 MPa to produce a press-molded body having a diameter of 10 mm and a thickness of 3 mm, and this was fired at 1750 ° C. in a vacuum atmosphere for 10 hours to obtain a sintered body. Obtained. Then, the ceramic base material was obtained by carrying out double-side polish so that the sintered compact might be set to 0.12 mm in thickness.
 このようにして得られたセラミック基材について、X線粉末回折装置を用いて析出結晶の同定を行ったところYAG結晶が単相で析出していることが確認された。 For the ceramic base material obtained in this manner, when the precipitated crystals were identified using an X-ray powder diffractometer, it was confirmed that the YAG crystals were precipitated in a single phase.
 また、得られたYAGセラミック基材について、発光スペクトルを測定したところ、波長550nm付近に中心を有する黄色の蛍光と、波長465nm付近に中心を有する青色励起光(セラミック基材を透過した励起光)によるピークが観測された。 Further, when the emission spectrum of the obtained YAG ceramic substrate was measured, yellow fluorescence having a center near a wavelength of 550 nm and blue excitation light having a center near a wavelength of 465 nm (excitation light transmitted through the ceramic substrate) A peak due to was observed.
 (2)蛍光体複合部材の作製
 表2に記載のガラス粉末、無機蛍光体粉末および無機フィラー粉末を所定の割合で混合して混合粉末とした。
(2) Production of phosphor composite member Glass powder, inorganic phosphor powder and inorganic filler powder described in Table 2 were mixed at a predetermined ratio to obtain a mixed powder.
 なお、ガラス粉末は次のようにして作製した。まず、表2に記載の組成になるように調合したガラス原料をアルミナ坩堝に投入し、電気炉内950℃で窒素雰囲気にて1時間溶融した。その後、ガラス融液をフィルム成形し、らいかい機で粉砕することによりガラス粉末を得た。得られた粉末の平均粒径(D50)は32μmであった。 The glass powder was produced as follows. First, glass raw materials prepared so as to have the compositions shown in Table 2 were put into an alumina crucible and melted in an electric furnace at 950 ° C. in a nitrogen atmosphere for 1 hour. Thereafter, the glass melt was formed into a film and pulverized with a rough machine to obtain glass powder. The average particle diameter (D 50 ) of the obtained powder was 32 μm.
 ホットプレート上に(1)で得られたYAGセラミック基材を静置し、さらにその上に、混合粉末を所定量載置した。次に、混合粉末に対し金型を押し当て、表2に記載のプレス圧およびプレス温度にて、窒素雰囲気中で3分間プレス成型することにより、YAGセラミック基材表面に無機粉末焼結体層を形成し、蛍光体複合部材を得た。 The YAG ceramic substrate obtained in (1) was allowed to stand on a hot plate, and a predetermined amount of the mixed powder was further placed thereon. Next, a metal mold is pressed against the mixed powder, and press molding is performed for 3 minutes in a nitrogen atmosphere at the pressing pressure and pressing temperature shown in Table 2, so that an inorganic powder sintered body layer is formed on the surface of the YAG ceramic substrate. To obtain a phosphor composite member.
 (3)全光束および色度の測定
 得られた蛍光体複合部材について、発光スペクトルを次のようにして測定した。校正された積分球内で、200mAの電流で点灯した青色LEDによって蛍光体複合部材を励起し、光ファイバーを通じてその発光を小型分光器(オーシャンオプティクス製 USB-4000)に取り込み、制御PC上に発光スペクトル(エネルギー分布曲線)を得た。得られた発光スペクトルから全光束および色度を算出した。結果を表2に示す。
(3) Measurement of total luminous flux and chromaticity The emission spectrum of the obtained phosphor composite member was measured as follows. Inside the calibrated integrating sphere, the phosphor composite member is excited by a blue LED that is lit at a current of 200 mA, and the emitted light is taken into a small spectroscope (USB-4000 manufactured by Ocean Optics) through an optical fiber. (Energy distribution curve) was obtained. Total luminous flux and chromaticity were calculated from the obtained emission spectrum. The results are shown in Table 2.
 (比較例2)
 (1)無機粉末焼結体層用ペーストの作製
 表2に記載のガラス粉末、無機蛍光体粉末および無機フィラー粉末を所定の割合で混合して混合粉末を作製した。次に、得られた混合粉末100質量部に対して、溶媒として50質量部の2,4-ジエチル-1,5-ペンタンジオール(日本香料薬品株式会社製 MARS)を添加して混合することでペーストを得た。
(Comparative Example 2)
