JP5633114B2 - SnO-P2O5 glass used for phosphor composite material - Google Patents

SnO-P2O5 glass used for phosphor composite material Download PDF

Info

Publication number
JP5633114B2
JP5633114B2 JP2009081156A JP2009081156A JP5633114B2 JP 5633114 B2 JP5633114 B2 JP 5633114B2 JP 2009081156 A JP2009081156 A JP 2009081156A JP 2009081156 A JP2009081156 A JP 2009081156A JP 5633114 B2 JP5633114 B2 JP 5633114B2
Authority
JP
Japan
Prior art keywords
sno
glass
phosphor
phosphor composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009081156A
Other languages
Japanese (ja)
Other versions
JP2010229002A (en
Inventor
俊輔 藤田
俊輔 藤田
芳夫 馬屋原
芳夫 馬屋原
英郎 山内
英郎 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009081156A priority Critical patent/JP5633114B2/en
Publication of JP2010229002A publication Critical patent/JP2010229002A/en
Application granted granted Critical
Publication of JP5633114B2 publication Critical patent/JP5633114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、LED(発光ダイオード)やLD(レーザーダイオード)等の半導体発光素子デバイスに好適な蛍光体複合材料に用いられるSnO−P系ガラスに関するものである。 The present invention relates to SnO—P 2 O 5 glass used for a phosphor composite material suitable for a semiconductor light emitting device such as an LED (light emitting diode) or an LD (laser diode).

近年、白色LED等の半導体発光素子デバイスは、白熱電球や蛍光灯に代わる次世代の光源として照明用途への応用が期待されている。一般に、白色LEDは、半導体発光素子であるLEDチップの発光面が、蛍光体粉末を含む有機系バインダー樹脂で被覆モールドされてなる。この被覆モールド部分をLEDチップからの励起光が通過する際に、その光の全部が蛍光体粉末に吸収されて別の波長に変換されたり、あるいは、励起光の一部が蛍光体粉末に吸収され波長変換された光と、波長変換されずに透過した光とが合成されて所望の白色光が発せられる。しかしながら、白色LEDを構成するモールド樹脂は耐熱性が低いため、青色〜紫外線領域の高出力の短波長励起光によって劣化し、変色を引き起こすという問題がある。   In recent years, semiconductor light-emitting element devices such as white LEDs are expected to be applied to lighting applications as next-generation light sources that replace incandescent bulbs and fluorescent lamps. In general, a white LED is formed by coating a light emitting surface of an LED chip, which is a semiconductor light emitting element, with an organic binder resin containing phosphor powder. When excitation light from the LED chip passes through this coated mold part, all of the light is absorbed by the phosphor powder and converted to another wavelength, or part of the excitation light is absorbed by the phosphor powder. Then, the wavelength-converted light and the light transmitted without wavelength conversion are combined to emit desired white light. However, since the mold resin constituting the white LED has low heat resistance, there is a problem in that it is deteriorated by high-power short-wavelength excitation light in the blue to ultraviolet region and causes discoloration.

そこで、上記問題を解決するために、500℃以上の高軟化点を有する非鉛系ガラス粉末と蛍光体粉末からなる材料をガラス粉末の軟化点以上の温度で焼成し、焼結させることで、ガラスマトリクス中に蛍光体粉末を分散させた蛍光体複合部材が提案されている(例えば、特許文献1参照)。当該蛍光体複合部材は、蛍光体粉末が無機材料であるガラスマトリクス中に分散されているため、化学的に安定であり劣化が少ない。しかも、長期間使用した後であっても、励起光によりガラスマトリクス自体が変色しにくい。   Therefore, in order to solve the above problem, by firing and sintering a material composed of a non-lead glass powder having a high softening point of 500 ° C. or higher and a phosphor powder at a temperature higher than the softening point of the glass powder, A phosphor composite member in which phosphor powder is dispersed in a glass matrix has been proposed (for example, see Patent Document 1). Since the phosphor composite member is dispersed in a glass matrix that is an inorganic material, the phosphor composite member is chemically stable and has little deterioration. Moreover, even after long-term use, the glass matrix itself is not easily discolored by excitation light.

しかしながら、白色LED等の半導体発光素子デバイスに使用される蛍光体粉末の中には、耐熱性が低いものもあり、特許文献1に記載の方法では、蛍光体粉末の安定性を十分に確保できない場合がある。すなわち、耐熱性が低い蛍光体粉末を、500℃以上の軟化点を有する非鉛系ガラス粉末と混合して焼成すると、焼成時の熱により蛍光体粉末が劣化して、蛍光体複合部材の発光効率が低下するという問題がある。そこで、上記問題を解決するために、低軟化点を有するSnO−P−B系ガラスに蛍光体粉末を分散させる方法が提案されている(例えば、特許文献2参照)。 However, some phosphor powders used in semiconductor light emitting device devices such as white LEDs have low heat resistance, and the method described in Patent Document 1 cannot sufficiently secure the stability of the phosphor powder. There is a case. That is, when phosphor powder with low heat resistance is mixed with a lead-free glass powder having a softening point of 500 ° C. or higher and fired, the phosphor powder deteriorates due to heat during firing, and the phosphor composite member emits light. There is a problem that efficiency decreases. Thus, in order to solve the above problem, a method of dispersing phosphor powder in SnO—P 2 O 5 —B 2 O 3 glass having a low softening point has been proposed (see, for example, Patent Document 2).

特開2003−258308号公報JP 2003-258308 A 特開2008−19421号公報JP 2008-19421 A

蛍光体粉末の種類によっては、さらに低い焼成温度が要求される場合があり、特許文献2に記載のSnO−P−B系ガラスでは種々の蛍光体粉末に十分に対応できない場合がある。一方で、特許文献2に記載のSnO−P−B系ガラスは、軟化点を低下させると耐候性が低下しやすいという問題もある。 Depending on the type of phosphor powder, a lower firing temperature may be required, and the SnO—P 2 O 5 —B 2 O 3 glass described in Patent Document 2 cannot sufficiently handle various phosphor powders. There is a case. On the other hand, the SnO—P 2 O 5 —B 2 O 3 -based glass described in Patent Document 2 also has a problem that weather resistance tends to be lowered when the softening point is lowered.

したがって、本発明の目的は、種々の蛍光体粉末に適用可能な低温軟化特性を有し、焼成により蛍光体粉末と反応しにくく、しかも耐候性にも優れ、長期間に亘って使用しても劣化が少ない蛍光体複合材料に用いられるSnO−P系ガラスを提供することである。 Therefore, the object of the present invention is to have a low-temperature softening characteristic applicable to various phosphor powders, hardly react with the phosphor powder by firing, and has excellent weather resistance, and can be used over a long period of time. An object of the present invention is to provide SnO—P 2 O 5 glass used for a phosphor composite material with little deterioration.

本発明者等は、蛍光体複合材料に用いられるSnO−P系ガラスにおいて、当該SnO−P系ガラスが特定の組成を有する場合に前記課題を解消できることを見出し、本発明として提案するものである。 The present inventors have found that the SnO—P 2 O 5 glass used in the phosphor composite material can solve the above problem when the SnO—P 2 O 5 glass has a specific composition. As proposed.

すなわち、本発明は、蛍光体複合材料に用いられるSnO−P系ガラスであって、モル%で、SnO 72〜90%、P 10〜28%、Al 0〜10%、SiO 0〜10%、Li O 0〜10%、Na O 0〜10%、K O 0〜10%、Li O+Na O+K O 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%、MgO+CaO+SrO+BaO 0〜10%の組成を含有し、モル比SnO/P が2.6〜15であり、およびZnOを実質的に含有しないことを特徴とするSnO−P系ガラスに関する。 That is, the present invention provides a SnO-P 2 O 5 based glass used for phosphor composite material, in mol%, SnO 72~90%, P 2 O 5 10~28%, Al 2 O 3 0~ 10%, SiO 2 0~10%, Li 2 O 0~10%, Na 2 O 0~10%, K 2 O 0~10%, Li 2 O + Na 2 O + K 2 O 0~10%, MgO 0~10 %, CaO 0-10%, SrO 0-10%, BaO 0-10%, MgO + CaO + SrO + BaO 0-10% in composition, molar ratio SnO / P 2 O 5 is 2.6-15, B 2 The present invention relates to SnO—P 2 O 5 glass characterized by substantially not containing O 3 and ZnO.

