JP2018043912A - Photoconversion member, illumination light source and method for producing photoconversion member - Google Patents

Photoconversion member, illumination light source and method for producing photoconversion member Download PDF

Info

Publication number
JP2018043912A
JP2018043912A JP2016179815A JP2016179815A JP2018043912A JP 2018043912 A JP2018043912 A JP 2018043912A JP 2016179815 A JP2016179815 A JP 2016179815A JP 2016179815 A JP2016179815 A JP 2016179815A JP 2018043912 A JP2018043912 A JP 2018043912A
Authority
JP
Japan
Prior art keywords
conversion member
light
light conversion
glass
phosphor particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016179815A
Other languages
Japanese (ja)
Other versions
JP6693360B2 (en
Inventor
谷田 正道
Masamichi Tanida
正道 谷田
直樹 藤井
Naoki Fujii
直樹 藤井
田中 宏明
Hiroaki Tanaka
宏明 田中
吉野 晴彦
Haruhiko Yoshino
晴彦 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2016179815A priority Critical patent/JP6693360B2/en
Publication of JP2018043912A publication Critical patent/JP2018043912A/en
Application granted granted Critical
Publication of JP6693360B2 publication Critical patent/JP6693360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoconversion member that: allows sufficient sintering even when containing a large number of phosphor particles; can significantly inhibit a decrease in the brightness of conversion light; and has excellent water resistance.SOLUTION: A photoconversion member is composed of glass with phosphor particles dispersed. The glass has a composition comprising, on an oxide basis by mol%, SiO0-40%, BO10-45%, AlO0-10%, ZnO 25-64%, alkaline earth metal oxides (MgO+CaO+SrO+BaO) 0-30%, alkali metal oxides (LiO+NaO+KO) 0-5%, BiO0.5% or less, and PbO 0.5% or less. In the glass, the content of the phosphor particles is more than 15 vol.%.SELECTED DRAWING: None

Description

本発明は、光変換部材、照明光源および光変換部材の製造方法に係り、特に、多くの蛍光体粒子を分散させても安定な光変換部材、照明光源および光変換部材の製造方法に関する。   The present invention relates to a light conversion member, an illumination light source, and a method for manufacturing the light conversion member, and more particularly, to a light conversion member, an illumination light source, and a method for manufacturing the light conversion member that are stable even when many phosphor particles are dispersed.

LEDは、微小電力の照明光源として利用され、照明用途への応用が期待されている。このとき、LEDは、その発光色をそのまま照射して利用できればよいが、求める発光色は多岐に亘るため、LEDの光を波長変換する蛍光体粒子を用いるのが一般的である。   The LED is used as an illumination light source with a minute electric power and is expected to be applied to illumination applications. At this time, it is sufficient that the LED can be used by irradiating its emission color as it is, but since there are a wide variety of emission colors required, it is common to use phosphor particles that convert the wavelength of the LED light.

例えば、白色LEDの白色光は、光源となる青色LED素子から発せられる青色光と、その青色光の一部を蛍光体粒子により波長を変換した赤色等の光とを合成して得られる。この種のLEDは青色LED素子をシリコーンなどの透明樹脂に蛍光体を分散した蛍光体層で被覆したものが知られていたが、耐熱性、耐光性が不十分であった。   For example, white light of a white LED is obtained by combining blue light emitted from a blue LED element serving as a light source and red light or the like obtained by converting a part of the blue light with phosphor particles. This type of LED has been known in which a blue LED element is coated with a phosphor layer in which a phosphor is dispersed in a transparent resin such as silicone, but has insufficient heat resistance and light resistance.

樹脂を用いるよりも長寿命の白色照明光源を得る光変換部材として、樹脂の代わりにガラス粉末を用い、蛍光体粉末と混合し、焼結させることで、ガラス中に蛍光体粉末を分散させたものが知られている(例えば、特許文献1参照)。   As a light conversion member that obtains a white illumination light source that has a longer life than using resin, glass powder is used instead of resin, and phosphor powder is dispersed in glass by mixing and sintering with phosphor powder. Those are known (for example, see Patent Document 1).

特開2010−132923号公報JP 2010-132923 A

ところで、光密度が高いLED光を入射し、ほぼ全ての光を蛍光体による発光色に変換する光変換部材が求められている。このようにほぼ全てのLED光を変換することで、任意の蛍光体発光による比較的波長幅の広い光を高輝度で且つ、LED光の混色を抑えた光を取り出すことができる。   By the way, there is a demand for a light conversion member that receives LED light having a high light density and converts almost all light into a light emission color by a phosphor. By converting almost all of the LED light in this way, it is possible to extract light having a relatively wide wavelength width due to light emission of an arbitrary phosphor and having high luminance and suppressed color mixing of the LED light.

しかし、特許文献1の発光色変換部材は、実施例として具体的に示されたものは蛍光体粉末の含有量を10体積%程度までに抑えたものであり、LED光の透過を十分に抑えられるものではない。   However, the light emitting color conversion member disclosed in Patent Document 1 is specifically shown as an example in which the content of the phosphor powder is suppressed to about 10% by volume, and the transmission of LED light is sufficiently suppressed. It is not something that can be done.

なお、上記特許文献1を参考に、LED光の混色を抑えるために蛍光体粉末の含有量を増量させることも考えられるが、蛍光体粒子をガラス中に多量に含有させると、焼結が十分にできない場合があったり、焼結は十分にできたとしても使用を継続したときに輝度低下が著しかったり、LED照明光源として優れた品質を有するものが得られない場合があることがわかった。   Although it is conceivable to increase the content of the phosphor powder in order to suppress the color mixing of the LED light with reference to the above-mentioned Patent Document 1, sintering is sufficient when the phosphor particles are contained in a large amount in the glass. It has been found that even if the sintering is sufficient, there is a case where the brightness is significantly lowered when the use is continued, or an LED illumination light source having an excellent quality may not be obtained.

そこで、上記問題に鑑み、本発明は、蛍光体粒子を多量に含有する場合であっても、焼結を十分に行うことができ、長時間にわたる使用において変換光の輝度低下を有意に抑制でき、耐水性に優れ、LED光吸収率が良好な光変換部材および該光変換部材を使用した照明光源の提供を目的とする。   Therefore, in view of the above problems, the present invention can sufficiently perform the sintering even when the phosphor particles are contained in a large amount, and can significantly suppress the decrease in the luminance of the converted light over a long period of use. An object of the present invention is to provide a light conversion member having excellent water resistance and a good LED light absorption rate and an illumination light source using the light conversion member.

本発明者らが鋭意検討した結果、所定の組成を有するガラスを用いることによって、蛍光体粒子の含有量が多い場合でも十分に焼結させることができ、長時間にわたる使用において変換光の輝度低下の抑制が可能で、また、湿気の多いような環境でも変質しにくい耐水性を有することを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors, by using a glass having a predetermined composition, it is possible to sufficiently sinter even when the content of the phosphor particles is large, and the luminance of the converted light is reduced in use over a long period of time. It has been found that it has water resistance that is difficult to change even in humid environments, and has completed the present invention.

すなわち、本発明の光変換部材は、蛍光体粒子が分散されたガラスからなる光変換部材であって、前記ガラスが、酸化物基準のモル%表示で、SiO 0〜40%、B 10〜45%、Al 0〜10%、ZnO 25〜64%、アルカリ土類金属酸化物(MgO+CaO+SrO+BaO) 0〜30%、アルカリ金属酸化物(LiO+NaO+KO) 0〜5%、Bi 0.5%以下、PbO 0.5%以下、の組成からなり、かつ、前記蛍光体粒子が、前記ガラス中に15体積%超含まれること、を特徴とする。 That is, the light conversion member of the present invention is a light conversion member made of glass in which phosphor particles are dispersed, and the glass is expressed in terms of mol% on an oxide basis, SiO 2 0 to 40%, B 2 O. 3 10 to 45%, Al 2 O 3 0 to 10%, ZnO 25 to 64%, alkaline earth metal oxide (MgO + CaO + SrO + BaO) 0 to 30%, alkali metal oxide (Li 2 O + Na 2 O + K 2 O) 0 5%, Bi 2 O 3 0.5% or less, and PbO 0.5% or less, and the phosphor particles are contained in the glass in an amount of more than 15% by volume.

本発明の光変換部材の製造方法は、ガラス粉末、蛍光体粒子、樹脂および有機溶媒を混練してスラリーとする混練工程と、得られたスラリーを所望の形状に成形する成形工程と、成形されたスラリーを焼成して光変換部材とする焼成工程と、を有する光変換部材の製造方法であって、製造される前記光変換部材が、上記本発明の光変換部材であることを特徴とする。   The method for producing a light conversion member of the present invention includes a kneading step of kneading glass powder, phosphor particles, a resin and an organic solvent into a slurry, a molding step of molding the obtained slurry into a desired shape, and molding. A method for producing a light conversion member comprising firing the slurry to form a light conversion member, wherein the light conversion member produced is the light conversion member of the present invention. .

そして、本発明の照明光源は、本発明の光変換部材と、前記光変換部材を通して外部へ光を照射可能な光源と、を有することを特徴とする。   And the illumination light source of this invention has the light conversion member of this invention, and the light source which can irradiate light outside through the said light conversion member, It is characterized by the above-mentioned.

本発明の光変換部材およびその製造方法は、上記の通り蛍光体粒子の含有量が多い場合であっても十分に焼成させて光変換部材とでき、長時間にわたる使用においても安定した変換光を照射できる光変換部材とできる。   As described above, the light conversion member of the present invention and the method for producing the light conversion member can be sufficiently baked into a light conversion member even when the content of the phosphor particles is large, and stable converted light can be obtained even over a long period of use. The light conversion member can be irradiated.

本発明の照明光源は、本発明の光変換部材を使用するため、上記のように蛍光体による変換光を安定して得られる。これは、主に変換光からなる光を外部への照射光とする場合に有用であり、蛍光体粒子の種類を選択することで所望の波長の光からなる照射光を得ることができる。   Since the illumination light source of the present invention uses the light conversion member of the present invention, the light converted by the phosphor can be stably obtained as described above. This is useful when light mainly composed of converted light is used as external irradiation light, and irradiation light composed of light having a desired wavelength can be obtained by selecting the type of phosphor particles.

本発明の一実施形態である照明光源の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the illumination light source which is one Embodiment of this invention. 本発明の他の実施形態である照明光源の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the illumination light source which is other embodiment of this invention. 本発明の他の実施形態である照明光源の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the illumination light source which is other embodiment of this invention. 本発明の他の実施形態である照明光源の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the illumination light source which is other embodiment of this invention.

以下、本発明に係る、光変換部材(以下、「本光変換部材」ともいう)、光変換部材の製造方法および照明光源について説明する。   Hereinafter, a light conversion member (hereinafter also referred to as “main light conversion member”), a method for manufacturing the light conversion member, and an illumination light source according to the present invention will be described.

[光変換部材]
本発明の光変換部材は、上記の通り、蛍光体粒子を分散して含有する所望のガラスからなる。
[Light conversion member]
As described above, the light conversion member of the present invention is made of desired glass containing phosphor particles dispersed therein.

ここで、本光変換部材を形成するガラスは、以下に説明するガラス組成を有するように形成される。このような光変換部材は、光源から発せられた光(光源光)の波長を変換し、この変換により得られた変換光を外部へ照射可能とする。光源光は、青色付近の光を発光するLEDを使うことができ、近紫外LED(発光中心波長350〜410nm)でもよいが、発光効率が高い青色LED(発光中心420〜480nm)が好ましい。同様に、前記波長のレーザ光源でも好適である。   Here, the glass forming the present light conversion member is formed to have a glass composition described below. Such a light conversion member converts the wavelength of light (light source light) emitted from a light source, and makes it possible to irradiate the converted light obtained by this conversion to the outside. As the light source light, an LED that emits light in the vicinity of blue can be used, and a near-ultraviolet LED (emission center wavelength: 350 to 410 nm) may be used, but a blue LED (emission center 420 to 480 nm) having high emission efficiency is preferable. Similarly, a laser light source having the above wavelength is also suitable.