(1) Preparation of inorganic powder sintered body layer paste A glass powder, an inorganic phosphor powder and an inorganic filler powder described in Table 2 were mixed at a predetermined ratio to prepare a mixed powder. Next, 50 parts by mass of 2,4-diethyl-1,5-pentanediol (MARS manufactured by Nippon Kayaku Yakuhin Co., Ltd.) as a solvent was added to and mixed with 100 parts by mass of the obtained mixed powder. A paste was obtained.
 (2)蛍光体複合部材の作製
 実施例4で得られたYAGセラミック基材の表面に、上記(1)で得られた無機粉末焼結体層用ペーストをディスペンス法で厚さ約300μmとなるように塗布した。次に、約250℃のホットプレート上で熱処理することによって脱溶媒を行った。その後、窒素雰囲気中にて430℃で10分間焼成し、さらに1N/mmの圧力でホットプレスして表面形状を整え、蛍光体複合部材を得た。
(2) Production of phosphor composite member On the surface of the YAG ceramic substrate obtained in Example 4, the paste for the inorganic powder sintered body layer obtained in (1) is about 300 μm thick by the dispensing method. It was applied as follows. Next, the solvent was removed by heat treatment on a hot plate at about 250 ° C. Then, it baked for 10 minutes at 430 degreeC in nitrogen atmosphere, and also hot-pressed by the pressure of 1 N / mm < 2 >, and surface shape was adjusted, and the fluorescent substance composite member was obtained.
 このようにして得られた蛍光体複合部材の全光束および色度を、実施例4と同様の方法で測定した。結果を表2に示す。表2から明らかなように、比較例2で得られた蛍光体複合部材は実施例4より全光束値が劣っていた。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as in Example 4. The results are shown in Table 2. As is clear from Table 2, the total luminous flux value of the phosphor composite member obtained in Comparative Example 2 was inferior to that of Example 4.
 (比較例3)
 (1)無機粉末焼結体層用グリーンシートの作製
 表2に記載のガラス粉末、無機蛍光体粉末を所定の割合で混合して混合粉末を作製した。次に、混合粉末100質量部に対して、結合剤としてポリビニルブチラール樹脂を12質量部、可塑剤としてフタル酸ジブチルを3質量部、溶剤としてトルエンを40質量部添加し、混合してスラリーを作製した。続けて、上記スラリーをドクターブレード法によって、PETフィルム上にシート成形し、乾燥して、厚さ250μmのグリーンシートを得た。
(Comparative Example 3)
(1) Production of Green Sheet for Inorganic Powder Sintered Body Layer Glass powder and inorganic phosphor powder shown in Table 2 were mixed at a predetermined ratio to produce a mixed powder. Next, 12 parts by mass of polyvinyl butyral resin as a binder, 3 parts by mass of dibutyl phthalate as a plasticizer, and 40 parts by mass of toluene as a solvent are added to 100 parts by mass of the mixed powder, and mixed to prepare a slurry. did. Subsequently, the slurry was formed into a sheet on a PET film by a doctor blade method and dried to obtain a green sheet having a thickness of 250 μm.
 (2)蛍光体複合部材の作製
 上記(1)で作製したグリーンシートを、実施例4で得られたYAGセラミック基材の表面に積層し、熱圧着によって一体化して積層体を作製し、350℃で1時間脱脂した。次に、400℃で20分焼成した後、冷却して蛍光体複合部材を得た。
(2) Production of phosphor composite member The green sheet produced in (1) above is laminated on the surface of the YAG ceramic substrate obtained in Example 4 and integrated by thermocompression bonding to produce a laminate. Degreased for 1 hour at ° C. Next, after baking at 400 degreeC for 20 minutes, it cooled and the fluorescent substance composite member was obtained.
 このようにして得られた蛍光体複合部材の全光束および色度を、実施例4と同様の方法で測定した。結果を表2に示す。表2から明らかなように、比較例2と同様に、比較例3で得られた蛍光体複合部材は、実施例4より全光束値が劣っていた。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as in Example 4. The results are shown in Table 2. As is clear from Table 2, as in Comparative Example 2, the phosphor composite member obtained in Comparative Example 3 was inferior to Example 4 in total luminous flux value.
 (実施例5)
 表2に記載のガラス粉末、無機蛍光体粉末および無機フィラー粉末を所定の割合で混合して混合粉末とした。
(Example 5)
The glass powder, inorganic phosphor powder and inorganic filler powder listed in Table 2 were mixed at a predetermined ratio to obtain a mixed powder.
 なお、ガラス粉末は次のようにして作製した。まず、モル%で、SnO 72%、P 28%を含有する組成になるように調合したガラス原料をアルミナ坩堝に投入し、電気炉内950℃で窒素雰囲気にて1時間溶融した。その後、ガラス融液をフィルム成形し、らいかい機で粉砕することによりガラス粉末を得た。得られた粉末の平均粒径(D50)は、36μmであった。 The glass powder was produced as follows. First, a glass raw material prepared so as to have a composition containing 72% SnO and 28% P 2 O 5 in mol% was put into an alumina crucible and melted in an electric furnace at 950 ° C. in a nitrogen atmosphere for 1 hour. Thereafter, the glass melt was formed into a film and pulverized with a rough machine to obtain glass powder. The average particle diameter (D 50 ) of the obtained powder was 36 μm.