一般に、低軟化点ガラスであるSnO−P系ガラスは耐候性が低いとされているが、本発明では、SnO含有量を72モル%以上と多く含有させることにより、低温軟化特性と耐候性の両方を兼ね備えた蛍光体複合材料を作製することが可能となった。したがって、本発明のSnO−P系ガラスを用いた蛍光体複合材料は低温焼結が可能であり、焼成時におけるガラス粉末と蛍光体粉末との反応が少なく、しかも当該蛍光体複合材料を焼結させてなる蛍光体複合部材は、耐候性に優れ、長期間に亘って使用しても劣化が少ないという特徴を有する。 In general, SnO-P 2 O 5 glass, which is a low softening point glass, is said to have low weather resistance, but in the present invention, by containing SnO content as high as 72 mol% or more, low-temperature softening characteristics and It has become possible to produce a phosphor composite material having both weather resistance. Therefore, the phosphor composite material using the SnO—P 2 O 5 glass of the present invention can be sintered at low temperature, there is little reaction between the glass powder and the phosphor powder during firing, and the phosphor composite material. The phosphor composite member obtained by sintering is characterized by excellent weather resistance and little deterioration even when used over a long period of time.

ところで、BとZnOは、ガラスの耐候性を向上させる効果がある反面、軟化点も上昇させてしまうという問題がある。そこで、本発明では、B およびZnOを実質的に含有しないことにより、さらに低い軟化点を達成することが可能となった。また、BとZnOは、紫外領域、特に波長330〜380nmの紫外線透過率を低下させる働きがある。本発明のSnO−P系ガラスは、BとZnOを実質的に含有しないため、優れた紫外線透過特性を有する。したがって、本発明のSnO−P系ガラスを用いた蛍光体複合材料は、紫外励起光源を用いた半導体発光素子デバイスに好適である。 By the way, B 2 O 3 and ZnO have an effect of improving the weather resistance of the glass, but there is a problem that the softening point is also increased. Therefore, in the present invention, it is possible to achieve a lower softening point by substantially not containing B 2 O 3 and Zn 2 O. Further, B 2 O 3 and ZnO may serve to ultraviolet region, especially to lower the ultraviolet transmittance of the wavelength 330~380Nm. Since the SnO—P 2 O 5 glass of the present invention does not substantially contain B 2 O 3 and ZnO , it has excellent ultraviolet light transmission characteristics. Therefore, the phosphor composite material using the SnO—P 2 O 5 glass of the present invention is suitable for a semiconductor light emitting device using an ultraviolet excitation light source.

なお、本発明において「SnO−P系ガラス」とは、SnOおよびPを合量で50モル%以上含有するガラスをいう。 In the present invention, “SnO—P 2 O 5 -based glass” refers to a glass containing SnO and P 2 O 5 in a total amount of 50 mol% or more.

なお、本発明において「BおよびZnOを実質的に含有しない」とは、BおよびZnOを意図的に添加しないという意味であり、不純物として混入するレベルを排除するものではない。具体的には、BおよびZnOの含有量が各0.1モル%未満であることをいう。 In the present invention, the term "not containing B 2 O 3 and ZnO substantially" is meant that no added B 2 O 3 and ZnO intentionally, does not exclude the level as impurities . Specifically, it means that the contents of B 2 O 3 and ZnO are each less than 0.1 mol%.

に、本発明のSnO−P系ガラスは、波長365nmにおける内部透過率が80%以上であることが好ましい。 Second , the SnO—P 2 O 5 glass of the present invention preferably has an internal transmittance of 80% or more at a wavelength of 365 nm.

当該構成を有するSnO−P系ガラスを用いた蛍光体複合材料は、紫外励起光源を用いた半導体発光素子デバイスに特に好適である。なお、本発明において「波長365nmにおける内部透過率」は厚み1mmにおける測定値をいう。 The phosphor composite material using the SnO—P 2 O 5 glass having the above configuration is particularly suitable for a semiconductor light emitting device using an ultraviolet excitation light source. In the present invention, “internal transmittance at a wavelength of 365 nm” refers to a measured value at a thickness of 1 mm.

に、本発明のSnO−P系ガラスは、軟化点が350℃以下であることが好ましい。 Third , the SnO—P 2 O 5 glass of the present invention preferably has a softening point of 350 ° C. or lower.

当該構成によれば、耐熱性の低い蛍光体粉末を用いた場合であっても、焼成時に蛍光体粉末がSnO−P系ガラス粉末と反応して劣化することがほとんどない蛍光体複合材料を得ることができる。 According to this configuration, even in the case of using a phosphor powder having low heat resistance, firing almost no phosphor composite that phosphor powder is deteriorated by reacting with SnO-P 2 O 5 based glass powder during Material can be obtained.

に、本発明は、前記いずれかに記載のSnO−P系ガラスからなるSnO−P系ガラス粉末に関する。 Fourth, the present invention relates to a SnO-P 2 O 5 based glass powder comprising SnO-P 2 O 5 based glass according to the one.

SnO−P系ガラスを粉末状で用いることにより、蛍光体粉末をSnO−P系ガラス中に十分に分散させることができ、所望の特性を有する蛍光体複合部材を容易に作製することが可能となる。 By using SnO—P 2 O 5 glass in powder form, the phosphor powder can be sufficiently dispersed in the SnO—P 2 O 5 glass, and a phosphor composite member having desired characteristics can be easily obtained. It can be produced.

に、本発明は、前記SnO−P系ガラス粉末および蛍光体粉末を含有する蛍光体複合材料に関する。 Fifth , the present invention relates to a phosphor composite material containing the SnO—P 2 O 5 glass powder and phosphor powder.

に、本発明の蛍光体複合材料は、蛍光体粉末の含有量が0.01〜30質量%であることが好ましい。 Sixth , the phosphor composite material of the present invention preferably has a phosphor powder content of 0.01 to 30% by mass.

に、本発明は、前記いずれかに記載の蛍光体複合材料の焼結体からなる蛍光体複合部材に関する。 Seventh , the present invention relates to a phosphor composite member made of a sintered body of the phosphor composite material described above.

に、本発明の蛍光体複合部材は、300〜500nmのいずれかの波長を有する励起光を、当該励起光の波長とは異なる波長380〜780nmの可視光に変換することが好ましい。 Eighth , it is preferable that the phosphor composite member of the present invention converts excitation light having a wavelength of 300 to 500 nm into visible light having a wavelength of 380 to 780 nm different from the wavelength of the excitation light.

に、本発明は、前記いずれかに記載の蛍光体複合部材を用いた半導体発光素子デバイスに関する。 Ninth , the present invention relates to a semiconductor light-emitting element device using any of the phosphor composite members described above.

本発明において、「%」は特に断りのない限り「モル%」を表す。   In the present invention, “%” represents “mol%” unless otherwise specified.

本発明のSnO−P系ガラスにおいて、SnOはガラスの骨格を形成するとともに、軟化点を下げる成分である。SnOの含有量は72〜90%、73〜88%、特に75〜85%が好ましい。SnOの含有量が72%未満であると、耐候性が低下する傾向がある。一方、SnOの含有量が90%を超えると、ガラス中にSnに起因する失透ブツが析出し、ガラスの透過率が低下する傾向にあり、結果として、高い発光効率を有する蛍光体複合部材が得られにくくなる。また、ガラスが不安定になり、ガラス化しにくくなる。 In the SnO—P 2 O 5 glass of the present invention, SnO is a component that forms a glass skeleton and lowers the softening point. The SnO content is preferably 72 to 90%, 73 to 88%, and particularly preferably 75 to 85%. There exists a tendency for a weather resistance to fall that content of SnO is less than 72%. On the other hand, when the content of SnO exceeds 90%, devitrification bumps resulting from Sn are precipitated in the glass, and the transmittance of the glass tends to be lowered. As a result, the phosphor composite member having high luminous efficiency. Is difficult to obtain. Moreover, glass becomes unstable and it becomes difficult to vitrify.