このとき、光源光の一部は光変換部材を透過させて、光源光と変換光の合成光として外部に照射してもよいし、光源光をほぼ外部に照射しないようにして、主として変換光を外部に照射するようにしてもよい。特に、近紫外LEDや青色LEDが発する光源光は波長が短く、樹脂性のシーリング部材等を劣化させるため、さらにはLEDの発光波長のロット間バラつきを嫌い、光変換部材による変換光のみで色度のバラつきを抑えた設計にするために、主として変換光を外部に照射するようにすることが好ましい。また、自動車など車両の方向指示灯にLEDを用いる場合、保安基準、視認性の点から、青色LEDの発する光源光は外部に照射されないようにし、変換光成分が多い、色純度の高い光を外部に照射することが好ましい。   At this time, a part of the light source light may be transmitted through the light conversion member and radiated to the outside as a combined light of the light source light and the converted light. May be irradiated outside. In particular, the light source light emitted from near-ultraviolet LEDs and blue LEDs has a short wavelength and degrades resin-like sealing members. In order to achieve a design that suppresses variations in degree, it is preferable to mainly radiate converted light to the outside. In addition, when using an LED for a direction indicator lamp of a vehicle such as an automobile, from the viewpoint of safety standards and visibility, the light source light emitted from the blue LED is not radiated to the outside, and light with a large amount of converted light components and high color purity is used. It is preferable to irradiate the outside.

なお、ここで「主として変換光を外部に照射する」とは、光変換部材から外部に照射される光のうち光源光の透過光が光源光に対して3%以下であることを意味し、さらに、好ましくは2%以下、より好ましくは1.5%以下、さらに好ましくは1%以下、である。   Here, “mainly irradiating converted light to the outside” means that the transmitted light of the light source light out of the light irradiated to the outside from the light converting member is 3% or less of the light source light, Furthermore, it is preferably 2% or less, more preferably 1.5% or less, and still more preferably 1% or less.

〈ガラス〉
本発明のガラスは、酸化物基準のモル%表示で、SiO 0〜40%、B 10〜45%、Al 0〜10%、ZnO 25〜64%、アルカリ土類金属酸化物(MgO+CaO+SrO+BaO) 0〜30%、アルカリ金属酸化物(LiO+NaO+KO) 0〜5%、Bi 0.5%以下、PbO 0.5%以下、の組成からなることを特徴とする。以下、このガラスの各成分について説明する。
<Glass>
The glass of the present invention is expressed in terms of mol% on the basis of oxide, SiO 2 0 to 40%, B 2 O 3 10 to 45%, Al 2 O 3 0 to 10%, ZnO 25 to 64%, alkaline earth metal Oxide (MgO + CaO + SrO + BaO) 0 to 30%, alkali metal oxide (Li 2 O + Na 2 O + K 2 O) 0 to 5%, Bi 2 O 3 0.5% or less, PbO 0.5% or less It is characterized by. Hereinafter, each component of this glass is demonstrated.

SiOは、ガラスのネットワークフォーマーであり、ガラスを安定化でき、耐水性を高める成分でもある。本発明において、SiOは任意の成分であるが含有させることが好ましい。SiOの含有量は、0〜40%である。SiOが40%を超えると、焼結温度を高め、蛍光体に与えるダメージが大きくなったり、焼結が困難になったりするため、好ましくない。SiOの含有量は、5〜30%が好ましく、5〜20%がより好ましい。 SiO 2 is a glass network former, which can stabilize the glass and is also a component that improves water resistance. In the present invention, SiO 2 is an optional component but is preferably contained. The content of SiO 2 is 0 to 40%. If SiO 2 exceeds 40%, the sintering temperature is increased, damage to the phosphor is increased, and sintering becomes difficult, which is not preferable. The content of SiO 2 is preferably 5 to 30%, more preferably 5 to 20%.

は、ガラスのネットワークフォーマーであり、ガラスを安定化でき、必須の成分である。Bの含有量は、10〜45%である。Bの含有量が10%未満では、ガラスが不安定になり、結晶化しやすく、また、焼結性を損ねるおそれがある。一方で、Bの含有量が45%超では、ガラスの耐水性が低下するおそれがある。Bの含有量は、10〜35%が好ましく、15〜30%がより好ましい。 B 2 O 3 is a glass network former, can stabilize the glass, and is an essential component. The content of B 2 O 3 is 10 to 45%. If the content of B 2 O 3 is less than 10%, the glass becomes unstable, tends to be crystallized, and the sinterability may be impaired. On the other hand, if the content of B 2 O 3 exceeds 45%, the water resistance of the glass may be lowered. The content of B 2 O 3 is preferably 10 to 35%, more preferably 15 to 30%.

Alはガラスの耐水性を向上させ、結晶化を抑制する成分であるが、本発明においては必須成分ではない。また、焼成時に蛍光体との反応を抑制する成分でもある。Alの含有量は、0〜10%である。Alの含有量が10%超では、Tgが高くなり過ぎ、液相温度が上がるため、焼結性を損ねるおそれがある。Alの含有量は、0〜8%が好ましく、0〜6%がより好ましい。 Al 2 O 3 is a component that improves the water resistance of the glass and suppresses crystallization, but is not an essential component in the present invention. Moreover, it is also a component which suppresses reaction with a fluorescent substance at the time of baking. The content of Al 2 O 3 is 0 to 10%. If the content of Al 2 O 3 exceeds 10%, Tg becomes too high and the liquidus temperature rises, which may impair the sinterability. The content of Al 2 O 3, preferably 0 to 8%, more preferably 0 to 6%.

ZnOは、ガラス化範囲を広げ、ガラス組成の自由度を増やすという利点があり、必須成分である。また、ZnOは、Tgを下げ焼結温度を低下させる成分でもある。ZnOの含有量は、25〜64%である。ZnOの含有量が25%未満では、多量の蛍光体粉末を含有する本発明においては焼結性が低下するため好ましくない。一方で、ZnOの含有量が64%超では、ガラスが不安定になり、結晶化しやすく焼結性を損ねるおそれがある。ZnOの含有量は、40〜64%が好ましく、45〜60%がより好ましい。   ZnO has the advantage of expanding the vitrification range and increasing the degree of freedom of glass composition, and is an essential component. ZnO is also a component that lowers Tg and lowers the sintering temperature. The content of ZnO is 25 to 64%. If the content of ZnO is less than 25%, the sinterability deteriorates in the present invention containing a large amount of phosphor powder, which is not preferable. On the other hand, if the content of ZnO exceeds 64%, the glass becomes unstable and is likely to be crystallized, which may impair sinterability. The content of ZnO is preferably 40 to 64%, more preferably 45 to 60%.

CaO、SrO、MgOおよびBaOのアルカリ土類金属酸化物は、結晶化傾向を下げてガラスの安定性を高めるとともに、焼結性を向上させる成分であるが、耐水性はやや下げる傾向にあって、必須成分ではない。これらアルカリ土類金属酸化物成分の含有量はそれぞれ0〜30%、すなわち、MgOの含有量は0〜30%、CaOの含有量は0〜30%、SrOの含有量は0〜30%、BaOの含有量は0〜30%、であり、これらアルカリ土類金属酸化物の合計量は、0〜30%が好ましい。この合計量が、30%超では、ガラスの安定性が低下する、ガラスの吸収端が長波長側にシフトし、LED素子の青色光を吸収してしまうおそれがある。   CaO, SrO, MgO and BaO alkaline earth metal oxides are components that lower the crystallization tendency and increase the stability of the glass and improve the sinterability, but the water resistance tends to decrease slightly. It is not an essential ingredient. The content of these alkaline earth metal oxide components is 0 to 30%, that is, the content of MgO is 0 to 30%, the content of CaO is 0 to 30%, the content of SrO is 0 to 30%, The content of BaO is 0 to 30%, and the total amount of these alkaline earth metal oxides is preferably 0 to 30%. If the total amount exceeds 30%, the stability of the glass is lowered, and the absorption edge of the glass is shifted to the longer wavelength side, and the blue light of the LED element may be absorbed.

アルカリ土類金属酸化物の含有量は、より好ましくは、15%以下である。また、アルカリ土類金属酸化物の中では、BaOが好ましく、BaOの含有量は0〜5%がより好ましく、0〜1%がさらに好ましい。   The content of the alkaline earth metal oxide is more preferably 15% or less. Further, among the alkaline earth metal oxides, BaO is preferable, and the content of BaO is more preferably 0 to 5%, and further preferably 0 to 1%.

LiO、NaOおよびKOのアルカリ金属酸化物は、Tgを下げ焼結温度を低下させる成分であり、この系では必須成分ではない。アルカリ金属酸化物のそれぞれの含有量は0〜5%、すなわち、LiOの含有量が0〜5%、NaOの含有量が0〜5%、KOの含有量が0〜5%、であり、これらアルカリ金属酸化物の合計量は0〜5%が好ましい。 Alkali metal oxides of Li 2 O, Na 2 O and K 2 O are components that lower Tg and lower the sintering temperature, and are not essential components in this system. The content of each alkali metal oxide is 0 to 5%, that is, the content of Li 2 O is 0 to 5%, the content of Na 2 O is 0 to 5%, and the content of K 2 O is 0 to 0%. 5%, and the total amount of these alkali metal oxides is preferably 0 to 5%.

上記合計量が5%超では、屈折率が低下し、ガラスの化学的耐久性が低下する、焼成時に蛍光体との反応を促進する、ガラスの吸収端が長波長側にシフトし、LED素子の青色光を吸収してしまうおそれがある。この合計量は、より好ましくは0〜3%、さらに好ましくは0〜0.5%である。アルカリ金属酸化物は、耐水性を下げる傾向にあるため、特にTgを下げたいなどの理由がない場合、含有しない方が好ましい。   If the total amount exceeds 5%, the refractive index decreases, the chemical durability of the glass decreases, the reaction with the phosphor accelerates during firing, the glass absorption edge shifts to the long wavelength side, and the LED element May absorb blue light. This total amount is more preferably 0 to 3%, still more preferably 0 to 0.5%. Since alkali metal oxides tend to lower the water resistance, it is preferable not to contain them unless there is a reason for particularly reducing Tg.

BiやPbOは、光や熱に起因する作用によりコロイド化しやすい成分であり、実質的に含有しないことが好ましい。本願発明においては、多量の蛍光体粒子を含有するため、これら成分が含まれていると蛍光体粒子とガラスの界面でコロイド化しやすく、光変換部材の輝度低下を引き起こすおそれがあり好ましくない。なお、ここで「実質的に含有しない」とは、その含有量が0.5%以下を意味する。 Bi 2 O 3 and PbO are components that are easily colloided by the action caused by light and heat, and are preferably not substantially contained. In the present invention, since a large amount of phosphor particles is contained, it is not preferable that these components are contained, because it tends to colloid at the interface between the phosphor particles and the glass and may cause a decrease in luminance of the light conversion member. Here, “substantially does not contain” means that the content is 0.5% or less.

このガラスは本質的に上記成分からなるが、本発明の目的を損なわない範囲でその他の成分を含有していてもよい。その他の成分を含有する場合は合計の量が、酸化物基準のモル%表示で20%以下が好ましく、5%以下がより好ましく、1%以下がさらに好ましく、1%未満が特に好ましい。   This glass consists essentially of the above components, but may contain other components as long as the object of the present invention is not impaired. When other components are contained, the total amount is preferably 20% or less, more preferably 5% or less, still more preferably 1% or less, and particularly preferably less than 1% in terms of mol% based on oxide.

は、ガラスのネットワークフォーマーであり、少量の場合は耐水性を向上させる成分であり、本発明においては任意成分である。Pの含有量は、0〜2%が好ましい。Pの含有量が2%超では、ガラスが分相しやすく安定性が低下する。 P 2 O 5 is a glass network former, and in the case of a small amount, P 2 O 5 is a component that improves water resistance, and is an optional component in the present invention. The content of P 2 O 5 is preferably 0 to 2%. If the content of P 2 O 5 exceeds 2%, the glass tends to phase-separate and the stability decreases.

Laは、Bの含有量が多い場合にガラス化が可能となり、耐水性を高め、屈折率を高める成分であり、本発明においては任意成分である。La−B−ZnO系は屈折率がSiO−B−ZnO系よりも高く、一般的な蛍光体の屈折率により近付き、光散乱を抑えるのに優れたガラスである。Laの含有量は、0〜20%が好ましい。Laの含有量が20%超では、結晶化傾向が高くなり、ガラスの安定性が低下する。 La 2 O 3 is a component that can be vitrified when the content of B 2 O 3 is large, increases water resistance and increases the refractive index, and is an optional component in the present invention. The La 2 O 3 —B 2 O 3 —ZnO system has a higher refractive index than the SiO 2 —B 2 O 3 —ZnO system, is closer to the refractive index of a general phosphor, and is excellent in suppressing light scattering. It is. The content of La 2 O 3 is preferably 0 to 20%. When the content of La 2 O 3 exceeds 20%, the tendency to crystallize increases and the stability of the glass decreases.