 ホットプレート上に実施例4で得られたYAGセラミック基材を静置し、さらにその上に、混合粉末を所定量載置した。次に、混合粉末に対し金型を押し当て、表2に記載のプレス圧およびプレス温度にて、窒素雰囲気中で3分間プレス成型することにより、YAGセラミック基材表面に無機粉末焼結体層を形成し、蛍光体複合部材を得た。 The YAG ceramic substrate obtained in Example 4 was allowed to stand on a hot plate, and a predetermined amount of the mixed powder was further placed thereon. Next, a metal mold is pressed against the mixed powder, and press molding is performed for 3 minutes in a nitrogen atmosphere at the pressing pressure and pressing temperature shown in Table 2, so that an inorganic powder sintered body layer is formed on the surface of the YAG ceramic substrate. To obtain a phosphor composite member.
 このようにして得られた蛍光体複合部材の全光束および色度を実施例4と同様の方法で測定した。結果を表2に示す。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as in Example 4. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例6~9)
 表3に記載のガラス粉末、無機蛍光体粉末、無機フィラー粉末を所定の割合で混合し、混合粉末を得た。
(Examples 6 to 9)
Glass powder, inorganic phosphor powder, and inorganic filler powder listed in Table 3 were mixed at a predetermined ratio to obtain a mixed powder.
 ホットプレート上に厚み0.15mmのカバーガラス基板(松浪硝子社製)を静置し、さらにその上に、混合粉末を所定量載置した。次に、混合粉末に対し金型を押し当て、表3に記載のプレス圧およびプレス温度にて、窒素雰囲気中で3分間プレス成型することにより、カバーガラス基材表面に無機粉末焼結体層を形成し、蛍光体複合部材を得た。 A cover glass substrate (manufactured by Matsunami Glass Co., Ltd.) having a thickness of 0.15 mm was placed on a hot plate, and a predetermined amount of the mixed powder was placed thereon. Next, a metal mold is pressed against the mixed powder, and press molding and press temperature shown in Table 3 are performed in a nitrogen atmosphere for 3 minutes to form an inorganic powder sintered body layer on the surface of the cover glass substrate. To obtain a phosphor composite member.
 このようにして得られた蛍光体複合部材の全光束および色度を実施例4と同様の方法で測定した。結果を表3に示す。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as in Example 4. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (比較例4)
 表4に記載のガラス粉末および無機蛍光体粉末を所定の割合で混合し、混合粉末を得た。
(Comparative Example 4)
The glass powder and inorganic phosphor powder described in Table 4 were mixed at a predetermined ratio to obtain a mixed powder.
 ホットプレート上に直接、混合粉末を所定量載置し、混合粉末に対し金型を押し当て、表4に記載のプレス圧およびプレス温度にて、窒素雰囲気中で3分間プレス成型することにより、無機粉末焼結体層を形成した。 By placing a predetermined amount of the mixed powder directly on the hot plate, pressing a mold against the mixed powder, and press-molding in a nitrogen atmosphere for 3 minutes at the pressing pressure and pressing temperature described in Table 4, An inorganic powder sintered body layer was formed.
 無機粉末焼結体層は非常にもろく、ホットプレートから取り外す際に破損したため、全光束および色度を測定することはできなかった。 The sintered inorganic powder layer was very fragile and was damaged when removed from the hot plate, so the total luminous flux and chromaticity could not be measured.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の蛍光体複合部材は、LED用途に限られるものではなく、レーザーダイオード等のように、ハイパワーの励起光を発するLEDデバイスにおける波長変換部材として用いることも可能である。 The phosphor composite member of the present invention is not limited to an LED application, and can also be used as a wavelength conversion member in an LED device that emits high-power excitation light such as a laser diode.
 1…混合粉末
 2…無機基材
 3a…上金型
 3b…下金型
 4…無機粉末焼結体層
 5…蛍光体複合部材
 P…加圧方向
 11…無機粉末焼結体層
 12…セラミック基材
DESCRIPTION OF SYMBOLS 1 ... Mixed powder 2 ... Inorganic base material 3a ... Upper metal mold 3b ... Lower metal mold 4 ... Inorganic powder sintered compact layer 5 ... Phosphor composite member P ... Pressure direction 11 ... Inorganic powder sintered compact layer 12 ... Ceramic base Material

