WO2014050684A1 - Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same - Google Patents

Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same Download PDF

Info

Publication number
WO2014050684A1
WO2014050684A1 PCT/JP2013/075258 JP2013075258W WO2014050684A1 WO 2014050684 A1 WO2014050684 A1 WO 2014050684A1 JP 2013075258 W JP2013075258 W JP 2013075258W WO 2014050684 A1 WO2014050684 A1 WO 2014050684A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
phosphor
dispersed
powder
glass sheet
Prior art date
Application number
PCT/JP2013/075258
Other languages
French (fr)
Japanese (ja)
Inventor
谷田 正道
英樹 沼倉
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014050684A1 publication Critical patent/WO2014050684A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7726Borates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil

Definitions

  • the present invention relates to a glass composition for a phosphor-dispersed glass sheet and a phosphor-dispersed glass sheet produced using the same, and more particularly, converts blue light from a blue light source, particularly a blue light-emitting diode (LED) element, into white light. It is related with the light conversion member for doing.
  • a blue light source particularly a blue light-emitting diode (LED) element
  • White LEDs are used as a low-power white illumination light source, and are expected to be applied to illumination applications.
  • the white light of the white LED is obtained by synthesizing blue light emitted from a blue LED element and yellow light obtained by converting a part of the blue light into yellow with a phosphor.
  • a phosphor-dispersed glass sheet (hereinafter also referred to as a glass sheet) having an inorganic phosphor dispersed in glass is known (for example, Patent Document 1).
  • a glass sheet having an inorganic phosphor dispersed in glass
  • Patent Document 1 a phosphor-dispersed glass sheet having an inorganic phosphor dispersed in glass.
  • the glass sheet is produced by mixing glass powder and phosphor powder and firing the mixture. Conventionally, there has been a problem that bubbles generated in the baking process remain in the glass. If there are bubbles in the glass (hereinafter referred to as encapsulated bubbles), the transmittance of the glass is lowered, causing a reduction in the luminous efficiency of the LED. In addition, the encapsulated foam may cause light to scatter in the glass and reduce the amount of light striking the phosphor.
  • Patent Document 2 describes a method of using a SiO 2 —B 2 O 3 based glass and a SnO—P 2 O 5 based glass and performing a firing step under reduced pressure in order to reduce encapsulated bubbles. .
  • the encapsulated foam can be reduced, but depending on the glass composition, the component may be volatilized.
  • the firing temperature becomes high, and the phosphor may be deteriorated.
  • the present inventors use a glass having a low glass softening point, thereby lowering the firing temperature to prevent the phosphor from being deteriorated, and exhibiting a glass having a steep viscosity curve in the firing temperature range. It has been found that the encapsulated foam in the glass sheet after firing can be reduced by using it, and the present invention has been achieved. That is, the present invention provides a glass composition capable of producing a phosphor-dispersed glass sheet with low encapsulated foam and high transmittance at a low temperature, and a phosphor-dispersed glass sheet obtained by firing the glass composition. The purpose is to provide.
  • the glass composition of the present invention is a glass composition for a phosphor-dispersed glass sheet containing glass powder and phosphor powder, and the difference ( ⁇ Tgs) between Ts and Tg calculated from the DTA curve of the glass powder is 50 to 105 ° C.
  • the glass composition of the present invention is also a glass composition for a phosphor-dispersed glass sheet containing a glass powder and a phosphor powder, and the glass powder is a difference between Tc and Tg calculated from a DTA curve. ( ⁇ Tgc) is 95 ° C. or higher.
  • a glass composition for a phosphor-dispersed glass sheet containing glass powder and phosphor powder wherein the glass powder has a difference ( ⁇ Tgs) between Ts and Tg calculated from a DTA curve of 50 to 105 ° C. And the difference ( ⁇ Tgc) between Tc and Tg calculated from the DTA curve is 95 ° C. or higher.
  • the phosphor-dispersed glass sheet of the present invention is produced by firing the glass composition for a phosphor-dispersed glass sheet of the present invention.
  • the glass composition for a phosphor-dispersed glass sheet of the present invention can lower the firing temperature, and can further reduce the encapsulated foam of the glass sheet after firing. Due to the low temperature firing, it is possible to suppress the deterioration of the phosphor in the manufacturing process. Furthermore, light scattering inside the glass sheet can be suppressed, the transmittance of the glass sheet can be increased, and the luminous efficiency of the LED can be increased.
  • FIG. 1 is a schematic cross-sectional view of a phosphor-dispersed glass sheet.
  • FIG. 1 is a schematic cross-sectional view of a phosphor-dispersed glass sheet 2 on an LED light-emitting element 1.
  • FIG. 1A shows a case where there is no encapsulated bubble around the phosphor 3 and between the LED light emitting element 1 and the phosphor 3. Since the LED light 5 emitted from the LED light emitting element 1 is not scattered in the phosphor-dispersed glass sheet 2, the decrease in the amount of light passing through the phosphor-dispersed glass sheet 2 is small. Therefore, the luminous efficiency of the LED is high. Further, the LED light 5 emitted from the LED light emitting element 1 efficiently hits the phosphor 3 and is converted into fluorescence 7. Therefore, a decrease in the conversion efficiency of the phosphor 3 is small.
  • FIG. 1B shows the case where the encapsulated foam 4 is in contact with the phosphor 3.
  • the encapsulated foam 4 is in contact with the phosphor 3.
  • light is easily reflected at the interface between the encapsulated bubble 4 and the glass 6, and the LED light 5 partially becomes scattered light 8.
  • multiple scattering tends to occur within the phosphor-dispersed glass sheet 2.
  • the optical path length becomes long, light is attenuated in the phosphor-dispersed glass sheet 2, the amount of light transmitted through the phosphor-dispersed glass sheet 2 is reduced, and the light emission efficiency of the LED may be lowered.
  • the amount of light hitting the phosphor 3 is reduced, the amount of the fluorescence 7 is reduced, and the conversion efficiency may be reduced.
  • FIG. 1 (c) shows a case where there is an encapsulated bubble, but there is an encapsulated bubble 4 between the LED light emitting element 1 and the phosphor 3 without contacting the phosphor 3.
  • the LED light 5 is reflected at the interface when entering the encapsulating bubble 4 from the glass 6 and when exiting the encapsulating bubble 4 to the glass 6. That is, the LED light 5 is scattered and part of the encapsulated foam 4 becomes scattered light 8.
  • the light emission efficiency of the LED may be reduced as in the case of FIG. Further, when the amount of light hitting the phosphor 3 is reduced, the amount of the fluorescence 7 is reduced, and the conversion efficiency may be reduced.
  • LED light 5 and fluorescence 7 emitted from the LED light emitting element 1 are transmitted through the phosphor-dispersed glass sheet 2 and emitted.
  • the degree of multiple scattering and back reflection can be evaluated by the total light transmittance. That is, if excessive multiple scattering and back reflection do not occur, the total light transmittance is high, and the loss of light while passing through the phosphor-dispersed glass sheet 2 is small.
  • the encapsulated foam 4 is present in the phosphor-dispersed glass sheet 2, the light is attenuated in the phosphor-dispersed glass sheet 2 and the transmittance is lowered, and the light hitting the phosphor 3 is reduced and the phosphor is reduced. Conversion efficiency decreases. Thereby, the luminous efficiency of LED falls. Therefore, the LED conversion member is required to reduce the encapsulated bubbles 4 of the phosphor-dispersed glass sheet 2.
  • the glass powder contained in the present glass composition has the characteristics that the rate of change in viscosity at the softening point is large and the viscosity curve is steep. Since such glass powder has low glass viscosity at the firing temperature, it can be sufficiently defoamed in the firing step. Further, it is necessary that the glass powder does not have a crystallization point Tc or the crystallization point Tc is sufficiently higher than the glass transition point Tg. When the crystallization point Tc is in the vicinity of the glass transition point Tg, the viscosity of the glass is not lowered at the firing temperature, and sufficient defoaming cannot be performed in the firing step.
  • the rate of change of the viscosity curve at the softening point of the glass powder is evaluated by the magnitude of the difference ⁇ Tgs between the glass softening point Ts and the glass transition point Tg measured by DTA (differential thermal analysis).
  • Ts and Tg are both temperatures determined by the viscosity of the glass. Specifically, Ts is a temperature at which the viscosity of the glass is 10 7.5 dPa ⁇ s, and Tg is a temperature at which the viscosity of the glass is about 10 13.3 dPa ⁇ s. Therefore, the smaller the ⁇ Tgs, the greater the rate of change in viscosity and the steeper curve.
  • the ⁇ Tgs of the glass powder used in the present glass composition is 50 to 105 ° C. If ⁇ Tgs is less than 50 ° C., the glass may become unstable. On the other hand, if ⁇ Tgs exceeds 105 ° C., the encapsulated foam of the glass sheet after firing may increase. ⁇ Tgs is preferably 80 to 100 ° C., and more preferably 85 to 95 ° C.
  • the Ts of the glass powder is preferably 700 ° C. or lower. If Ts is high, the firing temperature becomes high, and thus the phosphor powder may be deteriorated in the firing step. Ts is more preferably 650 ° C. or lower, and further preferably 620 ° C. or lower.
  • the crystallization point Tc of the glass powder is an exothermic peak at a temperature equal to or higher than the glass transition point Tg measured by DTA.
  • Tgc glass transition point
  • ⁇ Tgc of the glass powder used in the present glass composition is 95 ° C. or higher.
  • ⁇ Tgc is preferably 100 ° C. or higher, more preferably 105 ° C. or higher.
  • Examples of the glass having Ts, Tg, and ⁇ Tgs in the above-described range include a glass mainly containing a Bi 2 O 3 —ZnO—B 2 O 3 system. Among them, a glass containing Bi 2 O 3 3 to 30%, B 2 O 3 10 to 50%, and ZnO 0 to 45% in terms of mol% based on oxide is more preferable. Bi 2 O 3 3-30%, B 2 O 3 10-50%, ZnO 0-45%, SiO 2 5-35%, BaO 0-20%, MnO 2 0-1%, CeO 2 0-1% The glass containing is more preferable.
  • the glass mainly composed of Bi 2 O 3 —ZnO—B 2 O 3 includes Bi 2 O 3 3 to 30%, B 2 O 3 10 to 50%, ZnO 0 to 45%, SiO 2 5 to 35. %, BaO 0-20%, MnO 2 0-1%, CeO 2 0-1%.
  • “consisting essentially of” means that inevitable impurities other than the components described are allowed. Further, such a composition is preferable because Tc and ⁇ Tgc are also in the above ranges.
  • Bi 2 O 3 is a component that lowers Ts without lowering the chemical durability of glass, and is an essential component in this system.
  • the content of Bi 2 O 3 is preferably 3 to 30%. If Bi 2 O 3 is less than 3%, Ts of the glass powder becomes high, which is not preferable. On the other hand, if it exceeds 30%, the glass becomes unstable, tends to crystallize, and the sinterability may be impaired.
  • the content of Bi 2 O 3 is more preferably 5 to 25%, further preferably 5 to 20%.
  • B 2 O 3 is a glass network former and is a component that can stabilize glass, and is an essential component in this system.
  • the content of B 2 O 3 is preferably 10 to 50%. If the content of B 2 O 3 is less than 10%, the glass becomes unstable, tends to be crystallized, and the sinterability may be impaired. On the other hand, if the content of B 2 O 3 exceeds 50%, the chemical durability of the glass may be lowered.
  • the content of B 2 O 3 is more preferably 15 to 45%, further preferably 20 to 45%.
  • ZnO is a component that lowers Ts and is not an essential component in this system.
  • the content of ZnO is preferably 0 to 45%. If the ZnO content exceeds 45%, it will be difficult to vitrify, and it will be difficult to produce glass.
  • the lower limit of the ZnO content is more preferably 5% or more, and further preferably 10% or more. Further, the upper limit is more preferably 40% or less, and further preferably 35% or less.
  • SiO 2 is a component that increases the stability of the glass and is not an essential component in this system.
  • the content of SiO 2 is preferably 0 to 35%. If the SiO 2 content exceeds 35%, Ts may be high.
  • the lower limit of the content of SiO 2 is more preferably 5% or more, and further preferably 10% or more.
  • the upper limit is more preferably 30% or less, and further preferably 25% or less.
  • CaO, SrO, MgO or BaO alkaline earth metal oxide is a component that increases the stability of the glass and lowers Ts, and is not an essential component in this system.
  • the total amount of alkaline earth metal oxide is preferably 0 to 20%. If the total amount exceeds 20%, the stability of the glass is lowered. More preferably, the total amount is 18% or less. Further, BaO is preferable as the alkaline earth metal oxide.
  • MnO 2 nor CeO 2 is an essential component in this system, but since it functions as an oxidizing agent in the glass, it is preferably contained in the glass. In any case, reduction of Bi 2 O 3 in the glass can be prevented, so that this type of glass can be stabilized. Reduction of Bi 2 O 3 is not preferable because the glass is colored. Furthermore, the encapsulated foam of the glass sheet after baking may increase.
  • the contents of MnO 2 and CeO 2 are each preferably 0 to 1%. If the content exceeds 1%, coloring may increase.
  • Components are prepared and mixed so as to have predetermined thermal characteristics, melted in an electric furnace or the like, and rapidly cooled to produce glass.
  • the glass powder is produced by pulverizing and classifying the glass. Particle diameter of the glass powder is indicated by the 50% particle diameter D 50.
  • 50% particle diameter D 50 is preferably less than 2.0 .mu.m.
  • D 50 is 2.0 ⁇ m or more, the phosphor powder is not uniformly dispersed in the glass powder, it may decrease the conversion efficiency when the glass sheet.
  • D 50 is more preferably 1.5 ⁇ m or less, and still more preferably 1.4 ⁇ m or less.
  • the maximum particle size Dmax of the glass powder is preferably 30 ⁇ m or less. When Dmax is more than 30 ⁇ m, the phosphor powder is not uniformly dispersed in the glass powder, and when the glass sheet is produced, the conversion efficiency of the phosphor may be lowered. Dmax is more preferably 20 ⁇ m or less, and still more preferably 15 ⁇ m or less. In the present specification, both D 50 and Dmax is a value calculated by a laser diffraction type particle size distribution measurement.
