JP2007191702A - Light emission color converting material - Google Patents

Light emission color converting material Download PDF

Info

Publication number
JP2007191702A
JP2007191702A JP2006341069A JP2006341069A JP2007191702A JP 2007191702 A JP2007191702 A JP 2007191702A JP 2006341069 A JP2006341069 A JP 2006341069A JP 2006341069 A JP2006341069 A JP 2006341069A JP 2007191702 A JP2007191702 A JP 2007191702A
Authority
JP
Japan
Prior art keywords
color conversion
glass
phosphor
luminescent color
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006341069A
Other languages
Japanese (ja)
Inventor
Katsu Iwao
克 岩尾
Yoshio Mayahara
芳夫 馬屋原
Shunsuke Fujita
俊輔 藤田
Yoshinori Yamazaki
良憲 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2006341069A priority Critical patent/JP2007191702A/en
Publication of JP2007191702A publication Critical patent/JP2007191702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for the production of a light emission color converting member free from the deterioration of the properties of a fluorescent material in firing in spite of the presence of a fluorescent material having low heat-resistance. <P>SOLUTION: The converting material contains powder of ZnO-B<SB>2</SB>O<SB>3</SB>-SiO<SB>2</SB>glass and one or more kinds of powdery inorganic fluorescent materials selected from oxides, sulfides, oxysulfides, halides and aluminates. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光ダイオード(LED)等の発する光の波長の一部を別の波長に変換する発光色変換部材を作製するための発光色変換材料に関するものである。   The present invention relates to a light emission color conversion material for producing a light emission color conversion member that converts a part of the wavelength of light emitted from a light emitting diode (LED) or the like into another wavelength.

蛍光体を用いて波長変換するLED素子においては、例えばLEDチップの発光面をシールする有機系バインダー樹脂等(モールド樹脂)に蛍光体粉末を混合してモールドし、LEDチップの発光の一部または全部を吸収して所望の波長に変換している。   In an LED element that converts the wavelength using a phosphor, for example, a phosphor powder is mixed and molded into an organic binder resin or the like (mold resin) that seals the light emitting surface of the LED chip, and a part of the light emitted from the LED chip or All are absorbed and converted to the desired wavelength.

しかしながら上記LED素子を構成するモールド樹脂が、LEDチップの発熱や、高出力の短波長(青色〜紫外)光の照射によって劣化し、変色等を起こすという問題がある。そこで樹脂に代わってガラスで蛍光体粉末を固定することが提案されている。(例えば特許文献1)
特開2003−258308号公報
However, there is a problem that the mold resin constituting the LED element deteriorates due to heat generation of the LED chip or irradiation with high-output short wavelength (blue to ultraviolet) light, causing discoloration and the like. Therefore, it has been proposed to fix phosphor powder with glass instead of resin. (For example, Patent Document 1)
JP 2003-258308 A

上記特許文献1に開示された発光色変換部材は、高軟化点のガラス粉末と蛍光体粉末との混合粉末を焼成することにより作製される。このようにして作製される変換部材は、母材となるガラスが熱や照射光で劣化しないという特徴を有しており、耐熱性の高い蛍光体であれば問題なく作製することができる。   The luminescent color conversion member disclosed in Patent Document 1 is produced by firing a mixed powder of a glass powder having a high softening point and a phosphor powder. The conversion member manufactured in this way has a feature that the glass as a base material is not deteriorated by heat or irradiation light, and can be manufactured without any problem if it is a phosphor having high heat resistance.

しかしながら上記発光色変換部材は、比較的耐熱性の低い蛍光体、例えば酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、アルミン酸塩蛍光体等の無機蛍光体粉末を含有する場合は、焼成時に蛍光体が劣化してしまうおそれがある。   However, the luminescent color conversion member is an inorganic phosphor powder such as a phosphor having relatively low heat resistance, such as an oxide phosphor, a sulfide phosphor, an oxysulfide phosphor, a halide phosphor, and an aluminate phosphor. When it contains, there exists a possibility that a fluorescent substance may deteriorate at the time of baking.

本発明の目的は、耐熱性の低い蛍光体を含んでいるにもかかわらず、焼成時に蛍光体の特性劣化がない発光色変換部材作製用の発光色変換材料を提供することである。   An object of the present invention is to provide a luminescent color conversion material for preparing a luminescent color conversion member that does not deteriorate the characteristics of the phosphor during firing, even though it contains a phosphor having low heat resistance.

本発明者等は、種々の実験を行った結果、特定の組成系のガラスを用いれば、例え耐熱性の低い蛍光体を使用してもその特性が劣化しないことを見出し、本発明として提案するものである。   As a result of various experiments, the present inventors have found that if a glass having a specific composition system is used, even if a phosphor having low heat resistance is used, the characteristics are not deteriorated, and the present invention is proposed. Is.

すなわち、本発明の発光色変換材料は、ZnO−B23−SiO2系ガラス粉末と、酸化物、硫化物、酸硫化物、ハロゲン化物およびアルミン酸塩から選ばれる1種以上の無機蛍光体粉末を含有することを特徴とする。ZnO−B23−SiO2系のガラスは、軟化点が比較的低温であるために焼成時に無機蛍光体を劣化させ難いという特徴がある。したがって、酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、アルミン酸塩蛍光体などの耐熱性の低い蛍光体の特性を劣化させることなしに、発光色変換部材を作製することが可能となる。 That is, the luminescent color conversion material of the present invention includes one or more inorganic fluorescent materials selected from ZnO—B 2 O 3 —SiO 2 glass powder and oxides, sulfides, oxysulfides, halides, and aluminates. It contains body powder. ZnO—B 2 O 3 —SiO 2 -based glass has a feature that the softening point is relatively low, so that it is difficult to degrade the inorganic phosphor during firing. Therefore, the luminescent color conversion member can be used without degrading the properties of phosphors having low heat resistance such as oxide phosphors, sulfide phosphors, oxysulfide phosphors, halide phosphors, and aluminate phosphors. It can be produced.

ガラス粉末と無機蛍光体粉末の混合割合は、質量比で99.99:0.01〜70:30の範囲にあることが好ましい。   The mixing ratio of the glass powder and the inorganic phosphor powder is preferably in the range of 99.99: 0.01 to 70:30 by mass ratio.

ガラス粉末が、ガラス組成として、質量%で、ZnO 5〜60%、B23 5〜50%、SiO2 2〜30%を含有することが好ましい。 It is preferable that glass powder contains 5 to 60% of ZnO, 5 to 50% of B 2 O 3 and 2 to 30% of SiO 2 as a glass composition.

本発明の発光色変換材料は、グリーンシートまたはペーストの形態で提供されることが好ましい。   The luminescent color conversion material of the present invention is preferably provided in the form of a green sheet or paste.

また、本発明の発光色変換部材は、波長250nm〜500nmの領域に発光ピークを有する光を照射すると、380nm〜780nmの可視光域に蛍光を発するものであり、前記発光色変換材料を焼成してなることを特徴とする。   Further, the luminescent color conversion member of the present invention emits fluorescence in the visible light region of 380 nm to 780 nm when irradiated with light having an emission peak in a wavelength range of 250 nm to 500 nm, and the luminescent color conversion material is fired. It is characterized by.

さらに、本発明の白色LEDは、前記発光色変換部材を用いてなることを特徴とする。   Furthermore, the white LED of the present invention is characterized by using the emission color conversion member.

本発明の発光色変換材料を用いれば、耐熱性の低い蛍光体(酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体またはアルミン酸塩蛍光体)の特性を劣化させることなしに、発光色変換部材を作製することができる。それゆえ発光色変換部材の設計の自由度を広げることができる。しかも得られる発光色変換部材は、母材となるガラスが熱や照射光に対して安定であるため、変色せず、高耐候性、高信頼性、長寿命のLED素子を作製可能である。   If the luminescent color conversion material of the present invention is used, the characteristics of a phosphor having low heat resistance (oxide phosphor, sulfide phosphor, oxysulfide phosphor, halide phosphor or aluminate phosphor) are deteriorated. Without this, the luminescent color conversion member can be produced. Therefore, the degree of freedom in designing the luminescent color conversion member can be expanded. In addition, since the light emitting color conversion member obtained is stable to heat and irradiation light, the glass as a base material is not discolored and can produce an LED element having high weather resistance, high reliability, and long life.