Claims (28)

  1. セラミック基材の表面に、SnO-P系ガラスおよび無機蛍光体粉末を含有する無機粉末焼結体層が形成されてなる蛍光体複合部材であって、励起光が照射されたときに、前記セラミック基材および前記無機粉末焼結体層が互いに異なる波長の蛍光を発することを特徴とする蛍光体複合部材。 A phosphor composite member in which an inorganic powder sintered body layer containing SnO—P 2 O 5 glass and inorganic phosphor powder is formed on the surface of a ceramic base material, and when irradiated with excitation light The phosphor composite member, wherein the ceramic substrate and the inorganic powder sintered body layer emit fluorescence having different wavelengths.
  2. 前記セラミック基材が、波長400~500nmの励起光を吸収し、波長450~780nmの蛍光を発することを特徴とする請求項1に記載の蛍光体複合部材。 The phosphor composite member according to claim 1, wherein the ceramic base material absorbs excitation light having a wavelength of 400 to 500 nm and emits fluorescence having a wavelength of 450 to 780 nm.
  3. 前記セラミック基材が、青色の励起光を吸収し、黄色の蛍光を発することを特徴とする請求項2に記載の蛍光体複合部材。 The phosphor composite member according to claim 2, wherein the ceramic base material absorbs blue excitation light and emits yellow fluorescence.
  4. 前記セラミック基材が、結晶中にCe3+を含むガーネット結晶からなることを特徴とする請求項1~3のいずれかに記載の蛍光体複合部材。 4. The phosphor composite member according to claim 1, wherein the ceramic substrate is made of a garnet crystal containing Ce 3+ in the crystal.
  5. 前記ガーネット結晶が、YAG結晶またはYAG結晶固溶体であることを特徴とする請求項4に記載の蛍光体複合部材。 The phosphor composite member according to claim 4, wherein the garnet crystal is a YAG crystal or a YAG crystal solid solution.
  6. 前記無機粉末焼結体層が、波長400~500nmの励起光を吸収し、波長500~780nmの蛍光を発することを特徴とする請求項1~5のいずれかに記載の蛍光体複合部材。 The phosphor composite member according to any one of claims 1 to 5, wherein the inorganic powder sintered body layer absorbs excitation light having a wavelength of 400 to 500 nm and emits fluorescence having a wavelength of 500 to 780 nm.
  7. 前記無機粉末焼結体層が、青色の励起光を吸収し、赤色および/または緑色の蛍光を発することを特徴とする請求項6に記載の蛍光体複合部材。 The phosphor composite member according to claim 6, wherein the inorganic powder sintered body layer absorbs blue excitation light and emits red and / or green fluorescence.
  8. 前記セラミック基材および前記無機粉末焼結体層から発せられる蛍光と、前記蛍光体複合部材中を透過する励起光とが合成されて白色光を発することを特徴とする請求項1~7のいずれかに記載の蛍光体複合部材。 The white light is emitted by combining the fluorescence emitted from the ceramic base material and the inorganic powder sintered body layer and the excitation light transmitted through the phosphor composite member. The phosphor composite member according to claim 1.
  9. 無機粉末焼結体層が、前記無機蛍光体粉末を0.01~30質量%含有することを特徴とする請求項1~8のいずれかに記載の蛍光体複合部材。 9. The phosphor composite member according to claim 1, wherein the inorganic powder sintered body layer contains 0.01 to 30% by mass of the inorganic phosphor powder.
  10. 前記SnO-P系ガラスが、組成としてモル%表示で、SnO 35~80%、P 5~40%及びB 0~30%を含有することを特徴とする請求項1~9のいずれかに記載の蛍光体複合部材。 The SnO—P 2 O 5 glass contains SnO 35 to 80%, P 2 O 5 5 to 40%, and B 2 O 3 0 to 30% in terms of mol% as a composition. Item 10. The phosphor composite member according to any one of Items 1 to 9.