  • the phosphor powder used in the present glass composition is not limited as long as it can convert blue light into yellow light.
  • Examples of phosphors include oxides, nitrides, oxynitrides, sulfides, oxysulfides, halides, aluminate chlorides, or halophosphates, and particularly have an excitation band at a wavelength of 400 to 500 nm. Those having an emission peak at a wavelength of 500 to 700 nm are preferable.
  • the phosphors are (Y, Gd) 3 Al 5 O 12 : Ce 3+ , (Y, Lu) 3 Al 5 O 12 : Ce 3+ , (Y, Gd ) 3 (Al, Ga) 5 O 12 : Ce 3+ , Ba 5 (PO 4 ) 3 Cl: U, CaGa 2 S 4 : Eu 2+ is preferable.
  • (Y, Gd) 3 Al 5 O 12 : Ce 3+ or (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ is more preferable.
  • D 50 of the phosphor powder is preferably 15 ⁇ m or less. If D 50 of the phosphor powder becomes large, the dispersion becomes poor glass sheet after firing, the conversion efficiency of light is degraded. D 50 is more preferably 13 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the glass composition in addition to the glass powder and the phosphor powder, the glass composition may further include those capable of degassing the encapsulated foam.
  • examples of such elements include elements that can have a plurality of oxidation numbers by changing the valence, such as metal compounds having oxidation catalytic properties such as copper chloride and antimony oxide.
  • the present glass composition is preferably composed of glass powder and phosphor powder.
  • the mixing ratio of the glass powder and phosphor powder is volume%, glass powder 60 to 99.99%, phosphor powder 0.01 ⁇ 40% is preferred. If the volume ratio of the glass powder is less than 60%, the sinterability of the mixture of the glass powder and the phosphor powder may be impaired, and the transmittance of the glass sheet may be lowered. Moreover, there is a possibility that yellow light increases and desired white light cannot be obtained. On the other hand, if the phosphor powder is less than 0.01%, the blue light cannot be sufficiently converted, and when the LED is used, desired white light may not be obtained.
  • the mixing ratio is more preferably 70 to 95% glass powder and 5 to 30% phosphor powder, more preferably 80 to 90% glass powder and 10 to 20% phosphor powder.
  • the glass sheet is manufactured through the molding process and the firing process using the present glass composition.
  • the molding method is not particularly limited as long as a desired shape can be imparted. Examples thereof include a press molding method, a roll molding method, and a doctor blade molding method.
  • a green sheet manufactured by a doctor blade molding method is preferable because a glass sheet having a uniform film thickness can be efficiently manufactured in a large area.
  • the green sheet can be manufactured, for example, by the following process. Glass powder and phosphor powder are kneaded in a vehicle and defoamed to obtain a slurry. The slurry is prepared on a transparent resin by a doctor blade method and dried. After drying, it is cut into a desired size and the transparent resin is peeled off to obtain a green sheet. Furthermore, a desired thickness can be ensured by pressing them into a laminate.
  • the vehicle is obtained by dissolving a resin (binder) in an organic solvent.
  • a resin ethyl cellulose, nitrocellulose, acrylic resin, vinyl acetate resin, butyral resin, melamine resin, alkyd resin, rosin resin and the like can be used.
  • organic solvent toluene, xylene, propanol, butanol, butyl acetate, methyl ethyl ketone, and the like can be used.
  • the vehicle contains a butyral resin, a melamine resin, an alkyd resin, or a rosin resin, the strength of the green sheet is improved, which is preferable.
  • the transparent resin for applying the slurry is not limited as long as a green sheet with a uniform film thickness is obtained.
  • a PET film etc. are mentioned.
  • the firing temperature is 450 to 900 ° C., and the glass softening point Ts ⁇ 50 ° C. is preferable.
  • the encapsulated foam of the glass sheet can be reduced by setting the firing temperature in the vicinity of Ts.
  • the encapsulated foam increases, and the phosphor powder may be deteriorated by reaction with heat or glass, and the conversion efficiency of the phosphor may be reduced.
  • the encapsulated foam of the glass sheet cannot be sufficiently reduced.
  • the firing temperature is more preferably Ts ⁇ 30 ° C., further preferably Ts ⁇ 20 ° C.
  • Ts is preferably 530 to 630 ° C. Therefore, the firing temperature is preferably 480 to 680 ° C. The firing temperature is more preferably 500 to 660 ° C., and further preferably 530 to 630 ° C.
  • the firing atmosphere is not particularly limited. If the ⁇ Tgs of the glass is within the range of the present invention, the encapsulated bubbles of the glass sheet can be sufficiently reduced even in the atmosphere, and the conversion efficiency of the phosphor can be increased.
  • debinder firing for removing the binder in the vehicle
  • main firing for sintering the glass powder
  • ⁇ Binder removal depends on the type and amount of binder in the vehicle used to manufacture the green sheet. For example, it is preferable to use an electric furnace or the like and hold at 400 to 480 ° C. for 1 to 6 hours.
  • a glass sheet produced from the present glass composition is useful as a light conversion member because it contains less encapsulated foam and can increase the conversion efficiency of the phosphor. Since the glass sheet manufactured from the present glass composition can maintain a high quantum conversion yield, the function of the light conversion member can be exhibited even if it is thin.
  • the thickness of the glass sheet is preferably 50 to 500 ⁇ m. When the thickness is 50 ⁇ m or more, handling becomes easy, and cracking can be suppressed particularly when cutting into a desired size.
  • the thickness is more preferably 80 ⁇ m or more, further preferably 100 ⁇ m or more, and particularly preferably 120 ⁇ m or more. If the thickness is 500 ⁇ m or less, the total amount of transmitted light can be kept high.
  • the thickness is preferably 400 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 250 ⁇ m or less.
  • the planar shape of the glass sheet is not particularly limited.
  • it when used as a light conversion member in contact with a light source, it is manufactured in accordance with the shape of the light source in order to prevent light leakage from the light source. Since the light source is generally rectangular or circular, a rectangular or circular shape is preferable.
  • the porosity of the glass sheet is preferably 5% or less. If the porosity exceeds 5%, the encapsulated bubbles in the glass sheet are large, and light is likely to be scattered inside the glass sheet.
  • the porosity is preferably as low as possible, more preferably 2.5% or less, and even more preferably 1% or less.
  • the porosity means a value derived from the deviation of the measured specific gravity with respect to the theoretical specific gravity of the glass sheet. Specifically, the measured specific gravity is obtained by the Archimedes method. On the other hand, the theoretical specific gravity is obtained by obtaining a measured specific gravity of a glass body and a phosphor without pores by the Archimedes method and the pycnometer method, and performing synthetic calculation according to the blending.
  • the glass sheet has less internal scattering due to the encapsulated foam and less light absorption. If the glass sheet has a large amount of internal scattering, the glass becomes opaque, which is not preferable.
  • the internal scattering of the glass sheet can be evaluated by measuring parallel light transmittance and measuring total light transmittance. In this specification, both the parallel light transmittance and the total light transmittance are values measured by a method according to JIS-K-7136 (1997).
  • the parallel light transmittance is preferably 4% or more, and more preferably 5% or more. If the parallel light transmittance is less than 4%, blue light that is not converted into a phosphor is scattered inside the glass sheet, and the LED issuance efficiency may be reduced.
  • the total light transmittance is preferably 70% or more, more preferably 75% or more, and even more preferably 80% or more. If the total light transmittance is less than 70%, the light emitted from the light emitting element is absorbed inside the glass sheet, and the luminance of the LED is lowered, that is, the luminous efficiency of the LED is not preferable.
  • the conversion efficiency of the phosphor in the glass sheet can be evaluated by the quantum conversion efficiency.
  • the quantum conversion efficiency is preferably 85% or more. If it is less than 85%, the incident blue light cannot be sufficiently converted to yellow light, and the light obtained by the synthesis may not be a desired white color.
  • the quantum conversion efficiency is more preferably 86% or more.
  • the quantum conversion efficiency is represented by the ratio of the number of photons emitted from the sample as light emission when irradiated with excitation light and the number of photons absorbed by the sample. The number of photons is measured by an integrating sphere method. To do.
  • Examples 1 and 2 are examples of the present invention, and examples 3 and 4 are comparative examples.
  • Example 1 Bi 2 O 3 8.9%, SiO 2 15.2%, B 2 O 3 31%, ZnO 33.5%, BaO 11.2%, MnO 2 0.1% in terms of mole% based on oxide. was mixed glass raw materials such that the CeO 2 0.1%. This was heated in a platinum crucible to 1200-1400 ° C. with an electric furnace, melted, and the melt was quenched with a rotating roll to form a glass ribbon. The glass ribbon was pulverized by a ball mill, passed through a sieve having a mesh having an opening of 150 ⁇ m, and further classified by air flow to obtain glass 1 powder (glass powder 1).
  • the glass transition temperature Tg and the glass softening point Ts of the obtained glass powder 1 were measured using a differential thermal analyzer (trade name: TG8110, manufactured by Rigaku Corporation).
  • D 50 and Dmax were calculated by laser diffraction particle size distribution measurement (manufactured by Shimadzu Corporation, apparatus name: SALD2100). The results are shown in Table 1.
  • the phosphor powder was mixed with 84% by volume of glass powder 1 and 16% by volume of phosphor powder, kneaded with a vehicle, and defoamed to obtain a slurry.
  • a mixed solvent of toluene, xylene, isopropanol and 2-butanol was used as a dilution solvent, and the slurry viscosity was adjusted to about 5000 cP.
  • This slurry was applied to a PET film (manufactured by Teijin Limited) by the doctor blade method. This was dried in a drying furnace for about 30 minutes, cut into a size of about 7 cm square, and the PET film was peeled off to obtain a green sheet having a thickness of about 0.5 mm.
  • the porosity of the glass sheet was measured by the Archimedes method.
  • the quantum conversion efficiency was measured at an excitation light wavelength of 460 nm using an absolute PL quantum yield measuring apparatus (manufactured by Hamamatsu Photonics, trade name: Quantaurus-QY).
  • the haze and transmittance of the glass sheet were measured with a C light source using a haze measuring device (trade name: Haze Meter HZ-2, manufactured by Suga Test Instruments Co., Ltd.).
  • Example 2 A green sheet was obtained by the same method as in Example 1 using glass powder 1. Two green sheets were laminated and pressed. This was placed on a mullite substrate coated with a release agent, and baked at 460 ° C. for 6 hours in the atmosphere, and further baked at 570 ° C. for 1 hour under reduced pressure (about 60 Pa) to produce a glass sheet. did. The thickness of the glass sheet measured with a micrometer was 135 ⁇ m. Note that the temperature of the binder removal treatment and baking is determined as a result of searching for so-called optimum conditions that provide the highest transmittance and high conversion quantum efficiency.
  • Example 3 In terms of oxide-based mol%, SiO 2 21%, B 2 O 3 31%, ZnO 2%, Li 2 O 16%, MgO 9%, CaO 5%, BaO 2 %, Al 2 O 3 14%.
  • the glass raw materials were mixed as described above. This was heated in an electric furnace to 1300-1500 ° C. in a platinum crucible and melted, and the melt was quenched with a rotating roll to form a glass ribbon.
  • the glass ribbon was pulverized with a ball mill, passed through a sieve having a mesh having an opening of 150 ⁇ m, and further subjected to air classification to obtain glass 2 powder (glass powder 2).
  • a green sheet was obtained by the same method as in Example 1 using glass powder 2. Two green sheets were laminated and pressed. This was placed on a mullite substrate coated with a release agent, and baked in a binder at 380 ° C. for 4 hours in the atmosphere, and further baked at 580 ° C. under normal pressure for 1 hour to prepare a glass sheet.
  • the plate thickness of the glass sheet measured with a micrometer was 154 ⁇ m. Note that the temperature of the binder removal treatment and baking is determined as a result of searching for so-called optimum conditions that provide the highest transmittance and high conversion quantum efficiency. Moreover, the porosity, the quantum conversion efficiency, and the transmittance
  • Example 4 In terms of oxide-based mol%, SiO 2 31%, B 2 O 3 11%, ZnO 7%, Li 2 O 21%, Na 2 O 7%, K 2 O 3%, BaO 4%, Al 2 O
  • the glass raw materials were mixed so as to be 33%, TiO 2 11%, and Nb 2 O 5 2%. This was heated in an electric furnace to 1300-1500 ° C. in a platinum crucible and melted, and the melt was quenched with a rotating roll to form a glass ribbon.
  • the glass ribbon was pulverized with a ball mill, passed through a sieve having a mesh having an opening of 150 ⁇ m, and further subjected to air classification to obtain glass 3 powder (glass powder 3).
  • a green sheet was obtained by the same method as in Example 1. Two green sheets were laminated and pressed. This was placed on a mullite substrate coated with a release agent, and subjected to binder removal firing at 320 ° C. for 4 hours in the air, and further fired at 530 ° C. under normal pressure for 1 hour to prepare a glass sheet. The thickness of the glass sheet measured with a micrometer was 150 ⁇ m. Note that the temperature of the binder removal treatment and baking is determined as a result of searching for so-called optimum conditions that provide the highest transmittance and high conversion quantum efficiency. Moreover, the quantum conversion efficiency and the transmittance
  • the glass composition for a phosphor-dispersed glass sheet of the present invention can be used for producing a phosphor-dispersed glass sheet for converting a blue light source to obtain a white light source of a white LED.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention relates to a glass composition for phosphor-dispersed glass sheets, which contains a glass powder and a phosphor powder, and wherein the difference (∆ Tgs) between Ts and Tg that are calculated from the DTA curve of the glass powder is 50-105°C.