またグリーンシートやペーストの形態で使用することにより、肉厚が薄く、しかも蛍光体が均一に分散した発光色変換部材を作製できる。この発光色変換部材は、LEDから発する光エネルギーを効率よく変換することが可能である。なお、本発明で言うエネルギー変換効率とは、光源のエネルギーをa(W:ワット)、発光色変換部材を透過した光源と同じ波長の光のエネルギーをb(W)、発光色変換部材中で光源の波長によって変換された光のエネルギーをc(W)としたときに、〔c/(a−b)〕×100(%)で表される値をいう。   Moreover, by using it in the form of a green sheet or paste, it is possible to produce a light emitting color conversion member having a thin wall thickness and having phosphors dispersed uniformly. This luminescent color conversion member can efficiently convert light energy emitted from the LED. The energy conversion efficiency referred to in the present invention means that the energy of the light source is a (W: Watt), the energy of light having the same wavelength as that of the light source transmitted through the light emission color conversion member is b (W), and the light emission color conversion member This is a value represented by [c / (ab)] × 100 (%), where c (W) is the energy of light converted by the wavelength of the light source.

本発明の発光色変換材料は、特定のガラス粉末と蛍光体粉末を含有してなるものであり、該発光色変換材料から本発明の発光色変換部材が作製される。本発明でいう発光色変換部材とは、波長250nm〜500nmの領域に発光ピークを有する光を照射すると、380nm〜780nmの可視光域に蛍光を発するものである。言い換えると、紫外(250〜400nm)や青色(400〜500nm)の励起光が照射されると、少なくともその一部を吸収して可視域の蛍光に変換する部材をいう。本発明の発光色変換部材は、ガラス粉末と蛍光体粉末の単なる混合物、さらにはグリーンシートおよびペーストなどの形態で提供された発光色変換材料を焼結させたものであり、その形状は特に制限されず、例えば板状、柱状、半球状等、それ自身が特定の形状を有する部材だけでなく、基材表面に形成された被膜についても含まれる。   The luminescent color conversion material of the present invention contains a specific glass powder and phosphor powder, and the luminescent color conversion member of the present invention is produced from the luminescent color conversion material. The luminescent color conversion member referred to in the present invention emits fluorescence in a visible light region of 380 nm to 780 nm when irradiated with light having an emission peak in a wavelength region of 250 nm to 500 nm. In other words, it refers to a member that absorbs at least part of it and converts it into visible fluorescence when irradiated with excitation light of ultraviolet (250 to 400 nm) or blue (400 to 500 nm). The luminescent color conversion member of the present invention is obtained by sintering a luminescent color conversion material provided in the form of a simple mixture of glass powder and phosphor powder, as well as a green sheet and paste, and its shape is particularly limited. For example, it includes not only a member having a specific shape such as a plate shape, a columnar shape, and a hemispherical shape, but also a film formed on the surface of the substrate.

ガラス粉末は、無機蛍光体を安定に保持するための媒体としての役割があり、本発明ではZnO−B23−SiO2系のガラスを使用する。この系のガラスは、軟化点が比較的低温であるために焼成時に無機蛍光体を劣化させ難いという特徴を有する。 The glass powder has a role as a medium for stably holding the inorganic phosphor, and ZnO—B 2 O 3 —SiO 2 glass is used in the present invention. This type of glass has a characteristic that the softening point is relatively low, so that the inorganic phosphor is hardly deteriorated during firing.

ZnO−B23−SiO2系ガラスは、ガラス組成として、質量%で、ZnO 5〜60%、B23 5〜50%、SiO2 2〜30%を含有することが好ましい。上記ガラス組成範囲を決定した理由は以下の通りである。 The ZnO—B 2 O 3 —SiO 2 -based glass preferably contains 5 to 60% ZnO, 5 to 50% B 2 O 3 , and 2 to 30% SiO 2 as a glass composition. The reason for determining the glass composition range is as follows.

ZnOはガラスの溶融温度を低下させて溶融性を改善する成分であり、ガラス組成中に5〜60%含有することが好ましい。5%よりも少ないと焼結温度が高温になり、60%よりも多いと化学的耐久性が悪くなってしまう。ZnOのより好ましい範囲は20〜50%である。   ZnO is a component that improves the meltability by lowering the melting temperature of the glass, and is preferably contained in the glass composition in an amount of 5 to 60%. If it is less than 5%, the sintering temperature becomes high, and if it is more than 60%, the chemical durability is deteriorated. A more preferable range of ZnO is 20 to 50%.

23はガラスのネットワークを形成する成分であり、ガラス組成中に5〜50%含有することが好ましい。ガラス組成中において5%よりも少ないと焼結温度が高温になりやすく、50%よりも多いとガラスの化学的耐久性が悪くなってしまう。B23の好ましい範囲は30〜48%である。 B 2 O 3 is a component that forms a glass network, and is preferably contained in an amount of 5 to 50% in the glass composition. If it is less than 5% in the glass composition, the sintering temperature tends to be high, and if it exceeds 50%, the chemical durability of the glass is deteriorated. A preferable range of B 2 O 3 is 30 to 48%.

SiO2はガラスのネットワークを形成するとともに、耐久性を向上させる成分である。ガラス組成中には2〜30%含有することが好ましい。ガラス組成中において2%よりも少ないとその効果がなく、30%を超えると焼結温度が高温になる。SiO2の好ましい範囲は2〜15%である。 SiO 2 is a component that forms a glass network and improves durability. It is preferable to contain 2 to 30% in the glass composition. If it is less than 2% in the glass composition, the effect is not obtained, and if it exceeds 30%, the sintering temperature becomes high. The preferred range for SiO 2 is 2-15%.

また上記成分以外にも、本発明の主旨を損なわない範囲で種々の成分を、質量%で合計20%まで、好ましくは10%まで添加することができる。   In addition to the above components, various components may be added up to a total of 20% by mass%, preferably up to 10%, within a range not impairing the gist of the present invention.

例えば耐水性向上の目的でAl23を5%まで、好ましくは0.1〜4%、さらに好ましくは0.5〜2%含有できる。Al23の含有量が5%を超えると、焼成温度が高温になりやすい。 For example, Al 2 O 3 can be contained up to 5%, preferably 0.1 to 4%, more preferably 0.5 to 2% for the purpose of improving water resistance. When the content of Al 2 O 3 exceeds 5%, the firing temperature tends to be high.

またアルカリ金属酸化物として、Li2Oを0〜5%、特に0〜3%、Na2Oを0〜10%、特に2〜8%、K2Oを0〜5%、特に0〜2%含有することができる。アルカリ金属酸化物は、ガラスの軟化点を低下させる成分である。アルカリ金属酸化物の含有量が多すぎると、耐候性が低下する傾向がある。 Further, as an alkali metal oxide, Li 2 O is 0 to 5%, particularly 0 to 3%, Na 2 O is 0 to 10%, particularly 2 to 8%, K 2 O is 0 to 5%, particularly 0 to 2%. % Can be contained. Alkali metal oxides are components that lower the softening point of glass. When there is too much content of an alkali metal oxide, there exists a tendency for a weather resistance to fall.

またアルカリ土類金属酸化物を合量で10%まで、好ましくは0〜8%含有できる。またアルカリ土類金属酸化物として、MgOを0〜5%、特に0〜3%、CaOを0〜5%、特に0〜3%、SrOを0〜5%、特に0〜3%、BaOを0〜5%、特に0〜3%含有することができる。アルカリ土類金属酸化物は、ガラスの溶融温度を低下させて溶融性を改善する成分である。アルカリ土類金属酸化物の含有量が多すぎると、ガラスの化学的耐久性が低下する傾向がある。   Further, the total amount of alkaline earth metal oxide can be up to 10%, preferably 0 to 8%. Further, as an alkaline earth metal oxide, MgO is 0 to 5%, particularly 0 to 3%, CaO is 0 to 5%, particularly 0 to 3%, SrO is 0 to 5%, particularly 0 to 3%, BaO. 0 to 5%, especially 0 to 3% can be contained. Alkaline earth metal oxides are components that improve the meltability by lowering the melting temperature of the glass. When there is too much content of alkaline-earth metal oxide, there exists a tendency for the chemical durability of glass to fall.