TeOは、焼結温度を下げ、ガラスの結晶化を抑制し安定にする成分であり、本発明においては任意成分である。TeOの含有量は、0〜10%が好ましい。TeOの含有量が10%超では、非常に揮散が激しい成分であるため、熔解制御が困難になるおそれがある。TeOの含有量は、7%以下がより好ましい。 TeO 2 is a component that lowers the sintering temperature and suppresses crystallization of the glass to stabilize it, and is an optional component in the present invention. The content of TeO 2 is preferably 0 to 10%. When the content of TeO 2 is more than 10%, it is a component that is very volatile, and thus it may be difficult to control melting. The content of TeO 2 is more preferably 7% or less.

また、上記以外にも、Nb、Ta、TiO、ZrO、Gd、Gaは、耐水性を高め、ガラスの結晶化を抑制する成分でもあり、本発明のガラスに含有させても構わない任意成分である。しかしながら、いずれもガラスの焼結温度を高める成分であるため、これら成分の含有量は、それぞれ10%以下が好ましく、5%以下がより好ましい。 In addition to the above, Nb 2 O 5 , Ta 2 O 5 , TiO 2 , ZrO 2 , Gd 2 O 3 , and Ga 2 O 3 are components that increase water resistance and suppress crystallization of glass, It is an optional component that may be contained in the glass of the present invention. However, since both are components that increase the sintering temperature of the glass, the content of these components is preferably 10% or less, more preferably 5% or less.

Ce、Sb、SnOは、酸化還元を調整する成分であり、本発明のガラスに含有させても構わない任意成分である。ただし、量が多いと着色のおそれがあるため、入れる場合には1%以下の少量が好ましく、0.5%以下がより好ましい。 Ce 2 O 3 , Sb 2 O 3 , and SnO 2 are components that adjust redox, and are optional components that may be contained in the glass of the present invention. However, since there is a possibility of coloring when the amount is large, when it is added, a small amount of 1% or less is preferable, and 0.5% or less is more preferable.

Fe、CuO、Mo、V、Crは、ガラスを着色する成分であるため、母ガラスに用いるには好ましくない。本発明のガラスにはできるだけ含まないことが好ましく、含む場合であっても、これらの含有量はそれぞれ0.5%以下が好ましい。さらに、これらの成分の合量を0.5%以下とするのが好ましい。 Fe 2 O 3 , CuO, Mo 2 O 3 , V 2 O 5 , and Cr 2 O 3 are components that color the glass, and thus are not preferable for use in the mother glass. It is preferable that the glass of the present invention does not contain as much as possible, and even if it is contained, the content thereof is preferably 0.5% or less. Furthermore, the total amount of these components is preferably 0.5% or less.

上記組成のガラスは、そのガラス転移点Tg(以下、単に「Tg」ともいう)が比較的低いものとなり、特に、Tgが450〜650℃であることが好ましい。ガラス転移点が600℃超のガラスでは、本光変換部材の製造工程中、焼成する際の温度が高くなり、使用する蛍光体の種類によっては蛍光体が失活したり、ガラスと蛍光体が反応したりして、光変換部材の量子収率が低下するおそれがある。量子収率の低下を抑制するためには、ガラスのTgは、好ましくは650℃以下、より好ましくは600℃以下、さらに好ましくは580℃以下である。   The glass having the above composition has a relatively low glass transition point Tg (hereinafter also simply referred to as “Tg”), and it is particularly preferable that the Tg is 450 to 650 ° C. In a glass having a glass transition point of over 600 ° C., the temperature during firing during the production process of the present light conversion member is high, and depending on the type of phosphor used, the phosphor may be deactivated, or the glass and phosphor There is a risk that the quantum yield of the light conversion member is lowered due to reaction. In order to suppress a decrease in quantum yield, the Tg of the glass is preferably 650 ° C. or lower, more preferably 600 ° C. or lower, and further preferably 580 ° C. or lower.

一方で、ガラス転移点Tgが450℃未満では焼成温度を低くする必要があるが、ガラスが流動する温度よりも光変換部材の成型時に用いる樹脂や有機化合物の熱分解温度を下回る条件になるため、光変換部材中のカーボン含有量が多く、光吸収が大きくなり、光変換部材の量子収率が低下するおそれがある。また、内包泡が多くなり、光変換部材の光透過率が低下し、光源の発光効率が低くなるおそれがある。ガラス転移点Tgは、より好ましくは475℃以上、さらに好ましくは500℃以上である。なお、本明細書においてガラスのTgは、DTA曲線から算出されるものである。   On the other hand, if the glass transition point Tg is less than 450 ° C., it is necessary to lower the firing temperature, but the temperature is lower than the thermal decomposition temperature of the resin or organic compound used when molding the light conversion member than the temperature at which the glass flows. In addition, the carbon content in the light conversion member is large, light absorption increases, and the quantum yield of the light conversion member may be reduced. Further, the encapsulated foam increases, the light transmittance of the light conversion member is lowered, and the light emission efficiency of the light source may be lowered. The glass transition point Tg is more preferably 475 ° C. or higher, and further preferably 500 ° C. or higher. In this specification, Tg of glass is calculated from a DTA curve.

また、ガラスの密度は2.5〜5.0g/cmであることが好ましい。この範囲を外れると後述する蛍光体との比重差が大きくなり、蛍光体粒子がガラス粉末中に均一に分散されなくなり、光変換部材にした場合に変換効率が低下するおそれがある。密度はより好ましくは2.7〜4.5g/cm、さらに好ましくは3.0〜4.3g/cmである。 Moreover, it is preferable that the density of glass is 2.5-5.0 g / cm < 3 >. Outside this range, the specific gravity difference with the phosphor described later increases, and the phosphor particles are not uniformly dispersed in the glass powder, and conversion efficiency may be reduced when the light conversion member is used. The density is more preferably 2.7 to 4.5 g / cm 3 , still more preferably 3.0 to 4.3 g / cm 3 .

さらに、ガラスの屈折率は、波長633nmにおいて、1.5以上であることが好ましい。蛍光体粒子との屈折率差が大きくなり、光変換部材にした場合に光散乱が大きくなり、変換効率が低下するおそれがある。屈折率はより好ましくは1.55以上、さらに好ましくは1.6以上である。   Further, the refractive index of the glass is preferably 1.5 or more at a wavelength of 633 nm. When the refractive index difference with the phosphor particles is increased and the light conversion member is used, light scattering increases, and conversion efficiency may be reduced. The refractive index is more preferably 1.55 or more, and still more preferably 1.6 or more.

〈ガラスの製造方法〉
次に、本発明のガラスは、常法に従って、上記の所望の組成となるようにガラス原料粉末を混合し、これを溶融した後、冷却、固化して得ればよい。後述する光変換部材を製造するためのガラス原料粉末としては、本製造方法により、一旦溶融後、固化して得られたガラスを、常法により粉砕して、所定の粒度として得られるガラス粉末を用いればよい。
<Glass manufacturing method>
Next, the glass of the present invention may be obtained by mixing glass raw material powder so as to have the above desired composition, melting it, and cooling and solidifying it according to a conventional method. As a glass raw material powder for producing a light conversion member to be described later, a glass powder obtained as a predetermined particle size by pulverizing a glass obtained by melting and solidifying by a conventional method by this production method. Use it.

[光変換部材]
本光変換部材は、上記の通り、蛍光体粒子が分散されたガラスからなるものであり、ここで、本光変換部材を形成するガラスは、上記本ガラスで形成されるものである。このような光変換部材は、光源から発せられた光の波長を変換し、波長を変換した光を外部へ照射可能とする。ここで使用する光源としてはLED発光素子が好ましい。
[Light conversion member]
As described above, the present light conversion member is made of glass in which phosphor particles are dispersed. Here, the glass forming the present light conversion member is formed of the present glass. Such a light conversion member converts the wavelength of the light emitted from the light source, and enables the light having the converted wavelength to be radiated to the outside. As the light source used here, an LED light emitting element is preferable.

本光変換部材に使用する蛍光体粒子は、光源の波長を変換できるものであれば、その種類は限定されず、例えば、光変換部材に使用される公知の蛍光体粒子が挙げられる。このような蛍光体粒子としては、例えば、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、ハロゲン化物、アルミン酸塩化物またはハロリン酸塩化物等の蛍光体からなる粒子が挙げられる。上記した蛍光体の中でも、青色の光を赤、緑または黄色に変換するものが好ましく、波長400〜500nmに励起帯を有し、波長500〜700nmに発光ピーク(λ)を有するものがより好ましい。また、より高波長の光を取り出すため波長410超〜500nmに励起対を有し、波長500〜700nmに発光のピーク(λp)を有するものがさらに好ましい。 If the fluorescent substance particle used for this light conversion member can convert the wavelength of a light source, the kind will not be limited, For example, the well-known fluorescent substance particle used for a light conversion member is mentioned. Examples of such phosphor particles include particles made of a phosphor such as oxide, nitride, oxynitride, sulfide, oxysulfide, halide, aluminate chloride, or halophosphate. . Among the phosphors described above, those that convert blue light into red, green, or yellow are preferable, and those that have an excitation band at a wavelength of 400 to 500 nm and have an emission peak (λ p ) at a wavelength of 500 to 700 nm are more preferable. preferable. Further, in order to extract light having a higher wavelength, it is more preferable to have an excitation pair at a wavelength exceeding 410 to 500 nm and an emission peak (λp) at a wavelength of 500 to 700 nm.

本光変換部材は、前述の通り光源光をほぼ外部に照射しないようにして、主として変換光を外部に照射するものである。緑色の発光を利用したい場合は、Eu2+を付活したβ型サイアロン(以下、本明細書ではβ‐SiAlONと略す)を母材とした蛍光体粒子を、緑色〜黄色の発光を利用したい場合は、Ce3+を付活したイットリウムとアルミニウムの複合酸化物(YAl12;以下、本明細書ではYAGと略す)や、ルテチウムとアルミニウムの複合酸化物(LuAl12;以下、本明細書ではLAGと略す)を母材とした蛍光体粒子を、橙色〜赤色の発光を利用したい場合は、Eu2+を付活したCa固溶α型サイアロン(以下、本明細書ではα‐SiAlONと略す)や、(Ca(Sr)AlSiN)等のCASN系結晶を母材とした蛍光体粒子を用いる。 As described above, the present light conversion member mainly irradiates the converted light to the outside without substantially irradiating the light source light to the outside. If you want to use green luminescence, if you want to use phosphor particles based on Eu 2 + -activated β-sialon (hereinafter abbreviated as β-SiAlON in this specification), green to yellow luminescence Is a composite oxide of yttrium and aluminum activated with Ce 3+ (Y 3 Al 5 O 12 ; hereinafter abbreviated as YAG), or a composite oxide of lutetium and aluminum (Lu 3 Al 5 O 12 ; hereinafter, the phosphor particles as a base material the abbreviated LAG) herein, if you want to use the emission of orange to red, Ca dissolved α-sialon (hereinafter which is activated by Eu 2+, herein Phosphor particles using a CASN crystal such as (Ca (Sr) AlSiN 3 ) as a base material are used.

上記したこれらの蛍光体は、ガラスとの焼結時の高い温度に耐え得るものであり、発光時に部材や蛍光体近辺の温度が上がり、輝度が低下するという温度消光現象が現れにくい蛍光体材料である。 These phosphors described above can withstand high temperatures during sintering with glass, and phosphor materials that do not easily exhibit a temperature quenching phenomenon in which the temperature in the vicinity of the member or the phosphor increases during light emission and the luminance decreases. It is.

蛍光体は、光変換部材を通過する光が所望の色に変換されるのであれば、上記した化合物からなる群から選ばれる1以上の化合物を含有していればよく、具体的には、複数種の化合物を混合して含有していてもよいし、いずれか1つを単独で含有していてもよい。色設計の容易さの観点から、いずれか1つを単独で含有することが好ましい。   The phosphor need only contain one or more compounds selected from the group consisting of the above-described compounds as long as the light passing through the light conversion member is converted into a desired color. One kind of compound may be mixed and contained, or any one of them may be contained alone. From the viewpoint of ease of color design, it is preferable to contain any one of them.