  11. 前記無機粉末焼結体層の表面粗さRaが0.5μm以下であることを特徴とする請求項1~10のいずれかに記載の蛍光体複合部材。 11. The phosphor composite member according to claim 1, wherein the inorganic powder sintered body layer has a surface roughness Ra of 0.5 μm or less.
  12. 散乱係数が1~500cm-1であることを特徴とする請求項1~11のいずれかに記載の蛍光体複合部材。 12. The phosphor composite member according to claim 1 , wherein the scattering coefficient is 1 to 500 cm −1 .
  13. 請求項1~12のいずれかに記載の蛍光体複合部材を用いたことを特徴とするLEDデバイス。 An LED device comprising the phosphor composite member according to any one of claims 1 to 12.
  14. 請求項1~12のいずれかに記載の蛍光体複合部材を製造するための方法であって、SnO-P系ガラスおよび無機蛍光体粉末の混合物を焼成して焼結体を得る工程、セラミック基材上に前記焼結体を熱圧着プレスすることにより、無機粉末焼結体層を形成する工程、を含むことを特徴とする蛍光体複合部材の製造方法。 A method for producing the phosphor composite member according to any one of claims 1 to 12, wherein a sintered body is obtained by firing a mixture of SnO-P 2 O 5 glass and inorganic phosphor powder. And a step of forming an inorganic powder sintered body layer by thermocompression-pressing the sintered body on a ceramic substrate.
  15. 無機基材上に、ガラス粉末および無機蛍光体粉末を含有する混合粉末を載置する工程、および、金型を用いて加熱しながら前記混合粉末をプレス成型し、前記無機基材表面上に無機粉末焼結体層を形成する工程、を含むことを特徴とする蛍光体複合部材の製造方法。 A step of placing a mixed powder containing glass powder and an inorganic phosphor powder on an inorganic base material, and press-molding the mixed powder while heating using a mold, and an inorganic surface on the surface of the inorganic base material And a step of forming a powder sintered body layer.
  16. 前記無機基材が、YAG系セラミックス、結晶化ガラス、ガラス、金属または金属とセラミックスの複合体であることを特徴とする請求項15に記載の蛍光体複合部材の製造方法。 The method for producing a phosphor composite member according to claim 15, wherein the inorganic base material is YAG ceramic, crystallized glass, glass, metal, or a composite of metal and ceramic.
  17. 前記無機粉末焼結体層の厚みが0.3mm以下であることを特徴とする請求項15または16に記載の蛍光体複合部材の製造方法。 The method for manufacturing a phosphor composite member according to claim 15 or 16, wherein the inorganic powder sintered body layer has a thickness of 0.3 mm or less.
  18. 前記無機粉末焼結体層の表面粗さ(Ra)が0.5μm以下であることを特徴とする請求項15~17のいずれかに記載の蛍光体複合部材の製造方法。 The method for producing a phosphor composite member according to any one of claims 15 to 17, wherein the inorganic powder sintered body layer has a surface roughness (Ra) of 0.5 µm or less.
  19. 前記ガラス粉末の平均粒径(D50)が100μm以下であることを特徴とする請求項15~18のいずれかに記載の蛍光体複合部材の製造方法。 The method for producing a phosphor composite member according to any one of claims 15 to 18, wherein an average particle size (D 50 ) of the glass powder is 100 µm or less.
  20. 無機粉末焼結体層における前記無機蛍光体粉末の割合が0.01~90質量%であることを特徴とする請求項15~19のいずれかに記載の蛍光体複合部材の製造方法。 The method for producing a phosphor composite member according to any one of claims 15 to 19, wherein a ratio of the inorganic phosphor powder in the inorganic powder sintered body layer is 0.01 to 90 mass%.