さらにガラスの安定化の目的でP25を10%まで、耐水性向上の目的でLa23を10%まで添加してもよい。P25の含有量が多すぎると耐水性に劣る傾向がある。また、La23の含有量が多すぎると、La23を核とする結晶が析出しやすくなり、失透性が増大する傾向がある。 Further, P 2 O 5 may be added up to 10% for the purpose of stabilizing the glass, and La 2 O 3 may be added up to 10% for the purpose of improving the water resistance. When the content of P 2 O 5 is too large, the water resistance tends to be inferior. Further, when the content of La 2 O 3 is too large, crystals of La 2 O 3 core is likely to precipitate, they tend to devitrification increases.

ガラス粉末の軟化点は、750℃以下であることが好ましく、650℃以下であることがより好ましい。軟化点が750℃を超えると、焼成温度も高くなることから、無機蛍光体粉末が劣化し、発光強度に劣る傾向がある。なお、下限は特に限定されないが、一般的には400℃以上、さらには450℃以上である。   The softening point of the glass powder is preferably 750 ° C. or lower, and more preferably 650 ° C. or lower. If the softening point exceeds 750 ° C., the firing temperature also increases, so the inorganic phosphor powder tends to deteriorate and the light emission intensity tends to be inferior. In addition, although a minimum is not specifically limited, Generally it is 400 degreeC or more, Furthermore, it is 450 degreeC or more.

無機蛍光体粉末としては、耐熱性の低い酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体およびアルミン酸塩蛍光体の群から選ばれる1種以上を用いる。酸化物蛍光体としては、Ba2SiO4:Eu2+、SrBaSiO4:Eu2+、硫化物蛍光体としては、ZnS:Cu+,Al3+、SrS:Eu2+等が挙げられる。酸硫化物蛍光体としては、Y22S:Eu3+等が挙げられる。ハロゲン化物蛍光体としては、M5(PO43Cl:Eu2+(MはSr、Ca、BaまたはMg)等が挙げられる。アルミン酸塩蛍光体としては、BaMgAl1017:Eu2+,Mn2+、SrAl24:Eu2+等が挙げられる。なお、これらの蛍光体は、化学耐久性が低いものが多く、単体で長時間使用すると、水分、熱、および光によって劣化する。そのため通常は、真空中、または希ガス中で使用される。ところがガラス粉末との焼結体にすると、蛍光体が雰囲気中に直接晒されることがなくなり、雰囲気からの影響による劣化が殆ど起こらなくなる。 As the inorganic phosphor powder, one or more selected from the group consisting of oxide phosphor, sulfide phosphor, oxysulfide phosphor, halide phosphor and aluminate phosphor with low heat resistance is used. Examples of the oxide phosphor include Ba 2 SiO 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , and examples of the sulfide phosphor include ZnS: Cu + , Al 3+ , SrS: Eu 2+, and the like. Examples of the oxysulfide phosphor include Y 2 O 2 S: Eu 3+ . Examples of the halide phosphor include M 5 (PO 4 ) 3 Cl: Eu 2+ (M is Sr, Ca, Ba or Mg). Examples of the aluminate phosphor include BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , SrAl 2 O 4 : Eu 2+ and the like. Many of these phosphors have low chemical durability, and are deteriorated by moisture, heat, and light when used alone for a long time. Therefore, it is usually used in a vacuum or a rare gas. However, when the sintered body is made of glass powder, the phosphor is not directly exposed to the atmosphere, and deterioration due to the influence from the atmosphere hardly occurs.

なお、上記蛍光体粉末に加えて、比較的耐熱性の高い蛍光体、例えばYAG蛍光体、窒化物蛍光体、酸窒化物蛍光体等を併用しても差し支えない。   In addition to the phosphor powder, a phosphor having relatively high heat resistance, for example, a YAG phosphor, a nitride phosphor, an oxynitride phosphor, etc. may be used in combination.

本発明において、ガラス粉末と無機蛍光体粉末の混合割合は、エネルギー変換効率が最適になるように調整すればよいが、蛍光体が多くなりすぎると、焼結しにくくなり、気孔率が大きくなって、励起光が効率良く蛍光体に照射されにくくなったり、得られる発光色変換部材の機械的強度が低下しやすくなるなどの問題が生じる。一方、少なすぎると十分な発光強度を得ることが難しくなる。このような観点から、ガラス粉末と無機蛍光体粉末の混合割合は、質量比で99.99:0.01〜70:30の範囲にあることが好ましい。さらには、99.95:0.05〜80:20、特に99.92:0.08〜85:15の範囲で調整することが好ましい。   In the present invention, the mixing ratio of the glass powder and the inorganic phosphor powder may be adjusted so as to optimize the energy conversion efficiency. However, if the phosphor is too much, it becomes difficult to sinter and the porosity increases. As a result, problems arise such that the excitation light is not efficiently irradiated onto the phosphor efficiently, and the mechanical strength of the resulting luminescent color conversion member tends to decrease. On the other hand, if the amount is too small, it is difficult to obtain sufficient light emission intensity. From such a viewpoint, the mixing ratio of the glass powder and the inorganic phosphor powder is preferably in the range of 99.99: 0.01 to 70:30 in terms of mass ratio. Furthermore, it is preferable to adjust in the range of 99.95: 0.05 to 80:20, particularly 99.92: 0.08 to 85:15.

なお、発光色変換部材のエネルギー変換効率は、ガラス中に分散した蛍光体粒子の種類や含有量、および発光色変換部材の肉厚によって変化するため、これらを踏まえて、前記範囲内でガラス粉末と無機蛍光体粉末の混合割合を適宜選択すればよい。   The energy conversion efficiency of the luminescent color conversion member varies depending on the type and content of the phosphor particles dispersed in the glass and the thickness of the luminescent color conversion member. And the mixing ratio of the inorganic phosphor powder may be appropriately selected.

またエネルギー変換効率の高い発光色変換部材を作製するには、肉厚が薄く、しかも部材内に蛍光体を均一に分散させることが重要である。このような部材を作製するには、本発明の材料をグリーンシートまたはペーストの形態で提供すればよい。   In order to produce a light emitting color conversion member with high energy conversion efficiency, it is important that the thickness is thin and the phosphor is uniformly dispersed in the member. In order to produce such a member, the material of the present invention may be provided in the form of a green sheet or paste.

グリーンシートの形態で使用する場合、ガラス粉末、および無機蛍光体粉末と共に、結合剤、可塑剤、溶剤等を使用する。   When used in the form of a green sheet, a binder, a plasticizer, a solvent and the like are used together with the glass powder and the inorganic phosphor powder.

ガラス粉末と無機蛍光体粉末の含有割合は、無機蛍光体粉末の種類や含有量、および発光色変換部材の肉厚によって適宜調整すればよいが、いずれにしても、質量比で、99.99:0.01〜70:30の範囲内で調整することが好ましい。   The content ratio of the glass powder and the inorganic phosphor powder may be appropriately adjusted according to the type and content of the inorganic phosphor powder and the thickness of the luminescent color conversion member, but in any case, the mass ratio is 99.99. : It is preferable to adjust within the range of 0.01-70: 30.

ガラス粉末および無機蛍光体粉末のグリーンシート中に占める割合は、50〜80質量%程度が一般的である。   The ratio of the glass powder and the inorganic phosphor powder in the green sheet is generally about 50 to 80% by mass.