蛍光体粒子の50%粒子直径(以下、本明細書では50%粒径と略す)D50は、1〜30μmが好ましい。蛍光体粒子の50%粒径D50が1μm未満であると、蛍光体粒子の比表面積が大きくなり、失活しやすくなるおそれがある。この50%粒径D50は、より好ましくは3μm以上、さらに好ましくは5μm以上、特に好ましくは7μm以上である。一方、蛍光体粒子の50%粒径D50が30μm超では、光変換部材中で分散性が悪くなり、光の変換効率が悪くなると共に、色度ムラが生じるおそれがある。そのため、50%粒径D50は、より好ましくは20μm以下、さらに好ましくは15μm以下である。なお、本明細書において、50%粒径D50は、レーザ回折式粒度分布測定により得られた粒度分布から、体積基準での積算%における50%値として算出した値である。 The 50% particle diameter (hereinafter abbreviated as 50% particle size in the present specification) D 50 of the phosphor particles is preferably 1 to 30 μm. If the 50% particle size D 50 of the phosphor particles is less than 1 μm, the specific surface area of the phosphor particles is increased, and the phosphor particles may be easily deactivated. The 50% particle size D 50 is more preferably 3 μm or more, further preferably 5 μm or more, and particularly preferably 7 μm or more. On the other hand, when the 50% particle diameter D 50 of the phosphor particles is more than 30 μm, the dispersibility is deteriorated in the light conversion member, the light conversion efficiency is deteriorated, and chromaticity unevenness may occur. Therefore, the 50% particle diameter D 50, and more preferably 20μm or less, more preferably 15μm or less. In the present specification, the 50% particle size D 50 is a value calculated as a 50% value in the integrated% on a volume basis from the particle size distribution obtained by laser diffraction particle size distribution measurement.

本光変換部材の量子収率は80%以上が好ましい。量子収率が80%未満では、光の利用効率が悪く、利用されずに消費される光が多いため好ましくない。光変換部材の量子収率は、より好ましくは85%以上、さらに好ましくは90%以上である。なお、上記量子収率は、励起光を照射した時の、発光としてサンプルから放出されたフォトン数と、サンプルにより吸収されたフォトン数との比率で表される。上記フォトン数は、積分球法で測定する。   The quantum yield of the present light conversion member is preferably 80% or more. If the quantum yield is less than 80%, the light use efficiency is poor, and a large amount of light is consumed without being used. The quantum yield of the light conversion member is more preferably 85% or more, and still more preferably 90% or more. The quantum yield is expressed as a ratio of the number of photons emitted from the sample as light emission when irradiated with excitation light and the number of photons absorbed by the sample. The number of photons is measured by the integrating sphere method.

光変換部材は、厚み300μm以下、例えば、50〜300μm、のプレート状が好ましい。光変換部材の厚みを50μm以上とすれば、光変換部材のハンドリングが容易になり、特に所望の大きさにカットする際に光変換部材の割れを抑制できる。光変換部材の厚みは、より好ましくは80μm以上、さらに好ましくは100μm以上、特に好ましくは120μm以上である。光変換部材の厚みを300μm以下とすれば、ガラスよりも熱伝導率が高い基板上に実装することで、蛍光体の発熱を逃がすことができ、温度消光を抑えることができる。その実装方法は、シリコーン樹脂などの接着剤で貼る方法や、光変換部材と高熱伝導率基板を焼結する方法、あるいはお互いの基板の平坦度を極端に高めて材料の融点や軟化点以下の低温で接合する方法が挙げられる。ここでは、高熱伝導率基板とは発光素子であってもよいし、厚み10μm以上有したバルク体であってもよい。光変換部材の厚みは、好ましくは270μm以下、さらに好ましくは250μm以下である。好ましくは220μm以下である。   The light conversion member is preferably plate-shaped with a thickness of 300 μm or less, for example, 50 to 300 μm. When the thickness of the light conversion member is 50 μm or more, handling of the light conversion member is facilitated, and cracking of the light conversion member can be suppressed particularly when cutting to a desired size. The thickness of the light conversion member is more preferably 80 μm or more, further preferably 100 μm or more, and particularly preferably 120 μm or more. When the thickness of the light conversion member is 300 μm or less, heat generation of the phosphor can be released and temperature quenching can be suppressed by mounting on the substrate having higher thermal conductivity than glass. The mounting method is a method of pasting with an adhesive such as silicone resin, a method of sintering the light conversion member and the high thermal conductivity substrate, or extremely increasing the flatness of each substrate to lower the melting point or softening point of the material or less. The method of joining at low temperature is mentioned. Here, the high thermal conductivity substrate may be a light emitting element or a bulk body having a thickness of 10 μm or more. The thickness of the light conversion member is preferably 270 μm or less, more preferably 250 μm or less. Preferably it is 220 micrometers or less.

本光変換部材の平面形状は特に限定されない。例えば、光変換部材が光源と接して使用される場合、光源からの光の漏れを防ぐために、光変換部材の形状は光源の形状に合わせて製造される。光源は矩形状または円状が一般的であるため、光変換部材も矩形状または円状が好ましい。また、本光変換部材は板状、すなわち断面形状は矩形状が好ましい。光変換部材内で板厚にばらつきが小さいほど、面内の色のばらつきを小さくできるため好ましい。   The planar shape of the light conversion member is not particularly limited. For example, when the light conversion member is used in contact with the light source, the shape of the light conversion member is manufactured according to the shape of the light source in order to prevent light leakage from the light source. Since the light source is generally rectangular or circular, the light conversion member is also preferably rectangular or circular. The light converting member is preferably plate-shaped, that is, the cross-sectional shape is rectangular. The smaller the variation in the plate thickness within the light conversion member, the smaller the in-plane color variation, which is preferable.

本光変換部材は基本的に蛍光体粒子が分散されたガラスからなる。ガラスと蛍光体粒子の混合割合は、特に限定されないが、光変換部材中に、体積分率で、蛍光体粒子を15%超40%以下、ガラスを60%以上85%未満が好ましい。   The light conversion member is basically made of glass in which phosphor particles are dispersed. The mixing ratio of the glass and the phosphor particles is not particularly limited, but in the light conversion member, the phosphor particles are preferably more than 15% and 40% or less, and the glass is preferably 60% or more and less than 85%.

蛍光体粒子を15%超かつガラスを85%未満で含有すれば、光源光をほぼ外部に照射しないようにして、主として変換光を外部に照射することができる。蛍光体粒子の体積分率は、より好ましくは20%以上、さらに好ましくは25%以上である。ガラスの体積分率は、より好ましくは80%以下、さらに好ましくは75%以下である。蛍光体粒子の含有量の上限は37.5%以下がより好ましく、35%以下がさらに好ましい。   If the phosphor particles are contained in an amount of more than 15% and glass is less than 85%, it is possible to mainly irradiate the converted light to the outside without substantially irradiating the light source light to the outside. The volume fraction of the phosphor particles is more preferably 20% or more, and further preferably 25% or more. The volume fraction of glass is more preferably 80% or less, and even more preferably 75% or less. The upper limit of the content of the phosphor particles is more preferably 37.5% or less, and further preferably 35% or less.

本光変換部材は、さらに、該ガラス中に、所定の耐熱フィラーが分散されてもよい。このように耐熱フィラーを含有させることで、焼成時における収縮を抑制し、蛍光体の分散状態を均一化できる。このようにして蛍光体を均一に分散できると、光変換部材から外部に照射される変換光の色バラつきを低減でき、安定した所望の色味を有する光を得ることができる。   In the present light conversion member, a predetermined heat-resistant filler may be further dispersed in the glass. Thus, by containing a heat-resistant filler, the shrinkage | contraction at the time of baking can be suppressed and the dispersion state of fluorescent substance can be made uniform. When the phosphor can be uniformly dispersed in this way, the color variation of the converted light emitted from the light conversion member to the outside can be reduced, and light having a stable desired color can be obtained.

本光変換部材に耐熱フィラーを使用する場合は、光変換部材の製造時における焼成温度に対して耐熱性を有するものであればよく、例えば、アルミナ、ジルコニア、マグネシア等が挙げられ、これらのうち1種以上を含有してもよい。   When using a heat-resistant filler for the present light conversion member, any material having heat resistance with respect to the firing temperature at the time of production of the light conversion member may be used, and examples thereof include alumina, zirconia, magnesia, and the like. You may contain 1 or more types.

このように、ガラス中に蛍光体粒子と耐熱フィラーとを分散して構成する場合には、光変換部材の焼成時における収縮を十分に抑制する効果が挙げられる。そのために、ガラス、蛍光体粒子および耐熱フィラーを所定の割合で含有するようにする。例えば、これらの合計量を100%としたとき、体積分率で、耐熱フィラーを0.1〜30%含有することが好ましい。この含有率が0.1%未満であると十分に収縮を抑制できなくなるおそれがあり、30%を超えると光変換部材の光の光透過率が低下して光源の利用効率が低下するおそれがある。   As described above, when the phosphor particles and the heat-resistant filler are dispersed in the glass, there is an effect of sufficiently suppressing the shrinkage at the time of firing the light conversion member. For that purpose, glass, phosphor particles and heat-resistant filler are contained in a predetermined ratio. For example, when the total amount of these is 100%, it is preferable to contain 0.1 to 30% of heat-resistant filler in volume fraction. If this content is less than 0.1%, shrinkage may not be sufficiently suppressed, and if it exceeds 30%, the light transmittance of the light conversion member may be reduced, and the light source utilization efficiency may be reduced. is there.

このとき、体積分率で、ガラスを50〜85%、蛍光体粒子を15〜40%、含有することが好ましい。このような含有量とすることで、光変換部材として、光源からの光の光透過率、蛍光体粒子の光変換量、をバランスよく製造でき、かつ、製造時の収縮を抑制して、光変換色度のムラが生じることを抑制できる。   At this time, it is preferable to contain 50 to 85% of glass and 15 to 40% of phosphor particles in terms of volume fraction. By setting it as such content, the light transmittance of the light from the light source and the light conversion amount of the phosphor particles can be manufactured in a well-balanced manner as the light conversion member, and the shrinkage at the time of manufacture is suppressed, and the light is converted. The occurrence of unevenness in conversion chromaticity can be suppressed.

上記のように耐熱フィラーを含有させると、焼成時の収縮を抑制して、面内の光変換色度のばらつきを抑えることができ、色度ムラの少ない光を得ることができる。さらに、光変換部材の光透過率を高く維持できるため、光束量を維持しつつ、発光変換効率を良好なものとできる。   When a heat-resistant filler is contained as described above, shrinkage during firing can be suppressed, variation in in-plane light conversion chromaticity can be suppressed, and light with less chromaticity unevenness can be obtained. Furthermore, since the light transmittance of the light conversion member can be maintained high, the light emission conversion efficiency can be improved while maintaining the light flux amount.

[光変換部材の製造方法]
本光変換部材は、ガラス粉末および蛍光体粒子、さらに必要に応じて耐熱フィラーの混合粉末の焼結体からなることが好ましい。また、本光変換部材は、該混合粉末と樹脂および有機溶媒を混練して得られるスラリーを焼成した焼結体からなることがより好ましく、上記スラリーを透明樹脂に塗工し、乾燥させて得られるグリーンシートを焼結して得られるガラスシートからなることがさらに好ましい。なお、本明細書において上記樹脂および有機溶媒の混合物をビヒクルということもある。
[Production Method of Light Conversion Member]
The light conversion member is preferably composed of a sintered body of glass powder and phosphor particles, and if necessary, a mixed powder of heat-resistant filler. The light conversion member is more preferably a sintered body obtained by firing a slurry obtained by kneading the mixed powder, a resin, and an organic solvent. The slurry is applied to a transparent resin and dried. More preferably, the green sheet is made of a glass sheet obtained by sintering. In the present specification, the mixture of the resin and the organic solvent may be referred to as a vehicle.

このように、焼結体として本光変換部材を製造するには、ガラス粉末、蛍光体粒子、樹脂および有機溶媒、さらに必要に応じて耐熱フィラーを混練してスラリーとする混練工程と、得られたスラリーを所望の形状に成形する成形工程と、成形されたスラリーを焼成して光変換部材とする焼成工程と、を順次行えばよい。   Thus, in order to produce the present light conversion member as a sintered body, a glass powder, phosphor particles, a resin and an organic solvent, and a kneading step of kneading a heat-resistant filler as necessary, to obtain a slurry, are obtained. The forming step of forming the slurry into a desired shape and the baking step of baking the formed slurry to form a light conversion member may be sequentially performed.

(混練工程)
本発明における混練工程は、ガラス粉末、蛍光体粒子、樹脂および有機溶媒、さらに必要に応じて耐熱フィラーを混練してスラリーとするもので、これら原料を均一に混練できればよい。この混練にあたっては、公知の混練方法、例えば、ディゾルバー、ホモミキサー、ニーダー、ロールミル、サンドミル、アトライター、ボールミル、バイブレーターミル、高速インペラーミル、超音波ホモジナイザー、振とう機等を使用した混練を行えばよい。なお、光変換部材に耐熱フィラーを含有させる場合には、上記混練工程において、原料成分として耐熱フィラーも同時に混合してスラリーを得ればよい。
(Kneading process)
The kneading step in the present invention involves kneading glass powder, phosphor particles, a resin and an organic solvent, and, if necessary, a heat-resistant filler to form a slurry, and it is sufficient that these raw materials can be kneaded uniformly. In this kneading, a known kneading method, for example, kneading using a dissolver, homomixer, kneader, roll mill, sand mill, attritor, ball mill, vibrator mill, high-speed impeller mill, ultrasonic homogenizer, shaker, etc. Good. In addition, when making a light conversion member contain a heat resistant filler, what is necessary is just to mix a heat resistant filler as a raw material component simultaneously in the said kneading | mixing process, and to obtain a slurry.