  21. 前記無機粉末焼結体層が、無機フィラーを0~30質量%含有することを特徴とする請求項15~20のいずれかに記載の蛍光体複合部材の製造方法。 The method for producing a phosphor composite member according to any one of claims 15 to 20, wherein the inorganic powder sintered body layer contains 0 to 30% by mass of an inorganic filler.
  22. 前記ガラス粉末が、SiO-B-RO系ガラス粉末(RはMg、Ca、SrおよびBaから選ばれる1種以上)、SiO-TiO-Nb-R’O系ガラス粉末(R’はLi、Na、Kから選ばれる1種以上)、SnO-P系ガラス粉末またはZnO-B-SiO系ガラス粉末であることを特徴とする請求項15~21のいずれかに記載の蛍光体複合部材の製造方法。 The glass powder is SiO 2 —B 2 O 3 —RO based glass powder (R is one or more selected from Mg, Ca, Sr and Ba), SiO 2 —TiO 2 —Nb 2 O 5 —R ′ 2 O. A glass powder (R ′ is at least one selected from Li, Na, and K), SnO—P 2 O 5 glass powder, or ZnO—B 2 O 3 —SiO 2 glass powder. Item 22. The method for producing a phosphor composite member according to any one of Items 15 to 21.
  23. 前記SnO-P系ガラス粉末が、ガラス組成としてモル%で、SnO 35~80%、P 5~40%及びB 0~30%を含有することを特徴とする請求項22に記載の蛍光体複合部材の製造方法。 The SnO—P 2 O 5 glass powder contains, as a glass composition, mol%, SnO 35 to 80%, P 2 O 5 5 to 40%, and B 2 O 3 0 to 30%. The method for producing a phosphor composite member according to claim 22.
  24. 前記無機蛍光体粉末が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、酸フッ化物、ハロゲン化物、アルミン酸塩またはハロリン酸塩化物であることを特徴とする請求項15~23のいずれかに記載の蛍光体複合部材の製造方法。 The inorganic phosphor powder is an oxide, nitride, oxynitride, sulfide, oxysulfide, oxyfluoride, halide, aluminate or halophosphate. 24. The method for producing a phosphor composite member according to any one of 23.
  25. プレス成型時の温度が900℃以下であることを特徴とする請求項15~24のいずれかに記載の蛍光体複合部材の製造方法。 The method for producing a phosphor composite member according to any one of claims 15 to 24, wherein the temperature at the time of press molding is 900 ° C or lower.
  26. プレス成型時の雰囲気が空気、真空、窒素またはアルゴンであることを特徴とする請求項15~25のいずれかに記載の蛍光体複合部材の製造方法。 The method for producing a phosphor composite member according to any one of claims 15 to 25, wherein the atmosphere during press molding is air, vacuum, nitrogen or argon.
  27. 前記蛍光体複合部材の形状が、板状、半球状、半球ドーム状であることを特徴とする請求項15~26に記載の蛍光体複合部材の製造方法。 The method for manufacturing a phosphor composite member according to any one of claims 15 to 26, wherein the phosphor composite member has a plate shape, a hemispherical shape, or a hemispherical dome shape.
  28.  請求項15~27に記載の製造方法により作製されたことを特徴とする蛍光体複合部材。 A phosphor composite member produced by the manufacturing method according to claims 15 to 27.
PCT/JP2011/064922 2010-07-14 2011-06-29 Phosphor composite member, led device and method for manufacturing phosphor composite member WO2012008306A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/696,240 US20130049575A1 (en) 2010-07-14 2011-06-29 Phosphor composite member, led device and method for manufacturing phosphor composite member
CN2011800114308A CN102782082A (en) 2010-07-14 2011-06-29 Phosphor composite member, LED device and method for manufacturing phosphor composite member