Description

蛍光体分散ガラスシート用ガラス組成物およびそれを用いた蛍光体分散ガラスシートGlass composition for phosphor-dispersed glass sheet and phosphor-dispersed glass sheet using the same
 本発明は蛍光体分散ガラスシート用ガラス組成物およびそれを用いて製造される蛍光体分散ガラスシートに関し、より詳細には青色光源、特に青色発光ダイオード(LED)素子の青色光を白色光に変換するための光変換部材に関する。 The present invention relates to a glass composition for a phosphor-dispersed glass sheet and a phosphor-dispersed glass sheet produced using the same, and more particularly, converts blue light from a blue light source, particularly a blue light-emitting diode (LED) element, into white light. It is related with the light conversion member for doing.
 白色LEDは、微小電力の白色照明光源として利用され、照明用途への応用が期待されている。白色LEDの白色光は、青色LED素子から発せられる青色光と、前記青色光の一部を蛍光体で黄色に変換した黄色光とを合成して得られる。 White LEDs are used as a low-power white illumination light source, and are expected to be applied to illumination applications. The white light of the white LED is obtained by synthesizing blue light emitted from a blue LED element and yellow light obtained by converting a part of the blue light into yellow with a phosphor.
 従来、光の変換部材としては、ガラス中に無機蛍光体を分散した構成の蛍光体分散ガラスシート(以下、ガラスシートともいう)が知られている(例えば、特許文献1)。このような構成をとることで、ガラスの高い透過率を利用でき、さらに、素子から発せられる熱を部材の外部に効率よく放出できる。また、光や熱による部材の損傷も低く、長期の信頼性が得られる。 Conventionally, as a light conversion member, a phosphor-dispersed glass sheet (hereinafter also referred to as a glass sheet) having an inorganic phosphor dispersed in glass is known (for example, Patent Document 1). By adopting such a configuration, the high transmittance of the glass can be used, and furthermore, the heat generated from the element can be efficiently released to the outside of the member. Moreover, the damage of the member by light and a heat | fever is also low, and long-term reliability is acquired.
 ガラスシートは、ガラス粉末と蛍光体粉末とを混合し、これを焼成して製造される。従来、焼成工程で発生した気泡がガラス中に残存する問題があった。ガラス中の気泡(以下、内包泡)があると、ガラスの透過率が低下し、LEDの発光効率の低下を引き起こしていた。また、内包泡により、ガラス中で光が散乱し、蛍光体に当たる光の量が低下するおそれがあった。 The glass sheet is produced by mixing glass powder and phosphor powder and firing the mixture. Conventionally, there has been a problem that bubbles generated in the baking process remain in the glass. If there are bubbles in the glass (hereinafter referred to as encapsulated bubbles), the transmittance of the glass is lowered, causing a reduction in the luminous efficiency of the LED. In addition, the encapsulated foam may cause light to scatter in the glass and reduce the amount of light striking the phosphor.
 特許文献2には、SiO-B系のガラスとSnO-P系のガラスを使用し、内包泡を低減させるため、焼成工程を減圧下で行う方法が記載されている。しかし、減圧雰囲気下での焼成では、内包泡を低減できるが、ガラス組成によっては成分が揮散するおそれがあった。また、SiO-B系のガラスのように軟化点が高いガラスでは、焼成温度が高温になり、蛍光体が劣化するおそれもあった。 Patent Document 2 describes a method of using a SiO 2 —B 2 O 3 based glass and a SnO—P 2 O 5 based glass and performing a firing step under reduced pressure in order to reduce encapsulated bubbles. . However, in the baking under a reduced pressure atmosphere, the encapsulated foam can be reduced, but depending on the glass composition, the component may be volatilized. Further, in a glass having a high softening point such as SiO 2 —B 2 O 3 glass, the firing temperature becomes high, and the phosphor may be deteriorated.
日本国特開2003-258308号公報Japanese Unexamined Patent Publication No. 2003-258308 日本国特開2007-311743号公報Japanese Laid-Open Patent Publication No. 2007-311743
 前記問題に鑑み、本発明者らは、ガラス軟化点の低いガラスを使用することで、焼成温度を低くして蛍光体の劣化を防ぎ、また、焼成温度域において急峻な粘性曲線を示すガラスを使用することで焼成後のガラスシートの内包泡を低減できることを見出し、本発明に到った。
  すなわち、本発明は、ガラスシートの内包泡が少なく、透過率が高い蛍光体分散ガラスシートを低温で製造できるガラス組成物の提供、及び該ガラス組成物を焼成して得られる蛍光体分散ガラスシートの提供を目的とする。
In view of the above problems, the present inventors use a glass having a low glass softening point, thereby lowering the firing temperature to prevent the phosphor from being deteriorated, and exhibiting a glass having a steep viscosity curve in the firing temperature range. It has been found that the encapsulated foam in the glass sheet after firing can be reduced by using it, and the present invention has been achieved.
That is, the present invention provides a glass composition capable of producing a phosphor-dispersed glass sheet with low encapsulated foam and high transmittance at a low temperature, and a phosphor-dispersed glass sheet obtained by firing the glass composition. The purpose is to provide.
 本発明のガラス組成物は、ガラス粉末と蛍光体粉末を含有する蛍光体分散ガラスシート用ガラス組成物であって、前記ガラス粉末のDTA曲線から算出されるTsとTgとの差(ΔTgs)が、50~105℃である。本発明のガラス組成物は、また、ガラス粉末と蛍光体粉末とを含有する蛍光体分散ガラスシート用ガラス組成物であって、前記ガラス粉末は、DTA曲線から算出されるTcとTgとの差(ΔTgc)が95℃以上である。さらに、ガラス粉末と蛍光体粉末とを含有する蛍光体分散ガラスシート用ガラス組成物であって、前記ガラス粉末は、DTA曲線から算出されるTsとTgとの差(ΔTgs)が50~105℃であり、かつ、DTA曲線から算出されるTcとTgとの差(ΔTgc)が95℃以上である。 The glass composition of the present invention is a glass composition for a phosphor-dispersed glass sheet containing glass powder and phosphor powder, and the difference (ΔTgs) between Ts and Tg calculated from the DTA curve of the glass powder is 50 to 105 ° C. The glass composition of the present invention is also a glass composition for a phosphor-dispersed glass sheet containing a glass powder and a phosphor powder, and the glass powder is a difference between Tc and Tg calculated from a DTA curve. (ΔTgc) is 95 ° C. or higher. Furthermore, a glass composition for a phosphor-dispersed glass sheet containing glass powder and phosphor powder, wherein the glass powder has a difference (ΔTgs) between Ts and Tg calculated from a DTA curve of 50 to 105 ° C. And the difference (ΔTgc) between Tc and Tg calculated from the DTA curve is 95 ° C. or higher.
 また、本発明の蛍光体分散ガラスシートは、本発明の蛍光体分散ガラスシート用ガラス組成物を焼成して製造される。 The phosphor-dispersed glass sheet of the present invention is produced by firing the glass composition for a phosphor-dispersed glass sheet of the present invention.
 本発明の蛍光体分散ガラスシート用ガラス組成物は、焼成温度を低くでき、さらに、焼成後のガラスシートの内包泡を少なくできる。低温焼成のため、製造工程での蛍光体の劣化を抑制できる。さらに、ガラスシート内部での光の散乱を抑制でき、ガラスシートの透過率を高くできて、LEDの発光効率を高くできる。 The glass composition for a phosphor-dispersed glass sheet of the present invention can lower the firing temperature, and can further reduce the encapsulated foam of the glass sheet after firing. Due to the low temperature firing, it is possible to suppress the deterioration of the phosphor in the manufacturing process. Furthermore, light scattering inside the glass sheet can be suppressed, the transmittance of the glass sheet can be increased, and the luminous efficiency of the LED can be increased.
図1は、蛍光体分散ガラスシートの概略断面図である。FIG. 1 is a schematic cross-sectional view of a phosphor-dispersed glass sheet.
 ガラスシートの内包泡の存在によるLEDの発光効率への影響を、図1を用いて説明する。図1は、LED発光素子1上にある蛍光体分散ガラスシート2の概略断面図である。 The influence of the presence of bubbles contained in the glass sheet on the light emission efficiency of the LED will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of a phosphor-dispersed glass sheet 2 on an LED light-emitting element 1.
 図1(a)は、蛍光体3の周りおよび、LED発光素子1から蛍光体3までの間に内包泡が無い場合である。LED発光素子1から発せられたLED光5が蛍光体分散ガラスシート2内で散乱などされないので、蛍光体分散ガラスシート2を通過する光量の低下が小さい。そのため、LEDの発光効率が高い。さらに、LED発光素子1から放出されたLED光5は、効率よく蛍光体3に当たり、蛍光7に変換される。したがって、蛍光体3の変換効率の低下は小さい。 FIG. 1A shows a case where there is no encapsulated bubble around the phosphor 3 and between the LED light emitting element 1 and the phosphor 3. Since the LED light 5 emitted from the LED light emitting element 1 is not scattered in the phosphor-dispersed glass sheet 2, the decrease in the amount of light passing through the phosphor-dispersed glass sheet 2 is small. Therefore, the luminous efficiency of the LED is high. Further, the LED light 5 emitted from the LED light emitting element 1 efficiently hits the phosphor 3 and is converted into fluorescence 7. Therefore, a decrease in the conversion efficiency of the phosphor 3 is small.
 図1(b)は、内包泡4が蛍光体3に接して存在する場合である。この場合、内包泡4とガラス6との界面で光が反射しやすく、LED光5は一部が散乱光8となる。さらに、内包泡4があると、蛍光体分散ガラスシート2内で多重散乱しやすくなる。多重散乱すると、光路長が長くなり蛍光体分散ガラスシート2内で光が減衰し、蛍光体分散ガラスシート2を透過する光量が減少し、LEDの発光効率が低下するおそれがある。また、蛍光体3に当たる光量が低減されると、蛍光7の量が低下し、変換効率が低下するおそれがある。 FIG. 1B shows the case where the encapsulated foam 4 is in contact with the phosphor 3. In this case, light is easily reflected at the interface between the encapsulated bubble 4 and the glass 6, and the LED light 5 partially becomes scattered light 8. Furthermore, when the encapsulated foam 4 is present, multiple scattering tends to occur within the phosphor-dispersed glass sheet 2. When multiple scattering is performed, the optical path length becomes long, light is attenuated in the phosphor-dispersed glass sheet 2, the amount of light transmitted through the phosphor-dispersed glass sheet 2 is reduced, and the light emission efficiency of the LED may be lowered. Further, when the amount of light hitting the phosphor 3 is reduced, the amount of the fluorescence 7 is reduced, and the conversion efficiency may be reduced.
 図1(c)は、内包泡があるものの、蛍光体3に接せず、LED発光素子1と蛍光体3の間に内包泡4がある場合である。図1(b)と同様に、ガラス6から内包泡4に入る時および内包泡4からガラス6へ出る時に、LED光5が界面で反射される。すなわち内包泡4部分で、LED光5が散乱し一部が散乱光8となる。蛍光体分散ガラスシート2内で光が散乱すると、図1(b)の場合と同様に、LEDの発光効率が低下するおそれがある。また、蛍光体3に当たる光量が低減されると、蛍光7の量が低下し、変換効率が低下するおそれがある。 FIG. 1 (c) shows a case where there is an encapsulated bubble, but there is an encapsulated bubble 4 between the LED light emitting element 1 and the phosphor 3 without contacting the phosphor 3. Similar to FIG. 1B, the LED light 5 is reflected at the interface when entering the encapsulating bubble 4 from the glass 6 and when exiting the encapsulating bubble 4 to the glass 6. That is, the LED light 5 is scattered and part of the encapsulated foam 4 becomes scattered light 8. When light is scattered in the phosphor-dispersed glass sheet 2, the light emission efficiency of the LED may be reduced as in the case of FIG. Further, when the amount of light hitting the phosphor 3 is reduced, the amount of the fluorescence 7 is reduced, and the conversion efficiency may be reduced.
 LED発光素子1から発せられるLED光5と蛍光7は蛍光体分散ガラスシート2を透過して出射する。これらの光は、内包泡により多重散乱、背面反射されると、蛍光体分散ガラスシート2内で減衰するおそれがある。多重散乱や背面反射の度合は、全光線透過率により評価できる。すなわち、過度な多重散乱や背面反射が起こらないと、全光線透過率が高く、蛍光体分散ガラスシート2を通過する間の光のロスが小さくなる。 LED light 5 and fluorescence 7 emitted from the LED light emitting element 1 are transmitted through the phosphor-dispersed glass sheet 2 and emitted. When these light is subjected to multiple scattering and back reflection by the encapsulated bubbles, there is a possibility that the light is attenuated in the phosphor-dispersed glass sheet 2. The degree of multiple scattering and back reflection can be evaluated by the total light transmittance. That is, if excessive multiple scattering and back reflection do not occur, the total light transmittance is high, and the loss of light while passing through the phosphor-dispersed glass sheet 2 is small.
 以上のことから、蛍光体分散ガラスシート2に内包泡4があると、蛍光体分散ガラスシート2内で光が減衰して透過率が下がり、また、蛍光体3に当たる光が減少し蛍光体の変換効率が低下する。これにより、LEDの発光効率が低下する。したがって、LED用の変換部材としては、蛍光体分散ガラスシート2の内包泡4の低減が求められる。 From the above, if the encapsulated foam 4 is present in the phosphor-dispersed glass sheet 2, the light is attenuated in the phosphor-dispersed glass sheet 2 and the transmittance is lowered, and the light hitting the phosphor 3 is reduced and the phosphor is reduced. Conversion efficiency decreases. Thereby, the luminous efficiency of LED falls. Therefore, the LED conversion member is required to reduce the encapsulated bubbles 4 of the phosphor-dispersed glass sheet 2.