ここで使用するガラス粉末は、上記したガラスの組成を満足するように公知のガラス粉末の複数種を混合して調製してもよいし、所定の熱特性を有するように成分を調合して混合し、電気炉などで溶融し、急冷して所定の組成を有するガラスとして製造しておき、これを粉砕し、分級して調製してもよい。   The glass powder used here may be prepared by mixing a plurality of known glass powders so as to satisfy the above-mentioned glass composition, or by mixing and mixing components so as to have predetermined thermal characteristics. Then, it may be prepared by melting in an electric furnace or the like, rapidly cooling to produce glass having a predetermined composition, pulverizing and classifying it.

このときガラス粉末の50%粒径D50は3.5μm未満が好ましい。50%粒径D50が3.5μm以上では、蛍光体粒子や耐熱フィラーがガラス粉末中に均一に分散されなくなり、光変換部材にした場合に光変換効率が低下したり、焼成時の収縮量が大きくなったりするおそれがある。50%粒径D50は、より好ましくは2.5μm以下、さらに好ましくは1.9μm以下である。 In this case the 50% particle size D 50 of the glass powder is preferably less than 3.5 [mu] m. When the 50% particle size D 50 is 3.5 μm or more, the phosphor particles and the heat-resistant filler are not uniformly dispersed in the glass powder, and the light conversion efficiency decreases when the light conversion member is used, or the shrinkage amount during firing May increase. 50% particle diameter D 50 is more preferably 2.5μm or less, more preferably not more than 1.9 .mu.m.

また、ガラス粉末の最大粒径Dmaxは、30μm以下が好ましい。最大粒径Dmaxが30μm超では、蛍光体粒子や耐熱フィラーがガラス粉末中に均一に分散されにくくなり、光変換部材を製造した場合に、蛍光体の光変換効率が低下したり、焼成時の収縮量が大きくなったりするおそれがある。Dmaxは、より好ましくは20μm以下、さらに好ましくは15μm以下である。なお、本明細書において、Dmaxはレーザ回折式粒度分布測定により算出した最大粒径の値である。 The maximum particle diameter Dmax of the glass powder is preferably 30 μm or less. When the maximum particle size D max is more than 30 μm, the phosphor particles and the heat-resistant filler are difficult to be uniformly dispersed in the glass powder, and when the light conversion member is produced, the light conversion efficiency of the phosphor is reduced, or during firing. There is a risk that the amount of shrinkage of the material increases. D max is more preferably 20 μm or less, and still more preferably 15 μm or less. In the present specification, D max is the value of the maximum particle size calculated by laser diffraction particle size distribution measurement.

また、蛍光体粒子および耐熱フィラーは、上記光変換部材において説明した粒子である。   The phosphor particles and the heat-resistant filler are the particles described in the light conversion member.

そして、上記樹脂としては、エチルセルロース、ニトロセルロース、アクリル樹脂、酢酸ビニル、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、ロジン樹脂などを使用できる。また、上記有機溶媒としては、芳香族炭化水素、脂肪族炭化水素、アルコール、エーテル、ケトン、エステル類などを使用できる。なお、グリーンシートの強度向上のためには、ビヒクルに、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、ロジン樹脂などを含有することが好ましい。   As the resin, ethyl cellulose, nitrocellulose, acrylic resin, vinyl acetate, butyral resin, melamine resin, alkyd resin, rosin resin and the like can be used. As the organic solvent, aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, ethers, ketones, esters and the like can be used. In order to improve the strength of the green sheet, the vehicle preferably contains a butyral resin, a melamine resin, an alkyd resin, a rosin resin, or the like.

上記成分を混練する際、光変換部材中における蛍光体とガラスとの混合割合が上記説明の範囲となるように、蛍光体粒子およびガラス粉末を混合すればよい。具体的には、蛍光体粒子およびガラス粉末の合計量を100%としたとき、混合粉末中の各成分の含有量は、体積分率で、蛍光体粒子が15%超40%以下、ガラス粉末が60%以上85%未満とするのが好ましい。   When kneading the above components, the phosphor particles and the glass powder may be mixed so that the mixing ratio of the phosphor and glass in the light conversion member is in the range described above. Specifically, when the total amount of the phosphor particles and the glass powder is 100%, the content of each component in the mixed powder is the volume fraction, the phosphor particles are more than 15% and 40% or less, and the glass powder Is preferably 60% or more and less than 85%.

なお、耐熱フィラーを混合する場合には、蛍光体粒子、耐熱フィラーおよびガラス粉末の合計量を100%としたとき、混合粉末中の各成分の含有量は、体積分率で、蛍光体粒子が15%超40%以下、耐熱フィラーが0.1%以上30%以下、ガラス粉末が50%以上85%未満とするのが好ましい。   In addition, when mixing the heat-resistant filler, when the total amount of the phosphor particles, the heat-resistant filler and the glass powder is 100%, the content of each component in the mixed powder is the volume fraction, and the phosphor particles are It is preferable that the content is more than 15% and 40% or less, the heat resistant filler is 0.1% or more and 30% or less, and the glass powder is 50% or more and less than 85%.

蛍光体粒子を15%超、ガラス粉末を85%未満で含有すれば、光源光をほぼ外部に照射しないようにして、主として変換光を外部に照射することができる。   If the phosphor particles are contained in an amount of more than 15% and the glass powder is contained in less than 85%, it is possible to mainly irradiate the converted light to the outside without substantially irradiating the light source light to the outside.

蛍光体粒子の体積分率が40%超で、ガラス粉末の体積分率が60%未満では、蛍光体粒子とガラス粉末の混合体の焼結性を損ね、焼結体内部の空隙が増加し、さらに光変換部材の光透過率が低くなるおそれがある。また、変換される蛍光色の光が多くなり、所望の色の光が得られないおそれがある。   If the volume fraction of the phosphor particles is more than 40% and the volume fraction of the glass powder is less than 60%, the sinterability of the mixture of the phosphor particles and the glass powder is impaired, and the voids inside the sintered body increase. Furthermore, the light transmittance of the light converting member may be lowered. Moreover, there is a possibility that light of a desired color cannot be obtained due to an increase in converted fluorescent light.

また、耐熱フィラーの体積分率が0.1%以上であると、光変換部材の焼成時の収縮を効率的に抑制でき、蛍光体粒子が均一に分散している状態を保持でき好ましい。また、耐熱フィラーの体積分率が30%超となると、混合粉末の焼結性を損ね、焼結体内部の空隙が増加し、さらに光変換部材の光透過率が低くなるおそれがある。   Moreover, it is preferable that the volume fraction of the heat-resistant filler is 0.1% or more, since the shrinkage during firing of the light conversion member can be efficiently suppressed, and the state in which the phosphor particles are uniformly dispersed can be maintained. On the other hand, if the volume fraction of the heat resistant filler exceeds 30%, the sinterability of the mixed powder is impaired, voids inside the sintered body increase, and the light transmittance of the light conversion member may be lowered.

樹脂および有機溶剤からなるビヒクルは、上記混合粉末に対して、次の成形工程で所定形状に成形可能な程度の粘度となる量を混合してスラリーとすればよい。   A vehicle composed of a resin and an organic solvent may be made into a slurry by mixing the above mixed powder with an amount of viscosity that can be molded into a predetermined shape in the next molding step.

(成形工程)
本発明における成形工程は、上記混練工程で得られたスラリーを、所望の形状に成形するものである。成形方法としては、所望の形状が付与できれば、特に制限されるものではなく、例えば、プレス成形法、ロール成形法、ドクターブレード成形法などの公知の方法が挙げられる。ドクターブレード成形法で得られるグリーンシートは、均一な膜厚の光変換部材を大面積で効率よく製造できるため好ましい。
(Molding process)
The forming step in the present invention is to form the slurry obtained in the kneading step into a desired shape. The molding method is not particularly limited as long as a desired shape can be imparted, and examples thereof include known methods such as a press molding method, a roll molding method, and a doctor blade molding method. A green sheet obtained by a doctor blade molding method is preferable because a light conversion member having a uniform film thickness can be efficiently produced in a large area.

グリーンシートは、例えば、以下の工程で製造できる。ガラス粉末、蛍光体粒子および耐熱フィラーをビヒクルに混練し、脱泡してスラリーを得る。得られたスラリーをドクターブレード法により、樹脂フィルム上に塗工し、乾燥する。乾燥後、所望の大きさに切り出し、樹脂フィルムを剥がして、グリーンシート(混練物)を得る。さらに、これらをプレスし、積層体にすることで、所望の厚みの成形体を確保できる。   The green sheet can be manufactured, for example, by the following process. Glass powder, phosphor particles and heat-resistant filler are kneaded in a vehicle and defoamed to obtain a slurry. The obtained slurry is coated on a resin film by a doctor blade method and dried. After drying, it is cut into a desired size and the resin film is peeled off to obtain a green sheet (kneaded product). Furthermore, by pressing these to form a laminate, a molded body having a desired thickness can be secured.

ここで、スラリーを塗工する樹脂フィルムとしては、剥離性を有するものであれば、特に限定されない。ここで使用する樹脂フィルムは、均一な膜厚のグリーンシートが得られるように、均一な厚さのものを使用することが好ましく、このような樹脂フィルムとしては、例えば、PETフィルムなどが挙げられる。   Here, as a resin film which applies a slurry, if it has peelability, it will not specifically limit. The resin film used here is preferably one having a uniform thickness so that a green sheet having a uniform thickness can be obtained. Examples of such a resin film include a PET film. .

(焼成工程)
本発明の焼成工程は、成形工程で得られた成形したスラリーを焼成することで焼結させ、光変換部材とする工程である。この焼成工程における焼成は、混合粉末を焼結させて、蛍光体粒子と耐熱フィラーとを分散して含有するガラスを得るものであり、公知の焼成方法により焼結ガラス体を製造すればよい。
(Baking process)
The firing step of the present invention is a step of sintering the molded slurry obtained in the molding step to form a light conversion member. Firing in this firing step is to obtain a glass containing phosphor particles and heat-resistant filler dispersed by sintering the mixed powder, and a sintered glass body may be produced by a known firing method.

焼成工程は焼成して焼結ガラス体とできれば、その条件は特に限定されない。内包泡を低減するためには焼成雰囲気は10Pa以下の減圧雰囲気もしくは酸素濃度が1〜25%の雰囲気が好ましい。また、本工程における焼成温度の最高温度を700℃以下とするもので、この最高温度は500〜700℃の範囲が好ましい。また、焼成時間は0.5〜10時間の範囲が好ましい。本発明の光変換部材の製造方法において、上記範囲外で実施すると、光変換部材の量子収率が低下するおそれがある。 The conditions for the firing step are not particularly limited as long as the sintered glass body can be obtained by firing. In order to reduce the encapsulated foam, the firing atmosphere is preferably a reduced pressure atmosphere of 10 3 Pa or less or an atmosphere having an oxygen concentration of 1 to 25%. Moreover, the maximum temperature of the calcination temperature in this process shall be 700 degrees C or less, and this maximum temperature has the preferable range of 500-700 degreeC. The firing time is preferably in the range of 0.5 to 10 hours. In the manufacturing method of the light conversion member of this invention, when implemented outside the said range, there exists a possibility that the quantum yield of a light conversion member may fall.

得られた光変換部材は、研磨することで表面平坦性を高め、基材との密着性を高めることができる。研磨した場合の光変換部材の表面平坦性は、JIS2001年に定められるJIS−B0601表面粗さにおいて、Raが0.3μm以下、好ましくは0.2μm以下、より好ましくは0.1μm以下である。また、生産性の効率化のため、基材との接着側のみ研磨することも考えられる。   The obtained light conversion member can be polished to enhance surface flatness and adhesion to the substrate. As for the surface flatness of the light conversion member when polished, Ra is 0.3 μm or less, preferably 0.2 μm or less, more preferably 0.1 μm or less in the JIS-B0601 surface roughness defined in JIS2001. In order to improve productivity, it is also conceivable to polish only the side bonded to the substrate.

[照明光源]
本発明の照明光源は、上記本光変換部材と、該光変換部材を通して外部へ光を照射可能な光源と、から構成される。
[Light source]
The illumination light source according to the present invention includes the light conversion member and a light source capable of irradiating light to the outside through the light conversion member.