はガラスの骨格を形成する成分である。Pの含有量は10〜28%、12〜27%、特に15〜25%が好ましい。Pの含有量が10%未満であると、ガラス化しにくくなる。一方、Pの含有量が28%を超えると、耐候性が著しく低下する傾向にある。 P 2 O 5 is a component that forms a glass skeleton. The content of P 2 O 5 is preferably 10 to 28%, 12 to 27%, particularly preferably 15 to 25%. When the content of P 2 O 5 is less than 10%, vitrification becomes difficult. On the other hand, when the content of P 2 O 5 exceeds 28%, the weather resistance tends to be remarkably lowered.

なお、SnO−P系ガラスの軟化点を低下させ、しかも安定化させるには、SnO/Pの値を、モル比で、2.6〜15、2.9〜10、特に3〜7の範囲にすることが好ましい。SnO/Pの値が2.6未満であると、耐候性が著しく低下する傾向にある。一方、SnO/Pの値が15を超えると、ガラス中にSnに起因する失透ブツが析出してガラスの透過率が低下する傾向にあり、結果として、高い発光効率を有する蛍光体複合部材が得られにくくなる。 Note that lowering the softening point of the SnO-P 2 O 5 based glass, yet in stabilizes, the value of SnO / P 2 O 5, in a molar ratio, 2.6~15,2.9~10, In particular, the range of 3 to 7 is preferable. When the value of SnO / P 2 O 5 is less than 2.6, the weather resistance tends to be remarkably lowered. On the other hand, if the value of SnO / P 2 O 5 exceeds 15, devitrification bumps due to Sn are deposited in the glass and the transmittance of the glass tends to decrease, and as a result, fluorescence having high luminous efficiency. It becomes difficult to obtain a body composite member.

とZnOは、既述のように、ガラスの耐候性を向上させる効果がある反面、軟化点を上昇させ、しかも紫外領域、特に波長330〜380nmの紫外線透過率を低下させるという問題がある。したがって、BとZnOの含有量は合量で5%以下、3%以下、1%以下、特に実質的に含有しないことが好ましい。BとZnOの含有量が合量で5%を超えると、低温軟化特性、特に350℃以下、さらには320℃以下の軟化点が得られにくくなる。また、紫外線透過率に劣り、当該SnO−P系ガラスを用いた蛍光体複合材料を、紫外励起光源を用いた半導体発光素子デバイスに使用することが困難となる。ただし、ガラスの耐候性をある程度確保することを目的とする場合は、BとZnOを合量で0.1%以上、さらには1%以上含有させることもできる。 As described above, B 2 O 3 and ZnO have the effect of improving the weather resistance of the glass, but increase the softening point and lower the ultraviolet transmittance, particularly the ultraviolet transmittance in the wavelength range of 330 to 380 nm. There is. Therefore, the total content of B 2 O 3 and ZnO is preferably 5% or less, 3% or less, 1% or less, and particularly not substantially contained. When the total content of B 2 O 3 and ZnO exceeds 5%, it becomes difficult to obtain a low-temperature softening characteristic, particularly a softening point of 350 ° C. or lower, and further 320 ° C. or lower. Further, inferior in ultraviolet transmittance, the phosphor composite material using the SnO-P 2 O 5 based glass, it is difficult to use the semiconductor light-emitting element device using the ultraviolet excitation light source. However, when the objective is to secure the weather resistance of the glass to some extent, the total amount of B 2 O 3 and ZnO can be 0.1% or more, and further 1% or more can be contained.

本発明のSnO−P系ガラスは、モル%で、SnO 72〜90%、P 10〜28%、Al 0〜10%、SiO 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%、MgO+CaO+SrO+BaO 0〜10%、B+ZnO 0〜5%の組成を含有するものが一例として挙げられる。ガラス組成をこのように限定した理由は、以下の通りである。なお、SnO、P、B、ZnOについては、既述の通りであり、以下では記載を省略する。 SnO-P 2 O 5 based glass of the present invention, in mol%, SnO 72~90%, P 2 O 5 10~28%, Al 2 O 3 0~10%, SiO 2 0~10%, Li 2 O 0-10%, Na 2 O 0-10%, K 2 O 0-10%, Li 2 O + Na 2 O + K 2 O 0-10%, MgO 0-10%, CaO 0-10%, SrO 0-10 As an example, a composition containing 1%, BaO 0 to 10%, MgO + CaO + SrO + BaO 0 to 10%, and B 2 O 3 + ZnO 0 to 5% is given. The reason for limiting the glass composition in this way is as follows. Note that SnO, P 2 O 5 , B 2 O 3 , and ZnO are as described above, and will not be described below.

Alはガラスを安定化させる成分である。Alの含有量は0〜10%、0〜7%、1〜5%、特に1〜2%である。Alの含有量が10%を超えると、ガラスの軟化点が上昇して蛍光体複合材料を低温焼結しにくくなり、蛍光体粉末が劣化しやすくなる。 Al 2 O 3 is a component that stabilizes the glass. The content of Al 2 O 3 is 0 to 10%, 0 to 7%, 1 to 5%, particularly 1 to 2%. When the content of Al 2 O 3 exceeds 10%, the softening point of the glass rises and the phosphor composite material becomes difficult to be sintered at a low temperature, and the phosphor powder tends to deteriorate.

SiOはAlと同様にガラスを安定化させる成分である。SiOの含有量は0〜10%、0〜7%、0.1〜5%、特に0.1〜2%である。SiOの含有量が10%を超えると、ガラスの軟化点が上昇して蛍光体複合材料を低温焼結しにくくなり、蛍光体粉末が劣化しやすくなる。また、ガラスが分相しやすくなる。 SiO 2 is a component that stabilizes the glass in the same manner as Al 2 O 3 . The content of SiO 2 is 0 to 10%, 0 to 7%, 0.1 to 5%, particularly 0.1 to 2%. When the content of SiO 2 exceeds 10%, the softening point of the glass rises, and it becomes difficult to sinter the phosphor composite material at low temperature, and the phosphor powder tends to deteriorate. Moreover, it becomes easy to phase-separate glass.

なお、AlとSiOの合量は0〜10%、0〜5%、特に0.1〜2%が好ましい。AlとSiOの合量が10%を超えると、ガラスの軟化点が上昇して蛍光体複合材料を低温焼結しにくくなり、蛍光体粉末が劣化しやすくなる。 The total amount of Al 2 O 3 and SiO 2 is preferably 0 to 10%, 0 to 5%, particularly preferably 0.1 to 2%. If the total amount of Al 2 O 3 and SiO 2 exceeds 10%, the softening point of the glass is increased, making it difficult to sinter the phosphor composite material at low temperature, and the phosphor powder tends to deteriorate.

LiOはガラスの軟化点を著しく低下させる成分である。LiOの含有量は0〜10%、0〜7%、特に1〜5%が好ましい。LiOの含有量が10%を超えると、ガラスが著しく不安定になってガラス化しにくくなる。 Li 2 O is a component that significantly lowers the softening point of glass. The content of Li 2 O is preferably 0 to 10%, 0 to 7%, particularly preferably 1 to 5%. When the content of Li 2 O exceeds 10%, the glass becomes extremely unstable and becomes difficult to vitrify.