 次に、本発明のガラス組成物(以下、本ガラス組成物という)の実施態様について説明する。本ガラス組成物に含まれるガラス粉末は、軟化点における粘性の変化率が大きく、粘性曲線が急峻であるという特長を有する。このようなガラス粉末は、焼成温度におけるガラス粘性が低いため、焼成工程において、十分に脱泡できる。また、本ガラス粉末は結晶化点Tcを持たない、または結晶化点Tcがガラス転移点Tgから充分に高温側であることが必要である。結晶化点Tcがガラス転移点Tg近傍にある場合、焼成温度においてガラスの粘性が低くならず、焼成工程において、十分に脱泡できない。 Next, an embodiment of the glass composition of the present invention (hereinafter referred to as the present glass composition) will be described. The glass powder contained in the present glass composition has the characteristics that the rate of change in viscosity at the softening point is large and the viscosity curve is steep. Since such glass powder has low glass viscosity at the firing temperature, it can be sufficiently defoamed in the firing step. Further, it is necessary that the glass powder does not have a crystallization point Tc or the crystallization point Tc is sufficiently higher than the glass transition point Tg. When the crystallization point Tc is in the vicinity of the glass transition point Tg, the viscosity of the glass is not lowered at the firing temperature, and sufficient defoaming cannot be performed in the firing step.
 本発明においては、ガラス粉末の軟化点における粘性曲線の変化率は、DTA(示差熱分析)により測定されるガラス軟化点Tsとガラス転移点Tgとの差ΔTgsの大きさで評価する。TsおよびTgはいずれも、ガラスの粘性で決まる温度である。具体的には、Tsは、ガラスの粘性が107.5dPa・sとなる温度であり、Tgは、ガラスの粘性が約1013.3dPa・sとなる温度である。したがって、ΔTgsが小さいほど、粘性の変化率は大きく、急峻な曲線になる。 In the present invention, the rate of change of the viscosity curve at the softening point of the glass powder is evaluated by the magnitude of the difference ΔTgs between the glass softening point Ts and the glass transition point Tg measured by DTA (differential thermal analysis). Ts and Tg are both temperatures determined by the viscosity of the glass. Specifically, Ts is a temperature at which the viscosity of the glass is 10 7.5 dPa · s, and Tg is a temperature at which the viscosity of the glass is about 10 13.3 dPa · s. Therefore, the smaller the ΔTgs, the greater the rate of change in viscosity and the steeper curve.
 本ガラス組成物に使用するガラス粉末のΔTgsは、50~105℃である。ΔTgsが50℃未満では、ガラスが不安定になるおそれがある。また、ΔTgsが105℃超では、焼成後のガラスシートの内包泡が多くなるおそれがある。ΔTgsは、好ましくは80~100℃であり、より好ましくは、85~95℃である。 The ΔTgs of the glass powder used in the present glass composition is 50 to 105 ° C. If ΔTgs is less than 50 ° C., the glass may become unstable. On the other hand, if ΔTgs exceeds 105 ° C., the encapsulated foam of the glass sheet after firing may increase. ΔTgs is preferably 80 to 100 ° C., and more preferably 85 to 95 ° C.
 ガラス粉末のTsは、700℃以下が好ましい。Tsが高いと焼成温度が高くなるため、焼成工程で、蛍光体粉末が劣化するおそれがある。Tsはより好ましくは、650℃以下であり、さらに好ましくは、620℃以下である。 The Ts of the glass powder is preferably 700 ° C. or lower. If Ts is high, the firing temperature becomes high, and thus the phosphor powder may be deteriorated in the firing step. Ts is more preferably 650 ° C. or lower, and further preferably 620 ° C. or lower.
 ガラス粉末の結晶化点Tcは、DTAにより測定されるガラス転移点Tg以上の温度における発熱ピークとする。ガラスは結晶化すると全体の粘性が急激に上昇するため、焼成後のガラスシートの内包泡が多くなる恐れがある。TcとTgとの差ΔTgcの大きさが大きいほど結晶化しにくいガラスであり、本発明において有用である。本ガラス組成物に使用するガラス粉末のΔTgcは95℃以上である。ΔTgcは好ましくは100℃以上であり、より好ましくは105℃以上である。 The crystallization point Tc of the glass powder is an exothermic peak at a temperature equal to or higher than the glass transition point Tg measured by DTA. When glass is crystallized, the overall viscosity increases rapidly, and there is a risk that the encapsulated bubbles in the glass sheet after firing increase. The larger the difference ΔTgc between Tc and Tg, the more difficult it is to crystallize, and it is useful in the present invention. ΔTgc of the glass powder used in the present glass composition is 95 ° C. or higher. ΔTgc is preferably 100 ° C. or higher, more preferably 105 ° C. or higher.
 Ts、TgおよびΔTgsが前記範囲にあるガラスとしては、Bi-ZnO-B系を主成分とするガラスが挙げられる。中でも、酸化物基準のモル%表示で、Bi3~30%、B 10~50%、ZnO 0~45%を含有するガラスがより好ましい。Bi3~30%、B 10~50%、ZnO 0~45%、SiO 5~35%、BaO 0~20%、MnO0~1%、CeO 0~1%、を含有するガラスがさらに好ましい。Bi-ZnO-B系を主成分とするガラスとしては、Bi3~30%、B 10~50%、ZnO 0~45%、SiO 5~35%、BaO 0~20%、MnO0~1%、CeO 0~1%から実質的になるガラスが特に好ましい。本明細書において、実質的にからなるとは、記載されている成分以外に不可避的不純物は許容するとの意味である。また、このような組成であれば、TcおよびΔTgcも前記範囲となるガラスとなり好ましい。 Examples of the glass having Ts, Tg, and ΔTgs in the above-described range include a glass mainly containing a Bi 2 O 3 —ZnO—B 2 O 3 system. Among them, a glass containing Bi 2 O 3 3 to 30%, B 2 O 3 10 to 50%, and ZnO 0 to 45% in terms of mol% based on oxide is more preferable. Bi 2 O 3 3-30%, B 2 O 3 10-50%, ZnO 0-45%, SiO 2 5-35%, BaO 0-20%, MnO 2 0-1%, CeO 2 0-1% The glass containing is more preferable. The glass mainly composed of Bi 2 O 3 —ZnO—B 2 O 3 includes Bi 2 O 3 3 to 30%, B 2 O 3 10 to 50%, ZnO 0 to 45%, SiO 2 5 to 35. %, BaO 0-20%, MnO 2 0-1%, CeO 2 0-1%. In the present specification, “consisting essentially of” means that inevitable impurities other than the components described are allowed. Further, such a composition is preferable because Tc and ΔTgc are also in the above ranges.
 Biは、ガラスの化学的耐久性を下げることなく、Tsを低くする成分であり、この系では、必須の成分である。Biの含有量は、3~30%が好ましい。Biが3%未満では、ガラス粉末のTsが高くなり好ましくない。一方、30%超では、ガラスが不安定になり、結晶化しやすく、また、焼結性を損ねるおそれがある。Biの含有量は、5~25%がより好ましく、5~20%がさらに好ましい。 Bi 2 O 3 is a component that lowers Ts without lowering the chemical durability of glass, and is an essential component in this system. The content of Bi 2 O 3 is preferably 3 to 30%. If Bi 2 O 3 is less than 3%, Ts of the glass powder becomes high, which is not preferable. On the other hand, if it exceeds 30%, the glass becomes unstable, tends to crystallize, and the sinterability may be impaired. The content of Bi 2 O 3 is more preferably 5 to 25%, further preferably 5 to 20%.
 Bは、ガラスのネットワークフォーマーであり、ガラスを安定化できる成分であり、この系では、必須の成分である。Bの含有量は、10~50%が好ましい。Bの含有量が10%未満では、ガラスが不安定になり、結晶化しやすく、また、焼結性を損ねるおそれがある。一方で、Bの含有量が50%超では、ガラスの化学的耐久性が低下するおそれがある。Bの含有量は、15~45%がより好ましく、20~45%がさらに好ましい。 B 2 O 3 is a glass network former and is a component that can stabilize glass, and is an essential component in this system. The content of B 2 O 3 is preferably 10 to 50%. If the content of B 2 O 3 is less than 10%, the glass becomes unstable, tends to be crystallized, and the sinterability may be impaired. On the other hand, if the content of B 2 O 3 exceeds 50%, the chemical durability of the glass may be lowered. The content of B 2 O 3 is more preferably 15 to 45%, further preferably 20 to 45%.
 ZnOは、Tsを下げる成分であり、この系では必須成分ではない。ZnOの含有量は、0~45%が好ましい。ZnOの含有量が45%超では、ガラス化し難くなり、ガラスの製造が困難になる。ZnOの含有量の下限値は、5%以上がより好ましく、10%以上がさらに好ましい。また、上限値は、40%以下がより好ましく、35%以下がさらに好ましい。 ZnO is a component that lowers Ts and is not an essential component in this system. The content of ZnO is preferably 0 to 45%. If the ZnO content exceeds 45%, it will be difficult to vitrify, and it will be difficult to produce glass. The lower limit of the ZnO content is more preferably 5% or more, and further preferably 10% or more. Further, the upper limit is more preferably 40% or less, and further preferably 35% or less.
 SiOは、ガラスの安定性を高くする成分であり、この系では必須成分ではない。SiOの含有量は、0~35%が好ましい。SiOの含有量が、35%超では、Tsが高くなるおそれがある。SiOの含有量の下限値は、5%以上がより好ましく、10%以上がさらに好ましい。また、上限値は、30%以下がより好ましく、25%以下がさらに好ましい。 SiO 2 is a component that increases the stability of the glass and is not an essential component in this system. The content of SiO 2 is preferably 0 to 35%. If the SiO 2 content exceeds 35%, Ts may be high. The lower limit of the content of SiO 2 is more preferably 5% or more, and further preferably 10% or more. The upper limit is more preferably 30% or less, and further preferably 25% or less.
 CaO、SrO、MgOまたはBaOのアルカリ土類金属酸化物は、ガラスの安定性を高めるとともに、Tsを下げる成分であり、この系では必須成分ではない。アルカリ土類金属酸化物の合計量は、0~20%が好ましい。前記合計量が、20%超では、ガラスの安定性が低下する。より好ましくは、合計量は18%以下である。また、アルカリ土類金属酸化物としては、BaOが好ましい。 CaO, SrO, MgO or BaO alkaline earth metal oxide is a component that increases the stability of the glass and lowers Ts, and is not an essential component in this system. The total amount of alkaline earth metal oxide is preferably 0 to 20%. If the total amount exceeds 20%, the stability of the glass is lowered. More preferably, the total amount is 18% or less. Further, BaO is preferable as the alkaline earth metal oxide.
 MnOおよびCeOは、いずれもこの系では必須成分ではないが、ガラス中で酸化剤として機能するため、ガラス中に含有させることが好ましい。いずれもガラス中のBiの還元を防止できるため、この系のガラスを安定化できる。Biが還元されると、ガラスが着色するため、好ましくない。さらに、焼成後のガラスシートの内包泡が多くなるおそれがある。MnOおよびCeOの含有量はそれぞれ0~1%が好ましい。含有量が、1%超では、着色が大きくなるおそれがある。 Neither MnO 2 nor CeO 2 is an essential component in this system, but since it functions as an oxidizing agent in the glass, it is preferably contained in the glass. In any case, reduction of Bi 2 O 3 in the glass can be prevented, so that this type of glass can be stabilized. Reduction of Bi 2 O 3 is not preferable because the glass is colored. Furthermore, the encapsulated foam of the glass sheet after baking may increase. The contents of MnO 2 and CeO 2 are each preferably 0 to 1%. If the content exceeds 1%, coloring may increase.
 所定の熱特性を有するように成分を調合して混合し、電気炉などで溶融し、急冷してガラスを製造する。ガラス粉末は前記ガラスを粉砕し、分級して製造される。ガラス粉末の粒子直径は、50%粒子直径D50で示す。50%粒子直径D50は2.0μm未満が好ましい。D50が2.0μm以上では、蛍光体粉末がガラス粉末中に均一に分散されなくなり、ガラスシートにした場合に変換効率が低下するおそれがある。D50は、より好ましくは、1.5μm以下、さらに好ましくは、1.4μm以下である。 Components are prepared and mixed so as to have predetermined thermal characteristics, melted in an electric furnace or the like, and rapidly cooled to produce glass. The glass powder is produced by pulverizing and classifying the glass. Particle diameter of the glass powder is indicated by the 50% particle diameter D 50. 50% particle diameter D 50 is preferably less than 2.0 .mu.m. D 50 is 2.0μm or more, the phosphor powder is not uniformly dispersed in the glass powder, it may decrease the conversion efficiency when the glass sheet. D 50 is more preferably 1.5 μm or less, and still more preferably 1.4 μm or less.
 また、ガラス粉末の最大粒径Dmaxは、30μm以下が好ましい。Dmaxが、30μm超では、蛍光体粉末がガラス粉末中に均一に分散されなくなり、ガラスシートを製造した場合に、蛍光体の変換効率が低下するおそれがある。Dmaxは、より好ましくは、20μm以下、さらに好ましくは、15μm以下である。
  なお、本明細書において、D50およびDmaxはいずれも、レーザ回折式粒度分布測定により算出した値である。
The maximum particle size Dmax of the glass powder is preferably 30 μm or less. When Dmax is more than 30 μm, the phosphor powder is not uniformly dispersed in the glass powder, and when the glass sheet is produced, the conversion efficiency of the phosphor may be lowered. Dmax is more preferably 20 μm or less, and still more preferably 15 μm or less.
In the present specification, both D 50 and Dmax is a value calculated by a laser diffraction type particle size distribution measurement.
 本ガラス組成物に使用する蛍光体粉末としては、青色光を黄色光に変換できるものであれば、限定されない。蛍光体としては、例えば、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、ハロゲン化物、アルミン酸塩化物またはハロリン酸塩化物で、特に、波長400~500nmに励起帯を有し、波長500~700nmに発光ピークを有するものが好ましい。 The phosphor powder used in the present glass composition is not limited as long as it can convert blue light into yellow light. Examples of phosphors include oxides, nitrides, oxynitrides, sulfides, oxysulfides, halides, aluminate chlorides, or halophosphates, and particularly have an excitation band at a wavelength of 400 to 500 nm. Those having an emission peak at a wavelength of 500 to 700 nm are preferable.
 励起光が、波長440~480nmの青色光の場合、蛍光体は、(Y、Gd)Al12:Ce3+、(Y、Lu)Al12:Ce3+、(Y、Gd)(Al、Ga)12:Ce3+、Ba(POCl:U、CaGa:Eu2+が好ましい。中でも、(Y、Gd)Al12:Ce3+、または(Y、Gd)(Al、Ga)12:Ce3+がより好ましい。 When the excitation light is blue light having a wavelength of 440 to 480 nm, the phosphors are (Y, Gd) 3 Al 5 O 12 : Ce 3+ , (Y, Lu) 3 Al 5 O 12 : Ce 3+ , (Y, Gd ) 3 (Al, Ga) 5 O 12 : Ce 3+ , Ba 5 (PO 4 ) 3 Cl: U, CaGa 2 S 4 : Eu 2+ is preferable. Among them, (Y, Gd) 3 Al 5 O 12 : Ce 3+ or (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ is more preferable.