上記のようにして得られた光変換部材と光源とを組合せることで、所望の色を発する照明光源として利用できる。光変換部材は、光源と接して配置されると、光の漏れを防げるため好ましい。また、光源としては、LED発光素子が好ましく、青色LED発光素子がより好ましい。LED発光素子を光源として使用すれば、LED照明光源として利用できる。   By combining the light conversion member and the light source obtained as described above, it can be used as an illumination light source that emits a desired color. The light conversion member is preferably disposed in contact with the light source because it prevents light leakage. Moreover, as a light source, an LED light emitting element is preferable and a blue LED light emitting element is more preferable. If an LED light emitting element is used as a light source, it can be used as an LED illumination light source.

このような照明光源の一実施形態としては、図1に示した照明光源が挙げられる。この照明光源10は、凹部を有する基板11と、上記凹部中央に配置されたLED12と、基板11の凹部を覆うように配置された光変換部材13と、から構成されている。このとき基板としては、照明光源として用いられている従来公知の材質、例えばガラスセラミックス製、等であればよく特に限定されない。この基板11は、LEDをパッケージ化するため、LEDを配置、固定するための凹部を有している。   One embodiment of such an illumination light source is the illumination light source shown in FIG. The illumination light source 10 includes a substrate 11 having a recess, an LED 12 disposed at the center of the recess, and a light conversion member 13 disposed so as to cover the recess of the substrate 11. At this time, the substrate is not particularly limited as long as it is a conventionally known material used as an illumination light source, such as glass ceramics. The substrate 11 has a recess for arranging and fixing the LED in order to package the LED.

そして、この凹部の中央に、LED12が配置、固定され、さらに、凹部の内部を覆うように、基板11に光変換部材13が接合されLED12を封止している。したがって、LED12が発する光は直接又は基板11に反射してから基板11の開口側に向かい、光変換部材13を通過するようになる。このとき、光変換部材13を通過する光は、光変換部材13の内部に有する蛍光体粒子により波長が変換されて変換光となり、得られた変換光が外部に照射される。   The LED 12 is arranged and fixed at the center of the recess, and the light conversion member 13 is bonded to the substrate 11 so as to cover the inside of the recess, thereby sealing the LED 12. Therefore, the light emitted from the LED 12 is reflected directly or reflected on the substrate 11, then travels toward the opening side of the substrate 11 and passes through the light conversion member 13. At this time, the wavelength of the light passing through the light conversion member 13 is converted by the phosphor particles inside the light conversion member 13 to become converted light, and the obtained converted light is irradiated to the outside.

また、本発明の照明光源の他の実施形態としては、図2に示した照明光源が挙げられる。図1と同様の部材については図1と同じ番号を記した。図2に示した照明光源10は、凹部を有する基板11と、上記凹部中央に配置されたLED12と、LED12の上面に配置された光変換部材13と、から構成されている。この実施形態では、光変換部材13をLED12の上に積層して設けている点が図1に示した照明光源とは異なり、このときLED12と光変換部材13とは接着剤で固定される。ここで用いる接着剤としては、固化後に光透過性の高いものを用いる。基板、およびLEDは図1に示した照明光源で説明された材料と同様のものを用いることができる。 Another embodiment of the illumination light source of the present invention is the illumination light source shown in FIG. The same members as those in FIG. 1 are denoted by the same reference numerals as those in FIG. The illumination light source 10 shown in FIG. 2 includes a substrate 11 having a recess, an LED 12 disposed in the center of the recess, and a light conversion member 13 disposed on the upper surface of the LED 12. In this embodiment, the point that the light conversion member 13 is provided on the LED 12 is different from the illumination light source shown in FIG. 1, and at this time, the LED 12 and the light conversion member 13 are fixed with an adhesive. As the adhesive used here, an adhesive having high light transmittance after solidification is used. As the substrate and the LED, the same materials as those described in the illumination light source shown in FIG. 1 can be used.

本発明の照明光源のさらに他の実施形態としては、図3に示した照明光源が挙げられる。図3は、LEDが発する光を光変換部材で反射した反射光を利用する例である。図1と同様の部材については図1と同じ番号を記した。図3に示した照明光源20は、凹部を有する基板11と、上記凹部中央に配置されたLED12と、LED12から大きく離した位置に、LED12の発する光が斜めに入射するような角度で配置された光変換部材13と、LED光源12と光変換部材13との間に配置されたレンズ21と、から構成されている。基板11と、光変換部材13と、レンズ21とは任意の部材によって保持、固定し、所定の構造を維持できるようにしてもよい。
図3において、LED12が発する光Lはレンズ21を通して集光され、光変換部材13に届いた光は光変換部材13の内部に有する蛍光体粒子により波長が変換されて変換光となり、一部は光変換部材13を透過し、一部は反射し、反射光L’となる。
Still another embodiment of the illumination light source of the present invention is the illumination light source shown in FIG. FIG. 3 is an example using reflected light obtained by reflecting light emitted from an LED by a light conversion member. The same members as those in FIG. 1 are denoted by the same reference numerals as those in FIG. The illumination light source 20 shown in FIG. 3 is disposed at an angle such that light emitted from the LED 12 is obliquely incident on a substrate 11 having a recess, the LED 12 disposed in the center of the recess, and a position far away from the LED 12. And a lens 21 disposed between the LED light source 12 and the light conversion member 13. The substrate 11, the light conversion member 13, and the lens 21 may be held and fixed by arbitrary members so that a predetermined structure can be maintained.
In FIG. 3, the light L emitted from the LED 12 is condensed through the lens 21, and the light reaching the light conversion member 13 is converted into light by converting the wavelength by the phosphor particles in the light conversion member 13, and part of the light is converted into light. The light is transmitted through the light conversion member 13 and partially reflected to become reflected light L ′.

また、本発明の照明光源のさらに他の実施形態としては、図4に示した照明光源が挙げられる。図4は光源としてレーザーを用い、光変換部材で反射した反射光を利用する例である。図4に示した照明光源30は、レーザーダイオード31と、レーザーダイオード31から離した位置に、レーザーダイオード31の光が斜めに入射するような角度で配置された光変換部材13と、から構成されている。レーザーダイオード31と光変換部材13とは任意の部材によって、固定し、所定の構造を維持できるようにしてもよい。 Further, as another embodiment of the illumination light source of the present invention, the illumination light source shown in FIG. FIG. 4 shows an example in which a laser is used as a light source and reflected light reflected by a light conversion member is used. The illumination light source 30 shown in FIG. 4 includes a laser diode 31 and a light conversion member 13 disposed at an angle at which the light from the laser diode 31 is incident obliquely at a position away from the laser diode 31. ing. The laser diode 31 and the light conversion member 13 may be fixed by an arbitrary member so that a predetermined structure can be maintained.

以下、実施例、比較例および参考例に基づき本発明をさらに詳しく説明するが、本発明はこれら実施例に限定して解釈されるものではない。なお、以下に記載の例1は、光変換部材を製造するにあたって用意したガラスの製造、特性等について示した参考例で(例1−1〜例1−26は実施参考例、例1−27〜1−37は比較参考例)、これらはまとめて表1〜2に示している。ここで、実施参考例は本光変換部材のガラス組成の範囲に入っているガラスを示し、比較参考例は本光変換部材のガラス組成の範囲に入っていないガラスを示している。なお、表1〜2の「−」は未評価であることを示す。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, a comparative example, and a reference example, this invention is limited to these Examples and is not interpreted. In addition, Example 1 described below is a reference example showing the production, characteristics, and the like of the glass prepared in manufacturing the light conversion member (Examples 1-1 to 1-26 are reference examples for implementation, Example 1-27). -1-37 are comparative reference examples), and these are collectively shown in Tables 1-2. Here, the embodiment reference example shows a glass that falls within the range of the glass composition of the light conversion member, and the comparative reference example shows a glass that does not fall within the range of the glass composition of the light conversion member. In addition, "-" of Tables 1-2 shows that it is not evaluated.

また、以下に記載の例2は、実施例(例2−1〜例2−8、例2−12〜18)および比較例(例2−9〜例2−11、例2−19〜例2−21)を示したものである。 In addition, Example 2 described below includes Examples (Examples 2-1 to 2-8, Examples 2-12 to 18) and Comparative Examples (Examples 2-9 to 2-11, Examples 2-19 to Examples). 2-21).

[例1:ガラスの製造]
酸化物基準のモル%表記で、それぞれ表1〜2で表示した組成になるように各成分の原料を調合し、ガラス原料を混合しガラス組成物とした。これを、例1−1〜例1−18、例1−27は白金坩堝中で1550℃に、例1−19〜例1−26、例1−28〜例1−37は白金坩堝で1400℃に、それぞれ電気炉で加熱、溶融して、融液の一部を回転ロールで急冷して、ガラスリボンを形成した。また、融液の一部は成形後冷却し、ガラス板を得た。なお、例1−1〜例1−37に示した組成において、BiおよびPbOは含有していない。
[Example 1: Production of glass]
The raw materials of the respective components were prepared so as to have the compositions indicated in Tables 1 and 2 in terms of mol% based on oxides, and the glass raw materials were mixed to obtain a glass composition. In Examples 1-1 to 1-18 and 1-27, the platinum crucible was set at 1550 ° C., and Examples 1-19 to 1-26 and Examples 1-28 to 1-37 were platinum crucibles at 1400. Each glass was heated and melted at 0 ° C. with an electric furnace, and a part of the melt was quenched with a rotating roll to form a glass ribbon. A part of the melt was cooled after molding to obtain a glass plate. In the compositions shown in Examples 1-1 to 1-37, Bi 2 O 3 and PbO are not contained.

得られたガラスリボンを、ボールミルで粉砕し、#100メッシュの篩を通すことで、例1−1〜例1−37の各例における、50%粒径D50が3μmの粉末(ガラス粉末)を得た。 The resulting glass ribbon was pulverized with a ball mill, by passing a # 100 mesh sieve, in each example of Examples 1-1 to Example 1-37, the 50% particle size D 50 of 3μm powder (glass powder) Got.

各例のガラスのガラス転移点Tgは、示差熱分析計(リガク社製、商品名:TG8110)を使用して測定した。また、ガラス粉末の50%粒径D50は、レーザ回折式粒度分布測定(島津製作所社製、装置名:SALD2300)により算出した。
ガラスの熱膨張係数(CTE)は、熱機械分析装置(TMA)により、50〜350℃の平均線熱膨張係数(×10−7)として求めた。
比重dは、各例で得られたガラス板を用いてアルキメデス法によりを測定した。
なお、例1−15〜例1−18における熱膨張係数、比重は、ガラスの組成から計算により算出した値である。
The glass transition point Tg of the glass of each example was measured using a differential thermal analyzer (trade name: TG8110, manufactured by Rigaku Corporation). Further, the 50% particle size D 50 of the glass powder, a laser diffraction particle size distribution measurement (manufactured by Shimadzu Corporation, apparatus name: SALD2300) was calculated by.
The thermal expansion coefficient (CTE) of glass was calculated | required as an average linear thermal expansion coefficient (* 10 < -7 >) of 50-350 degreeC with the thermomechanical analyzer (TMA).
The specific gravity d was measured by the Archimedes method using the glass plate obtained in each example.
In addition, the thermal expansion coefficient and specific gravity in Examples 1-15 to 1-18 are values calculated by calculation from the glass composition.

焼結性は、次のように評価した。まず、各例で得られたガラス粉末の3g程度を圧粉体に成型し、これを表1〜2に記載した焼成温度まで10℃/分の速度で昇温した。次いで、焼成温度で30分保持した後、電気炉のスイッチを切り、放冷し、焼成体を得た。得られた焼成体が焼成後に流動し、角が丸くなってガラス質の光沢が出ている焼成体を「○」、そうでないものを「×」と評価した。   Sinterability was evaluated as follows. First, about 3 g of the glass powder obtained in each example was molded into a green compact, and this was heated to a firing temperature described in Tables 1-2 at a rate of 10 ° C./min. Next, after holding at the firing temperature for 30 minutes, the electric furnace was turned off and allowed to cool to obtain a fired body. The fired body obtained was fluidized after firing, and the fired body with rounded corners and vitreous gloss was evaluated as “◯”, and the others were evaluated as “x”.

耐水性は、ETAC社製の高温高湿槽TH401HE(商品名)を用いて85℃/85%の環境に所定時間曝すことで試験した。サンプルは、各例で得られたガラス板を厚み1mm、大きさ20mm×20mmの板状に加工後、その両面を鏡面研磨したものを用いた。   The water resistance was tested by exposing to an environment of 85 ° C./85% for a predetermined time using a high temperature and high humidity tank TH401HE (trade name) manufactured by ETAC. As the sample, a glass plate obtained in each example was processed into a plate having a thickness of 1 mm and a size of 20 mm × 20 mm, and then both surfaces thereof were mirror-polished.