結合剤は、乾燥後の膜強度を高め、また柔軟性を付与する成分であり、その含有量は、0.1〜30質量%程度が一般的である。結合剤の含有量が少なすぎると、その効果が十分に得られにくい。一方、結合剤の含有量が多すぎると、結合剤残渣が焼成時に発泡することにより、得られる発光色変換部材中に気泡が多くなりやすく、発光強度が低下する蛍光がある。結合剤としては、例えば、ポリビニルブチラール樹脂、メタアクリル樹脂、エチルセルロース、ニトロセルロース等が使用可能であり、これらを単独あるいは混合して使用できる。   The binder is a component that increases the film strength after drying and imparts flexibility, and the content thereof is generally about 0.1 to 30% by mass. If the content of the binder is too small, it is difficult to obtain the effect sufficiently. On the other hand, if the content of the binder is too large, the binder residue foams during firing, so that bubbles are likely to increase in the resulting luminescent color conversion member, and there is fluorescence that lowers the emission intensity. As the binder, for example, polyvinyl butyral resin, methacrylic resin, ethyl cellulose, nitrocellulose and the like can be used, and these can be used alone or in combination.

可塑剤は、乾燥速度をコントロールすると共に、乾燥膜に柔軟性を与える成分である。可塑剤としては、例えば、フタル酸ジブチル、ブチルベンジルフタレート等が使用可能であり、これらを単独あるいは混合して使用できる。可塑剤の含有量は特に限定されないが、0〜10質量%程度が一般的である。   The plasticizer is a component that controls the drying speed and imparts flexibility to the dry film. As the plasticizer, for example, dibutyl phthalate, butyl benzyl phthalate and the like can be used, and these can be used alone or in combination. Although content of a plasticizer is not specifically limited, About 0-10 mass% is common.

溶剤は材料をスラリー化するための材料であり、その含有量は1〜30質量%程度が一般的である。溶剤の含有量が少なすぎると、発光色変換材料を十分に分散させることが困難であり、一方、多すぎる場合は、粘度が低くなりすぎるため、基材上に塗布する際に所定の膜厚を有する塗布膜を得るのが困難となる。溶剤としては、例えばトルエン、メチルエチルケトン等を単独または混合して使用することができる。   The solvent is a material for slurrying the material, and its content is generally about 1 to 30% by mass. If the content of the solvent is too small, it is difficult to sufficiently disperse the luminescent color conversion material. On the other hand, if the content is too large, the viscosity becomes too low. It is difficult to obtain a coating film having As the solvent, for example, toluene, methyl ethyl ketone or the like can be used alone or in combination.

グリーンシートを作製する方法としては、上記のガラス粉末および無機蛍光体粉末を混合し、得られた混合物に、所定量の結合剤、可塑剤、溶剤等を添加してスラリーとする。次に、このスラリーをドクターブレード法によって、ポリエチレンテレフタレート(PET)等のフィルムの上にシート成形する。続いて、シート成形後、乾燥させることによって有機系溶剤バインダーを除去し、グリーンシートとすることができる。   As a method for producing a green sheet, the above glass powder and inorganic phosphor powder are mixed, and a predetermined amount of a binder, a plasticizer, a solvent and the like are added to the obtained mixture to form a slurry. Next, this slurry is formed into a sheet on a film of polyethylene terephthalate (PET) or the like by a doctor blade method. Subsequently, after forming the sheet, the organic solvent binder is removed by drying to form a green sheet.

このようにしてグリーンシート化した本発明の材料を用いて発光色変換部材を製造するには、以下の方法が好適に使用できる。   In order to produce a light emitting color conversion member using the material of the present invention formed into a green sheet in this way, the following method can be suitably used.

まず、上述の方法を用いて作製したグリーンシートと、このグリーンシートの焼成温度では反応しない拘束部材を用意し、それらを所望の寸法に切断する。拘束部材を用いる理由は、焼成時にガラスの表面張力によって材料が平面方向に収縮してしまうことを防止するためである。拘束部材としては、グリーンシート化した無機材料または多孔質セラミックス基板を用いることができる。拘束部材として、グリーンシート化した無機材料を用いる場合、無機材料は、発光色変換材料の焼成温度では焼結しない材料であれば、特に制限はなく、例えば、Al23、MgO、ZrO2、TiO2、BeO、BNを単独または混合したものを用いることができる。また、無機材料をグリーンシート化するに当たっては、上記と同様の方法で得ることができる。また、拘束部材として、多孔質セラミックス基板を用いる場合、焼成時に、発光色変換部材と多孔質セラミックスが接着しにくいものであれば、特に制限はなく、例えば、SiAl25、Al23、MgO、ZrO2を用いることができる。またグリーンシートおよび拘束部材の切断については、積層体を作製した後に行ってもよい。このようにすれば、焼成前後の寸法変化率の小さい発光色変換部材を得ることができる。 First, a green sheet produced using the above-described method and a restraining member that does not react at the firing temperature of the green sheet are prepared and cut into desired dimensions. The reason for using the restraining member is to prevent the material from shrinking in the plane direction due to the surface tension of the glass during firing. As the restraining member, a green sheet-like inorganic material or a porous ceramic substrate can be used. When an inorganic material formed into a green sheet is used as the restraining member, the inorganic material is not particularly limited as long as it is a material that does not sinter at the firing temperature of the luminescent color conversion material. For example, Al 2 O 3 , MgO, ZrO 2 , TiO 2 , BeO, or BN may be used alone or in combination. Moreover, when making an inorganic material into a green sheet, it can obtain by the method similar to the above. Further, when a porous ceramic substrate is used as the restraining member, there is no particular limitation as long as the luminescent color conversion member and the porous ceramic are difficult to adhere during firing. For example, SiAl 2 O 5 , Al 2 O 3 MgO, ZrO 2 can be used. Further, the cutting of the green sheet and the restraining member may be performed after the laminate is manufactured. If it does in this way, the luminescent color conversion member with a small dimensional change rate before and behind baking can be obtained.

次に、グリーンシートの両面または片面に、拘束部材を積層し、熱圧着によって一体化して積層体を作製した後、焼成して焼結体を得る。焼成は、450〜750℃、特に450〜700℃で行うことが好ましい。450℃より低い温度では緻密な焼結体が得にくくなる。一方、750℃より高い温度では、無機蛍光体が劣化したり、ガラスと無機蛍光体が反応したりする。なお、一度に多量の発光色変換部材を得たい場合は、複数枚のグリーンシートおよび拘束部材を交互に積層し、熱圧着して、焼成することで得ることができる。また、厚めの変換部材を得たい場合は、複数枚の蛍光体複合グリーンシートを積層した後、積層したグリーンシートの両面または片面に、拘束部材を積層し、熱圧着して、焼成処理することで得ることができる。   Next, a constraining member is laminated on both sides or one side of the green sheet, integrated by thermocompression bonding to produce a laminate, and then fired to obtain a sintered body. Firing is preferably performed at 450 to 750 ° C, particularly 450 to 700 ° C. When the temperature is lower than 450 ° C., it becomes difficult to obtain a dense sintered body. On the other hand, at a temperature higher than 750 ° C., the inorganic phosphor deteriorates or the glass and the inorganic phosphor react. In addition, when it is desired to obtain a large amount of luminescent color conversion member at a time, it can be obtained by alternately laminating a plurality of green sheets and restraining members, thermocompression bonding, and firing. In addition, if you want to obtain a thicker conversion member, after laminating a plurality of phosphor composite green sheets, laminate the constraining member on both sides or one side of the laminated green sheets, heat-press and fire Can be obtained at

続いて、拘束部材を除去する。拘束部材として、無機組成物を含むグリーンシートを用いた場合、焼成処理を行った後の発光色変換部材の表面には、未焼結の無機組成物が残存するが、超音波洗浄を行うことで、残存する無機組成物を除去することができる。   Subsequently, the restraining member is removed. When a green sheet containing an inorganic composition is used as a restraining member, an unsintered inorganic composition remains on the surface of the luminescent color conversion member after firing, but ultrasonic cleaning is performed. Thus, the remaining inorganic composition can be removed.

このようにして、化学的に安定で、肉厚が薄く、均一な厚みを有し、しかも、エネルギー変換効率が高い発光色変換部材を作製することができる。さらに拘束部材を用いて作製した発光色変換部材は、その気孔率を10%以下にすることが容易である。気孔率を10%以下にできれば、光の散乱が強くならず、十分な光量が透過するため、エネルギー変換効率が向上する。また、発光色変換部材の機械的強度も高くなる。気孔率のより好ましい範囲は8%以下である。気孔率とは、アルキメデス法により測定した実測密度と理論密度に基づき、(1−実測密度/理論密度)×100(%)で求めた値をいう。なお、「理論密度」とは、ガラス粉末と無機蛍光体粉末のそれぞれの密度と配合比に基づいて算出された密度をいう。   In this way, it is possible to produce a light emitting color conversion member that is chemically stable, has a small thickness, has a uniform thickness, and high energy conversion efficiency. Furthermore, the light emitting color conversion member produced using the restraining member can easily have a porosity of 10% or less. If the porosity can be reduced to 10% or less, light scattering does not increase and a sufficient amount of light is transmitted, so that energy conversion efficiency is improved. Further, the mechanical strength of the luminescent color conversion member is also increased. A more preferable range of the porosity is 8% or less. The porosity means a value obtained by (1−actual density / theoretical density) × 100 (%) based on the actual density and the theoretical density measured by the Archimedes method. The “theoretical density” means a density calculated based on the density and the mixing ratio of the glass powder and the inorganic phosphor powder.

次にペーストの形態で供給する場合について説明する。   Next, the case where it supplies with the form of a paste is demonstrated.

ペーストの形態で使用する場合、ガラス粉末、無機蛍光体粉末およびビークルを使用する。   When used in the form of a paste, glass powder, inorganic phosphor powder and vehicle are used.

ビークルとしては、例えばエチルセルロースをテルピネオールに溶解させたもの、ニトロセルロースを酢酸イソアミルで溶解したもの等を使用することができる。   As the vehicle, for example, one obtained by dissolving ethyl cellulose in terpineol, one obtained by dissolving nitrocellulose with isoamyl acetate, or the like can be used.

ペーストの調製は、三本ロールミルを用いてガラス粉末、蛍光体粉末およびビークルを混練し、均一分散処理を行う。なお、ペーストの調製方法として三本ロールミルを用いた例を挙げたが、これに限られるものではなく、一般にガラスペーストの作製に用いられる各種の方法を適用することができる。   The paste is prepared by kneading glass powder, phosphor powder and vehicle using a three-roll mill and performing uniform dispersion treatment. In addition, although the example which used the three roll mill was given as a preparation method of a paste, it is not restricted to this, Various methods generally used for preparation of glass paste are applicable.

このようにしてペースト化した本発明の発光色変換材料を用いて発光色変換部材を製造する方法を以下に説明する。   A method for producing a luminescent color conversion member using the luminescent color conversion material of the present invention thus pasted will be described below.

まずペースト化した発光色変換材料を、基材上に塗布する。基材としては、焼結後の発光色変換部材の熱膨張係数と適合する板ガラス等が好適に使用される。塗布方法としては、例えばスクリーン印刷法を採用することができる。スクリーン印刷法を採用した場合、均一な厚みを有する塗布層を容易に形成することが可能である。塗布層の厚みは、所望の蛍光色に応じて適宜調節すればよい。なお、マスキングを施した後に、ペーストを塗布すれば、蛍光色を発する文字や絵模様を基材上に形成することができる。   First, a pasted luminescent color conversion material is applied onto a substrate. As the base material, a plate glass or the like suitable for the thermal expansion coefficient of the luminescent color conversion member after sintering is preferably used. As a coating method, for example, a screen printing method can be employed. When the screen printing method is adopted, it is possible to easily form a coating layer having a uniform thickness. The thickness of the coating layer may be appropriately adjusted according to the desired fluorescent color. In addition, if a paste is applied after masking, letters and pictures that emit fluorescent colors can be formed on the substrate.

次に、塗布されたペースト材料を300〜400℃の温度で脱脂し、続いて450〜700℃で焼成する。このようにして、板ガラス等の基材上に、被膜状の発光色変換部材を形成することができる。なお、焼成温度は、ガラス粉末が十分に流動する温度を選択することが好ましい。ただし700℃を超えると、蛍光体がガラスと反応して所望の発光色が得にくくなるため好ましくない。   Next, the applied paste material is degreased at a temperature of 300 to 400 ° C. and subsequently baked at 450 to 700 ° C. In this manner, a film-like luminescent color conversion member can be formed on a substrate such as plate glass. In addition, it is preferable to select the temperature at which the glass powder flows sufficiently as the firing temperature. However, if it exceeds 700 ° C., the phosphor reacts with the glass and it becomes difficult to obtain a desired emission color, which is not preferable.

このようにして得られた発光色変換部材は、青色LED素子等の青色光源と組み合わせることにより、例えば白色LEDに代表される白色光源として利用できる。該白色LEDにおいて、発光色変換部材に入射した青色光の一部が無機蛍光体によって異なる波長の光に変換され、また残部の青色光が透過する。この波長が変換された光と、発光色変換部材中を透過した青色光とが合わさって白色光に近いスペクトルを合成することにより、青色光が白色光に転換される。   The luminescent color conversion member thus obtained can be used as a white light source typified by a white LED, for example, by combining with a blue light source such as a blue LED element. In the white LED, part of the blue light incident on the luminescent color conversion member is converted into light having a different wavelength by the inorganic phosphor, and the remaining blue light is transmitted. Blue light is converted into white light by combining the light with the converted wavelength and the blue light transmitted through the light emitting color conversion member to synthesize a spectrum close to white light.

(実施例1)
表1は、使用するガラス粉末の組成系の違いによる輝度の変化率の違いを評価したものである。
Example 1
Table 1 evaluates the difference in luminance change rate due to the difference in the composition system of the glass powder used.

Figure 2007191702
Figure 2007191702

まず、発光色変換部材は以下のようにして作製した。   First, the luminescent color conversion member was produced as follows.

質量%でZnO 35%、B23 40%、SiO2 10%、Na2O 10%、Al23 5%のガラス組成を有するガラス(ZnO−B23−SiO2系ガラス1)および、質量%でSiO2 45%、B23 25%、Al23 25%、CaO 5%のガラス組成を有するガラス(SiO2−B23−Al23系ガラス)となるように、各種酸化物のガラス原料を調合し、均一に混合した後、白金坩堝に入れ、1200℃で2時間溶融して均一なガラスを得た。これをアルミナボールで粉砕し、分級して平均粒径が2.5μmのガラス粉末を得た。次に、作製したガラス粉末に、無機蛍光体粉末を表1の質量比で混合して混合粉末を作製した。さらに、その混合物を金型で加圧成型して直径1cmの円柱状予備成型体を作製した。 Glass (ZnO—B 2 O 3 —SiO 2 glass 1 having a glass composition of 35% by weight of ZnO 35%, B 2 O 3 40%, SiO 2 10%, Na 2 O 10%, Al 2 O 3 5%. ) And glass having a glass composition of SiO 2 45%, B 2 O 3 25%, Al 2 O 3 25%, CaO 5% by mass (SiO 2 —B 2 O 3 —Al 2 O 3 glass) After preparing glass materials of various oxides and mixing them uniformly, they were put in a platinum crucible and melted at 1200 ° C. for 2 hours to obtain uniform glass. This was pulverized with alumina balls and classified to obtain glass powder having an average particle diameter of 2.5 μm. Next, an inorganic phosphor powder was mixed with the prepared glass powder at a mass ratio shown in Table 1 to prepare a mixed powder. Further, the mixture was pressure-molded with a mold to prepare a cylindrical preform with a diameter of 1 cm.

次に、円柱状予備成型体を電気炉中(大気雰囲気)において表の焼成温度で20分加熱し、UVライト(発光ピーク波長365nm、254nm)、および近紫外ダイオード(発光ピーク波長400nm)の3つの異なる波長の光をそれぞれ照射し、輝度計(ミノルタ社製 LS−100)にて相対輝度の測定を行った。なお、輝度変化率は蛍光色変換部材の焼成前後での輝度の変化率を示すものであり、(焼成後輝度/焼成前輝度)×100(%)で表される。この値が大きいほど、変換部材の変換効率が高いと言える。   Next, the cylindrical preform was heated in an electric furnace (atmosphere) at the firing temperature shown in the table for 20 minutes, and UV light (emission peak wavelength 365 nm, 254 nm) and near ultraviolet diode (emission peak wavelength 400 nm) 3 Relative luminance was measured with a luminance meter (LS-100, manufactured by Minolta Co., Ltd.) by irradiating light of three different wavelengths. The luminance change rate indicates the luminance change rate before and after firing the fluorescent color conversion member, and is represented by (luminance after firing / luminance before firing) × 100 (%). It can be said that the conversion efficiency of a conversion member is so high that this value is large.

その結果、ZnO−B23−SiO2系ガラス粉末を用いた本発明の試料No.1は、輝度変化率が大きいことが確認された。 As a result, the sample No. 1 of the present invention using ZnO—B 2 O 3 —SiO 2 glass powder. 1, it was confirmed that the luminance change rate was large.

(実施例2)
グリーンシート状にした本発明の発光色変換材料を用いて発光色変換部材を作製し、そのエネルギー変換効率を評価した。
(Example 2)
A luminescent color conversion member was prepared using the luminescent color conversion material of the present invention in the form of a green sheet, and its energy conversion efficiency was evaluated.

まず、グリーンシートを以下のようにして作製した。   First, a green sheet was produced as follows.

実施例1で用意したガラス粉末(ZnO−B23−SiO2系ガラス1)とZnS蛍光体粉末(化成オプトニクス株式会社製 平均粒径:8μm)を、質量比で95:5の割合で添加し、混合して混合粉末を作製した。次いで、作製した混合粉末100に対して、結合剤としてメタアクリル酸樹脂を30質量%、可塑剤としてフタル酸ジブチルを3質量%、溶剤としてトルエンを20質量%添加し、混合してスラリーを作製した。続けて、上記スラリーをドクターブレード法によって、PETフィルム上にシート成形し、乾燥して、50μmの厚みの発光色変換材料グリーンシートを得た。 The glass powder (ZnO—B 2 O 3 —SiO 2 glass 1) prepared in Example 1 and the ZnS phosphor powder (average particle size: 8 μm, manufactured by Kasei Optonics Co., Ltd.) are in a mass ratio of 95: 5. And mixed to prepare a mixed powder. Next, 30% by mass of methacrylic acid resin as a binder, 3% by mass of dibutyl phthalate as a plasticizer, and 20% by mass of toluene as a solvent are added to the prepared mixed powder 100 and mixed to prepare a slurry. did. Subsequently, the slurry was formed into a sheet on a PET film by a doctor blade method and dried to obtain a green sheet of a light emitting color conversion material having a thickness of 50 μm.

次に、拘束部材として、グリーンシート化した無機材料を準備した。無機材料には、アルミナ粉末(住友アルミ社製 ALM−21 平均粒径:2μm)を用い、上記の発光色変換部材形成材料からなるグリーンシートの作製方法と同様の混合割合および方法で、200μmの厚みの拘束グリーンシート(アルミナグリーンシート)を得た。   Next, an inorganic material made into a green sheet was prepared as a restraining member. As the inorganic material, alumina powder (ALM-21 manufactured by Sumitomo Aluminum Co., Ltd., average particle size: 2 μm) is used, and the mixing ratio and method are the same as those for the green sheet made of the light emitting color conversion member forming material. A thickness-constrained green sheet (alumina green sheet) was obtained.

続けて、発光色変換材料グリーンシートおよび拘束グリーンシートを100×100mmの大きさに切断し、拘束グリーンシート上に発光色変換材料グリーンシートを3枚積層し、さらに、その上に、拘束グリーンシートを積層し、熱圧着によって一体化して積層体を作製した後、600℃で焼成した。その後、超音波洗浄を行い、得られた焼結体の表面に残存する未焼結のアルミナ層を除去して、大きさ100×100mm、肉厚120μmの発光色変換部材を作製した。   Subsequently, the luminescent color conversion material green sheet and the constrained green sheet are cut into a size of 100 × 100 mm, three luminescent color conversion material green sheets are laminated on the constrained green sheet, and further, the constrained green sheet is further formed thereon. Were laminated and integrated by thermocompression bonding to produce a laminate, which was then fired at 600 ° C. Thereafter, ultrasonic cleaning was performed to remove the unsintered alumina layer remaining on the surface of the obtained sintered body, and a luminescent color conversion member having a size of 100 × 100 mm and a thickness of 120 μm was produced.

このようにして得られた発光色変換部材について、部材の背後から紫外光(発光ピーク波長400nm)を照射したところ、ZnSによる緑色の光が得られた。また、エネルギー変換効率および気孔率を測定したところ、エネルギー変換効率は、12%であり、気孔率は2%であった。   When the emission color conversion member thus obtained was irradiated with ultraviolet light (emission peak wavelength 400 nm) from behind the member, green light of ZnS was obtained. Moreover, when the energy conversion efficiency and the porosity were measured, the energy conversion efficiency was 12% and the porosity was 2%.

なお、エネルギー変換効率は、分光光度計を用いて、光源のエネルギー(a)、発光色変換部材を透過した光源と同じ波長の光のエネルギー(b)および発光色変換部材中で光源の波長によって変換された光のエネルギーを(c)を測定し、〔c/(a−b)〕×100(%)より求めた。   The energy conversion efficiency depends on the energy (a) of the light source, the energy (b) of the light having the same wavelength as the light source transmitted through the luminescent color conversion member, and the wavelength of the light source in the luminescent color conversion member using a spectrophotometer. The energy of the converted light was measured from (c) and obtained from [c / (ab)] × 100 (%).

また、気孔率については、アルキメデス法を用いて、実測密度と理論密度を測定し、(1−実測密度/理論密度)×100(%)より求めた。   The porosity was determined by measuring the measured density and the theoretical density using Archimedes' method, and calculating from (1−measured density / theoretical density) × 100 (%).

(実施例3)
質量百分率で、ZnO 35%、B23 45%、SiO2 10%、Na2O 7%、Al23 1%、Li2O 2%含有するガラス(ZnO−B23−SiO2系ガラス2)および、質量百分率でSiO2 50%、BaO 25%、CaO 12%、Al23 6%、B23 5%、ZnO 2%含有するガラス(SiO2−BaO系ガラス)となるように、各種酸化物のガラス原料を調合し、均一に混合した後、この混合物を白金坩堝中において、表2に示す溶融温度で2時間溶融してガラス化し、フィルム状に成形した。次に、得られたフィルム状のガラスをボールミルで粉砕した後、325メッシュの篩に通して分級し、ガラス粉末を得た。
(Example 3)
Glass containing ZnO 35%, B 2 O 3 45%, SiO 2 10%, Na 2 O 7%, Al 2 O 3 1%, Li 2 O 2% by mass (ZnO—B 2 O 3 —SiO 2 2 type glass 2) and glass containing SiO 2 50%, BaO 25%, CaO 12%, Al 2 O 3 6%, B 2 O 3 5%, ZnO 2% by mass percentage (SiO 2 —BaO type glass) After preparing glass materials of various oxides and mixing them uniformly, the mixture was melted and vitrified at a melting temperature shown in Table 2 for 2 hours in a platinum crucible and formed into a film. . Next, the obtained film-like glass was pulverized with a ball mill and then passed through a 325 mesh sieve to obtain a glass powder.

次に、得られたガラス粉末と酸化物蛍光体粉末を、表2に示す蛍光体含有量となるように混合し、金型で加圧成型して直径1cmのボタン状の予備成型体を作製した。この予備成型体を、表2に示す焼結温度で焼成した後、焼成体を加工し、直径8mm、厚さ0.55mmの円盤状の発光色変換部材を得た。   Next, the obtained glass powder and oxide phosphor powder are mixed so as to have the phosphor content shown in Table 2, and pressure-molded with a mold to produce a button-shaped preform having a diameter of 1 cm. did. The preform was fired at the sintering temperature shown in Table 2, and then the fired body was processed to obtain a disk-like light emitting color conversion member having a diameter of 8 mm and a thickness of 0.55 mm.

