JP2012185980A - Wavelength conversion element, light source including the same and manufacturing method of the same - Google Patents

Wavelength conversion element, light source including the same and manufacturing method of the same Download PDF

Info

Publication number
JP2012185980A
JP2012185980A JP2011047665A JP2011047665A JP2012185980A JP 2012185980 A JP2012185980 A JP 2012185980A JP 2011047665 A JP2011047665 A JP 2011047665A JP 2011047665 A JP2011047665 A JP 2011047665A JP 2012185980 A JP2012185980 A JP 2012185980A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion element
element according
heat dissipation
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011047665A
Other languages
Japanese (ja)
Inventor
Tadahito Furuyama
忠仁 古山
Shunsuke Fujita
俊輔 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2011047665A priority Critical patent/JP2012185980A/en
Publication of JP2012185980A publication Critical patent/JP2012185980A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion element preventing easy peeling of a wavelength conversion member from a heat dissipation member during use as well as achieving weight saving of a light source using the wavelength conversion element, in the wavelength conversion element made by bonding the wavelength conversion member with the heat dissipation member.SOLUTION: The wavelength conversion element is characterized by including the wavelength conversion member made of an inorganic material and the heat dissipation member made of a composite material containing Al and ceramics. The ceramics is preferably any one or more of SiC and AIN.

Description

本発明は、波長変換素子、それを備える光源およびその製造方法に関する。   The present invention relates to a wavelength conversion element, a light source including the same, and a manufacturing method thereof.

近年、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)を用いた光源などの、蛍光ランプや白熱灯に変わる次世代の光源に対する注目が高まってきている。そのような次世代光源の一例として、例えば下記の特許文献1には、青色光を出射するLEDの光出射側に、LEDからの光の一部を吸収し、黄色の光を出射する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。   In recent years, attention has been paid to next-generation light sources such as light sources using light emitting diodes (LEDs) and laser diodes (LDs), such as fluorescent lamps and incandescent lamps. As an example of such a next-generation light source, for example, in Patent Document 1 below, wavelength conversion that absorbs part of light from an LED and emits yellow light on the light emitting side of the LED that emits blue light. A light source having a member disposed thereon is disclosed. This light source emits white light which is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.

波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体粉末を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂が劣化し、光源の輝度が低くなりやすいという問題がある。特に、LEDからの光が、青色光などの波長が短く、エネルギーが強い光である場合は、このような問題が生じやすい。   As the wavelength conversion member, a material in which an inorganic phosphor powder is dispersed in a resin matrix has been conventionally used. However, when the wavelength conversion member is used, there is a problem that the resin is deteriorated by the light from the LED and the luminance of the light source tends to be lowered. In particular, when the light from the LED is light having a short wavelength such as blue light and strong energy, such a problem is likely to occur.

このような問題に鑑み、例えば、下記の特許文献2には、ガラスマトリクス中に無機蛍光体粉末を分散させた波長変換部材が提案されている。特許文献2に記載の波長変換部材は、樹脂を含まず、無機固体のみから構成されるため、優れた耐熱性および耐候性を有している。従って、この波長変換部材を用いることにより輝度が低下しにくい光源を実現することができる。   In view of such a problem, for example, Patent Document 2 below proposes a wavelength conversion member in which an inorganic phosphor powder is dispersed in a glass matrix. Since the wavelength conversion member described in Patent Document 2 does not contain a resin and is composed of only an inorganic solid, it has excellent heat resistance and weather resistance. Therefore, by using this wavelength conversion member, it is possible to realize a light source whose luminance is not easily lowered.

波長変換部材を用いた光源を高輝度化するためには、発光素子から出射する励起光の強度を高める必要がある。しかしながら、高強度の励起光を出射する発光素子を用いた場合は、所望の輝度が得られにくいという問題がある。これは、波長変換部材に入射した光のうち、蛍光体の励起に使用されなかった光が熱に変換され、波長変換部材の温度が上昇することによる熱消光が原因であると考えられる。   In order to increase the brightness of the light source using the wavelength conversion member, it is necessary to increase the intensity of the excitation light emitted from the light emitting element. However, when a light emitting element that emits high-intensity excitation light is used, there is a problem that it is difficult to obtain desired luminance. This is considered to be caused by thermal quenching due to the rise of the temperature of the wavelength conversion member by converting the light that has not been used for excitation of the phosphor out of the light incident on the wavelength conversion member into heat.

そこで、波長変換部材に対して、例えば銅などの熱伝導性に優れた放熱部材を接合した波長変換素子が提案されている。当該波長変換素子を用いれば、波長変換部材の熱が効率的に放熱部材に伝導し、放熱部材から放熱される。このため、波長変換部材の温度上昇を抑制することができ、発光素子からの励起光の強度が高い場合であっても、当該波長変換部材を用いた光源の輝度低下を抑制することができる。   Therefore, a wavelength conversion element has been proposed in which a heat dissipation member having excellent thermal conductivity such as copper is bonded to the wavelength conversion member. If the said wavelength conversion element is used, the heat | fever of a wavelength conversion member will conduct to a heat radiating member efficiently, and will be thermally radiated from a heat radiating member. For this reason, the temperature rise of a wavelength conversion member can be suppressed and even if it is a case where the intensity | strength of the excitation light from a light emitting element is high, the brightness fall of the light source using the said wavelength conversion member can be suppressed.

特開2000−208815号公報JP 2000-208815 A 特開2003−258308号公報JP 2003-258308 A

前記波長変換素子において使用される銅製の放熱部材は、比較的重量が大きいため、当該波長変換素子を用いた光源の軽量化が困難である。そこで、比較的軽量の材質として、アルミニウム製あるいはアルミニウム合金製の放熱部材を使用することが考えられるが、当該放熱部材を波長変換部材に接合してなる波長変換素子は、使用時に波長変換部材が放熱部材から剥離しやすいという問題がある。   Since the copper heat dissipation member used in the wavelength conversion element is relatively heavy, it is difficult to reduce the weight of the light source using the wavelength conversion element. Therefore, it is conceivable to use a heat radiating member made of aluminum or aluminum alloy as a relatively lightweight material, but the wavelength conversion element formed by joining the heat radiating member to the wavelength converting member has a wavelength converting member in use. There exists a problem that it is easy to peel from a thermal radiation member.

以上の課題に鑑み、本発明は、波長変換部材が放熱部材に接合してなる波長変換素子であって、当該波長変換素子を使用した光源の軽量化を図るとともに、使用時に波長変換部材が放熱部材から剥離しにくい波長変換素子を提供することを目的とする。   In view of the above-described problems, the present invention is a wavelength conversion element in which a wavelength conversion member is bonded to a heat dissipation member. The wavelength conversion member reduces the weight of a light source using the wavelength conversion element, and the wavelength conversion member dissipates heat during use. It aims at providing the wavelength conversion element which is hard to peel from a member.

本発明は、無機材料からなる波長変換部材と、Alおよびセラミックスを含む複合材料からなる放熱部材とを有することを特徴とする波長変換素子に関する。   The present invention relates to a wavelength conversion element having a wavelength conversion member made of an inorganic material and a heat dissipation member made of a composite material containing Al and ceramics.

本発明者は、波長変換素子に使用される放熱部材の材質について、種々調査を行った結果、Alおよびセラミックスを含む複合材料からなる放熱部材を用いれば、前記課題を解消できることがわかった。すなわち、Alおよびセラミックスを含む複合材料からなる放熱部材は、比較的軽量であるため、光源の軽量化を図ることが容易である。しかも、特に、ガラス中に無機蛍光体粉末を分散させた波長変換部材に対し、熱膨張率を近づけることが容易であるため、使用時に高温になっても波長変換部材の剥離が生じにくい。   As a result of various investigations on the material of the heat dissipation member used in the wavelength conversion element, the present inventor has found that the above problem can be solved by using a heat dissipation member made of a composite material containing Al and ceramics. That is, since the heat radiating member made of a composite material containing Al and ceramics is relatively light, it is easy to reduce the weight of the light source. In addition, in particular, the wavelength conversion member in which the inorganic phosphor powder is dispersed in the glass can be easily brought into a thermal expansion coefficient, so that the wavelength conversion member is not easily peeled even when the temperature becomes high during use.

第二に、本発明の波長変換素子は、セラミックスが、SiCまたはAlNであることが好ましい。   Secondly, in the wavelength conversion element of the present invention, the ceramic is preferably SiC or AlN.

第三に、本発明の波長変換素子は、放熱部材が、Al 10〜99.9体積%、セラミックス 0.1〜90体積%を含む複合材料からなることが好ましい。   Thirdly, in the wavelength conversion element of the present invention, it is preferable that the heat dissipating member is made of a composite material containing Al 10 to 99.9% by volume and ceramics 0.1 to 90% by volume.

当該構成によれば、前記効果がより享受しやすくなる。   According to the configuration, the effect can be easily enjoyed.