NaOはガラスの軟化点を低下させる成分である。NaOの含有量は0〜10%、0〜7%、特に0.1〜5%が好ましい。NaOの含有量が10%を超えると、ガラスが不安定になってガラス化しにくくなる。 Na 2 O is a component that lowers the softening point of glass. The content of Na 2 O is preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%. When the content of Na 2 O exceeds 10%, the vitrification hardly occurs glass becomes unstable.

Oは、ガラスの軟化点を若干低下させる成分である。KOの含有量は0〜10%、0〜7%、特に1〜5%が好ましい。KOの含有量が多くなると、ガラスが不安定になりやすくガラス化しにくくなる。 K 2 O is a component that slightly lowers the softening point of glass. The content of K 2 O is preferably 0 to 10%, 0 to 7%, particularly preferably 1 to 5%. When the content of K 2 O increases, the glass tends to become unstable and is difficult to vitrify.

LiO、NaOおよびKOの合量は0〜10%、0〜7%、特に1〜5%であることが好ましい。これらの成分の合量が10%を超えると、ガラスが不安定になってガラス化しにくくなる。 The total amount of Li 2 O, Na 2 O and K 2 O is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. When the total amount of these components exceeds 10%, the glass becomes unstable and it is difficult to vitrify.

このようにLiO、NaOおよびKOはガラスの軟化点を低下させる効果があるため、蛍光体複合材料の焼成温度も低下させることが可能となり、結果として、蛍光体粉末の劣化が抑制され、発光効率に優れた蛍光体複合部材を作製することが可能となる。 Thus, Li 2 O, Na 2 O and K 2 O have the effect of lowering the softening point of the glass, so that the firing temperature of the phosphor composite material can be lowered, resulting in deterioration of the phosphor powder. Is suppressed, and a phosphor composite member having excellent luminous efficiency can be manufactured.

MgOはガラスを安定化させてガラス化しやすくする成分である。MgOの含有量は0〜10%、0〜7%、特に1〜5%が好ましい。MgOの含有量が10%を超えると、ガラスが失透して透過率が低下する傾向にあり、結果として、高い発光効率を有する蛍光体複合部材が得られにくくなる。   MgO is a component that stabilizes glass and facilitates vitrification. The content of MgO is preferably 0 to 10%, 0 to 7%, particularly preferably 1 to 5%. If the content of MgO exceeds 10%, the glass tends to devitrify and the transmittance tends to decrease, and as a result, it becomes difficult to obtain a phosphor composite member having high luminous efficiency.

CaOはガラスを安定化させてガラス化しやすくする成分である。CaOの含有量は0〜10%、0〜7%、特に0.1〜5%が好ましい。CaOの含有量が10%を超えると、ガラスが失透して透過率が低下する傾向にあり、結果として、高い発光効率を有する蛍光体複合部材が得られにくくなる。   CaO is a component that stabilizes glass and facilitates vitrification. The content of CaO is preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%. If the content of CaO exceeds 10%, the glass tends to devitrify and the transmittance tends to decrease, and as a result, it becomes difficult to obtain a phosphor composite member having high luminous efficiency.

SrOはガラスを安定化させてガラス化しやすくする成分である。SrOの含有量は0〜10%、0〜7%、特に0.1〜5%が好ましい。SrOの含有量が10%を超えると、ガラスが失透して透過率が低下する傾向にあり、結果として、高い発光効率を有する蛍光体複合部材が得られにくくなる。   SrO is a component that stabilizes glass and facilitates vitrification. The SrO content is preferably 0 to 10%, 0 to 7%, particularly preferably 0.1 to 5%. If the SrO content exceeds 10%, the glass tends to devitrify and the transmittance tends to decrease, and as a result, it becomes difficult to obtain a phosphor composite member having high luminous efficiency.

BaOはガラスを安定化させてガラス化しやすくする成分である。BaOの含有量は0〜10%、0〜5%、0〜3%、特に0.1〜1%が好ましい。BaOの含有量が5%を超えると、ガラスが著しく失透して透過率が低下する傾向にあり、結果として、高い発光効率を有する蛍光体複合部材が得られにくくなる。   BaO is a component that stabilizes glass and facilitates vitrification. The content of BaO is preferably 0 to 10%, 0 to 5%, 0 to 3%, particularly preferably 0.1 to 1%. If the content of BaO exceeds 5%, the glass tends to devitrify significantly and the transmittance tends to decrease, and as a result, it becomes difficult to obtain a phosphor composite member having high luminous efficiency.

MgO、CaO、SrOおよびBaOの合量は0〜10%、0〜7%、特に1〜5%であることが好ましい。これら成分の合量が10%より多くなると、ガラスが失透して透過率が低下する傾向にあり、結果として、高い発光効率を有する蛍光体複合部材が得られにくくなる。   The total amount of MgO, CaO, SrO and BaO is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. If the total amount of these components exceeds 10%, the glass tends to devitrify and the transmittance tends to decrease, and as a result, it becomes difficult to obtain a phosphor composite member having high luminous efficiency.

なお、SnOを多量に含有する場合やアルカリ酸化物を添加した場合などは、ガラスが低軟化点化するが、ガラスが不安定になる傾向がある。一方、MgO、CaO、SrOおよびBaOはガラスを安定化させる効果があるため、これらの成分を添加することで、ガラスの安定性を維持しつつ、低軟化点化を図ることが可能となる。   When SnO is contained in a large amount or when an alkali oxide is added, the glass has a low softening point, but the glass tends to be unstable. On the other hand, since MgO, CaO, SrO and BaO have an effect of stabilizing the glass, the addition of these components makes it possible to reduce the softening point while maintaining the stability of the glass.

また、上記成分以外にも、本発明の主旨を損なわない範囲で種々の成分を添加することができる。例えば、耐候性を向上させるために、Ta、Nb、Gd、Laを合量で10%まで添加してもよい。 In addition to the above components, various components can be added as long as the gist of the present invention is not impaired. For example, in order to improve the weather resistance, Ta 2 O 5 , Nb 2 O 5 , Gd 2 O 3 , and La 2 O 3 may be added up to 10% in total.

本発明のSnO−P系ガラスは、波長365nmにおける内部透過率が80%以上、特に82%以上であることが好ましい。波長365nmにおける内部透過率が80%未満であると、当該SnO−P系ガラスを用いた蛍光体複合材料を、紫外励起光源を用いた半導体発光素子デバイスに使用することが困難となる。 The SnO—P 2 O 5 glass of the present invention preferably has an internal transmittance of 80% or more, particularly 82% or more at a wavelength of 365 nm. When the internal transmittance at a wavelength of 365 nm is less than 80%, it becomes difficult to use the phosphor composite material using the SnO—P 2 O 5 glass in a semiconductor light emitting device using an ultraviolet excitation light source. .

本発明のSnO−P系ガラスの軟化点は350℃以下、特に320℃以下であることが好ましい。SnO−P系ガラスの軟化点が350℃を超えると、耐熱性の低い蛍光体粉末を用いた場合、焼成時に蛍光体粉末が劣化する傾向にあり、蛍光体複合部材の発光効率が低下しやすくなる。 The softening point of the SnO—P 2 O 5 glass of the present invention is preferably 350 ° C. or lower, particularly preferably 320 ° C. or lower. When the softening point of SnO—P 2 O 5 glass exceeds 350 ° C., when a phosphor powder having low heat resistance is used, the phosphor powder tends to deteriorate during firing, and the luminous efficiency of the phosphor composite member is high. It tends to decrease.

本発明のSnO−P系ガラスは粉末状で用いることが好ましい。SnO−P系ガラス粉末の平均粒径D50は0.1〜300μm、特に0.7〜250μmであることが好ましい。SnO−P系ガラス粉末の平均粒径D50が300μmより大きくなると、低温焼結が困難となる傾向がある。一方、平均粒径D50が0.1μmより小さくなると、焼成時に発泡して、蛍光体複合部材の気孔率が大きくなり、発光効率が低下しやすくなる。 The SnO—P 2 O 5 glass of the present invention is preferably used in a powder form. It is preferable that the average particle diameter D 50 of the SnO-P 2 O 5 based glass powder is 0.1 to 300, in particular 0.7~250Myuemu. When SnO-P 2 O 5 based glass powder having an average particle diameter D 50 of greater than 300 [mu] m, tend to low-temperature sintering it becomes difficult. On the other hand, when the average particle diameter D 50 is smaller than 0.1 [mu] m, and foaming during firing, the porosity of the phosphor composite member is increased, the emission efficiency tends to decrease.