得られた発光色変換部材について、発光スペクトルを測定し、発光効率を計算により求めた。発光スペクトルは、積分球内で青色LED(発光ピーク波長460nm)の光を試料の片面に入射し、その面と反対側の面から発せられた光を小型のマルチチャネル分光器を通してPC上に取り込んだ。発光効率は、得られた発光スペクトルに標準化視感度を掛け合わせて全光束(lm)を求めたのち、励起青色LEDにかかる電力(W)で除して算出した。発光効率を表2に示す。   About the obtained luminescent color conversion member, the luminescence spectrum was measured and the luminous efficiency was calculated | required by calculation. In the emission spectrum, light from a blue LED (emission peak wavelength: 460 nm) is incident on one side of a sample in an integrating sphere, and light emitted from the surface opposite to the surface is taken into a PC through a small multichannel spectrometer. It is. The luminous efficiency was calculated by multiplying the obtained emission spectrum by the standardized visibility to obtain the total luminous flux (lm) and then dividing by the power (W) applied to the excitation blue LED. The luminous efficiency is shown in Table 2.

Figure 2007191702
Figure 2007191702

表2からわかるように、ZnO−B23−SiO2系ガラス粉末を用いた本発明の試料No.3では、発光効率が大きいことが確認された。一方、焼成温度が高温となっているSiO2−BaO系ガラス粉末を用いた試料No.4では、発光効率は著しく劣ったものとなった。 As can be seen from Table 2, Sample No. of the present invention using ZnO—B 2 O 3 —SiO 2 glass powder. 3, it was confirmed that the luminous efficiency was high. On the other hand, Sample No. using SiO 2 —BaO glass powder having a high firing temperature. In 4, the luminous efficiency was extremely inferior.

Claims (6)

ZnO−B23−SiO2系ガラス粉末と、酸化物、硫化物、酸硫化物、ハロゲン化物およびアルミン酸塩から選ばれる1種以上の無機蛍光体粉末を含有することを特徴とする発光色変換材料。 Light emission comprising ZnO—B 2 O 3 —SiO 2 glass powder and at least one inorganic phosphor powder selected from oxides, sulfides, oxysulfides, halides and aluminates Color conversion material. ガラス粉末と無機蛍光体粉末の混合割合が、質量比で99.99:0.01〜70:30の範囲にあることを特徴とする請求項1に記載の発光色変換材料。   2. The luminescent color conversion material according to claim 1, wherein a mixing ratio of the glass powder and the inorganic phosphor powder is in a range of 99.99: 0.01 to 70:30 by mass ratio. ガラス粉末が、ガラス組成として、質量%で、ZnO 5〜60%、B23 5〜50%、SiO2 2〜30%を含有することを特徴とする請求項1または2に記載の発光色変換材料。 The light emission according to claim 1 or 2, wherein the glass powder contains, by mass%, ZnO 5 to 60%, B 2 O 3 5 to 50%, SiO 2 2 to 30% as a glass composition. Color conversion material. グリーンシートまたはペーストの形態で提供されることを特徴とする請求項1〜3のいずれかに記載の発光色変換材料。   The luminescent color conversion material according to any one of claims 1 to 3, which is provided in the form of a green sheet or a paste. 請求項1〜4のいずれかに記載の発光色変換材料を焼成してなることを特徴とする発光色変換部材であって、波長250nm〜500nmの領域に発光ピークを有する光を照射すると、380nm〜780nmの可視光域に蛍光を発する発光色変換部材。   A luminescent color conversion member obtained by firing the luminescent color conversion material according to any one of claims 1 to 4, wherein when irradiating light having an emission peak in a wavelength range of 250 nm to 500 nm, 380 nm An emission color conversion member that emits fluorescence in a visible light region of ˜780 nm. 請求項5に記載の発光色変換部材を用いてなる白色LED。   A white LED comprising the luminescent color conversion member according to claim 5.
JP2006341069A 2005-12-22 2006-12-19 Light emission color converting material Pending JP2007191702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341069A JP2007191702A (en) 2005-12-22 2006-12-19 Light emission color converting material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005369734 2005-12-22
JP2006341069A JP2007191702A (en) 2005-12-22 2006-12-19 Light emission color converting material

Publications (1)

Publication Number Publication Date
JP2007191702A true JP2007191702A (en) 2007-08-02

Family

ID=38447649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341069A Pending JP2007191702A (en) 2005-12-22 2006-12-19 Light emission color converting material

Country Status (1)

Country Link
JP (1) JP2007191702A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091546A (en) * 2007-09-18 2009-04-30 Nichia Corp Phosphor-containing molded member, method of manufacturing the same, and light emitting device
JP2009177131A (en) * 2007-12-27 2009-08-06 Toyoda Gosei Co Ltd Method for manufacturing phosphor-containing glass plate and method for manufacturing light-emitting device
JP2010108965A (en) * 2008-10-28 2010-05-13 Nippon Electric Glass Co Ltd Wavelength conversion member
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
JP2011162398A (en) * 2010-02-10 2011-08-25 National Institute For Materials Science Glass for dispersing fluorescent substance, glass produced by dispersing fluorescent substance and method for producing the same
JP2014088519A (en) * 2012-10-31 2014-05-15 Nippon Electric Glass Co Ltd Method for producing wavelength conversion member, and wavelength conversion member
JP2014203899A (en) * 2013-04-03 2014-10-27 日本電気硝子株式会社 Wavelength conversion material, wavelength conversion member and light-emitting device
JP2015042606A (en) * 2013-07-25 2015-03-05 セントラル硝子株式会社 Phosphor-dispersed glass
JP2015109483A (en) * 2010-10-08 2015-06-11 オスラム ゲーエムベーハーOSRAM GmbH Optoelectronic semiconductor component and manufacturing method thereof
KR20150090395A (en) * 2014-01-29 2015-08-06 엘지이노텍 주식회사 Glass composition for ceramic photo-conversion part and ceramic photo-conversion part using the same
KR20150090458A (en) * 2014-01-29 2015-08-06 엘지이노텍 주식회사 Light conversion element, Lamp device and automobile lamp using the same
KR20150091664A (en) * 2014-02-03 2015-08-12 엘지이노텍 주식회사 Glass composition for ceramic photo-conversing part and ceramic photo-conversing part including the same
KR20150094812A (en) * 2014-02-10 2015-08-20 엘지이노텍 주식회사 Glass composition for high-reliability ceramic phosphor plate and ceramic phosphor plate using the same
WO2015140854A1 (en) * 2014-03-19 2015-09-24 パナソニックIpマネジメント株式会社 Wavelength conversion element manufacturing method
KR20160063245A (en) 2014-11-26 2016-06-03 샌트랄 글래스 컴퍼니 리미티드 Phosphor-dispersed glass
JP2016143742A (en) * 2015-01-30 2016-08-08 シャープ株式会社 Wavelength conversion member, light-emitting device, and method of producing wavelength conversion member
US9434876B2 (en) 2014-10-23 2016-09-06 Central Glass Company, Limited Phosphor-dispersed glass
KR20160143922A (en) * 2015-06-04 2016-12-15 엘지이노텍 주식회사 Composition for Manufacturing Ceramic Fluorescent Plate, Ceramic Fluorescent Plate and Light Emitting Apparatus
WO2016208851A1 (en) * 2015-06-23 2016-12-29 주식회사 베이스 Method for producing glass for leds
WO2016208850A1 (en) * 2015-06-23 2016-12-29 주식회사 베이스 Method for producing glass for leds, led chip encapsulation member using glass for leds and led package comprising same, and methods for producing these
KR101787381B1 (en) * 2015-06-23 2017-10-19 주식회사 베이스 Method for manufacturing the glass for light emitting diode
CN108139520A (en) * 2015-09-29 2018-06-08 松下知识产权经营株式会社 Wavelength changing element and light-emitting device
JP2018131380A (en) * 2013-07-25 2018-08-23 セントラル硝子株式会社 Phosphor-dispersed glass
WO2019112233A1 (en) * 2017-12-08 2019-06-13 주식회사 베이스 Method for manufacturing phosphor-in-glass (pig) color conversion element
EP3620440A1 (en) * 2018-09-07 2020-03-11 Daejoo Electronic Materials Co., Ltd. Laminate for preparing a wavelength converting member and process for preparing a wavelength converting member