 蛍光体粉末の50%粒子直径D50は15μm以下が好ましい。蛍光体粉末のD50が大きくなると、焼成後のガラスシート中で分散が悪くなり、光の変換効率が悪くなる。D50は13μm以下がより好ましく、10μm以下がさらに好ましい。 50% particle diameter D 50 of the phosphor powder is preferably 15μm or less. If D 50 of the phosphor powder becomes large, the dispersion becomes poor glass sheet after firing, the conversion efficiency of light is degraded. D 50 is more preferably 13 μm or less, and further preferably 10 μm or less.
 本ガラス組成物においては、ガラス粉末と蛍光体粉末以外に内包泡を脱泡できるものをさらに含んでもよい。このようなものとしては、塩化銅のような酸化触媒性を持つ金属化合物や酸化アンチモンのような、価数変化により複数の酸化数を持てるような元素が挙げられる。一方、生産コストの観点からは、本ガラス組成物は、ガラス粉末と蛍光体粉末とからなることが好ましい。 In the present glass composition, in addition to the glass powder and the phosphor powder, the glass composition may further include those capable of degassing the encapsulated foam. Examples of such elements include elements that can have a plurality of oxidation numbers by changing the valence, such as metal compounds having oxidation catalytic properties such as copper chloride and antimony oxide. On the other hand, from the viewpoint of production cost, the present glass composition is preferably composed of glass powder and phosphor powder.
 本ガラス組成物が、ガラス粉末と蛍光体粉末とからなる場合において、ガラス粉末と蛍光体粉末との混合比は、体積%で、ガラス粉末60~99.99%と、蛍光体粉末0.01~40%が好ましい。ガラス粉末の体積割合60%未満では、ガラス粉末と蛍光体粉末の混合体の焼結性を損ね、さらにガラスシートの透過率が低くなるおそれがある。また、黄色の光が多くなり、所望の白色光が得られないおそれがある。一方で、蛍光体粉末が0.01%未満では、青色光を十分に変換できず、LEDにした場合に、所望の白色光が得られないおそれがある。前記混合比は、ガラス粉末70~95%と蛍光体粉末5~30%がより好ましく、ガラス粉末80~90%と蛍光体粉末10~20%がさらに好ましい。 In the case where the present glass composition is composed of glass powder and phosphor powder, the mixing ratio of the glass powder and phosphor powder is volume%, glass powder 60 to 99.99%, phosphor powder 0.01 ~ 40% is preferred. If the volume ratio of the glass powder is less than 60%, the sinterability of the mixture of the glass powder and the phosphor powder may be impaired, and the transmittance of the glass sheet may be lowered. Moreover, there is a possibility that yellow light increases and desired white light cannot be obtained. On the other hand, if the phosphor powder is less than 0.01%, the blue light cannot be sufficiently converted, and when the LED is used, desired white light may not be obtained. The mixing ratio is more preferably 70 to 95% glass powder and 5 to 30% phosphor powder, more preferably 80 to 90% glass powder and 10 to 20% phosphor powder.
 ガラスシートは、本ガラス組成物を使用し、成形工程および焼成工程を経て製造される。成形法としては、所望の形状が付与できれば、特に制限されない。プレス成形法、ロール成形法、ドクターブレード成形法などの方法が挙げられる。ドクターブレード成形法で製造されるグリーンシートは、均一な膜厚のガラスシートを大面積で効率よく製造できるため、好ましい。 The glass sheet is manufactured through the molding process and the firing process using the present glass composition. The molding method is not particularly limited as long as a desired shape can be imparted. Examples thereof include a press molding method, a roll molding method, and a doctor blade molding method. A green sheet manufactured by a doctor blade molding method is preferable because a glass sheet having a uniform film thickness can be efficiently manufactured in a large area.
 グリーンシートは、例えば、以下の工程で製造できる。ガラス粉末と蛍光体粉末とをビヒクルに混練し、脱泡してスラリーを得る。前記スラリーをドクターブレード法により、透明樹脂上に途工し、乾燥する。乾燥後、所望の大きさに切り出し、透明樹脂を剥がして、グリーンシートを得る。さらに、これらをプレスし、積層体にすることで、所望の厚みを確保できる。 The green sheet can be manufactured, for example, by the following process. Glass powder and phosphor powder are kneaded in a vehicle and defoamed to obtain a slurry. The slurry is prepared on a transparent resin by a doctor blade method and dried. After drying, it is cut into a desired size and the transparent resin is peeled off to obtain a green sheet. Furthermore, a desired thickness can be ensured by pressing them into a laminate.
 前記ビヒクルは、樹脂(バインダ)を有機溶媒に溶解したものである。樹脂としては、エチルセルロース、ニトロセルロース、アクリル樹脂、酢酸ビニル樹脂、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、ロジン樹脂などを使用できる。また、有機溶媒としては、トルエン、キシレン、プロパノール、ブタノール、酢酸ブチル、メチルエチルケトンなどを使用できる。なお、ビヒクルが、ブチラール樹脂、メラミン樹脂、アルキッド樹脂またはロジン樹脂を含有する場合、グリーンシートの強度が向上し、好ましい。 The vehicle is obtained by dissolving a resin (binder) in an organic solvent. As the resin, ethyl cellulose, nitrocellulose, acrylic resin, vinyl acetate resin, butyral resin, melamine resin, alkyd resin, rosin resin and the like can be used. As the organic solvent, toluene, xylene, propanol, butanol, butyl acetate, methyl ethyl ketone, and the like can be used. In addition, when the vehicle contains a butyral resin, a melamine resin, an alkyd resin, or a rosin resin, the strength of the green sheet is improved, which is preferable.
 スラリーを塗工する透明樹脂としては、均一な膜厚のグリーンシートが得られれば、限定されない。例えば、PETフィルムなどが挙げられる。 The transparent resin for applying the slurry is not limited as long as a green sheet with a uniform film thickness is obtained. For example, a PET film etc. are mentioned.
 ガラスシートを製造する場合の焼成温度は、450~900℃であって、ガラス軟化点Ts±50℃の範囲内が好ましい。通常、ガラス粉末を焼成して焼結体にする場合、焼成温度をTs近傍にするとガラスシートの内包泡を低減できる。Ts+50℃より高温で焼成すると、内包泡が増大し、蛍光体粉末が熱またはガラスとの反応により劣化し、蛍光体の変換効率が低下するおそれがある。一方で、Ts-50℃より低温で焼成すると、ガラスシートの内包泡を十分に低減できない。焼成温度は、Ts±30℃がより好ましく、Ts±20℃がさらに好ましい。 When the glass sheet is produced, the firing temperature is 450 to 900 ° C., and the glass softening point Ts ± 50 ° C. is preferable. Usually, when glass powder is fired to form a sintered body, the encapsulated foam of the glass sheet can be reduced by setting the firing temperature in the vicinity of Ts. When fired at a temperature higher than Ts + 50 ° C., the encapsulated foam increases, and the phosphor powder may be deteriorated by reaction with heat or glass, and the conversion efficiency of the phosphor may be reduced. On the other hand, when fired at a temperature lower than Ts-50 ° C., the encapsulated foam of the glass sheet cannot be sufficiently reduced. The firing temperature is more preferably Ts ± 30 ° C., further preferably Ts ± 20 ° C.
 Bi-ZnO-B系のガラスを使用する場合、Tsは530~630℃が好ましい。そのため、焼成温度は、480~680℃が好ましい。焼成温度は、500~660℃がより好ましく、530~630℃がさらに好ましい。 When Bi 2 O 3 —ZnO—B 2 O 3 based glass is used, Ts is preferably 530 to 630 ° C. Therefore, the firing temperature is preferably 480 to 680 ° C. The firing temperature is more preferably 500 to 660 ° C., and further preferably 530 to 630 ° C.
 焼成雰囲気は、特に限定されない。ガラスのΔTgsが本発明の範囲にあれば、大気中でも十分にガラスシートの内包泡を低減でき、蛍光体の変換効率を高められる。 The firing atmosphere is not particularly limited. If the ΔTgs of the glass is within the range of the present invention, the encapsulated bubbles of the glass sheet can be sufficiently reduced even in the atmosphere, and the conversion efficiency of the phosphor can be increased.
 また、電気炉を使用して焼成を行う場合、ビヒクル中のバインダ等の除去を行うための脱バインダ焼成と、ガラス粉末を焼結させる本焼成の2段階で行うことが好ましい。 In addition, when firing using an electric furnace, it is preferable to perform in two stages: debinder firing for removing the binder in the vehicle and main firing for sintering the glass powder.
 脱バインダ焼成は、グリーンシートの製造で使用したビヒクル中のバインダの種類や量による。例えば、電気炉などを使用して、400~480℃で1~6時間保持して行うことが好ましい。 ¡Binder removal depends on the type and amount of binder in the vehicle used to manufacture the green sheet. For example, it is preferable to use an electric furnace or the like and hold at 400 to 480 ° C. for 1 to 6 hours.
 本ガラス組成物から製造されるガラスシートは、内包泡が少なく、蛍光体の変換効率を高くできるので、光変換部材として有用である。
 本ガラス組成物から製造されるガラスシートは、量子変換収率が高く保持できるので、薄くしても、光変換部材の機能を発揮できる。ガラスシートの厚みは50~500μmが好ましい。厚みを50μm以上とすれば、ハンドリングが容易になり、特に所望の大きさにカットする際に割れを抑制できる。厚みは、より好ましくは80μm以上、さらに好ましくは100μm以上、特に好ましくは120μm以上である。厚みを500μm以下とすれば、透過する全光量を高く維持できる。厚みは、好ましくは400μm以下、さらに好ましくは300μm以下、特に好ましくは250μm以下である。
A glass sheet produced from the present glass composition is useful as a light conversion member because it contains less encapsulated foam and can increase the conversion efficiency of the phosphor.
Since the glass sheet manufactured from the present glass composition can maintain a high quantum conversion yield, the function of the light conversion member can be exhibited even if it is thin. The thickness of the glass sheet is preferably 50 to 500 μm. When the thickness is 50 μm or more, handling becomes easy, and cracking can be suppressed particularly when cutting into a desired size. The thickness is more preferably 80 μm or more, further preferably 100 μm or more, and particularly preferably 120 μm or more. If the thickness is 500 μm or less, the total amount of transmitted light can be kept high. The thickness is preferably 400 μm or less, more preferably 300 μm or less, and particularly preferably 250 μm or less.
 ガラスシートの平面形状は特に限定されない。例えば、光源と接して光変換部材として使用される場合、光源からの光の漏れを防ぐために、光源の形状に合わせて製造される。光源は矩形状または円状が一般的であるため、矩形状または円状が好ましい。 The planar shape of the glass sheet is not particularly limited. For example, when used as a light conversion member in contact with a light source, it is manufactured in accordance with the shape of the light source in order to prevent light leakage from the light source. Since the light source is generally rectangular or circular, a rectangular or circular shape is preferable.
 ガラスシートの内包泡の量は気孔率と正の相関があるため、内包泡の量は気孔率で評価できる。ガラスシートの気孔率は、5%以下が好ましい。気孔率が5%超では、ガラスシートの内包泡が多く、ガラスシート内部で光が散乱しやすい。気孔率は、低いほど好ましく、2.5%以下がより好ましく、1%以下がさらに好ましい。なお、本明細書において、気孔率は、ガラスシートの理論比重に対する実測比重の偏差から導いた値をいう。具体的には、アルキメデス法により実測比重は求められる。一方、理論比重は、気孔のないガラス体および蛍光体をアルキメデス法およびピクノメーター法により実測比重を求めておき、配合に従い合成計算することにより求められる。 Since the amount of encapsulated foam in the glass sheet has a positive correlation with the porosity, the amount of encapsulated foam can be evaluated by the porosity. The porosity of the glass sheet is preferably 5% or less. If the porosity exceeds 5%, the encapsulated bubbles in the glass sheet are large, and light is likely to be scattered inside the glass sheet. The porosity is preferably as low as possible, more preferably 2.5% or less, and even more preferably 1% or less. In the present specification, the porosity means a value derived from the deviation of the measured specific gravity with respect to the theoretical specific gravity of the glass sheet. Specifically, the measured specific gravity is obtained by the Archimedes method. On the other hand, the theoretical specific gravity is obtained by obtaining a measured specific gravity of a glass body and a phosphor without pores by the Archimedes method and the pycnometer method, and performing synthetic calculation according to the blending.
 ガラスシートは、内包泡による内部散乱が少なく、かつ、光吸収が少ないことが好ましい。ガラスシートで内部散乱が多いと、ガラスが不透明になり好ましくない。ガラスシートの内部散乱は、平行光線透過率測定および全光線透過率測定により評価できる。本明細書において、平行光線透過率と全光線透過率は、ともに、JIS-K-7136(1997)に準じた方法で測定した値である。 It is preferable that the glass sheet has less internal scattering due to the encapsulated foam and less light absorption. If the glass sheet has a large amount of internal scattering, the glass becomes opaque, which is not preferable. The internal scattering of the glass sheet can be evaluated by measuring parallel light transmittance and measuring total light transmittance. In this specification, both the parallel light transmittance and the total light transmittance are values measured by a method according to JIS-K-7136 (1997).
 平行光線透過率は4%以上が好ましく、5%以上がより好ましい。平行光線透過率が4%未満では、蛍光体に変換されない青色光がガラスシート内部で散乱され、LEDの発行効率が低下するおそれがある。 The parallel light transmittance is preferably 4% or more, and more preferably 5% or more. If the parallel light transmittance is less than 4%, blue light that is not converted into a phosphor is scattered inside the glass sheet, and the LED issuance efficiency may be reduced.
 全光線透過率は70%以上が好ましく、75%以上がより好ましく、80%以上がさらにより好ましい。全光線透過率が70%未満では、発光素子から放出された光が、ガラスシート内部で吸収などされ、LEDの輝度が低下し、すなわちLEDの発光効率が低下するため好ましくない。 The total light transmittance is preferably 70% or more, more preferably 75% or more, and even more preferably 80% or more. If the total light transmittance is less than 70%, the light emitted from the light emitting element is absorbed inside the glass sheet, and the luminance of the LED is lowered, that is, the luminous efficiency of the LED is not preferable.