本発明の蛍光体複合材料は、本発明のSnO−P系ガラス粉末および蛍光体粉末を含有してなるものである。蛍光体粉末は、可視域に発光ピークを有するものであれば、特に限定されるものではない。なお、本発明において可視域とは波長380〜780nmの範囲をいう。このような蛍光体粉末として、酸化物、窒化物、酸窒化物、塩化物、酸塩化物、硫化物、酸硫化物、ハロゲン化物、カルコゲン化物、アルミン酸塩、ハロリン酸塩化物、YAG系化合物などの無機蛍光体粉末が挙げられる。窒化物、酸窒化物、塩化物、酸塩化物、硫化物、酸硫化物、ハロゲン化物、カルコゲン化物、アルミン酸塩、ハロリン酸塩化物などの蛍光体粉末は、焼成時の熱により、ガラスと反応し、発泡や変色などの異常反応を起こしやすく、その程度は、焼成温度が高温であればあるほど著しくなる。本発明で用いられるSnO−P系ガラス粉末は十分に低い軟化点を有するため、こ
れらの蛍光体粉末を使用することができる。
The phosphor composite material of the present invention contains the SnO—P 2 O 5 glass powder and phosphor powder of the present invention. The phosphor powder is not particularly limited as long as it has an emission peak in the visible range. In the present invention, the visible range refers to a wavelength range of 380 to 780 nm. Such phosphor powders include oxides, nitrides, oxynitrides, chlorides, acid chlorides, sulfides, oxysulfides, halides, chalcogenides, aluminates, halophosphates, YAG compounds. And inorganic phosphor powders. Phosphor powders such as nitrides, oxynitrides, chlorides, acid chlorides, sulfides, oxysulfides, halides, chalcogenides, aluminates, and halophosphates are made from glass by the heat during firing. The reaction tends to cause an abnormal reaction such as foaming or discoloration, and the degree becomes more remarkable as the firing temperature is higher. Since the SnO—P 2 O 5 glass powder used in the present invention has a sufficiently low softening point, these phosphor powders can be used.

なお、本発明の蛍光体複合材料はSnO−P系ガラス粉末および蛍光体粉末のみからなるものであってもよいが、それ以外にも、本発明の効果を損なわない範囲で、高軟化点ガラス、あるいはアルミナ、シリカ等の結晶粉末などの無機粉末を、蛍光体複合部材の強度向上や色合い、配向性、散乱性の調節等の目的で含有しても構わない。これらの無機粉末の含有量は、蛍光体複合材料中において合量で0.01〜50質量%であることが好ましく、0.05〜20質量%であることがより好ましい。 The phosphor composite material of the present invention may be composed only of SnO—P 2 O 5 glass powder and phosphor powder. An inorganic powder such as a softening point glass or a crystal powder such as alumina or silica may be contained for the purpose of improving the strength of the phosphor composite member or adjusting the hue, orientation, and scattering properties. The content of these inorganic powders is preferably 0.01 to 50% by mass and more preferably 0.05 to 20% by mass in the total amount in the phosphor composite material.

本発明の蛍光体複合部材は、本発明の蛍光体複合材料の焼結体からなる。蛍光体複合部材の形状は特に限定されないが、長方形等の多角形や円形の板状が一般的である。その他にも、球状、半球状、メニスカスレンズ状、円錐状、膜状などが挙げられる。これらの形状は、研磨や切削加工により作製してもよいが、蛍光体複合材料の焼結物を所望の形状を有する金型を用いてリプレス成型することにより容易に作製することができる。   The phosphor composite member of the present invention comprises a sintered body of the phosphor composite material of the present invention. The shape of the phosphor composite member is not particularly limited, but a polygon such as a rectangle or a circular plate shape is common. Other examples include a spherical shape, a hemispherical shape, a meniscus lens shape, a conical shape, and a film shape. These shapes may be produced by polishing or cutting, but can be easily produced by repress molding a sintered product of the phosphor composite material using a mold having a desired shape.

蛍光体複合部材の発光効率は、ガラス中に分散した蛍光体粉末の種類や含有量、および蛍光体複合部材の厚みなどによって変化するため、発光効率が最適になるようにこれらのパラメータを適宜調整すればよい。   The luminous efficiency of the phosphor composite member varies depending on the type and content of the phosphor powder dispersed in the glass, the thickness of the phosphor composite member, etc., so these parameters are adjusted as appropriate to optimize the luminous efficiency. do it.

ただし、蛍光体粉末の含有量が多すぎると、焼結しにくくなったり、気孔率が大きくなって、励起光が蛍光体粉末に効率良く照射されにくくなったり、蛍光体複合部材の機械的強度が低下しやすくなるなどの問題が生じる。一方、蛍光体粉末の含有量が少なすぎると、十分な発光強度が得られにくくなる。したがって、蛍光体複合材料における蛍光体粉末の含有量は0.01〜30質量%、0.05〜20質量%、特に、0.08〜15質量%が好ましい。   However, if the content of the phosphor powder is too large, it becomes difficult to sinter, the porosity becomes large, and it becomes difficult to efficiently irradiate the phosphor powder with the excitation light, or the mechanical strength of the phosphor composite member. This causes problems such as being easily lowered. On the other hand, when the content of the phosphor powder is too small, it becomes difficult to obtain sufficient emission intensity. Therefore, the content of the phosphor powder in the phosphor composite material is preferably 0.01 to 30% by mass, 0.05 to 20% by mass, and particularly preferably 0.08 to 15% by mass.

また、蛍光体複合部材の厚みは0.05〜2mm、0.08〜1mm、0.1〜0.5mm、特に0.1〜0.2mmが好ましい。蛍光体複合部材の厚みが0.05mm未満であると、機械的強度に劣るとともに、製造および加工が困難となる。一方、蛍光体複合部材の厚みが2mmを超えると、励起光が透過しにくくなり、光束値が低下する傾向がある。   Moreover, the thickness of the phosphor composite member is preferably 0.05 to 2 mm, 0.08 to 1 mm, 0.1 to 0.5 mm, and particularly preferably 0.1 to 0.2 mm. When the thickness of the phosphor composite member is less than 0.05 mm, the mechanical strength is inferior and manufacturing and processing are difficult. On the other hand, when the thickness of the phosphor composite member exceeds 2 mm, the excitation light is hardly transmitted and the light flux value tends to decrease.

蛍光体複合材料の焼成は大気中で行ってもよいが、さらに緻密な焼結体を得る場合やガラス粉末と蛍光体粉末の反応を抑制するために、減圧または真空雰囲気中、あるいは窒素やアルゴンなどの不活性ガス雰囲気中で焼成することが好ましい。   The phosphor composite material may be fired in the air. However, in order to obtain a denser sintered body or to suppress the reaction between the glass powder and the phosphor powder, the atmosphere is reduced or in a vacuum atmosphere, or nitrogen or argon. It is preferable to bake in an inert gas atmosphere.

焼成温度は250〜350℃の範囲であることが好ましい。焼成温度が250℃未満であると、焼結体である蛍光体複合部材の気孔率が増加し、光の透過性が低下する場合がある。一方、焼成温度が350℃を超えると、蛍光体粉末が劣化したり、ガラス粉末と蛍光体粉末が反応し、発光効率が低下しやすくなる。   The firing temperature is preferably in the range of 250 to 350 ° C. When the firing temperature is less than 250 ° C., the porosity of the phosphor composite member, which is a sintered body, increases, and the light transmittance may decrease. On the other hand, when the firing temperature exceeds 350 ° C., the phosphor powder deteriorates, or the glass powder and the phosphor powder react with each other, so that the light emission efficiency tends to be lowered.