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091546A (en) * 2007-09-18 2009-04-30 Nichia Corp Phosphor-containing molded member, method of manufacturing the same, and light emitting device
JP2009177131A (en) * 2007-12-27 2009-08-06 Toyoda Gosei Co Ltd Method for manufacturing phosphor-containing glass plate and method for manufacturing light-emitting device
JP2010108965A (en) * 2008-10-28 2010-05-13 Nippon Electric Glass Co Ltd Wavelength conversion member
WO2010131402A1 (en) * 2009-05-15 2010-11-18 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting fixture unit
JP5487204B2 (en) * 2009-05-15 2014-05-07 株式会社小糸製作所 Light emitting module, method for manufacturing light emitting module, and lamp unit
JP2011162398A (en) * 2010-02-10 2011-08-25 National Institute For Materials Science Glass for dispersing fluorescent substance, glass produced by dispersing fluorescent substance and method for producing the same
JP2015109483A (en) * 2010-10-08 2015-06-11 オスラム ゲーエムベーハーOSRAM GmbH Optoelectronic semiconductor component and manufacturing method thereof
JP2014088519A (en) * 2012-10-31 2014-05-15 Nippon Electric Glass Co Ltd Method for producing wavelength conversion member, and wavelength conversion member
JP2014203899A (en) * 2013-04-03 2014-10-27 日本電気硝子株式会社 Wavelength conversion material, wavelength conversion member and light-emitting device
JP2018131380A (en) * 2013-07-25 2018-08-23 セントラル硝子株式会社 Phosphor-dispersed glass
JP2015042606A (en) * 2013-07-25 2015-03-05 セントラル硝子株式会社 Phosphor-dispersed glass
KR20150090395A (en) * 2014-01-29 2015-08-06 엘지이노텍 주식회사 Glass composition for ceramic photo-conversion part and ceramic photo-conversion part using the same
KR20150090458A (en) * 2014-01-29 2015-08-06 엘지이노텍 주식회사 Light conversion element, Lamp device and automobile lamp using the same
KR102157688B1 (en) * 2014-01-29 2020-09-18 엘지이노텍 주식회사 Lighting device
KR102187045B1 (en) * 2014-01-29 2020-12-04 엘지이노텍 주식회사 Glass composition for ceramic photo-conversion part and ceramic photo-conversion part using the same
KR20150091664A (en) * 2014-02-03 2015-08-12 엘지이노텍 주식회사 Glass composition for ceramic photo-conversing part and ceramic photo-conversing part including the same
KR102228380B1 (en) * 2014-02-03 2021-03-16 엘지이노텍 주식회사 Glass composition for ceramic photo-conversing part and ceramic photo-conversing part including the same
KR102201048B1 (en) * 2014-02-10 2021-01-12 엘지이노텍 주식회사 Glass composition for high-reliability ceramic phosphor plate and ceramic phosphor plate using the same
KR20150094812A (en) * 2014-02-10 2015-08-20 엘지이노텍 주식회사 Glass composition for high-reliability ceramic phosphor plate and ceramic phosphor plate using the same
WO2015140854A1 (en) * 2014-03-19 2015-09-24 パナソニックIpマネジメント株式会社 Wavelength conversion element manufacturing method
US9434876B2 (en) 2014-10-23 2016-09-06 Central Glass Company, Limited Phosphor-dispersed glass
KR20160063245A (en) 2014-11-26 2016-06-03 샌트랄 글래스 컴퍼니 리미티드 Phosphor-dispersed glass
JP2016143742A (en) * 2015-01-30 2016-08-08 シャープ株式会社 Wavelength conversion member, light-emitting device, and method of producing wavelength conversion member
US9741908B2 (en) 2015-01-30 2017-08-22 Sharp Kabushiki Kaisha Wavelength converting member, light-emitting device, and method for producing wavelength converting member
KR20160143922A (en) * 2015-06-04 2016-12-15 엘지이노텍 주식회사 Composition for Manufacturing Ceramic Fluorescent Plate, Ceramic Fluorescent Plate and Light Emitting Apparatus
KR102459949B1 (en) * 2015-06-04 2022-10-31 엘지이노텍 주식회사 Composition for Manufacturing Ceramic Fluorescent Plate, Ceramic Fluorescent Plate and Light Emitting Apparatus
TWI670870B (en) * 2015-06-23 2019-09-01 南韓商博思股份有限公司 Manufacturing method of glass for led, led chip encapsulation member using the glass for led, and led package comprising the led chip encapsulation member
KR101787381B1 (en) * 2015-06-23 2017-10-19 주식회사 베이스 Method for manufacturing the glass for light emitting diode
WO2016208850A1 (en) * 2015-06-23 2016-12-29 주식회사 베이스 Method for producing glass for leds, led chip encapsulation member using glass for leds and led package comprising same, and methods for producing these
WO2016208851A1 (en) * 2015-06-23 2016-12-29 주식회사 베이스 Method for producing glass for leds
US20180216800A1 (en) * 2015-09-29 2018-08-02 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion element and light emitting device
CN108139520A (en) * 2015-09-29 2018-06-08 松下知识产权经营株式会社 Wavelength changing element and light-emitting device
WO2019112233A1 (en) * 2017-12-08 2019-06-13 주식회사 베이스 Method for manufacturing phosphor-in-glass (pig) color conversion element
EP3620440A1 (en) * 2018-09-07 2020-03-11 Daejoo Electronic Materials Co., Ltd. Laminate for preparing a wavelength converting member and process for preparing a wavelength converting member
JP2020045275A (en) * 2018-09-07 2020-03-26 デジュ・エレクトロニック・マテリアルズ・カンパニー・リミテッドDaejoo Electronic Materials Co., Ltd. Laminate for manufacturing wavelength conversion member and method for manufacturing wavelength conversion member
JP7049678B2 (en) 2018-09-07 2022-04-07 デジュ・エレクトロニック・マテリアルズ・カンパニー・リミテッド A method for manufacturing a laminate for manufacturing a wavelength conversion member and a wavelength conversion member
US11851370B2 (en) 2018-09-07 2023-12-26 Daejoo Electronic Materials Co., Ltd Laminated body for preparing wavelength conversion member and preparation method of wavelength conversion member

Similar Documents

Publication Publication Date Title
JP2007191702A (en) Light emission color converting material
JP5152687B2 (en) Luminescent color conversion material
TWI405738B (en) Fluorescent composite glass green sheet and method for making a fluorescent composite glass
JP2007023267A (en) Emission color-converting material
JP4765525B2 (en) Luminescent color conversion member
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP5483795B2 (en) Luminescent color conversion material and luminescent color conversion member
JP2007048864A (en) Phosphor composite material
JP2007182529A (en) Fluorescent composite glass, fluorescent composite glass green sheet and process for production of fluorescent composite glass
JP2008169348A (en) Phosphor composite material
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP5242905B2 (en) Luminescent color conversion member manufacturing method and luminescent color conversion member
WO2017098963A1 (en) Wavelength conversion member, wavelength conversion element, and light emitting apparatus using those
JP2008021868A (en) Phosphor composite member
JP2006202726A (en) Luminescent color conversion member
JP6222452B2 (en) Wavelength conversion member and light emitting device
JP2010229002A (en) SnO-P2O5 GLASS USED FOR PHOSPHOR COMPOSITE MATERIAL
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2018043912A (en) Photoconversion member, illumination light source and method for producing photoconversion member
WO2013141044A1 (en) Glass, and wavelength conversion member produced using said glass
JP2012052061A (en) Phosphor composite member
JP2018178111A (en) Wavelength conversion member and manufacturing method therefor
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
JP5240656B2 (en) Luminescent color conversion member
JP6656580B2 (en) Manufacturing method of wavelength conversion member