 ガラスシート中での蛍光体の変換効率は、量子変換効率により評価できる。量子変換効率は、85%以上が好ましい。85%未満では、入射する青色光が十分に黄色光に変換できておらず、合成して得られる光が所望の白色にならないおそれがある。量子変換効率は、86%以上がより好ましい。なお、前記量子変換効率は、励起光を照射した時の、発光としてサンプルから放出されたフォトン数と、サンプルにより吸収されたフォトン数との比率で表され、フォトン数は、積分球法で測定する。 The conversion efficiency of the phosphor in the glass sheet can be evaluated by the quantum conversion efficiency. The quantum conversion efficiency is preferably 85% or more. If it is less than 85%, the incident blue light cannot be sufficiently converted to yellow light, and the light obtained by the synthesis may not be a desired white color. The quantum conversion efficiency is more preferably 86% or more. The quantum conversion efficiency is represented by the ratio of the number of photons emitted from the sample as light emission when irradiated with excitation light and the number of photons absorbed by the sample. The number of photons is measured by an integrating sphere method. To do.
 以下、実施例に基づき本発明を説明する。なお、例1と例2が本発明の実施例であり、例3と例4は比較例である。 Hereinafter, the present invention will be described based on examples. Examples 1 and 2 are examples of the present invention, and examples 3 and 4 are comparative examples.
 (例1)
 酸化物基準のモル%表記で、Bi8.9%、SiO 15.2%、B 31%、ZnO 33.5%、BaO 11.2%、MnO0.1%、CeO 0.1%となるようにガラス原料を混合した。これを、白金ルツボ中で1200~1400℃に電気炉で加熱し、溶融して、融液を回転ロールで急冷して、ガラスリボンを形成した。ガラスリボンを、ボールミルで粉砕し、目開き150μmの網目を有する篩にかけ、さらに気流分級し、ガラス1の粉末(ガラス粉末1)を得た。
(Example 1)
Bi 2 O 3 8.9%, SiO 2 15.2%, B 2 O 3 31%, ZnO 33.5%, BaO 11.2%, MnO 2 0.1% in terms of mole% based on oxide. was mixed glass raw materials such that the CeO 2 0.1%. This was heated in a platinum crucible to 1200-1400 ° C. with an electric furnace, melted, and the melt was quenched with a rotating roll to form a glass ribbon. The glass ribbon was pulverized by a ball mill, passed through a sieve having a mesh having an opening of 150 μm, and further classified by air flow to obtain glass 1 powder (glass powder 1).
 得られたガラス粉末1のガラス転移温度Tgとガラス軟化点Tsを、示差熱分析計(リガク社製、商品名:TG8110)を使用して測定した。また、D50およびDmaxは、レーザ回折式粒度分布測定(島津製作所社製、装置名:SALD2100)により算出した。この結果を表1に示す。 The glass transition temperature Tg and the glass softening point Ts of the obtained glass powder 1 were measured using a differential thermal analyzer (trade name: TG8110, manufactured by Rigaku Corporation). D 50 and Dmax were calculated by laser diffraction particle size distribution measurement (manufactured by Shimadzu Corporation, apparatus name: SALD2100). The results are shown in Table 1.
 このようにして得たガラス粉末1と、50%粒子直径D50が10μm、460nm励起で蛍光体ピーク波長が約555nmである(Y、Lu)Al12:Ce3+の構造をもつYAG蛍光体粉末とを、ガラス粉末1を84体積%と蛍光体粉末を16体積%の割合で混合し、さらにビヒクルと混練し、脱泡してスラリーを得た。ビヒクルはトルエン、キシレン、イソプロパノール、2-ブタノールにアクリル樹脂を25重量部溶解したものを用いた。さらに希釈溶媒として、トルエン、キシレン、イソプロパノール、2-ブタノールの混合溶媒を用い、約5000cPスラリー粘度に調整した。このスラリーをPETフィルム(帝人社製)にドクターブレード法で塗工した。これを、乾燥炉で約30分間乾燥し、約7cm四方の大きさに切り出し、PETフィルムを剥がして、厚み約0.5mmのグリーンシートを得た。 The thus obtained glass powder 1 and YAG having a structure of (Y, Lu) 3 Al 5 O 12 : Ce 3+ having a 50% particle diameter D 50 of 10 μm and a phosphor peak wavelength of about 555 nm when excited at 460 nm. The phosphor powder was mixed with 84% by volume of glass powder 1 and 16% by volume of phosphor powder, kneaded with a vehicle, and defoamed to obtain a slurry. The vehicle used was 25 parts by weight of an acrylic resin dissolved in toluene, xylene, isopropanol, and 2-butanol. Further, a mixed solvent of toluene, xylene, isopropanol and 2-butanol was used as a dilution solvent, and the slurry viscosity was adjusted to about 5000 cP. This slurry was applied to a PET film (manufactured by Teijin Limited) by the doctor blade method. This was dried in a drying furnace for about 30 minutes, cut into a size of about 7 cm square, and the PET film was peeled off to obtain a green sheet having a thickness of about 0.5 mm.
 グリーンシートを2枚積層し、プレスした。これを、離型剤を塗布したムライト基板に載せて大気中で、420℃で4時間脱バインダ焼成処理し、さらに、550℃で常圧下で1時間焼成し、ガラスシートを作成した。マイクロメータにより測定したガラスシートの板厚は、135μmであった。なお、脱バインダ処理や焼成の温度は、最も透過率が高く、変換量子効率が高くなる、いわゆる最適条件を探索した結果決定している。 2 Two green sheets were stacked and pressed. This was placed on a mullite substrate coated with a release agent, and subjected to a binder removal baking process at 420 ° C. for 4 hours in the air, and further baking was performed at 550 ° C. under normal pressure for 1 hour to prepare a glass sheet. The thickness of the glass sheet measured with a micrometer was 135 μm. Note that the temperature of the binder removal treatment and baking is determined as a result of searching for so-called optimum conditions that provide the highest transmittance and high conversion quantum efficiency.
 このようにして得られたガラスシートについて、気孔率、量子変換効率および透過率を測定した。これらの結果を表1に示す。 The porosity, quantum conversion efficiency, and transmittance of the glass sheet thus obtained were measured. These results are shown in Table 1.
 ガラスシートの気孔率はアルキメデス法により測定した。量子変換効率は、絶対PL量子収率測定装置(浜松ホトニクス社製、商品名:Quantaurus-QY)を使用して、励起光波長460nmにて測定した。ガラスシートのヘイズ、透過率は、ヘイズ測定装置(スガ試験機社製、商品名:ヘイズメーターHZ-2)を使用して、C光源にて測定した。 The porosity of the glass sheet was measured by the Archimedes method. The quantum conversion efficiency was measured at an excitation light wavelength of 460 nm using an absolute PL quantum yield measuring apparatus (manufactured by Hamamatsu Photonics, trade name: Quantaurus-QY). The haze and transmittance of the glass sheet were measured with a C light source using a haze measuring device (trade name: Haze Meter HZ-2, manufactured by Suga Test Instruments Co., Ltd.).
 (例2)
 ガラス粉末1を使用して例1と同様の方法により、グリーンシートを得た。グリーンシートを2枚積層し、プレスした。これを、離型剤を塗布したムライト基板に載せて大気中で、460℃で6時間脱バインダ焼成処理し、さらに、減圧下(約60Pa)において570℃で1時間焼成し、ガラスシートを作成した。マイクロメータにより測定したガラスシートの板厚は、135μmであった。なお、脱バインダ処理や焼成の温度は、最も透過率が高く、変換量子効率が高くなる、いわゆる最適条件を探索した結果決定している。
(Example 2)
A green sheet was obtained by the same method as in Example 1 using glass powder 1. Two green sheets were laminated and pressed. This was placed on a mullite substrate coated with a release agent, and baked at 460 ° C. for 6 hours in the atmosphere, and further baked at 570 ° C. for 1 hour under reduced pressure (about 60 Pa) to produce a glass sheet. did. The thickness of the glass sheet measured with a micrometer was 135 μm. Note that the temperature of the binder removal treatment and baking is determined as a result of searching for so-called optimum conditions that provide the highest transmittance and high conversion quantum efficiency.
 得られたガラスシートについて、例1と同様の方法で、気孔率、量子変換効率および透過率を測定した。これらの結果を表1に示す。 The porosity, quantum conversion efficiency, and transmittance of the obtained glass sheet were measured in the same manner as in Example 1. These results are shown in Table 1.
 (例3)
 酸化物基準のモル%表記で、SiO21%、B 31%、ZnO 2%、LiO 16%、MgO 9%、CaO 5%、BaO2%、Al14%となるようにガラス原料を混合した。これを、白金ルツボ中で1300~1500℃に電気炉で加熱し、溶融して、融液を回転ロールで急冷して、ガラスリボンを形成した。ガラスリボンをボールミルで粉砕し、目開き150μmの網目を有する篩にかけ、さらに気流分級し、ガラス2の粉末(ガラス粉末2)を得た。
(Example 3)
In terms of oxide-based mol%, SiO 2 21%, B 2 O 3 31%, ZnO 2%, Li 2 O 16%, MgO 9%, CaO 5%, BaO 2 %, Al 2 O 3 14%. The glass raw materials were mixed as described above. This was heated in an electric furnace to 1300-1500 ° C. in a platinum crucible and melted, and the melt was quenched with a rotating roll to form a glass ribbon. The glass ribbon was pulverized with a ball mill, passed through a sieve having a mesh having an opening of 150 μm, and further subjected to air classification to obtain glass 2 powder (glass powder 2).
 例1と同様の方法によりガラスの特性を評価した。この結果を表1に示す。 The characteristics of the glass were evaluated in the same manner as in Example 1. The results are shown in Table 1.
 ガラス粉末2を使用して例1と同様の方法により、グリーンシートを得た。グリーンシートを2枚積層し、プレスした。これを、離型剤を塗布したムライト基板に載せて大気中で、380℃で4時間脱バインダ焼成処理し、さらに、580℃で常圧下で1時間焼成し、ガラスシートを作成した。マイクロメータにより測定したガラスシートの板厚は、154μmであった。なお、脱バインダ処理や焼成の温度は、最も透過率が高く、変換量子効率が高くなる、いわゆる最適条件を探索した結果決定している。また、ガラスシートについて、例1と同様の方法で、気孔率、量子変換効率および透過率を測定した。これらの結果を表1に示す。 A green sheet was obtained by the same method as in Example 1 using glass powder 2. Two green sheets were laminated and pressed. This was placed on a mullite substrate coated with a release agent, and baked in a binder at 380 ° C. for 4 hours in the atmosphere, and further baked at 580 ° C. under normal pressure for 1 hour to prepare a glass sheet. The plate thickness of the glass sheet measured with a micrometer was 154 μm. Note that the temperature of the binder removal treatment and baking is determined as a result of searching for so-called optimum conditions that provide the highest transmittance and high conversion quantum efficiency. Moreover, the porosity, the quantum conversion efficiency, and the transmittance | permeability were measured by the method similar to Example 1 about the glass sheet. These results are shown in Table 1.
 (例4)
 酸化物基準のモル%表記で、SiO 31%、B 11%、ZnO 7%、LiO 21%、NaO 7%、KO 3%、BaO 4%、Al3%、TiO 11%、Nb 2%となるようにガラス原料を混合した。これを、白金ルツボ中で1300~1500℃に電気炉で加熱し、溶融して、融液を回転ロールで急冷して、ガラスリボンを形成した。ガラスリボンをボールミルで粉砕し、目開き150μmの網目を有する篩にかけ、さらに気流分級し、ガラス3の粉末(ガラス粉末3)を得た。
(Example 4)
In terms of oxide-based mol%, SiO 2 31%, B 2 O 3 11%, ZnO 7%, Li 2 O 21%, Na 2 O 7%, K 2 O 3%, BaO 4%, Al 2 O The glass raw materials were mixed so as to be 33%, TiO 2 11%, and Nb 2 O 5 2%. This was heated in an electric furnace to 1300-1500 ° C. in a platinum crucible and melted, and the melt was quenched with a rotating roll to form a glass ribbon. The glass ribbon was pulverized with a ball mill, passed through a sieve having a mesh having an opening of 150 μm, and further subjected to air classification to obtain glass 3 powder (glass powder 3).
 例1と同様の方法によりガラスの特性を評価した。この結果を表1に示す。 The characteristics of the glass were evaluated in the same manner as in Example 1. The results are shown in Table 1.
 ガラス粉末3を使用して例1と同様の方法により、グリーンシートを得た。グリーンシートを2枚積層し、プレスした。これを、離型剤を塗布したムライト基板に載せて大気中で、320℃で4時間脱バインダ焼成処理し、さらに、530℃で常圧下で1時間焼成し、ガラスシートを作成した。マイクロメータにより測定したガラスシートの板厚は、150μmであった。なお、脱バインダ処理や焼成の温度は、最も透過率が高く、変換量子効率が高くなる、いわゆる最適条件を探索した結果決定している。また、ガラスシートについて、例1と同様の方法で、量子変換効率および透過率を測定した。これらの結果を表1に示す。 Using the glass powder 3, a green sheet was obtained by the same method as in Example 1. Two green sheets were laminated and pressed. This was placed on a mullite substrate coated with a release agent, and subjected to binder removal firing at 320 ° C. for 4 hours in the air, and further fired at 530 ° C. under normal pressure for 1 hour to prepare a glass sheet. The thickness of the glass sheet measured with a micrometer was 150 μm. Note that the temperature of the binder removal treatment and baking is determined as a result of searching for so-called optimum conditions that provide the highest transmittance and high conversion quantum efficiency. Moreover, the quantum conversion efficiency and the transmittance | permeability were measured by the method similar to Example 1 about the glass sheet. These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年9月25日出願の日本特許出願2012-210885に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2012-210885 filed on Sep. 25, 2012, the contents of which are incorporated herein by reference.
 本発明の蛍光体分散ガラスシート用ガラス組成物は、青色光源を変換して白色LEDの白色光源を得るための蛍光体分散ガラスシートの製造に使用できる。 The glass composition for a phosphor-dispersed glass sheet of the present invention can be used for producing a phosphor-dispersed glass sheet for converting a blue light source to obtain a white light source of a white LED.
1 LED発光素子、2 蛍光体分散ガラスシート、3 蛍光体、4 内包泡、5 LED光、6 ガラス、7 蛍光、8 散乱光 1 LED light-emitting element, 2 phosphor-dispersed glass sheet, 3 phosphor, 4 encapsulated foam, 5 LED light, 6 glass, 7 fluorescence, 8 scattered light