焼成に供する際の蛍光体複合材料の形態は特に限定されるものではなく、例えば、所望形状の加圧成型体であってもよいし、ペーストやグリーンシートであってもよい。   The form of the phosphor composite material used for firing is not particularly limited, and may be, for example, a pressure-molded body having a desired shape, or a paste or a green sheet.

本発明の蛍光体複合材料を加圧成型して蛍光体複合部材とする方法は例えば次のように行われる。まず、蛍光体複合材料に樹脂バインダーを0〜5質量%添加して金型で加圧成型し、予備成型体を作製する。続けて、予備成型体を250℃以下の温度で脱バインダーを行った後、上記温度範囲で焼成することにより、蛍光体複合部材とすることができる。   A method for pressure-molding the phosphor composite material of the present invention to form a phosphor composite member is performed, for example, as follows. First, a resin binder is added to the phosphor composite material in an amount of 0 to 5% by mass, and pressure molding is performed with a mold to prepare a preform. Subsequently, the preform is subjected to binder removal at a temperature of 250 ° C. or lower, and then baked in the above temperature range to obtain a phosphor composite member.

なお、樹脂バインダーとしては、樹脂の分解終了温度が250℃以下のものを用いることが好ましい。このような樹脂バインダーとしては、例えば、ニトロセルロース、ポリイソブチルアクリレート、ポリエチルカーボネート等が挙げられる。これらは単独で、または2種以上を混合して使用することができる。   As the resin binder, it is preferable to use a resin whose decomposition end temperature is 250 ° C. or lower. Examples of such a resin binder include nitrocellulose, polyisobutyl acrylate, polyethyl carbonate, and the like. These can be used alone or in admixture of two or more.

本発明の蛍光体複合材料をペーストの形態で使用する場合には、蛍光体複合材料に所定量の結合剤や溶剤等を添加および混錬してペースト化することが好ましい。ペースト全体に占める蛍光体複合材料の割合は30〜90質量%が一般的である。   When the phosphor composite material of the present invention is used in the form of a paste, it is preferable to add and knead a predetermined amount of a binder or a solvent to the phosphor composite material to form a paste. The proportion of the phosphor composite material in the entire paste is generally 30 to 90% by mass.

結合剤は、ペーストを乾燥して膜状蛍光体複合部材とした際に、当該膜状蛍光体複合部材の強度を高め、また柔軟性を付与する成分である。結合剤の含有量は、0.1〜20質量%程度が一般的である。結合剤の具体例としては、ポリブチルメタクリレート、ポリビニルブチラール、ポリメチルメタクリレート、ポリエチルメタクリレート、エチルセルロース、ニトロセルロース等が挙げられる。これらは単独で、または2種以上を混合して使用することができる。   The binder is a component that enhances the strength of the film-like phosphor composite member and imparts flexibility when the paste is dried to obtain the film-like phosphor composite member. As for content of binder, about 0.1-20 mass% is common. Specific examples of the binder include polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose, nitrocellulose and the like. These can be used alone or in admixture of two or more.

溶剤は、蛍光体複合材料をペースト化するために用いられる。溶剤の含有量は10〜50質量%程度が一般的である。溶剤の具体例としては、テルピネオール、酢酸イソアミル、トルエン、メチルエチルケトン、ジエチレングリコールモノブチルエーテルアセテート、2,2,4−トリメチル−1,3ペンタジオールモノイソブチレート等が挙げられる。これらは単独で、または2種以上を混合して使用することができる。   The solvent is used to paste the phosphor composite material. As for content of a solvent, about 10-50 mass% is common. Specific examples of the solvent include terpineol, isoamyl acetate, toluene, methyl ethyl ketone, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3 pentadiol monoisobutyrate and the like. These can be used alone or in admixture of two or more.

上記ペーストを用いて、無機材料の基材上に膜状蛍光体複合部材を形成することができる。具体的には、蛍光体複合部材と同程度の熱膨張係数を有する無機材料の基材を用意し、当該基材上にスクリーン印刷法や一括コート法等を用いてペーストを塗布し、所定膜厚の塗布層を形成する。その後、乾燥させ、上記温度で焼成することにより、膜状蛍光体複合部材を形成することができる。   Using the paste, a film-like phosphor composite member can be formed on a base material made of an inorganic material. Specifically, a base material of an inorganic material having a thermal expansion coefficient comparable to that of the phosphor composite member is prepared, and a paste is applied on the base material using a screen printing method, a batch coating method, or the like. A thick coating layer is formed. Thereafter, the film-like phosphor composite member can be formed by drying and baking at the above temperature.

本発明の蛍光体複合材料をグリーンシートの形態で使用する場合、蛍光体複合材料に対して結合剤、可塑剤、溶剤等を添加してグリーンシート化する。グリーンシート中に占める蛍光体複合材料の割合は50〜80質量%程度が一般的である。   When the phosphor composite material of the present invention is used in the form of a green sheet, a binder, a plasticizer, a solvent, etc. are added to the phosphor composite material to form a green sheet. The proportion of the phosphor composite material in the green sheet is generally about 50 to 80% by mass.

結合剤および溶剤としては、上記ペーストの調製に用いられるものと同様のものを用いることができる。結合剤の混合割合は0.1〜30質量%程度、溶剤の混合割合は1〜40質量%程度が一般的である。   As the binder and the solvent, those similar to those used for the preparation of the paste can be used. The mixing ratio of the binder is generally about 0.1 to 30% by mass, and the mixing ratio of the solvent is generally about 1 to 40% by mass.

可塑剤は、グリーンシート化する際の乾燥速度をコントロールするとともに、グリーンシートに柔軟性を与える成分である。可塑剤の含有量は、0〜10質量%程度が一般的である。可塑剤としは、フタル酸ジブチル、ブチルベンジルフタレート、ジオクチルフタレート、ジイソオクチルフタレート、ジカプリルフタレート、ジブチルフタレート等が挙げられる。これらは単独で、または2種以上を混合して使用することができる。   The plasticizer is a component that controls the drying speed when forming a green sheet and imparts flexibility to the green sheet. As for content of a plasticizer, about 0-10 mass% is common. Examples of the plasticizer include dibutyl phthalate, butyl benzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, and dibutyl phthalate. These can be used alone or in admixture of two or more.

グリーンシートを作製する一般的な方法としては、本発明の蛍光体複合材料に対して、結合剤、可塑剤、溶剤を添加してスラリーとし、当該スラリーをドクターブレード法によって、ポリエチレンテレフタレート(PET)等のフィルムの上にシート状に成形する。その後、得られたシート状の成形物を乾燥させることによって、溶剤等の有機物を除去し、グリーンシートとすることができる。   As a general method for producing a green sheet, a binder, a plasticizer, and a solvent are added to the phosphor composite material of the present invention to form a slurry, and the slurry is polyethylene terephthalate (PET) by a doctor blade method. It is formed into a sheet on a film such as. Thereafter, by drying the obtained sheet-like molded product, organic substances such as a solvent can be removed to obtain a green sheet.

以上のようにして得られたグリーンシートを無機材料の基材上に設置して熱圧着した後、上記温度で焼成することにより、蛍光体複合部材とすることができる。なお、グリーンシートは1枚のみ用いても良く、2枚以上を積層して用いてもよい。   The green sheet obtained as described above is placed on a base material of an inorganic material, thermocompression bonded, and then fired at the above temperature, whereby a phosphor composite member can be obtained. Note that only one green sheet may be used, or two or more green sheets may be laminated and used.