6時間後、24時間後、168時間後(1週間後)、にサンプルを取り出して確認し、1mm以上の白い斑点が5個以上析出しているか否かにより判断した。6時間後確認した際に析出していたガラスを「×」、24時間後確認した際に析出していたガラスを「△」、168時間後確認した際に析出していたガラスを「○」、168時間後でも析出が確認できなかったガラスを「◎」、と評価した。   After 6 hours, 24 hours, and 168 hours (one week later), a sample was taken out and checked, and it was judged by whether or not 5 or more white spots of 1 mm or more were deposited. The glass deposited when confirmed after 6 hours was “x”, the glass deposited when confirmed after 24 hours was “Δ”, and the glass deposited when confirmed after 168 hours was “◯”. Glasses for which precipitation could not be confirmed even after 168 hours were evaluated as “◎”.

なお、参考として、ソーダライムガラス(SLS)も同一の試験を行って評価したところ「○」であった。   For reference, soda lime glass (SLS) was evaluated by performing the same test and found “◯”.

Figure 2018043912
Figure 2018043912

Figure 2018043912
Figure 2018043912

[例2:光変換部材の製造]
(1)次に、例1で得られたガラス粉末を使用して、乾式気流分級機を利用し、さらに粒度分布を狭い分布になるように調整し、50%粒径D50が1.4〜1.6μm、最大粒径Dmaxが21μm以下とし、光変換部材を次のように製造した。なお、ガラス中に分散させる蛍光体粒子として、50%粒径D50が16μm、450nm励起で蛍光体ピーク波長が約590nmであるα−SiAlON:Eu2+蛍光体を使用した。また、ここで使用されるフリット(ガラス粉末)は、例1−1で得られたガラスをガラス1、例1−2で得られたガラスをガラス2、というように例1の各番号に対応するようにガラス37までガラス番号を付与して記載した。
[Example 2: Production of light conversion member]
(1) Next, using the glass powder obtained in Example 1, using a dry air classifier, further adjusting the particle size distribution to be a narrow distribution, the 50% particle size D 50 is 1.4. The light conversion member was manufactured as follows, with a maximum particle size D max of 21 μm or less and ˜1.6 μm. As the phosphor particles dispersed in the glass, α-SiAlON: Eu 2+ phosphor having a 50% particle size D 50 of 16 μm and a phosphor peak wavelength of about 590 nm when excited at 450 nm was used. Further, the frit (glass powder) used here corresponds to each number in Example 1 such that the glass obtained in Example 1-1 is glass 1 and the glass obtained in Example 1-2 is glass 2. As shown, the glass numbers up to the glass 37 are described.

表3に示すようなガラスと蛍光体の組み合わせで、ガラス粉末および蛍光体粒子を体積分率で80:20となるように、それぞれ混合した。さらにビヒクルと混練し、脱泡してスラリーを得た。このスラリーをPETフィルム(帝人社製)にドクターブレード法で塗工した。これを、乾燥炉で約30分間乾燥し、約7cm四方の大きさに切り出し、PETフィルムを剥がして、厚み0.3〜0.5mmのグリーンシートを得た。   Glass powder and phosphor particles were mixed in a combination of glass and phosphor as shown in Table 3 so that the volume fraction was 80:20. Further, it was kneaded with a vehicle and defoamed to obtain a slurry. This slurry was applied to a PET film (manufactured by Teijin Limited) by the doctor blade method. This was dried in a drying furnace for about 30 minutes, cut into a size of about 7 cm square, and the PET film was peeled off to obtain a green sheet having a thickness of 0.3 to 0.5 mm.

これを、離型剤を塗布したムライト基板に載せて、表3に示すような焼成温度で焼成雰囲気は大気焼成とし、例2−1〜2−8の光変換部材を製造した。得られた光変換部材の厚みは約0.2mmであった。焼成条件は、表3に記載した焼成温度まで10℃/分の速度で昇温し、次いで、焼成温度で30分保持した後、電気炉のヒーターを切り放冷した。   This was placed on a mullite substrate coated with a release agent, and the baking atmosphere was set to the atmospheric baking at the baking temperature as shown in Table 3 to produce the light conversion members of Examples 2-1 to 2-8. The thickness of the obtained light conversion member was about 0.2 mm. Firing conditions were as follows: the temperature was raised to the firing temperature shown in Table 3 at a rate of 10 ° C./minute, and then kept at the firing temperature for 30 minutes, and then the heater of the electric furnace was turned off and allowed to cool.

得られた例2−1〜2−8の光変換部材について、試験用パッケージを作製し、量子収率、輝度低下、の各特性を測定、評価した。試験用パッケージは、凹部を有するガラスセラミックス製の基板の凹部中央に、LED(Cree社製、商品名:EZ1000)にシリコーン接着材(信越化学工業社製)を介して1mm□×厚み200μmの光変換部材を積層接着したものを、配置して得た。   About the obtained light conversion member of Examples 2-1 to 2-8, the package for a test was produced and each characteristic of a quantum yield and a brightness fall was measured and evaluated. The test package is a light of 1 mm □ × 200 μm in thickness through a silicone adhesive (made by Shin-Etsu Chemical Co., Ltd.) on an LED (made by Cree, trade name: EZ1000) in the center of a recessed part of a glass ceramic substrate having a recessed part. A conversion member laminated and adhered was placed and obtained.

光変換部材の量子収率は、得られた光変換部材の中央部を1cm四方の大きさに切り出し、絶対PL量子収率測定装置(浜松ホトニクス社製、商品名:Quantauru−QY)を使用して、励起光波長450nmにて測定した。   For the quantum yield of the light conversion member, the central portion of the obtained light conversion member is cut into a size of 1 cm square, and an absolute PL quantum yield measurement device (manufactured by Hamamatsu Photonics, trade name: Quantauru-QY) is used. The measurement was performed at an excitation light wavelength of 450 nm.

例1−1、例1−6、例1−7のガラスを厚さ1mm、大きさ20mm×20mmの板状に加工後、その両面を鏡面研磨したものを用い、光透過率をPerkin Elmer社製のUV−Vis Spectrometer Lambda950により測定したところ、450nmの透過率はそれぞれ、86.9%、86.9%、86.5%であった。   After the glass of Example 1-1, Example 1-6, and Example 1-7 was processed into a plate shape having a thickness of 1 mm and a size of 20 mm × 20 mm, both surfaces were mirror-polished, and the light transmittance was Perkin Elmer. The transmittance at 450 nm was 86.9%, 86.9%, and 86.5%, respectively, as measured by UV-Vis Spectrometer Lambda 950 manufactured by the manufacturer.

光変換部材の輝度低下量測定試験は、LEDに750mAの電流を流し、100℃の試験環境下で200時間試験を行い、その試験前後での全光束量の変化(低下)を測定し算出した。このとき、全光束量は、ラブスフェア社製の積分球を用いて測定した。   The brightness reduction amount measurement test of the light conversion member was calculated by passing a current of 750 mA to the LED, performing a test for 200 hours in a test environment at 100 ° C., and measuring the change (decrease) in the total luminous flux before and after the test. . At this time, the total luminous flux was measured using an integrating sphere manufactured by Labsphere.

Figure 2018043912
Figure 2018043912

(2)また、比較例として、表4に示す組成を有するガラスを例1と同様の操作により作製し、これを用いて例2と同様の操作により光変換部材を得た。表4に示すガラス組成の焼結性、耐水性は○だった。得られた光変換部材について、上記例2と同様の操作により量子収率、輝度低下を調べたところ、量子収率は良好であったものの、輝度低下が著しく、寿命が短い部材となってしまうことがわかった。試験後のサンプルをSTEM分析したところ、蛍光体粒子とガラスとの界面にビスマスの金属コロイドが確認された。これは、光励起された蛍光体に残される、ストークスシフトに相当する振動エネルギーが蛍光体近傍に溜まり発熱し、加えて青色LEDの光を起因とする作用により最終的には光変換部材を構成するガラスが還元され、コロイドが形成したものと考えられる。その着色により、輝度が低下したものと思われる。   (2) As a comparative example, a glass having the composition shown in Table 4 was produced by the same operation as in Example 1, and a light conversion member was obtained by the same operation as in Example 2 using this glass. The sinterability and water resistance of the glass composition shown in Table 4 were good. About the obtained light conversion member, when the quantum yield and the luminance reduction were examined by the same operation as in Example 2, the quantum yield was good, but the luminance reduction was remarkable and the life was short. I understood it. When the sample after the test was analyzed by STEM, a metal colloid of bismuth was confirmed at the interface between the phosphor particles and the glass. This is because the vibration energy corresponding to the Stokes shift that remains in the photoexcited phosphor accumulates in the vicinity of the phosphor and generates heat, and finally, the light conversion member is constituted by the action caused by the light of the blue LED. It is thought that the glass was reduced and colloid was formed. It seems that the brightness has decreased due to the coloring.

Figure 2018043912
Figure 2018043912

(3)さらに、ガラス1とガラス19の、蛍光体含有量、厚み、焼成温度、を表5に記載のようにして、例2と同様の操作により光変換部材を得た。得られた光変換部材のLED光吸収率について算出し、表5にまとめて示した。   (3) Further, the phosphor content, thickness, and firing temperature of Glass 1 and Glass 19 were set as shown in Table 5 to obtain a light conversion member by the same operation as in Example 2. The LED light absorptivity of the obtained light conversion member was calculated and summarized in Table 5.

LED光吸収率は、凹部を有するガラスセラミック製の基板の凹部中央に、LED(Cree社製、商品名:EZ1000)を配置し、LEDを覆うように基板サイズ5〜7mm四方の光変換部材を配置したものを用いて、次式のように算出した。

LED光吸収率=[LED光強度−光変換部材の青色抜け強度]/LED光強度

(式中、[LED光強度]、[光変換部材の青色抜け強度]は、いずれも410nm〜490nmの光強度を積算した数値である。)
LED light absorptivity is arranged in the center of the concave portion of a glass ceramic substrate having a concave portion, an LED (made by Cree, trade name: EZ1000) is disposed, and a light conversion member having a substrate size of 5 to 7 mm square so as to cover the LED. Using what was arranged, it calculated like the following formula.

LED light absorptivity = [LED light intensity−blue conversion intensity of light conversion member] / LED light intensity

(In the formula, [LED light intensity] and [blue missing intensity of light converting member] are values obtained by integrating light intensities of 410 nm to 490 nm.)

Figure 2018043912
Figure 2018043912

表3〜5より明らかなように、本発明の光変換部材は、特定のガラス組成のガラス粉末と蛍光体粒子で構成されており、蛍光体粒子を15体積%超含有しても十分に焼成でき、また長時間にわたる使用において輝度低下が3%以下の低いレベルに抑えることができる。また、本発明の光変換部材は、量子収率が85%以上と良好であり、多量の蛍光体粒子を含有させることで、光源となるLED光の吸収率が98%以上と非常に優れたものとなることがわかった。   As is apparent from Tables 3 to 5, the light conversion member of the present invention is composed of glass powder and phosphor particles having a specific glass composition, and is sufficiently fired even if the phosphor particles contain more than 15% by volume. In addition, the luminance reduction can be suppressed to a low level of 3% or less when used for a long time. In addition, the light conversion member of the present invention has a quantum yield of 85% or higher, and by containing a large amount of phosphor particles, the absorption rate of LED light serving as a light source is very excellent at 98% or higher. I found out that it would be a thing.

なお、例2−9〜2−11は、Biが多く含まれたガラスを用いており、耐光熱試験後において、蛍光体とガラスの界面近傍のガラス中に金属コロイドを形成しており、輝度低下が大きくなっていた。 In Examples 2-9 to 2-11, a glass containing a large amount of Bi 2 O 3 was used. After the photothermal test, a metal colloid was formed in the glass near the interface between the phosphor and the glass. As a result, the decrease in luminance was large.

光励起された蛍光体は、振動緩和を伴い電子励起状態から基底状態へと輻射遷移するが、その際、ストークスシフトに相当する振動エネルギーが蛍光体近傍に留まり、発熱する。このとき、Biを含むガラスは450nmの光を若干吸収し、蛍光体近傍ではそもそも発熱しているが、上記原因によりさらに高温になり、ガラスが光を起因とする作用で還元され、コロイド着色して、これにより輝度が低下したものと考えられる。これはPbOを含有するガラスにおいても同様と考えられる。 The photoexcited phosphor undergoes a radiation transition from the electronically excited state to the ground state with vibrational relaxation. At this time, vibration energy corresponding to the Stokes shift remains in the vicinity of the phosphor and generates heat. At this time, the glass containing Bi 2 O 3 slightly absorbs light of 450 nm and generates heat in the vicinity of the phosphor. However, the glass becomes higher due to the above cause, and the glass is reduced by the action caused by light, It is considered that the brightness was lowered due to colloidal coloring. This is considered to be the same in the glass containing PbO.