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010159448 2010-07-14
JP2010-159448 2010-07-14
JP2011022347A JP2012036367A (en) 2010-07-14 2011-02-04 Phosphor composite member
JP2011-022347 2011-02-04
JP2011136917A JP5854367B2 (en) 2011-06-21 2011-06-21 Method for manufacturing phosphor composite member
JP2011-136917 2011-06-21

Publications (1)

Publication Number Publication Date
WO2012008306A1 true WO2012008306A1 (en) 2012-01-19

Family

ID=45469311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064922 WO2012008306A1 (en) 2010-07-14 2011-06-29 Phosphor composite member, led device and method for manufacturing phosphor composite member

Country Status (1)

Country Link
WO (1) WO2012008306A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452736B (en) * 2012-02-17 2014-09-11 Jau Sheng Wang Color conversion layer producing method of a led module
JP2015514144A (en) * 2012-03-29 2015-05-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Composite ceramic containing conversion phosphor and material with negative coefficient of thermal expansion
JP2016050265A (en) * 2014-09-01 2016-04-11 日本電気硝子株式会社 Wavelength conversion member production method and wavelength conversion member
CN106186678A (en) * 2015-05-26 2016-12-07 台湾彩光科技股份有限公司 Method for producing glass phosphor sheet
CN115991593A (en) * 2018-06-20 2023-04-21 日亚化学工业株式会社 Ceramic composite, light-emitting device using same, and method for manufacturing ceramic composite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019421A (en) * 2006-06-14 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite material and phosphor composite member
JP2008169348A (en) * 2007-01-15 2008-07-24 Nippon Electric Glass Co Ltd Phosphor composite material
JP2010108965A (en) * 2008-10-28 2010-05-13 Nippon Electric Glass Co Ltd Wavelength conversion member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019421A (en) * 2006-06-14 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite material and phosphor composite member
JP2008169348A (en) * 2007-01-15 2008-07-24 Nippon Electric Glass Co Ltd Phosphor composite material
JP2010108965A (en) * 2008-10-28 2010-05-13 Nippon Electric Glass Co Ltd Wavelength conversion member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452736B (en) * 2012-02-17 2014-09-11 Jau Sheng Wang Color conversion layer producing method of a led module
JP2015514144A (en) * 2012-03-29 2015-05-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Composite ceramic containing conversion phosphor and material with negative coefficient of thermal expansion
US9567519B2 (en) 2012-03-29 2017-02-14 Merck Patent Gmbh Composite ceramic which comprises a conversion phosphor and a material having a negative coefficient of thermal expansion
JP2016050265A (en) * 2014-09-01 2016-04-11 日本電気硝子株式会社 Wavelength conversion member production method and wavelength conversion member
CN106186678A (en) * 2015-05-26 2016-12-07 台湾彩光科技股份有限公司 Method for producing glass phosphor sheet
CN115991593A (en) * 2018-06-20 2023-04-21 日亚化学工业株式会社 Ceramic composite, light-emitting device using same, and method for manufacturing ceramic composite
CN115991593B (en) * 2018-06-20 2023-12-19 日亚化学工业株式会社 Ceramic composite, light-emitting device using same, and method for manufacturing ceramic composite

Similar Documents

Publication Publication Date Title
US20130049575A1 (en) Phosphor composite member, led device and method for manufacturing phosphor composite member
JP4765525B2 (en) Luminescent color conversion member
JP2012036367A (en) Phosphor composite member
JP2008169348A (en) Phosphor composite material
JP5854367B2 (en) Method for manufacturing phosphor composite member
WO2011111462A1 (en) Wavelength conversion member, optical device, and process for production of wavelength conversion member
JP2012185980A (en) Wavelength conversion element, light source including the same and manufacturing method of the same
JP2007048864A (en) Phosphor composite material
WO2014106923A1 (en) Glass used in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP7212319B2 (en) Wavelength conversion member and light emitting device
JP5939463B2 (en) Glass and wavelength conversion member using the glass
JP5532508B2 (en) Wavelength conversion member and manufacturing method thereof
JP2012052061A (en) Phosphor composite member
WO2012008306A1 (en) Phosphor composite member, led device and method for manufacturing phosphor composite member
JP2018043912A (en) Photoconversion member, illumination light source and method for producing photoconversion member
JP5689243B2 (en) Semiconductor light emitting device sealing material and method for manufacturing semiconductor light emitting device using the same
US20240014357A1 (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP2011222751A (en) Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
JP2012059893A (en) Wavelength conversion member, light source, and manufacturing method for wavelength conversion member
JP5713273B2 (en) Joining material and member joining method using the same
WO2020189338A1 (en) Wavelength conversion member and method for manufacturing same, and light emission device
JP2019163208A (en) Raw material powder for wavelength conversion member
JP6830751B2 (en) Wavelength conversion member and light emitting device
JP2013047155A (en) Method of producing glass composite sheet, and glass composite sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011430.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13696240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806636

Country of ref document: EP

Kind code of ref document: A1