本発明の蛍光体複合部材は、上記蛍光体粉末を使用することにより、例えば、300〜500nmのいずれかの波長を有する励起光を、当該励起光の波長とは異なる波長380〜780nmの可視光に変換することができる。   By using the phosphor powder, the phosphor composite member of the present invention can convert excitation light having any wavelength of 300 to 500 nm into visible light having a wavelength of 380 to 780 nm different from the wavelength of the excitation light, for example. Can be converted to

本発明の半導体発光素子デバイスの励起光源に用いられる半導体発光素子は、波長300〜500nmの光、例えば、波長330〜380nmの紫外光や波長430〜480nmの青色光のLEDまたはLDであることが好ましい。   The semiconductor light-emitting element used as the excitation light source of the semiconductor light-emitting element device of the present invention is an LED or LD of light having a wavelength of 300 to 500 nm, for example, ultraviolet light having a wavelength of 330 to 380 nm or blue light having a wavelength of 430 to 480 nm. preferable.

以下、実施例に基づき本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

表1および2、本発明の実施例(試料No.1〜9)および比較例(試料No.10
〜13)をそれぞれ示している。
Tables 1 and 2, Examples of the present invention (Sample Nos. 1 to 9) and Comparative Examples (Sample No. 10)
To 13) respectively.

表の各試料は、次のようにして調製した。   Each sample in the table was prepared as follows.

まず、表1および2に示すガラス組成となるように原料を調合し、均一に混合した。次いで、調合した原料をアルミナ坩堝に投入し、N雰囲気中900℃で2時間溶融した後、ガラス融液をローラー成形器を用いてフィルム状に成形した。続いて、得られたフィルム状のガラスをらいかい機で粉砕した後、325メッシュの篩にて分級し、SnO−P系ガラス粉末(平均粒径D50=15μm)を得た。 First, the raw materials were prepared so as to have the glass compositions shown in Tables 1 and 2, and mixed uniformly. Next, the prepared raw material was put into an alumina crucible and melted at 900 ° C. for 2 hours in an N 2 atmosphere, and then the glass melt was formed into a film using a roller molding machine. Subsequently, after the obtained film-like glass was pulverized with a sieve, it was classified with a 325 mesh sieve to obtain SnO—P 2 O 5 glass powder (average particle diameter D 50 = 15 μm).

SnO−P系ガラスの軟化点は、マクロ型示差熱分析計を用いて測定し、第四の変曲点の値を軟化点とした。 The softening point of SnO—P 2 O 5 glass was measured using a macro differential thermal analyzer, and the value of the fourth inflection point was taken as the softening point.

SnO−P系ガラスの内部透過率は、溶融したガラスを成形し、1mmの厚みとなるように光学研磨した試料を用いて波長365nmの内部透過率を測定した。 The internal transmittance of SnO—P 2 O 5 glass was measured by measuring the internal transmittance at a wavelength of 365 nm using a sample obtained by molding a molten glass and optically polishing it so as to have a thickness of 1 mm.

次に、得られたSnO−P系ガラス粉末99質量%に対し、1質量%のSrBaSiO:Eu2+粉末(耐熱性が500℃程度の蛍光体粉末)を添加し、混合して蛍光体複合材料を得た。次に、金型を用いて蛍光体複合材料を加圧成形し、15mm×15mm×5mmの予備成型体を作製した。この予備成型体を、100Paの減圧下(1気圧=1.013×10Pa)、表1および2に示す焼成温度で焼成した後、10mm×10mm×1mmの蛍光体複合部材の試料を得た。得られた試料について、発光効率および耐候性を評価した。結果を表1および2に示す。 Next, 1% by mass of SrBaSiO 4 : Eu 2+ powder (phosphor powder having a heat resistance of about 500 ° C.) is added to and mixed with 99% by mass of the obtained SnO—P 2 O 5 glass powder. A phosphor composite material was obtained. Next, the phosphor composite material was pressure-molded using a mold to prepare a preform of 15 mm × 15 mm × 5 mm. The preform was fired at a firing temperature shown in Tables 1 and 2 under a reduced pressure of 100 Pa (1 atm = 1.014 × 10 5 Pa), and then a sample of a phosphor composite member of 10 mm × 10 mm × 1 mm was obtained. It was. About the obtained sample, luminous efficiency and weather resistance were evaluated. The results are shown in Tables 1 and 2.

蛍光体複合部材の発光効率は次のようにして算出した。青色LED(波長450nm)または紫外LED(波長365nm)の上に試料を設置し、積分球内で、試料上面から発せられる光のエネルギー分布スペクトルを測定した。得られたスペクトルに標準比視感度を掛け合わせて全光束を計算し、当該全光束を光源の電力で除することにより発光効率を算出した。   The luminous efficiency of the phosphor composite member was calculated as follows. A sample was placed on a blue LED (wavelength 450 nm) or an ultraviolet LED (wavelength 365 nm), and an energy distribution spectrum of light emitted from the upper surface of the sample was measured in an integrating sphere. The total luminous flux was calculated by multiplying the obtained spectrum by the standard relative luminous sensitivity, and the luminous efficiency was calculated by dividing the total luminous flux by the power of the light source.

耐候性の評価はプレッシャークッカー試験機を用いて行った。すなわち、試料を2気圧、湿度95%、温度121℃の試験条件下に24時間保持した後に、試料の発光効率および表面状態の評価を行った。試験後の発光効率は、上記と同様にして求めた。また、試験後の試料の表面状態は、各試料の表面を目視および顕微鏡で観察し、微小クラックおよびガラス成分等の溶出による白濁が認められなかったものを「○」、微小クラックおよび/または白濁が認められたものを「×」とした。   The weather resistance was evaluated using a pressure cooker tester. That is, the sample was held for 24 hours under test conditions of 2 atm, humidity 95%, and temperature 121 ° C., and then the luminous efficiency and surface condition of the sample were evaluated. The luminous efficiency after the test was determined in the same manner as described above. In addition, the surface condition of the sample after the test was observed by visual and microscopic observation of the surface of each sample, and “O” indicates that no white turbidity was observed due to elution of microcracks and glass components, and microcracks and / or white turbidity. The thing where was recognized as "x".

表1および2から明らかなように、実施例である試料No.1〜9は、ガラスの軟化点が350
℃以下と低く、低温焼結することができた。発光効率は、青色LEDで、20lm/W以上、紫外LEDで5lm/Wと高かった。また、耐候性試験後も発光効率の低下や表面の白濁は認められず、耐候性に優れていた。また、波長365nmの内部透過率は80%以上と高かった。
As is apparent from Tables 1 and 2, sample No. 1 to 9 have a glass softening point of 350
The temperature was as low as below ℃, and low temperature sintering was possible. The luminous efficiency was as high as 20 lm / W or more for the blue LED and 5 lm / W for the ultraviolet LED. Further, after the weather resistance test, no reduction in luminous efficiency or surface turbidity was observed, and the weather resistance was excellent. The internal transmittance at a wavelength of 365 nm was as high as 80% or more.

これに対して、試料No.10〜12は、ガラス中にB、ZnOを多く含むため、波長365nmの内部透過率は10%以下、紫外LEDでの発光効率は0.6lm/W以下と低かった。また、試料No.13は、SnOの含有量が少ないため、耐候性試験後の青色LEDの発光効率は6lm/W、紫外LEDの発光効率は1.5lm/Wと低くなった。さらに、試験後の焼結体表面は、目視で観察したところ白濁しており、顕微鏡で観察したところ微小クラックおよびガラス成分の溶出が認められ、耐候性が低いことが確認された。 In contrast, sample no. Nos. 10 to 12 contain a large amount of B 2 O 3 and ZnO in the glass, and therefore the internal transmittance at a wavelength of 365 nm was as low as 10% or less, and the luminous efficiency of ultraviolet LEDs was as low as 0.6 lm / W or less. Sample No. No. 13 has a low content of SnO, so the luminous efficiency of the blue LED after the weather resistance test was 6 lm / W, and the luminous efficiency of the ultraviolet LED was as low as 1.5 lm / W. Further, the surface of the sintered body after the test was clouded when visually observed, and microcracks and elution of glass components were observed when observed with a microscope, and it was confirmed that the weather resistance was low.