Claims (11)

  1.  ガラス粉末と蛍光体粉末とを含有する蛍光体分散ガラスシート用ガラス組成物であって、前記ガラス粉末は、DTA曲線から算出されるTsとTgとの差(ΔTgs)が50~105℃である、蛍光体分散ガラスシート用ガラス組成物。 A glass composition for a phosphor-dispersed glass sheet containing glass powder and phosphor powder, wherein the glass powder has a difference (ΔTgs) between Ts and Tg calculated from a DTA curve of 50 to 105 ° C. A glass composition for a phosphor-dispersed glass sheet.
  2.  ガラス粉末と蛍光体粉末とを含有する蛍光体分散ガラスシート用ガラス組成物であって、前記ガラス粉末は、DTA曲線から算出されるTcとTgとの差(ΔTgc)が95℃以上である、蛍光体分散ガラスシート用ガラス組成物。 A glass composition for a phosphor-dispersed glass sheet containing a glass powder and a phosphor powder, wherein the glass powder has a difference (ΔTgc) between Tc and Tg calculated from a DTA curve of 95 ° C. or more. A glass composition for a phosphor-dispersed glass sheet.
  3.  ガラス粉末と蛍光体粉末とを含有する蛍光体分散ガラスシート用ガラス組成物であって、前記ガラス粉末は、DTA曲線から算出されるTsとTgとの差(ΔTgs)が50~105℃であり、かつ、DTA曲線から算出されるTcとTgとの差(ΔTgc)が95℃以上である、蛍光体分散ガラスシート用ガラス組成物。 A glass composition for a phosphor-dispersed glass sheet comprising a glass powder and a phosphor powder, wherein the glass powder has a difference (ΔTgs) between Ts and Tg calculated from a DTA curve of 50 to 105 ° C. And the glass composition for fluorescent substance dispersion | distribution glass sheets whose difference ((DELTA) Tgc) of Tc and Tg computed from a DTA curve is 95 degreeC or more.
  4.  前記ガラス粉末は、Bi-ZnO-B系のガラスの粉末である請求項1~3のいずれか1項に記載の蛍光体分散ガラスシート用ガラス組成物。 The glass composition for a phosphor-dispersed glass sheet according to any one of claims 1 to 3, wherein the glass powder is a Bi 2 O 3 -ZnO-B 2 O 3 glass powder.
  5.  前記ガラスは、酸化物基準のモル%表示で、Bi3 3~30%、ZnO 0~45%、B 10~50%を含有する請求項4に記載の蛍光体分散ガラスシート用ガラス組成物。 The phosphor-dispersed glass sheet according to claim 4, wherein the glass contains Bi 2 O 3 3 to 30%, ZnO 0 to 45%, and B 2 O 3 10 to 50% in terms of mol% based on oxide. Glass composition.
  6.  前記ガラスは、酸化物基準のモル%表示で、Bi3 3~30%、B 10~50%、ZnO 0~45%、SiO 5~35%、BaO 0~20%、MnO2 0~1%、CeO 0~1%を含有する請求項4または5に記載の蛍光体分散ガラスシート用ガラス組成物。 The glass is expressed by mol% based on oxide, Bi 2 O 3 3 to 30%, B 2 O 3 10 to 50%, ZnO 0 to 45%, SiO 2 5 to 35%, BaO 0 to 20%, The glass composition for a phosphor-dispersed glass sheet according to claim 4 or 5, which contains MnO 2 0 to 1% and CeO 2 0 to 1%.
  7.  請求項1~6のいずれか1項に記載の蛍光体分散ガラスシート用ガラス組成物を焼成して製造される蛍光体分散ガラスシート。 A phosphor-dispersed glass sheet produced by firing the glass composition for a phosphor-dispersed glass sheet according to any one of claims 1 to 6.
  8.  気孔率が5%以下である請求項7に記載の蛍光体分散ガラスシート。 The phosphor-dispersed glass sheet according to claim 7, having a porosity of 5% or less.
  9.  全光線透過率が70%以上である請求項7または8に記載の蛍光体分散ガラスシート。 The phosphor-dispersed glass sheet according to claim 7 or 8, wherein the total light transmittance is 70% or more.
  10.  平行光線透過率が4%以上で、かつ、全光線透過率が70%以上である請求項7~9のいずれか1項に記載の蛍光体分散ガラスシート。 The phosphor-dispersed glass sheet according to any one of claims 7 to 9, wherein the parallel light transmittance is 4% or more and the total light transmittance is 70% or more.
  11.  量子変換効率が85%以上である請求項7~10のいずれか1項に記載の蛍光体分散ガラスシート。 11. The phosphor-dispersed glass sheet according to claim 7, wherein the quantum conversion efficiency is 85% or more.
PCT/JP2013/075258 2012-09-25 2013-09-19 Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same WO2014050684A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-210885 2012-09-25
JP2012210885A JP2015227252A (en) 2012-09-25 2012-09-25 Glass composition for fluophor dispersion glass sheet and glass sheet using the same