第四に、本発明の波長変換素子は、放熱部材の密度が3g/cm以下であることが好ましい。 Fourthly, in the wavelength conversion element of the present invention, it is preferable that the density of the heat radiating member is 3 g / cm 3 or less.

第五に、本発明の波長変換素子は、放熱部材の熱伝導率が100W/mK以上であることが好ましい。   Fifth, in the wavelength conversion element of the present invention, it is preferable that the heat dissipation member has a thermal conductivity of 100 W / mK or more.

第六に、本発明の波長変換素子は、波長変換部材が、無機蛍光体粉末とガラス粉末を含む混合粉末の焼結体からなることが好ましい。   Sixthly, in the wavelength conversion element of the present invention, the wavelength conversion member is preferably made of a sintered body of a mixed powder containing an inorganic phosphor powder and a glass powder.

第七に、本発明の波長変換素子は、ガラス粉末が、スズリン酸塩系ガラスまたは硼珪酸塩系ガラスであることが好ましい。   Seventhly, in the wavelength conversion element of the present invention, the glass powder is preferably tin phosphate glass or borosilicate glass.

スズリン酸塩系ガラスは軟化温度が比較的低く、波長変換部材を作製する際の焼成温度を低くすることができるため、無機蛍光体粉末の熱劣化を抑制することができる。また、硼珪酸塩系ガラスは耐熱性が高いため、高強度な励起光や、無機蛍光体粉末からの発熱による劣化を抑制できる。また、耐候性にも優れている。   Since the tin phosphate glass has a relatively low softening temperature and can lower the firing temperature when producing the wavelength conversion member, thermal degradation of the inorganic phosphor powder can be suppressed. In addition, since borosilicate glass has high heat resistance, it is possible to suppress deterioration due to high-intensity excitation light and heat generation from the inorganic phosphor powder. It also has excellent weather resistance.

第八に、本発明の波長変換素子は、無機蛍光体粉末を30〜99.9質量%含有することが好ましい。   Eighth, the wavelength conversion element of the present invention preferably contains 30 to 99.9% by mass of inorganic phosphor powder.

当該構成によれば、波長変換部材の単位体積における無機蛍光体粉末の含有量を多くすることができ、当該波長変換部材を用いた光源の高輝度化を達成することが可能となる。   According to the said structure, content of the inorganic fluorescent substance powder in the unit volume of a wavelength conversion member can be increased, and it becomes possible to achieve high brightness of the light source using the said wavelength conversion member.

第九に、本発明の波長変換素子は、波長変換部材と放熱部材の熱膨張率の差が35×10−7/℃以下であることが好ましい。 Ninthly, in the wavelength conversion element of the present invention, it is preferable that the difference in coefficient of thermal expansion between the wavelength conversion member and the heat dissipation member is 35 × 10 −7 / ° C. or less.

第十に、本発明の波長変換素子は、波長変換部材と放熱部材の間に反射層を備えていることが好ましい。   Tenth, the wavelength conversion element of the present invention preferably includes a reflective layer between the wavelength conversion member and the heat dissipation member.

波長変換素子としては、一般に、励起光と蛍光体から発生する蛍光との合成光を、励起光と反対側から取り出す「透過型」と、当該合成光を励起光と同じ側から取り出す「反射型」が挙げられる。本発明では、波長変換部材と熱伝導性部材との間に反射層を設けることにより、「反射型」波長変換素子とすることができる。   As a wavelength conversion element, generally, a “transmission type” that extracts synthetic light of excitation light and fluorescence generated from a phosphor from the side opposite to the excitation light, and a “reflection type” that extracts the synthetic light from the same side as the excitation light. ". In the present invention, a “reflection type” wavelength conversion element can be obtained by providing a reflective layer between the wavelength conversion member and the heat conductive member.

特に、波長変換部材中における無機蛍光体粉末の含有量が多い場合は、「透過型」波長変換素子では、励起光が波長変換部材内部で散乱して透過しにくくなる。結果として、所望の色合いを有する光が得られにくくなる。一方、「反射型」波長変換素子であれば、波長変換部材中における無機蛍光体粉末の含有量が多い場合であっても、所望の色合いを有する光が得られやすい。これは、波長変換部材中で励起光が散乱しても、各散乱光が反射層により反射されて励起光側に効率よく取り出すことができるためである。   In particular, when the content of the inorganic phosphor powder in the wavelength conversion member is large, in the “transmission type” wavelength conversion element, the excitation light is scattered inside the wavelength conversion member and hardly transmitted. As a result, it becomes difficult to obtain light having a desired hue. On the other hand, in the case of a “reflection type” wavelength conversion element, light having a desired color is easily obtained even when the content of the inorganic phosphor powder in the wavelength conversion member is large. This is because even if excitation light is scattered in the wavelength conversion member, each scattered light is reflected by the reflective layer and can be efficiently extracted to the excitation light side.

第十一に、本発明の波長変換素子は、反射層が、Ag、Al、Au、PdおよびTiから選択された金属またはその合金であることが好ましい。   Eleventh, in the wavelength conversion element of the present invention, the reflective layer is preferably a metal selected from Ag, Al, Au, Pd and Ti or an alloy thereof.

第十二に、本発明の波長変換素子は、波長変換部材と反射層の間、および/または、反射層と放熱部材の間に保護層を備えていることが好ましい。   12thly, it is preferable that the wavelength conversion element of this invention is equipped with the protective layer between the wavelength conversion member and the reflection layer, and / or between the reflection layer and the heat radiating member.

当該構成によれば、反射層の酸化による劣化を抑制することが可能となる。   According to this configuration, it is possible to suppress deterioration due to oxidation of the reflective layer.

第十三に、本発明の波長変換素子は、保護層が、SiOまたはAlであることが好ましい。 Thirteenth, the wavelength conversion element of the present invention, the protective layer is preferably a SiO 2 or Al 2 O 3.

第十四に、本発明は、前記いずれかの波長変換素子と発光素子とを備えていることを特徴とする光源に関する。   Fourteenth, the present invention relates to a light source comprising any one of the wavelength conversion elements and a light emitting element.

第十五に、本発明の光源は、プロジェクター用であることが好ましい。   Fifteenth, the light source of the present invention is preferably for a projector.

本発明の波長変換素子の実施形態1を説明する模式的斜視図である。It is a typical perspective view explaining Embodiment 1 of the wavelength conversion element of the present invention. 本発明の波長変換素子の実施形態1を説明する模式的断面図である。It is typical sectional drawing explaining Embodiment 1 of the wavelength conversion element of this invention. 本発明の波長変換素子の実施形態2を説明する模式的斜視図である。It is a typical perspective view explaining Embodiment 2 of the wavelength conversion element of the present invention. 本発明の波長変換素子の実施形態3を説明する模式的断面図である。It is typical sectional drawing explaining Embodiment 3 of the wavelength conversion element of this invention.

以下、図面を用いて本発明の波長変換素子の実施形態を説明する。ただし、本発明は以下の実施形態のみに限定されるものではない。   Hereinafter, embodiments of the wavelength conversion element of the present invention will be described with reference to the drawings. However, the present invention is not limited only to the following embodiments.

<実施形態1>
図1および2に、本発明の波長変換素子の実施形態1を説明する模式的斜視図および模式的断面図をそれぞれ示す。
<Embodiment 1>
1 and 2 are a schematic perspective view and a schematic cross-sectional view, respectively, for explaining Embodiment 1 of the wavelength conversion element of the present invention.

図1および2に示すように、本発明の波長変換素子1は、放熱部材3上に波長変換部材2を接合してなるものである。本実施形態では、波長変換部材2と放熱部材3の間に反射層4が形成されており、さらに、波長変換部材2と反射層4の間に保護層5が形成されている。   As shown in FIGS. 1 and 2, the wavelength conversion element 1 of the present invention is formed by joining a wavelength conversion member 2 on a heat dissipation member 3. In the present embodiment, a reflective layer 4 is formed between the wavelength conversion member 2 and the heat dissipation member 3, and a protective layer 5 is further formed between the wavelength conversion member 2 and the reflection layer 4.

波長変換部材2は、発光素子(図示せず)から出射された励起光の一部を透過する一方、一部を吸収し、励起光よりも波長の長い蛍光を出射する部材である。   The wavelength conversion member 2 is a member that transmits part of excitation light emitted from a light emitting element (not shown), absorbs part of the excitation light, and emits fluorescence having a wavelength longer than that of the excitation light.

波長変換部材2は無機材料からなる。具体的には、無機蛍光体粉末とガラス粉末を含む混合粉末の焼結体からなる。   The wavelength conversion member 2 is made of an inorganic material. Specifically, it consists of a sintered body of mixed powder containing inorganic phosphor powder and glass powder.