Claims (9)

蛍光体複合材料に用いられるSnO−P系ガラスであって、モル%で、SnO 72〜90%、P 10〜28%、Al 0〜10%、SiO 0〜10%、Li O 0〜10%、Na O 0〜10%、K O 0〜10%、Li O+Na O+K O 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%、MgO+CaO+SrO+BaO 0〜10%の組成を含有し、モル比SnO/P が2.6〜15であり、およびZnOを実質的に含有しないことを特徴とするSnO−P系ガラス。 A SnO-P 2 O 5 based glass used for phosphor composite material, in mol%, SnO 72~90%, P 2 O 5 10~28%, Al 2 O 3 0~10%, SiO 2 0 ~10%, Li 2 O 0~10% , Na 2 O 0~10%, K 2 O 0~10%, Li 2 O + Na 2 O + K 2 O 0~10%, 0~10% MgO, CaO 0~10 %, SrO 0-10%, BaO 0-10%, MgO + CaO + SrO + BaO 0-10% , the molar ratio SnO / P 2 O 5 is 2.6-15, and B 2 O 3 and ZnO are substantially SnO—P 2 O 5 -based glass, characterized by not containing it. 波長365nmにおける内部透過率が80%以上であることを特徴とする請求項1に記載のSnO−P系ガラス。 2. The SnO—P 2 O 5 based glass according to claim 1, wherein the internal transmittance at a wavelength of 365 nm is 80% or more. 軟化点が350℃以下であることを特徴とする請求項1または2に記載のSnO−P系ガラス。 SnO-P 2 O 5 based glass according to claim 1 or 2 softening point, characterized in that at 350 ° C. or less. 請求項1〜のいずれかに記載のSnO−P系ガラスからなるSnO−P系ガラス粉末。 Claim 1~ SnO-P 2 O 5 based glass powder comprising SnO-P 2 O 5 based glass according to any one of 3. 請求項に記載のSnO−P系ガラス粉末および蛍光体粉末を含有する蛍光体複合材料。 A phosphor composite material containing the SnO—P 2 O 5 glass powder and phosphor powder according to claim 4 . 蛍光体粉末の含有量が0.01〜30質量%であることを特徴とする請求項5に記載の蛍光体複合材料。   The phosphor composite material according to claim 5, wherein the content of the phosphor powder is 0.01 to 30% by mass. 請求項またはに記載の蛍光体複合材料の焼結体からなる蛍光体複合部材。 Phosphor composite member formed of a sintered body of the phosphor composite material according to claim 5 or 6. 300〜500nmのいずれかの波長を有する励起光を、当該励起光の波長とは異なる波長380〜780nmの可視光に変換することを特徴とする請求項に記載の蛍光体複合部材。 8. The phosphor composite member according to claim 7 , wherein excitation light having a wavelength of 300 to 500 nm is converted into visible light having a wavelength of 380 to 780 nm different from the wavelength of the excitation light. 請求項またはに記載の蛍光体複合部材を用いた半導体発光素子デバイス。 The semiconductor light-emitting element device using a phosphor composite member according to claim 7 or 8.
JP2009081156A 2009-03-30 2009-03-30 SnO-P2O5 glass used for phosphor composite material Active JP5633114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081156A JP5633114B2 (en) 2009-03-30 2009-03-30 SnO-P2O5 glass used for phosphor composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081156A JP5633114B2 (en) 2009-03-30 2009-03-30 SnO-P2O5 glass used for phosphor composite material

Publications (2)

Publication Number Publication Date
JP2010229002A JP2010229002A (en) 2010-10-14
JP5633114B2 true JP5633114B2 (en) 2014-12-03

Family

ID=43045174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081156A Active JP5633114B2 (en) 2009-03-30 2009-03-30 SnO-P2O5 glass used for phosphor composite material

Country Status (1)

Country Link
JP (1) JP5633114B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087162A (en) * 2010-10-15 2012-05-10 Nippon Electric Glass Co Ltd Wavelength conversion member and light source comprising using the same
WO2012090350A1 (en) * 2010-12-27 2012-07-05 パナソニック株式会社 Light-emitting device and lamp
JP4926303B1 (en) * 2010-12-27 2012-05-09 パナソニック株式会社 Light emitting device and lamp
WO2012117346A1 (en) * 2011-03-02 2012-09-07 Koninklijke Philips Electronics N.V. Tin phosphate glass containing embedded luminescent material particles
WO2012121343A1 (en) * 2011-03-08 2012-09-13 シャープ株式会社 Light-emitting device, illumination device, vehicle headlight, projector, and method for manufacturing light-emitting device
JP5090549B2 (en) * 2011-03-08 2012-12-05 シャープ株式会社 Sintered light emitter, light emitting device, lighting device, vehicle headlamp, and method for producing sintered light emitter
JP5729550B2 (en) * 2011-03-16 2015-06-03 日本電気硝子株式会社 Optical glass
JP6044073B2 (en) 2011-12-27 2016-12-14 日亜化学工業株式会社 Wavelength conversion device and light emitting device using the same
JP6004250B2 (en) * 2012-03-21 2016-10-05 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP5939463B2 (en) * 2012-03-23 2016-06-22 日本電気硝子株式会社 Glass and wavelength conversion member using the glass
JP6273799B2 (en) * 2013-01-07 2018-02-07 日本電気硝子株式会社 Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
CN114276024B (en) * 2021-12-13 2022-08-23 厦门大学 High-color-rendering composite fluorescent glass and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252939A (en) * 1987-04-07 1988-10-20 Daiken Kagaku Kogyo Kk Fluorescent glaze
JPH09227154A (en) * 1995-12-19 1997-09-02 Asahi Glass Co Ltd Sealing composition
JP2000247680A (en) * 1999-03-04 2000-09-12 Masahiro Tatsumisuna LOW MELTING POINT GLASS BASED ON TIN OXIDE SnO
JP2001048575A (en) * 1999-07-30 2001-02-20 Kansai Research Institute Low melting point glass
JP4158012B2 (en) * 2002-03-06 2008-10-01 日本電気硝子株式会社 Luminescent color conversion member
JP2006265012A (en) * 2005-03-23 2006-10-05 Okamoto Glass Co Ltd High-luminance and wide band glass phosphor and optical device using the same
JP4978886B2 (en) * 2006-06-14 2012-07-18 日本電気硝子株式会社 Phosphor composite material and phosphor composite member
US8084380B2 (en) * 2009-02-27 2011-12-27 Corning Incorporated Transition metal doped Sn phosphate glass

Also Published As

Publication number Publication date
JP2010229002A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5633114B2 (en) SnO-P2O5 glass used for phosphor composite material
JP4978886B2 (en) Phosphor composite material and phosphor composite member
JP5483795B2 (en) Luminescent color conversion material and luminescent color conversion member
JP5152687B2 (en) Luminescent color conversion material
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP5757238B2 (en) Phosphor-dispersed glass and method for producing the same
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP5939463B2 (en) Glass and wavelength conversion member using the glass
JP2007182529A (en) Fluorescent composite glass, fluorescent composite glass green sheet and process for production of fluorescent composite glass
JP2008034802A (en) Semiconductor sealing material and semiconductor element sealed with it
JP2012036367A (en) Phosphor composite member
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2012052061A (en) Phosphor composite member
WO2019065011A1 (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP2016058409A (en) Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member
JP5713273B2 (en) Joining material and member joining method using the same
JP7382013B2 (en) Wavelength conversion member and light emitting device using the same
JP5807780B2 (en) Wavelength converting member and light emitting device using the same
KR20220153278A (en) Wavelength conversion member and light emitting device comprising same
JP2013030536A (en) Light-emitting color conversion member and light-emitting device using the same
JP2020023438A (en) Wavelength conversion member and light-emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5633114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150