一方、本願発明のガラス組成では、上記のようなコロイド形成の問題が生じにくく、輝度低下がほとんど見られず、優れた光変換部材が得られるものである。   On the other hand, in the glass composition of the present invention, the above-mentioned problem of colloid formation hardly occurs, the luminance is hardly lowered, and an excellent light conversion member can be obtained.

本発明の光変換部材は、焼結性、耐水性、輝度低下の抑制がいずれも良好で、LED光吸収率が大きく、光源を所望の色の光に変換可能なものである。   The light conversion member of the present invention has good sinterability, water resistance, and suppression of brightness reduction, has a large LED light absorption rate, and can convert a light source into light of a desired color.

10,20,30…照明光源、11…基板、12…LED、13…光変換部材、21…レンズ、31…レーザーダイオード DESCRIPTION OF SYMBOLS 10,20,30 ... Illumination light source, 11 ... Board | substrate, 12 ... LED, 13 ... Light conversion member, 21 ... Lens, 31 ... Laser diode

Claims (14)

蛍光体粒子が分散されたガラスからなる光変換部材であって、
前記ガラスが、酸化物基準のモル%表示で、SiO 0〜40%、B 10〜45%、Al 0〜10%、ZnO 25〜64%、アルカリ土類金属酸化物(MgO+CaO+SrO+BaO) 0〜30%、アルカリ金属酸化物(LiO+NaO+KO) 0〜5%、Bi 0.5%以下、PbO 0.5%以下、の組成からなり、かつ、前記蛍光体粒子が、前記ガラス中に15体積%超含まれること、を特徴とする光変換部材。
A light conversion member made of glass in which phosphor particles are dispersed,
The glass is expressed in mol% on the basis of oxide, SiO 2 0-40%, B 2 O 3 10-45%, Al 2 O 3 0-10%, ZnO 25-64%, alkaline earth metal oxide. (MgO + CaO + SrO + BaO) 0 to 30%, alkali metal oxide (Li 2 O + Na 2 O + K 2 O) 0 to 5%, Bi 2 O 3 0.5% or less, PbO 0.5% or less, and A light conversion member, wherein the phosphor particles are contained in the glass in an amount of more than 15% by volume.
前記アルカリ金属酸化物が0.5%以下である請求項1に記載の光変換部材。   The light conversion member according to claim 1, wherein the alkali metal oxide is 0.5% or less. 前記ZnOが40%以上である請求項1または2に記載の光変換部材。   The light conversion member according to claim 1 or 2, wherein the ZnO is 40% or more. 前記Bが35%以下である請求項1〜3のいずれか1項に記載の光変換部材。 The light conversion member according to claim 1, wherein the B 2 O 3 is 35% or less. 前記蛍光体粒子が、波長400〜500nmに励起帯を有し、波長500〜700nmに発光ピークを有し、酸化物、窒化物、および、酸窒化物からなる群から選ばれる1以上の化合物である請求項1〜4のいずれか1項に記載の光変換部材。   The phosphor particles are one or more compounds having an excitation band at a wavelength of 400 to 500 nm, an emission peak at a wavelength of 500 to 700 nm, and selected from the group consisting of oxides, nitrides, and oxynitrides. The light conversion member according to any one of claims 1 to 4. 前記蛍光体粒子が、酸窒化物蛍光体からなる請求項5に記載の光変換部材。   The light conversion member according to claim 5, wherein the phosphor particles are made of an oxynitride phosphor. 前記酸窒化物蛍光体が、α−SiAlON:Eu2+およびβ−SiAlON:Eu2+の少なくとも1つを含む請求項6に記載の光変換部材。 The light conversion member according to claim 6, wherein the oxynitride phosphor includes at least one of α-SiAlON: Eu 2+ and β-SiAlON: Eu 2+ . 前記ガラス中に、耐熱性フィラーが分散された請求項1〜7のいずれか1項に記載の光変換部材。   The light conversion member according to claim 1, wherein a heat-resistant filler is dispersed in the glass. 厚みが300μm以下のプレート状である請求項1〜8のいずれか1項に記載の光変換部材。   The light conversion member according to claim 1, which has a plate shape with a thickness of 300 μm or less. 前記ガラスは、そのガラスの厚み1mmにおける波長450nmの光透過率が80%以上である請求項1〜9のいずれか1項に記載の光変換部材。   The light conversion member according to any one of claims 1 to 9, wherein the glass has a light transmittance at a wavelength of 450 nm at a thickness of 1 mm of the glass of 80% or more. 請求項1〜10のいずれか1項に記載の光変換部材と、前記光変換部材を通して外部へ光を照射可能な光源と、を有することを特徴とする照明光源。   An illumination light source comprising: the light conversion member according to claim 1; and a light source capable of irradiating light to the outside through the light conversion member. 前記光源が、LED発光素子である請求項11に記載の照明光源。   The illumination light source according to claim 11, wherein the light source is an LED light emitting element. ガラス粉末、蛍光体粒子、樹脂および有機溶媒を混練してスラリーとする混練工程と、得られたスラリーを所望の形状に成形する成形工程と、成形されたスラリーを焼成して光変換部材とする焼成工程と、を有する光変換部材の製造方法であって、
製造される前記光変換部材が、請求項1〜10のいずれか1項記載の光変換部材であることを特徴とする光変換部材の製造方法。
A kneading step of kneading glass powder, phosphor particles, resin and organic solvent into a slurry, a molding step of molding the obtained slurry into a desired shape, and firing the molded slurry to obtain a light conversion member A method for producing a light conversion member having a firing step,
The said light conversion member manufactured is the light conversion member of any one of Claims 1-10, The manufacturing method of the light conversion member characterized by the above-mentioned.
前記混練工程において、耐熱フィラーも加えて混練しスラリーとする請求項13に記載の光変換部材の製造方法。   The method for producing a light conversion member according to claim 13, wherein in the kneading step, a heat-resistant filler is also added and kneaded to obtain a slurry.
JP2016179815A 2016-09-14 2016-09-14 Light conversion member, illumination light source, and method for manufacturing light conversion member Active JP6693360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016179815A JP6693360B2 (en) 2016-09-14 2016-09-14 Light conversion member, illumination light source, and method for manufacturing light conversion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016179815A JP6693360B2 (en) 2016-09-14 2016-09-14 Light conversion member, illumination light source, and method for manufacturing light conversion member

Publications (2)

Publication Number Publication Date
JP2018043912A true JP2018043912A (en) 2018-03-22
JP6693360B2 JP6693360B2 (en) 2020-05-13

Family

ID=61692805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179815A Active JP6693360B2 (en) 2016-09-14 2016-09-14 Light conversion member, illumination light source, and method for manufacturing light conversion member

Country Status (1)

Country Link
JP (1) JP6693360B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109516694A (en) * 2018-11-07 2019-03-26 深圳市齐尚光科技有限公司 A kind of fluorescent glass and preparation method thereof and light emitting device
KR20200120427A (en) * 2019-04-12 2020-10-21 주식회사 베이스 Glass composition and color conversion glass comprising it
WO2021199625A1 (en) * 2020-03-31 2021-10-07 日本電気硝子株式会社 Semiconductor element coating glass and semiconductor element coating material using same
US11149193B2 (en) 2018-04-06 2021-10-19 Nichia Corporation Method for producing ceramic composite material, ceramic composite material, and light emitting device
US11292963B2 (en) 2017-12-08 2022-04-05 Nichia Corporation Wavelength converting member and method for producing the same
US11387390B2 (en) 2017-11-27 2022-07-12 Nichia Corporation Method for producing wavelength converting member, and wavelength converting member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643315A (en) * 2009-08-10 2010-02-10 武汉理工大学 Low-melting-point fluorescent glass for white light LED and preparation method thereof
JP2010132923A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Light emission color conversion member
JP2012121968A (en) * 2010-12-07 2012-06-28 Sharp Corp Light emitting device, illuminating device, and vehicle headlamp
JP2015042606A (en) * 2013-07-25 2015-03-05 セントラル硝子株式会社 Phosphor-dispersed glass
WO2016063930A1 (en) * 2014-10-24 2016-04-28 デンカ株式会社 Wavelength converter, light-emitting device using same, and production method for wavelength converter
JP2016108216A (en) * 2014-11-26 2016-06-20 セントラル硝子株式会社 Fluorophor dispersion glass
JP2016196394A (en) * 2015-02-02 2016-11-24 フエロ コーポレーション Glass composition and glass frit composition used for optical use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643315A (en) * 2009-08-10 2010-02-10 武汉理工大学 Low-melting-point fluorescent glass for white light LED and preparation method thereof
JP2010132923A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Light emission color conversion member
JP2012121968A (en) * 2010-12-07 2012-06-28 Sharp Corp Light emitting device, illuminating device, and vehicle headlamp
JP2015042606A (en) * 2013-07-25 2015-03-05 セントラル硝子株式会社 Phosphor-dispersed glass
WO2016063930A1 (en) * 2014-10-24 2016-04-28 デンカ株式会社 Wavelength converter, light-emitting device using same, and production method for wavelength converter
JP2016108216A (en) * 2014-11-26 2016-06-20 セントラル硝子株式会社 Fluorophor dispersion glass
JP2016196394A (en) * 2015-02-02 2016-11-24 フエロ コーポレーション Glass composition and glass frit composition used for optical use

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387390B2 (en) 2017-11-27 2022-07-12 Nichia Corporation Method for producing wavelength converting member, and wavelength converting member
US11292963B2 (en) 2017-12-08 2022-04-05 Nichia Corporation Wavelength converting member and method for producing the same
US11149193B2 (en) 2018-04-06 2021-10-19 Nichia Corporation Method for producing ceramic composite material, ceramic composite material, and light emitting device
CN109516694A (en) * 2018-11-07 2019-03-26 深圳市齐尚光科技有限公司 A kind of fluorescent glass and preparation method thereof and light emitting device
CN109516694B (en) * 2018-11-07 2021-11-30 深圳市齐尚光科技有限公司 Fluorescent glass, preparation method thereof and light-emitting device
KR20200120427A (en) * 2019-04-12 2020-10-21 주식회사 베이스 Glass composition and color conversion glass comprising it
KR102215135B1 (en) 2019-04-12 2021-02-10 주식회사 베이스 Glass composition and color conversion glass comprising it
WO2021199625A1 (en) * 2020-03-31 2021-10-07 日本電気硝子株式会社 Semiconductor element coating glass and semiconductor element coating material using same

Also Published As

Publication number Publication date
JP6693360B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
TWI405738B (en) Fluorescent composite glass green sheet and method for making a fluorescent composite glass
JP6693360B2 (en) Light conversion member, illumination light source, and method for manufacturing light conversion member
US10836958B2 (en) Wavelength conversion member
JP4765525B2 (en) Luminescent color conversion member
JP5757238B2 (en) Phosphor-dispersed glass and method for producing the same
JP2008169348A (en) Phosphor composite material
CN111213075B (en) Wavelength conversion member and light emitting device
JP2012185980A (en) Wavelength conversion element, light source including the same and manufacturing method of the same
JP6508045B2 (en) Light conversion member, method of manufacturing light conversion member, illumination light source and liquid crystal display device
JP2007191702A (en) Light emission color converting material
WO2014106923A1 (en) Glass used in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
TW201815717A (en) Wavelength conversion member, and light emitting device using same
TW201817043A (en) Wavelength conversion member, and light emitting device using same
JP2012036367A (en) Phosphor composite member
WO2015041204A1 (en) Light-converting member, method for manufacturing light-converting member, method for adjusting chromaticity of light-converting member, illuminating light source, and liquid crystal display device
JP2012052061A (en) Phosphor composite member
JP2014022412A (en) Fluorescent material dispersed inorganic glass plate
JP6597964B2 (en) Wavelength conversion member, wavelength conversion element, and light emitting device using the same
JPWO2014162893A1 (en) Light conversion member, method for manufacturing the same, illumination light source, and liquid crystal display device
WO2012008306A1 (en) Phosphor composite member, led device and method for manufacturing phosphor composite member
JP2015046579A (en) Method for manufacturing optical conversion member, optical conversion member, illumination light source, and liquid crystal display device
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
WO2014119603A1 (en) Light conversion member, method for producing light conversion member, lighting light source and liquid crystal display device
WO2014050684A1 (en) Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same
JP2015053471A (en) Manufacturing method of optical conversion member, optical conversion member, illumination light source, and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6693360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250