無機蛍光体粉末は、励起光の波長に応じて適宜選択することができる。無機蛍光体粉末の具体例としては、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、YAG系化合物蛍光体が挙げられる。これらの無機蛍光体粉末は2種以上を複合して使用してもよい。   The inorganic phosphor powder can be appropriately selected according to the wavelength of the excitation light. Specific examples of the inorganic phosphor powder include oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, oxysulfide phosphors, and halides. Examples include phosphors, chalcogenide phosphors, aluminate phosphors, halophosphate phosphors, and YAG compound phosphors. These inorganic phosphor powders may be used in combination of two or more.

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の蛍光(波長が440nm〜480nmの蛍光)を発する無機蛍光体の具体例としては、Sr(POCl:Eu2+、(Sr,Ba)MgAl1017:Eu2+などが挙げられる。 Specific examples of the inorganic phosphor that emits blue fluorescence (fluorescence having a wavelength of 440 nm to 480 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm include Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba) MgAl 10 O 17 : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光(波長が500nm〜540nmの蛍光)を発する無機蛍光体の具体例としては、SrAl:Eu2+、SrGa:Eu2+などが挙げられる。 Specific examples of the inorganic phosphor that emits green fluorescence (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm are SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4. : Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光(波長が500nm〜540nmの蛍光)を発する無機蛍光体の具体例としては、SrAl:Eu2+、SrGa:Eu2+などが挙げられる。 Specific examples of inorganic phosphors that emit green fluorescence (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ and SrGa 2 S 4 : Eu 2+. Etc.

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光(波長が540nm〜595nmの蛍光)を発する無蛍光体の具体例としては、ZnS:Eu2+などが挙げられる。 A specific example of a non-fluorescent material that emits yellow fluorescence (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm is ZnS: Eu 2+ .

波長440〜480nmの青色の励起光を照射すると黄色の蛍光(波長が540nm〜595nmの蛍光)を発する無機蛍光体の具体例としては、Y(Al,Gd)12:Ce2+などが挙げられる。 Specific examples of the inorganic phosphor that emits yellow fluorescence (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 2+ and the like. Can be mentioned.

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光(波長が600nm〜700nmの蛍光)を発する無機蛍光体の具体例としては、GdGa12:Cr3+、CaGa:Mn2+などが挙げられる。 Specific examples of the inorganic phosphor that emits red fluorescence (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with excitation light of ultraviolet to near ultraviolet with a wavelength of 300 to 440 nm include Gd 3 Ga 4 O 12 : Cr 3+ , CaGa 2. S 4 : Mn 2+ and the like can be mentioned.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光(波長が600nm〜700nmの蛍光)を発する無機蛍光体の具体例としては、MgTiO:Mn4+、KSiF:Mn4+などが挙げられる。 Specific examples of inorganic phosphors that emit red fluorescence (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Mg 2 TiO 4 : Mn 4+ and K 2 SiF 6 : Mn 4+. Etc.

無機蛍光体粉末の平均粒子径(D50)は、特に限定されず、例えば、1〜50μm、特に5〜25μmであることが好ましい。無機蛍光体粉末の平均粒子径(D50)が大きすぎると、発光色が不均一になりやすくなる。また、緻密な焼結体が得られにくく、波長変換部材2中に気孔が残存しやすくなる。一方、無機蛍光体粉末の平均粒子径(D50)が小さすぎると、発光強度が低下しやすくなる。 The average particle diameter (D 50 ) of the inorganic phosphor powder is not particularly limited, and is preferably 1 to 50 μm, particularly 5 to 25 μm, for example. If the average particle size (D 50 ) of the inorganic phosphor powder is too large, the emission color tends to be non-uniform. Further, it is difficult to obtain a dense sintered body, and pores easily remain in the wavelength conversion member 2. On the other hand, if the average particle diameter (D 50 ) of the inorganic phosphor powder is too small, the emission intensity tends to decrease.

波長変換部材2における無機蛍光体粉末の含有量は30〜99.9質量%、35〜99質量%、50〜95質量%、特に70〜90質量%であることが好ましい。無機蛍光体粉末の含有量が少なすぎると、波長変換部材2を用いた光源の輝度が低くなる傾向がある。一方、無機蛍光体粉末の含有量が多すぎると、相対的にガラス粉末の含有量が少なくなって、緻密な焼結体が得られにくくなる。結果として、波長変換部材2中に気孔が多くなり、光散乱の原因となるため、波長変換部材2を用いた光源の発光強度が低下する傾向がある。   The content of the inorganic phosphor powder in the wavelength conversion member 2 is preferably 30 to 99.9% by mass, 35 to 99% by mass, 50 to 95% by mass, and particularly preferably 70 to 90% by mass. When there is too little content of inorganic fluorescent substance powder, there exists a tendency for the brightness | luminance of the light source using the wavelength conversion member 2 to become low. On the other hand, when there is too much content of inorganic fluorescent substance powder, content of glass powder will decrease relatively and it will become difficult to obtain a precise | minute sintered compact. As a result, since the pores increase in the wavelength conversion member 2 and cause light scattering, the light emission intensity of the light source using the wavelength conversion member 2 tends to decrease.

ガラス粉末としては、無機蛍光体粉末を好適に分散できるものであれば特に限定されない。ガラス粉末の具体例としては、例えば、珪酸塩系ガラス、硼珪酸塩系ガラス、リン酸塩系ガラス、硼リン酸塩系ガラス、スズリン酸塩系ガラスなどが挙げられる。なかでも、硼珪酸塩系ガラスは耐熱性が高いため、高強度な励起光や、無機蛍光体粉末からの発熱による劣化を抑制できる。また、耐候性にも優れている。また、スズリン酸塩系ガラスは軟化温度が例えば600℃以下と低くすることが容易であるため、例えば放熱部材3に対し、無機蛍光体粉末およびガラス粉末の混合物を加熱プレスすることにより、波長変換素子1上に容易に波長変換部材2を形成することができる。この際、放熱部材3に要求される耐熱性が低くなり、材料選択の自由度が向上する。また、加熱プレス時における無機蛍光体粉末の劣化を抑制できる。   The glass powder is not particularly limited as long as the inorganic phosphor powder can be suitably dispersed. Specific examples of the glass powder include silicate glass, borosilicate glass, phosphate glass, borophosphate glass, and tin phosphate glass. Especially, since borosilicate glass has high heat resistance, it is possible to suppress deterioration due to high-intensity excitation light and heat generation from inorganic phosphor powder. It also has excellent weather resistance. Further, since tin phosphate glass can be easily softened at a low temperature of, for example, 600 ° C. or lower, wavelength conversion is performed by, for example, heat-pressing a mixture of the inorganic phosphor powder and the glass powder to the heat dissipation member 3. The wavelength conversion member 2 can be easily formed on the element 1. At this time, the heat resistance required for the heat radiating member 3 is reduced, and the degree of freedom in material selection is improved. Moreover, the deterioration of the inorganic phosphor powder at the time of hot pressing can be suppressed.

硼珪酸塩系ガラスとしては、ガラス組成として、モル%表示で、ガラス粉末が、モル百分率で、SiO 30〜70%、B 1〜15%、MgO 0〜10%、CaO 0〜25%、SrO 0〜10%、BaO 5〜40%、RO(RはMg、Ca、Sr、Baを表す) 10〜45%、Al 0〜20%、ZnO 0〜10%を含有するものが好ましい。 As a borosilicate glass, the glass composition is expressed in mol%, and the glass powder is in mol percentage, SiO 2 30 to 70%, B 2 O 3 1 to 15%, MgO 0 to 10%, CaO 0 to 0. Contains 25%, SrO 0-10%, BaO 5-40%, RO (R represents Mg, Ca, Sr, Ba) 10-45%, Al 2 O 3 0-20%, ZnO 0-10% Those that do are preferred.

スズリン酸塩系ガラスとしては、ガラス組成として、モル%表示で、SnO 35〜80%、P 5〜40%、B 0〜30%を含有するものが好ましい。 The Suzurin salt-based glass, as a glass composition, in mol%, SnO 35~80%, P 2 O 5 5~40%, those containing 2 O 3 0 to 30% B is preferred.

これらのガラスには、前記成分以外にも、本発明の効果を損なわない範囲で、例えばZnO、Ta、TiO、Nb、GdおよびLaの少なくとも一つの成分を、合量で10モル%まで含有していてもよい。 In addition to the above components, these glasses include, for example, at least one of ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3, and La 2 O 3 as long as the effects of the present invention are not impaired. One component may be contained in a total amount of up to 10 mol%.

なお、本発明において、「軟化温度」はDTA(示差熱分析)により測定した温度である。   In the present invention, the “softening temperature” is a temperature measured by DTA (differential thermal analysis).

波長変換部材2には、無機蛍光体粉末およびガラス粉末以外にも、例えばアルミナ粉末やシリカ粉末等の光拡散材が含まれていてもよい。   In addition to the inorganic phosphor powder and the glass powder, the wavelength conversion member 2 may contain a light diffusing material such as alumina powder or silica powder.

放熱部材3は、Alおよびセラミックスを含む複合材料からなるものである。具体的には、Al 10〜99.9体積%、セラミックス 0.1〜90体積%(好ましくはAl 20〜99体積%、セラミックス 1〜80体積%、より好ましくはAl 30〜95体積%、セラミックス 5〜70体積%、さらに好ましくはAl 40〜90体積%、セラミックス 10〜60体積%、最も好ましくはAl 50〜80体積%、セラミックス 20〜50体積%)を含む複合材料からなるものであることが好ましい。ここで、セラミックスの含有量が少なすぎる場合は、放熱部材3の熱膨張率が大きくなって、波長変換部材2が放熱部材3から剥離しやすくなる。一方、セラミックスの含有量が多すぎる場合は、放熱部材3の密度が大きくなって、光源の軽量化が困難になる傾向がある。なお、Alおよびセラミックス以外にも、例えばMg、Cr、Fe等の金属などの成分を合量で10体積%以下、特に5体積%以下含有していても構わない。   The heat radiating member 3 is made of a composite material containing Al and ceramics. Specifically, Al 10 to 99.9% by volume, ceramics 0.1 to 90% by volume (preferably Al 20 to 99% by volume, ceramics 1 to 80% by volume, more preferably Al 30 to 95% by volume, ceramics 5 to 70% by volume, more preferably Al 40 to 90% by volume, ceramics 10 to 60% by volume, and most preferably Al 50 to 80% by volume, ceramics 20 to 50% by volume). Is preferred. Here, when there is too little content of ceramics, the thermal expansion coefficient of the heat radiating member 3 becomes large, and the wavelength conversion member 2 becomes easy to peel from the heat radiating member 3. On the other hand, when there is too much content of ceramics, the density of the heat radiating member 3 becomes large, and there exists a tendency for the weight reduction of a light source to become difficult. In addition to Al and ceramics, components such as metals such as Mg, Cr, and Fe may be contained in a total amount of 10% by volume or less, particularly 5% by volume or less.

セラミックスとしては、SiCやAlN等が挙げられる。これらの材料を用いることにより、レーザー素子等の高出力の発光素子を励起光源として使用した場合であっても、波長変換部材2から放熱部材3に効率よく放熱される。そのため、波長変換部材2に含まれる無機蛍光体粉末の熱消光が原因となる輝度低下が発生しにくい。具体的には、放熱部材3の熱伝導率は、100W/mK以上、150W/mK以上、200W/mK以上、特に250W/mK以上であることが好ましい。   Examples of ceramics include SiC and AlN. By using these materials, even when a high-power light emitting element such as a laser element is used as an excitation light source, heat is efficiently radiated from the wavelength conversion member 2 to the heat radiating member 3. For this reason, it is difficult for a decrease in luminance due to thermal quenching of the inorganic phosphor powder contained in the wavelength conversion member 2 to occur. Specifically, the heat conductivity of the heat radiating member 3 is preferably 100 W / mK or more, 150 W / mK or more, 200 W / mK or more, particularly 250 W / mK or more.

また放熱部材3は、前記複合材料からなるため、軽量化を図ることができる。具体的には、放熱部材3の密度は、3g/cm以下、2.5g/cm以下、特に2g/cm以下であることが好ましい。 Moreover, since the heat radiating member 3 consists of the said composite material, weight reduction can be achieved. Specifically, the density of the heat radiating member 3 is preferably 3 g / cm 3 or less, 2.5 g / cm 3 or less, and particularly preferably 2 g / cm 3 or less.

さらに、放熱部材3が前記複合材料からなることにより、波長変換部材2との熱膨張率差を低減することが容易になるため、使用時に高温になっても、波長変換部材2が放熱部材3から剥離することを抑制できる。   Furthermore, since the heat radiating member 3 is made of the composite material, it becomes easy to reduce the difference in coefficient of thermal expansion from the wavelength converting member 2. It can suppress peeling from.

波長変換部材2と放熱部材3の熱膨張率差は、35×10−7/℃以下、30×10−7/℃以下、20×10−7/℃以下、特に10×10−7/℃以下であることが好ましい。当該熱膨張率差が大きすぎると、例えば波長変換素子1の温度が上昇した際に、波長変換部材2が放熱部材3から剥離しやすくなる。 The difference in thermal expansion coefficient between the wavelength conversion member 2 and the heat radiating member 3 is 35 × 10 −7 / ° C. or less, 30 × 10 −7 / ° C. or less, 20 × 10 −7 / ° C. or less, particularly 10 × 10 −7 / ° C. The following is preferable. If the thermal expansion coefficient difference is too large, for example, when the temperature of the wavelength conversion element 1 rises, the wavelength conversion member 2 is easily peeled off from the heat dissipation member 3.

例えば、波長変換部材2として、スズリン酸塩系ガラス粉末と無機蛍光体粉末を含む混合粉末の焼結体からなるものを使用した場合、放熱部材3の熱膨張率は、100×10−7〜170×10−7/℃、120×10−7〜160×10−7/℃、特に130×10−7〜150×10−7/℃であることが好ましい。また、波長変換部材2として、硼珪酸塩系ガラス粉末と無機蛍光体粉末を含む混合粉体の焼結体からなるものを使用した場合、放熱部材3の熱膨張係数は、40×10−7〜100×10−7/℃、50×10−7〜90×10−7/℃、特に60×10−7〜80×10−7であることが好ましい。 For example, when the wavelength conversion member 2 is made of a sintered powder of a mixed powder containing tin phosphate glass powder and inorganic phosphor powder, the thermal expansion coefficient of the heat radiating member 3 is 100 × 10 −7 to It is preferably 170 × 10 −7 / ° C., 120 × 10 −7 to 160 × 10 −7 / ° C., and particularly preferably 130 × 10 −7 to 150 × 10 −7 / ° C. Moreover, when the thing which consists of a sintered compact of the mixed powder containing a borosilicate type | system | group glass powder and inorganic fluorescent substance powder is used as the wavelength conversion member 2, the thermal expansion coefficient of the thermal radiation member 3 is 40 * 10 <-7>. ˜100 × 10 −7 / ° C., 50 × 10 −7 to 90 × 10 −7 / ° C., and particularly preferably 60 × 10 −7 to 80 × 10 −7 .

なお、本発明において、熱膨張率は30〜380℃の温度範囲における測定値をいう。   In addition, in this invention, a thermal expansion coefficient says the measured value in the temperature range of 30-380 degreeC.

放熱部材3は、例えば、Al粉末とセラミックス粉末を所定の比率で混合して、焼結させることにより作製することができる。   The heat radiating member 3 can be produced by, for example, mixing Al powder and ceramic powder at a predetermined ratio and sintering them.

図1および2に示すように、本実施形態では、放熱部材3は板状に形成されている。もっとも、本発明において、放熱部材3は板状に限定されず、例えば棒状や直方体状であってもよい。   As shown in FIGS. 1 and 2, in the present embodiment, the heat radiating member 3 is formed in a plate shape. But in this invention, the thermal radiation member 3 is not limited to plate shape, For example, rod shape and a rectangular parallelepiped shape may be sufficient.

波長変換部材2の形状寸法は、特に限定されない。本実施形態では、具体的には、波長変換部材2は円盤状である。波長変換部材2の直径は100mm以下、3〜80mm、特に25〜70mmであることが好ましい。波長変換部材2の直径が大きすぎると、光源が大型化して軽量化が困難になる傾向がある。また、波長変換部材2の厚みは、0.01〜2mm、0.02〜1mm、0.03〜0.5mm、0.04〜0.2mm、特に0.05〜0.1mmであることが好ましい。波長変換部材2の厚みが小さすぎると、無機蛍光体粉末の含有量が少なくなり、所望の色合いが得られにくくなる。また、波長変換部材2の厚みを均一にすることが困難になり、色むらの原因となる傾向がある。一方、波長変換部材2の厚みが大きすぎると、波長変換部材2において波長変換される励起光の割合が大きくなり、所望の色合いの合成光が得られにくくなる。   The shape dimension of the wavelength conversion member 2 is not particularly limited. In the present embodiment, specifically, the wavelength conversion member 2 has a disk shape. The diameter of the wavelength conversion member 2 is preferably 100 mm or less, 3 to 80 mm, particularly 25 to 70 mm. If the diameter of the wavelength conversion member 2 is too large, the light source tends to be large and difficult to reduce in weight. Moreover, the thickness of the wavelength conversion member 2 may be 0.01-2 mm, 0.02-1 mm, 0.03-0.5 mm, 0.04-0.2 mm, especially 0.05-0.1 mm. preferable. When the thickness of the wavelength conversion member 2 is too small, the content of the inorganic phosphor powder is reduced and it is difficult to obtain a desired color. Moreover, it becomes difficult to make the thickness of the wavelength conversion member 2 uniform, and it tends to cause color unevenness. On the other hand, when the thickness of the wavelength conversion member 2 is too large, the ratio of the excitation light that is wavelength-converted in the wavelength conversion member 2 becomes large, and it becomes difficult to obtain the synthesized light with a desired hue.

反射層4は、450〜750nmの波長域において85%以上、特に90%以上の反射率を有する材料からなることが好ましい。これにより、波長変換素子1からの光の取り出し効率の低下を抑制できる。具体的には、反射層4としては、Ag、Al、Au、PdおよびTiから選択された金属またはその合金からなるものが挙げられる。なかでも、熱伝導性または反射率の高いAgやAlであることがより好ましい。   The reflective layer 4 is preferably made of a material having a reflectance of 85% or more, particularly 90% or more in the wavelength region of 450 to 750 nm. Thereby, the fall of the extraction efficiency of the light from the wavelength conversion element 1 can be suppressed. Specifically, examples of the reflective layer 4 include a metal selected from Ag, Al, Au, Pd, and Ti or an alloy thereof. Among these, Ag or Al having higher thermal conductivity or reflectivity is more preferable.

反射層4の厚みは例えば0.01〜1000μm、特に0.1〜500μmであることが好ましい。反射層4の厚みが小さすぎる場合は、所望の光反射率が得られにくくなる。一方、反射層4の厚みが大きすぎる場合は、膜応力が大きくなったり、波長変換部材2において発生した熱が放熱部材3に伝導しにくくなる傾向がある。   The thickness of the reflective layer 4 is preferably 0.01 to 1000 μm, particularly preferably 0.1 to 500 μm. When the thickness of the reflective layer 4 is too small, it becomes difficult to obtain a desired light reflectance. On the other hand, when the thickness of the reflective layer 4 is too large, the film stress tends to increase, or the heat generated in the wavelength conversion member 2 tends not to be conducted to the heat radiating member 3.

保護層5としては、全光線透過率が80%以上、特に90%以上であることが好ましい。これにより、保護層5における光の吸収ロスを低減し、光源の発光強度の低下を抑制できる。具体的には、保護層5としては、SiOおよびAlなどが挙げられる。保護層5の厚みは例えば0.01〜500μm、特に0.1〜300μmであることが好ましい。保護層5の厚みが小さすぎる場合は、反射層4の酸化抑制効果が得られにくくなる。一方、保護層5の厚みが大きすぎる場合は、膜応力が大きくなったり、波長変換部材2において発生した熱が放熱部材3に伝導しにくくなる傾向がある。 The protective layer 5 preferably has a total light transmittance of 80% or more, particularly 90% or more. Thereby, the absorption loss of the light in the protective layer 5 can be reduced, and the fall of the emitted light intensity of a light source can be suppressed. Specifically, examples of the protective layer 5 include SiO 2 and Al 2 O 3 . The thickness of the protective layer 5 is preferably 0.01 to 500 μm, particularly preferably 0.1 to 300 μm. When the thickness of the protective layer 5 is too small, it becomes difficult to obtain the effect of suppressing the oxidation of the reflective layer 4. On the other hand, when the thickness of the protective layer 5 is too large, the film stress tends to increase or the heat generated in the wavelength conversion member 2 tends not to be conducted to the heat radiating member 3.

以下、本発明の波長変換素子の他の実施形態および変形例について説明する。以下の説明において、実施形態1と実質的に共通の機能を有する部材については、共通の符号を用いている。   Hereinafter, other embodiments and modifications of the wavelength conversion element of the present invention will be described. In the following description, common reference numerals are used for members having substantially the same functions as those of the first embodiment.

<実施形態2>
図3に、本発明の波長変換素子の実施形態2を説明する模式的斜視図を示す。
<Embodiment 2>
In FIG. 3, the typical perspective view explaining Embodiment 2 of the wavelength conversion element of this invention is shown.

図3に示すように、本実施形態の放熱部材3は、円盤の中央部に円形の開孔部が形成された、いわゆるドーナツ形状を有している。また、放熱部材3上に、同じくドーナツ形状の波長変換部材2が接合されている。   As shown in FIG. 3, the heat radiating member 3 of the present embodiment has a so-called donut shape in which a circular opening is formed in the center of the disk. Similarly, a donut-shaped wavelength conversion member 2 is joined on the heat dissipation member 3.

図3には示されていないが、実施形態1と同様に波長変換部材2と放熱部材3の間に、反射層4、さらには保護層5を設けてもよい。   Although not shown in FIG. 3, the reflective layer 4 and further the protective layer 5 may be provided between the wavelength conversion member 2 and the heat radiating member 3 as in the first embodiment.

<実施形態3>
図4に、本発明の波長変換素子の実施形態3を説明する模式的断面図を示す。
<Embodiment 3>
FIG. 4 is a schematic cross-sectional view illustrating Embodiment 3 of the wavelength conversion element of the present invention.

図4に示すように、本実施形態では、放熱部材3の表面に突部6が形成されている。このため、本実施形態の放熱部材3は表面積が大きくなり、放熱部材3からの放熱をより効果的に促進することができる。その結果、波長変換材料2の温度上昇をより効果的に抑制することができる。   As shown in FIG. 4, the protrusion 6 is formed on the surface of the heat dissipation member 3 in the present embodiment. For this reason, the heat radiating member 3 of the present embodiment has a large surface area and can more effectively promote heat radiating from the heat radiating member 3. As a result, the temperature rise of the wavelength conversion material 2 can be more effectively suppressed.

<変形例>
実施形態1では、波長変換部材2として、無機蛍光体粉末とガラス粉末を含む混合粉末の焼結体を用いる場合について説明した。本発明はこの構成に限定されず、波長変換部材2として、例えば、透光性YAG多結晶体や、透光性YAG単結晶を用いてもよい。
<Modification>
In Embodiment 1, the case where the sintered body of the mixed powder containing inorganic fluorescent substance powder and glass powder was used as the wavelength conversion member 2 was demonstrated. The present invention is not limited to this configuration, and as the wavelength conversion member 2, for example, a translucent YAG polycrystal or a translucent YAG single crystal may be used.

本発明の波長変換素子は、LEDやLD等の発光素子と組み合わせることにより、例えばプロジェクター用光源として使用することができる。   The wavelength conversion element of the present invention can be used as a light source for a projector, for example, by combining with a light emitting element such as an LED or an LD.

以下、本発明の波長変換素子を、実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the wavelength conversion element of the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.

(実施例1)
(1)波長変換素子の作製
モル%で、SnO 62%、P 22%、B 11%、Al 2%、MgO 3%の組成となるように原料粉末を調合し、原料バッチを調整した。原料バッチを坩堝内で1000℃で2時間加熱した。その後、得られた溶融ガラスの一部をロール成形することにより、ガラスフィルムを作製した。また、溶融ガラスの残りの一部をカーボン枠内に鋳込むことにより、ガラスブロックを作製した。
Example 1
(1) Preparation of wavelength conversion element Raw material powder was prepared so as to have a composition of 62% SnO, 22% P 2 O 5 , 11% B 2 O 3 , 2 % Al 2 O 3 and 3% MgO in mol%. The raw material batch was adjusted. The raw material batch was heated in a crucible at 1000 ° C. for 2 hours. Then, a glass film was produced by roll-forming a part of obtained molten glass. Moreover, the glass block was produced by casting the remaining part of molten glass in a carbon frame.

得られたガラスブロックを、所定の大きさに切り出し、30〜380℃の温度範囲における熱膨張率を、ディラトメーターを用いて測定した。その結果、ガラスの熱膨張率は140×10−7/℃であった。 The obtained glass block was cut into a predetermined size, and the thermal expansion coefficient in a temperature range of 30 to 380 ° C. was measured using a dilatometer. As a result, the coefficient of thermal expansion of the glass was 140 × 10 −7 / ° C.

次に、前記ガラスフィルムを、らいかい機を用いて15分間粉砕した後に、100μmのふるいに通してガラス粉末(D50:14μm、Dmax:145μm)を得た。得られたガラス粉末に対してYAG蛍光体粉末を添加して混合粉末を作製した。なお、混合粉末中におけるYAG蛍光体粉末の含有量は80質量%とした。 Next, the glass film was pulverized for 15 minutes using a raking machine, and then passed through a 100 μm sieve to obtain glass powder (D 50 : 14 μm, D max : 145 μm). A YAG phosphor powder was added to the obtained glass powder to prepare a mixed powder. The content of the YAG phosphor powder in the mixed powder was 80% by mass.

次に、アルミニウムとSiCの複合材料(アルミニウム 70体積%、SiC 30体積%)からなる放熱部材を10mm角、厚み1mmの板形状に切り出した。次に、放熱部材上にAg反射層をスパッタ法にて、厚み300nmとなるように成膜した。さらに、Ag反射層上にAl保護層を、スパッタ法により、厚み200nmとなるように成膜した。 Next, a heat radiating member made of a composite material of aluminum and SiC (aluminum 70% by volume, SiC 30% by volume) was cut into a 10 mm square and 1 mm thick plate shape. Next, an Ag reflective layer was formed on the heat radiating member by sputtering to a thickness of 300 nm. Further, an Al 2 O 3 protective layer was formed on the Ag reflective layer so as to have a thickness of 200 nm by sputtering.

反射層および保護層が形成された前記放熱部材上に、前記混合粉末を載置した。SYS製の精密ガラスプレス装置(成形型=グラッシーカーボン製の平型)を用いて、窒素雰囲気中、400℃で加熱プレス成形し、前記実施形態1と実質的に同様の構成を有する波長変換素子を得た。放熱部材上に形成された波長変換部材の直径は8mm、厚みは0.1mmであった。   The mixed powder was placed on the heat dissipation member on which the reflective layer and the protective layer were formed. A wavelength conversion element having a configuration substantially the same as that of the first embodiment, which is formed by hot press molding at 400 ° C. in a nitrogen atmosphere using a SYS precision glass press apparatus (molding die = glassy carbon flat die). Got. The wavelength conversion member formed on the heat dissipation member had a diameter of 8 mm and a thickness of 0.1 mm.

(2)評価
得られた波長変換素子において、波長変換部材の放熱部材に対する密着性を確認するためにテープ試験を実施した。試験用テープ(ファーマセル製P786、引っ張り強度:3.6kg/cm)を波長変換部材の全面に押さえつけるようにして貼り付け、貼り付け面に対して垂直方向に引っ張り、0.1秒で剥がし、波長変換部材の剥離状態を確認した。
(2) Evaluation In the obtained wavelength conversion element, a tape test was performed in order to confirm the adhesion of the wavelength conversion member to the heat dissipation member. A test tape (Pharmacel P786, tensile strength: 3.6 kg / cm 2 ) was applied to the entire surface of the wavelength conversion member so that it was pressed, pulled in a direction perpendicular to the application surface, and peeled off in 0.1 seconds. The peeling state of the wavelength conversion member was confirmed.

また、2A、波長440nmのレーザー光を、波長変換素子の波長変換部材側に垂直に10分間照射し、光照射後の波長変換部材の剥離状態を確認した。   Further, a laser beam having a wavelength of 2A and a wavelength of 440 nm was irradiated vertically for 10 minutes on the wavelength conversion member side of the wavelength conversion element, and the peeling state of the wavelength conversion member after the light irradiation was confirmed.

以上の結果を表1に示す。   The results are shown in Table 1.

(比較例1)
放熱部材としてアルミニウム合金(A5052)を用いたこと以外は、実施例と同様にして波長変換素子を作製し、評価を行った。結果を表1に示す。
(Comparative Example 1)
A wavelength conversion element was produced and evaluated in the same manner as in the example except that an aluminum alloy (A5052) was used as the heat radiating member. The results are shown in Table 1.

(比較例2)
放熱部材として銅(純銅)を用いたこと以外は、実施例と同様にして波長変換素子を作製し、評価を行った。結果を表1に示す。
(Comparative Example 2)
A wavelength conversion element was prepared and evaluated in the same manner as in the example except that copper (pure copper) was used as the heat dissipation member. The results are shown in Table 1.

(実施例2)
(1)波長変換素子の作製
モル%で、SiO 60%、B 5%、CaO 15%、BaO 10%、Al 5%、ZnO 5%の組成となるように原料粉末を調合し、原料バッチを調整した。原料バッチを坩堝内で1400℃で2時間加熱した。その後、得られた溶融ガラスの一部をロール成形することにより、ガラスフィルムを作製した。また、溶融ガラスの残りの一部をカーボン枠内に鋳込むことにより、ガラスブロックを作製した。
(Example 2)
(1) In Preparation mole% of the wavelength conversion element, SiO 2 60%, B 2 O 3 5%, CaO 15%, BaO 10%, Al 2 O 3 5%, the raw material powder so as to have the composition of 5% ZnO The raw material batch was adjusted. The raw material batch was heated in a crucible at 1400 ° C. for 2 hours. Then, a glass film was produced by roll-forming a part of obtained molten glass. Moreover, the glass block was produced by casting the remaining part of molten glass in a carbon frame.

得られたガラスブロックを、所定の大きさに切り出し、30〜380℃の温度範囲における熱膨張率を、ディラトメーターを用いて測定した。その結果、ガラスの熱膨張率は70×10−7/℃であった。 The obtained glass block was cut into a predetermined size, and the thermal expansion coefficient in a temperature range of 30 to 380 ° C. was measured using a dilatometer. As a result, the thermal expansion coefficient of the glass was 70 × 10 −7 / ° C.

次に、前記ガラスフィルムを、らいかい機を用いて30分間粉砕した後に、100μmのふるいに通してガラス粉末(D50:15μm、Dmax:132μm)を得た。得られたガラス粉末に対してYAG蛍光体粉末を添加して混合粉末を作製した。なお、混合粉末中におけるYAG蛍光体粉末の含有量は80質量%とした。 Next, the glass film was pulverized for 30 minutes using a roughing machine, and then passed through a 100 μm sieve to obtain glass powder (D 50 : 15 μm, D max : 132 μm). A YAG phosphor powder was added to the obtained glass powder to prepare a mixed powder. The content of the YAG phosphor powder in the mixed powder was 80% by mass.

次に、混合粉末を金型を用いて加圧成形し、直径1cmのボタン状の予備成型体を作製した。この予備成型体を、焼成温度830℃、真空雰囲気下で焼成した後、加工し、直径8mm、厚さ0.1mmの円盤状の波長変換部材を得た。   Next, the mixed powder was pressure-molded using a mold to produce a button-shaped preform having a diameter of 1 cm. This preform was fired in a vacuum atmosphere at a firing temperature of 830 ° C. and then processed to obtain a disk-shaped wavelength conversion member having a diameter of 8 mm and a thickness of 0.1 mm.

得られた波長変換部材上に、Ag反射層をスパッタ法にて厚み300nmになるように成膜した。次に、Ag膜上にAl保護膜を、スパッタ法にて厚み200nmとなるように成膜した。さらに、Al保護膜上に、Cr膜とAu膜をスパッタ法により各々100nmとなるように成膜した。 On the obtained wavelength conversion member, an Ag reflective layer was formed by sputtering to a thickness of 300 nm. Next, an Al 2 O 3 protective film was formed on the Ag film so as to have a thickness of 200 nm by a sputtering method. Further, a Cr film and an Au film were formed on the Al 2 O 3 protective film so as to be 100 nm each by sputtering.

次に、アルミニウムとSiCの複合材料(アルミニウム 30体積%、SiC 70体積%)からなる放熱部材を10mm角、厚み1mmの板形状に切り出した。放熱部材上に、Au膜をスパッタ法にて厚み100nmとなるように成膜した。   Next, a heat radiating member made of a composite material of aluminum and SiC (aluminum 30% by volume, SiC 70% by volume) was cut into a plate shape having a 10 mm square and a thickness of 1 mm. An Au film was formed on the heat radiating member so as to have a thickness of 100 nm by a sputtering method.

放熱部材上のAu膜を成膜した面上に金錫半田を載置し、さらにその上に波長変換部材を、成膜された面が下側となるように設置した。その状態で、200℃に加熱したヒートブロック上で加熱し、金錫半田を軟化させ、波長変換部材と放熱部材を接合し波長変換素子を得た。   Gold-tin solder was placed on the surface of the heat dissipation member on which the Au film was formed, and the wavelength conversion member was further placed thereon so that the film-formed surface was on the lower side. In this state, heating was performed on a heat block heated to 200 ° C. to soften the gold-tin solder, and the wavelength conversion member and the heat dissipation member were joined to obtain a wavelength conversion element.

得られた波長変換素子について、実施例1と同様にして評価を行った。結果を表2に示す。   The obtained wavelength conversion element was evaluated in the same manner as in Example 1. The results are shown in Table 2.

(比較例3)
放熱部材としてアルミニウム合金(A5052)を用いたこと以外は、実施例2と同様にして波長変換素子を作製し、評価を行った。結果を表2に示す。
(Comparative Example 3)
A wavelength conversion element was produced and evaluated in the same manner as in Example 2 except that an aluminum alloy (A5052) was used as the heat radiating member. The results are shown in Table 2.

(比較例4)
放熱部材として銅(純銅)を用いたこと以外は、実施例2と同様にして波長変換素子を作製し、評価を行った。結果を表2に示す。
(Comparative Example 4)
A wavelength conversion element was produced and evaluated in the same manner as in Example 2 except that copper (pure copper) was used as the heat radiating member. The results are shown in Table 2.

表1および2に示すように、実施例1および2の波長変換素子は、テープ試験および光照射試験のいずれにおいても、波長変換部材の剥離は生じなかった。   As shown in Tables 1 and 2, the wavelength conversion elements of Examples 1 and 2 did not peel off the wavelength conversion member in both the tape test and the light irradiation test.

一方、放熱部材としてアルミニウム合金を用いた比較例1および3では、テープ試験において波長変換部材の剥離が生じた。また、光照射試験においても、それぞれレーザー光照射3分後および1分後に波長変換部材の剥離が生じた。また、放熱部材として銅を用いた比較例2および4では、テープ試験において波長変換部材の剥離は生じなかったが、光照射試験において、それぞれレーザー光照射7分後および5分後に波長変換部材の剥離が生じた。   On the other hand, in Comparative Examples 1 and 3 using an aluminum alloy as the heat dissipation member, the wavelength conversion member was peeled off in the tape test. In the light irradiation test, the wavelength conversion member was peeled off 3 minutes and 1 minute after laser light irradiation, respectively. Further, in Comparative Examples 2 and 4 using copper as the heat radiating member, the wavelength conversion member was not peeled off in the tape test, but in the light irradiation test, the wavelength conversion member was 7 minutes and 5 minutes after laser light irradiation, respectively. Peeling occurred.

1 波長変換素子
2 波長変換部材
3 放熱部材
4 反射層
5 保護層
6 突部
1 Wavelength Conversion Element 2 Wavelength Conversion Member 3 Heat Dissipation Member 4 Reflective Layer 5 Protective Layer 6 Projection

Claims (15)

無機材料からなる波長変換部材と、Alおよびセラミックスを含む複合材料からなる放熱部材とを有することを特徴とする波長変換素子。   A wavelength conversion element comprising: a wavelength conversion member made of an inorganic material; and a heat dissipation member made of a composite material containing Al and ceramics. セラミックスが、SiCまたはAlNであることを特徴とする請求項1に記載の波長変換素子。   The wavelength conversion element according to claim 1, wherein the ceramic is SiC or AlN. 放熱部材が、Al 10〜99.9体積%、セラミックス 0.1〜90体積%を含む複合材料からなることを特徴とする請求項1または2に記載の波長変換素子。   3. The wavelength conversion element according to claim 1, wherein the heat dissipating member is made of a composite material containing Al 10 to 99.9% by volume and ceramics 0.1 to 90% by volume. 放熱部材の密度が3g/cm以下であることを特徴とする請求項1〜3のいずれかに記載の波長変換素子。 The wavelength conversion element according to claim 1, wherein the density of the heat dissipating member is 3 g / cm 3 or less. 放熱部材の熱伝導率が100W/mK以上であることを特徴とする請求項1〜4のいずれかに記載の波長変換素子。   The wavelength conversion element according to claim 1, wherein the heat dissipation member has a thermal conductivity of 100 W / mK or more. 波長変換部材が、無機蛍光体粉末とガラス粉末を含む混合粉末の焼結体からなることを特徴とする請求項1〜5のいずれかに記載の波長変換素子。   The wavelength conversion element according to any one of claims 1 to 5, wherein the wavelength conversion member is made of a sintered body of a mixed powder containing an inorganic phosphor powder and a glass powder. ガラス粉末が、スズリン酸塩系ガラスまたは硼珪酸塩系ガラスであることを特徴とする請求項6に記載の波長変換素子。   The wavelength conversion element according to claim 6, wherein the glass powder is tin phosphate glass or borosilicate glass. 無機蛍光体粉末を30〜99.9質量%含有することを特徴とする請求項6または7に記載の波長変換素子。   The wavelength conversion element according to claim 6 or 7, comprising 30 to 99.9% by mass of inorganic phosphor powder. 波長変換部材と放熱部材の熱膨張率の差が35×10−7/℃以下であることを特徴とする請求項1〜8のいずれかに記載の波長変換素子。 The wavelength conversion element according to claim 1, wherein a difference in thermal expansion coefficient between the wavelength conversion member and the heat dissipation member is 35 × 10 −7 / ° C. or less. 波長変換部材と放熱部材の間に反射層を備えていることを特徴とする請求項1〜9のいずれかに記載の波長変換素子。   The wavelength conversion element according to claim 1, further comprising a reflective layer between the wavelength conversion member and the heat dissipation member. 反射層が、Ag、Al、Au、PdおよびTiから選択された金属またはその合金であることを特徴とする請求項10に記載の波長変換素子。   The wavelength conversion element according to claim 10, wherein the reflective layer is a metal selected from Ag, Al, Au, Pd, and Ti, or an alloy thereof. 波長変換部材と反射層の間、および/または、反射層と放熱部材の間に保護層を備えていることを特徴とする請求項10または11に記載の波長変換素子。   The wavelength conversion element according to claim 10 or 11, further comprising a protective layer between the wavelength conversion member and the reflection layer and / or between the reflection layer and the heat dissipation member. 保護層が、SiOまたはAlであることを特徴とする請求項12に記載の波長変換素子。 The wavelength conversion element according to claim 12, wherein the protective layer is made of SiO 2 or Al 2 O 3 . 請求項1〜13のいずれかに記載の波長変換素子と発光素子とを備えていることを特徴とする光源。   A light source comprising the wavelength conversion element according to claim 1 and a light emitting element. プロジェクター用であることを特徴とする請求項14に記載の光源。   The light source according to claim 14, wherein the light source is used for a projector.
JP2011047665A 2011-03-04 2011-03-04 Wavelength conversion element, light source including the same and manufacturing method of the same Withdrawn JP2012185980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011047665A JP2012185980A (en) 2011-03-04 2011-03-04 Wavelength conversion element, light source including the same and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011047665A JP2012185980A (en) 2011-03-04 2011-03-04 Wavelength conversion element, light source including the same and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2012185980A true JP2012185980A (en) 2012-09-27

Family

ID=47015904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047665A Withdrawn JP2012185980A (en) 2011-03-04 2011-03-04 Wavelength conversion element, light source including the same and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2012185980A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088519A (en) * 2012-10-31 2014-05-15 Nippon Electric Glass Co Ltd Method for producing wavelength conversion member, and wavelength conversion member
WO2015022151A1 (en) * 2013-08-12 2015-02-19 Schott Ag Converter-heat sink composite with metallic solder connection
JP2015094777A (en) * 2013-11-08 2015-05-18 日本電気硝子株式会社 Fluorescent wheel for projector, manufacturing method of the same, and light-emitting device for projector
WO2015140854A1 (en) * 2014-03-19 2015-09-24 パナソニックIpマネジメント株式会社 Wavelength conversion element manufacturing method
EP3006823A4 (en) * 2013-06-08 2016-06-15 Appotronic China Corp Wavelength conversion device, manufacturing method thereof, and related illumination device
KR20160070121A (en) * 2013-10-15 2016-06-17 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, and light source system and projection system there for
KR20160070122A (en) * 2013-10-15 2016-06-17 아포트로닉스 코포레이션 리미티드 Manufacturing method for wavelength conversion device
CN105762239A (en) * 2016-04-12 2016-07-13 杨阳 Light conversion device, manufacture method therefor and application thereof
WO2016173526A1 (en) * 2015-04-29 2016-11-03 深圳市光峰光电技术有限公司 Wavelength conversion device, light source system, and projection device
US9599883B2 (en) 2014-06-02 2017-03-21 Casio Computer Co., Ltd. Light source unit including luminescent plate on to which excitation light from excitation light source is shone and projector including the light source unit
KR20170085605A (en) * 2013-03-05 2017-07-24 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, light-emitting device and projection system
US9769436B2 (en) 2014-12-19 2017-09-19 Casio Computer Co., Ltd Light source unit including luminescent material plate and projector
KR20170136517A (en) * 2015-04-07 2017-12-11 마테리온 코포레이션 Optically Enhanced Solid-State Optical Converters
WO2017217486A1 (en) * 2016-06-16 2017-12-21 日本碍子株式会社 Phosphor element and lighting device
KR20180112600A (en) * 2017-04-04 2018-10-12 엘지전자 주식회사 Phosphor module
KR101917704B1 (en) * 2017-04-04 2018-11-13 엘지전자 주식회사 Phosphor module
WO2019010910A1 (en) * 2017-07-13 2019-01-17 深圳市光峰光电技术有限公司 Wavelength conversion device and light source
WO2019056584A1 (en) * 2017-05-12 2019-03-28 深圳光峰科技股份有限公司 Wavelength conversion device and preparation method therefor, and laser-fluorescence conversion type light source
EP3390905A4 (en) * 2015-12-15 2019-06-26 Materion Corporation Enhanced wavelength conversion device
JP2020074047A (en) * 2020-02-10 2020-05-14 マテリオン コーポレイション Optically enhanced solid-state light converter
WO2020211824A1 (en) * 2019-04-19 2020-10-22 Materion Precision Optics (Shanghai) Limited High temperature resistant reflective layer for wavelength conversion devices
US20210187929A1 (en) * 2018-11-15 2021-06-24 Nippon Electric Glass Co., Ltd. Method of manufacturing plate-like member and laminate
JP2022033284A (en) * 2020-02-10 2022-02-28 マテリオン コーポレイション Optically enhanced solid-state light converter
JP7498054B2 (en) 2020-07-31 2024-06-11 日本特殊陶業株式会社 Wavelength conversion member, wavelength conversion device, and light source device

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088519A (en) * 2012-10-31 2014-05-15 Nippon Electric Glass Co Ltd Method for producing wavelength conversion member, and wavelength conversion member
KR20170085605A (en) * 2013-03-05 2017-07-24 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, light-emitting device and projection system
KR102066153B1 (en) * 2013-03-05 2020-01-14 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, light-emitting device and projection system
US11022276B2 (en) 2013-06-08 2021-06-01 Appotronics Corporation Limited Wavelength conversion device, manufacturing method thereof, and related illumination device
EP3006823A4 (en) * 2013-06-08 2016-06-15 Appotronic China Corp Wavelength conversion device, manufacturing method thereof, and related illumination device
WO2015022151A1 (en) * 2013-08-12 2015-02-19 Schott Ag Converter-heat sink composite with metallic solder connection
KR101823801B1 (en) * 2013-08-12 2018-01-30 쇼오트 아게 Converter-heat sink composite with metallic solder connection
CN105474050A (en) * 2013-08-12 2016-04-06 肖特股份有限公司 Converter-heat sink composite with metallic solder connection
US9982878B2 (en) 2013-08-12 2018-05-29 Schott Ag Converter-cooling element assembly with metallic solder connection
TWI555634B (en) * 2013-08-12 2016-11-01 史歐特公司 A metal-welded converter-radiator composite
US10288872B2 (en) 2013-10-15 2019-05-14 Appotronics Corporation Limited Wavelength conversion device, and light source system and projection system therefor
JP2016535396A (en) * 2013-10-15 2016-11-10 深▲ちぇん▼市光峰光電技術有限公司Appotronics Corporation Limited Wavelength converter, light source system thereof, and projection system
KR101954126B1 (en) * 2013-10-15 2019-03-05 아포트로닉스 코포레이션 리미티드 Manufacturing method for wavelength conversion device
US10146045B2 (en) 2013-10-15 2018-12-04 Appotronics Corporation Limited Manufacturing method for wavelength conversion device
KR20160070122A (en) * 2013-10-15 2016-06-17 아포트로닉스 코포레이션 리미티드 Manufacturing method for wavelength conversion device
KR20160070121A (en) * 2013-10-15 2016-06-17 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, and light source system and projection system there for
KR101868093B1 (en) * 2013-10-15 2018-07-19 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, and light source system and projection system there for
JP2015094777A (en) * 2013-11-08 2015-05-18 日本電気硝子株式会社 Fluorescent wheel for projector, manufacturing method of the same, and light-emitting device for projector
WO2015140854A1 (en) * 2014-03-19 2015-09-24 パナソニックIpマネジメント株式会社 Wavelength conversion element manufacturing method
US9599883B2 (en) 2014-06-02 2017-03-21 Casio Computer Co., Ltd. Light source unit including luminescent plate on to which excitation light from excitation light source is shone and projector including the light source unit
US9769436B2 (en) 2014-12-19 2017-09-19 Casio Computer Co., Ltd Light source unit including luminescent material plate and projector
JP2018512617A (en) * 2015-04-07 2018-05-17 マテリオン コーポレイション Optically enhanced solid state light converter
KR20170136517A (en) * 2015-04-07 2017-12-11 마테리온 코포레이션 Optically Enhanced Solid-State Optical Converters
US10353280B2 (en) 2015-04-07 2019-07-16 Materion Corporation Optically enhanced solid-state light converters
KR102393853B1 (en) * 2015-04-07 2022-05-03 마테리온 코포레이션 Optically Enhanced Solid-State Optical Converters
WO2016173526A1 (en) * 2015-04-29 2016-11-03 深圳市光峰光电技术有限公司 Wavelength conversion device, light source system, and projection device
US10802386B2 (en) 2015-12-15 2020-10-13 Materion Corporation Enhanced wavelength conversion device
EP3390905A4 (en) * 2015-12-15 2019-06-26 Materion Corporation Enhanced wavelength conversion device
CN105762239A (en) * 2016-04-12 2016-07-13 杨阳 Light conversion device, manufacture method therefor and application thereof
JPWO2017217486A1 (en) * 2016-06-16 2019-03-22 日本碍子株式会社 Phosphor element and lighting device
WO2017217486A1 (en) * 2016-06-16 2017-12-21 日本碍子株式会社 Phosphor element and lighting device
US11112086B2 (en) 2016-06-16 2021-09-07 Ngk Insulators, Ltd. Phosphor element and lighting device
KR20180112600A (en) * 2017-04-04 2018-10-12 엘지전자 주식회사 Phosphor module
KR101917704B1 (en) * 2017-04-04 2018-11-13 엘지전자 주식회사 Phosphor module
US10333273B2 (en) 2017-04-04 2019-06-25 Lg Electronics Inc. Phosphor module
KR101917703B1 (en) * 2017-04-04 2019-01-29 엘지전자 주식회사 Phosphor module
WO2019056584A1 (en) * 2017-05-12 2019-03-28 深圳光峰科技股份有限公司 Wavelength conversion device and preparation method therefor, and laser-fluorescence conversion type light source
WO2019010910A1 (en) * 2017-07-13 2019-01-17 深圳市光峰光电技术有限公司 Wavelength conversion device and light source
CN109424944A (en) * 2017-07-13 2019-03-05 深圳光峰科技股份有限公司 A kind of Wavelength converter and light source
US11975519B2 (en) * 2018-11-15 2024-05-07 Nippon Electric Glass Co., Ltd. Method of manufacturing plate-like member and laminate
US20210187929A1 (en) * 2018-11-15 2021-06-24 Nippon Electric Glass Co., Ltd. Method of manufacturing plate-like member and laminate
WO2020211824A1 (en) * 2019-04-19 2020-10-22 Materion Precision Optics (Shanghai) Limited High temperature resistant reflective layer for wavelength conversion devices
WO2020211091A1 (en) * 2019-04-19 2020-10-22 Materion Precision Optics (Shanghai) Limited High temperature resistant reflective layer for wavelength conversion devices
US11762190B2 (en) 2019-04-19 2023-09-19 Materion Precision Optics (Shanghai) Limited High temperature resistant reflective layer for wavelength conversion devices
JP7023996B2 (en) 2020-02-10 2022-02-22 マテリオン コーポレイション Optically improved solid-state optical converter
JP2022033284A (en) * 2020-02-10 2022-02-28 マテリオン コーポレイション Optically enhanced solid-state light converter
JP2020074047A (en) * 2020-02-10 2020-05-14 マテリオン コーポレイション Optically enhanced solid-state light converter
JP7498054B2 (en) 2020-07-31 2024-06-11 日本特殊陶業株式会社 Wavelength conversion member, wavelength conversion device, and light source device

Similar Documents

Publication Publication Date Title
JP2012185980A (en) Wavelength conversion element, light source including the same and manufacturing method of the same
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
JP5549539B2 (en) Wavelength conversion element, light source including the same, and manufacturing method thereof
JP6497544B2 (en) Crystallized glass phosphor and wavelength conversion member using the same
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
US20130049575A1 (en) Phosphor composite member, led device and method for manufacturing phosphor composite member
JP5854367B2 (en) Method for manufacturing phosphor composite member
JP5724461B2 (en) Method for manufacturing wavelength conversion member, wavelength conversion member produced thereby, and wavelength conversion element
WO2018225424A1 (en) Wavelength converter and method of manufacture therefor, and light-emitting device using wavelength converter
WO2018003454A1 (en) Wavelength conversion member, and light emitting device using same
JP7268315B2 (en) WAVELENGTH CONVERSION MEMBER, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
WO2018189997A1 (en) Wavelength conversion member and wavelength conversion element, and light-emitting device using same
JP2018043912A (en) Photoconversion member, illumination light source and method for producing photoconversion member
JP2012036367A (en) Phosphor composite member
JP6597964B2 (en) Wavelength conversion member, wavelength conversion element, and light emitting device using the same
JP2012052061A (en) Phosphor composite member
JP2012059893A (en) Wavelength conversion member, light source, and manufacturing method for wavelength conversion member
WO2012008306A1 (en) Phosphor composite member, led device and method for manufacturing phosphor composite member
CN113583675A (en) Laser-excited metal substrate fluorescent film, fluorescence conversion module, preparation method and application
WO2020213456A1 (en) Wavelength conversion member, production method therefor, and light-emitting device
JP2014112696A (en) Wavelength conversion element, and light source with the same
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
WO2019065011A1 (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
WO2019021846A1 (en) Wavelength conversion member and light emitting device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513