Publications (1)

Publication Number Publication Date
WO2014050684A1 true WO2014050684A1 (en) 2014-04-03

Family

ID=50388089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075258 WO2014050684A1 (en) 2012-09-25 2013-09-19 Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same

Country Status (2)

Country Link
JP (1) JP2015227252A (en)
WO (1) WO2014050684A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467315A (en) * 2018-10-23 2019-03-15 温州大学新材料与产业技术研究院 A kind of sodium base glass and preparation method thereof adulterating InN

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002565A (en) * 2016-07-06 2018-01-11 セントラル硝子株式会社 Encapsulation material for encapsulating phosphor and wavelength conversion member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011933A (en) * 2003-06-18 2005-01-13 Asahi Glass Co Ltd Light emitting diode device
JP2009018981A (en) * 2007-06-14 2009-01-29 Asahi Glass Co Ltd Glass for covering optical element, glass-covered light-emitting element, and glass-covered light-emitting device
JP2012158494A (en) * 2011-01-31 2012-08-23 Ohara Inc Glass composition
JP2013193952A (en) * 2012-03-23 2013-09-30 Nippon Electric Glass Co Ltd Glass and wavelength conversion member using the glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011933A (en) * 2003-06-18 2005-01-13 Asahi Glass Co Ltd Light emitting diode device
JP2009018981A (en) * 2007-06-14 2009-01-29 Asahi Glass Co Ltd Glass for covering optical element, glass-covered light-emitting element, and glass-covered light-emitting device
JP2012158494A (en) * 2011-01-31 2012-08-23 Ohara Inc Glass composition
JP2013193952A (en) * 2012-03-23 2013-09-30 Nippon Electric Glass Co Ltd Glass and wavelength conversion member using the glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467315A (en) * 2018-10-23 2019-03-15 温州大学新材料与产业技术研究院 A kind of sodium base glass and preparation method thereof adulterating InN
CN109467315B (en) * 2018-10-23 2022-04-05 温州大学新材料与产业技术研究院 InN-doped sodium-based glass and preparation method thereof

Also Published As

Publication number Publication date
JP2015227252A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5757238B2 (en) Phosphor-dispersed glass and method for producing the same
JP4978886B2 (en) Phosphor composite material and phosphor composite member
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
WO2015151764A1 (en) Wavelength conversion member and light emitting device using same
JP5633114B2 (en) SnO-P2O5 glass used for phosphor composite material
JP6508045B2 (en) Light conversion member, method of manufacturing light conversion member, illumination light source and liquid crystal display device
KR101785798B1 (en) Phosphor-dispersed glass
JP2007191702A (en) Light emission color converting material
JP2007182529A (en) Fluorescent composite glass, fluorescent composite glass green sheet and process for production of fluorescent composite glass
TW201817043A (en) Wavelength conversion member, and light emitting device using same
TW201815717A (en) Wavelength conversion member, and light emitting device using same
JP7212319B2 (en) Wavelength conversion member and light emitting device
JP2014015359A (en) Method of manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
JP5939463B2 (en) Glass and wavelength conversion member using the glass
WO2015041204A1 (en) Light-converting member, method for manufacturing light-converting member, method for adjusting chromaticity of light-converting member, illuminating light source, and liquid crystal display device
WO2015093267A1 (en) Wavelength-conversion member and light-emitting device
JP2018043912A (en) Photoconversion member, illumination light source and method for producing photoconversion member
JP2015071699A (en) Wavelength conversion material, wavelength conversion member and light-emitting device
CN107586127B (en) Ceramic composite, and phosphor for projector and light-emitting device containing same
JPWO2014162893A1 (en) Light conversion member, method for manufacturing the same, illumination light source, and liquid crystal display device
JP2016084269A (en) Phosphor-dispersed glass
JP2015046579A (en) Method for manufacturing optical conversion member, optical conversion member, illumination light source, and liquid crystal display device
WO2014050684A1 (en) Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same
JP2016058409A (en) Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member
JP2018002492A (en) Wavelength conversion member and light-emitting device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP