JP5807780B2 - Wavelength converting member and light emitting device using the same - Google Patents

Wavelength converting member and light emitting device using the same Download PDF

Info

Publication number
JP5807780B2
JP5807780B2 JP2011227546A JP2011227546A JP5807780B2 JP 5807780 B2 JP5807780 B2 JP 5807780B2 JP 2011227546 A JP2011227546 A JP 2011227546A JP 2011227546 A JP2011227546 A JP 2011227546A JP 5807780 B2 JP5807780 B2 JP 5807780B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
powder
glass
inorganic phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011227546A
Other languages
Japanese (ja)
Other versions
JP2013089703A (en
Inventor
克 岩尾
克 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2011227546A priority Critical patent/JP5807780B2/en
Publication of JP2013089703A publication Critical patent/JP2013089703A/en
Application granted granted Critical
Publication of JP5807780B2 publication Critical patent/JP5807780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、白色LED等の発光デバイスの構成部材として用いられる波長変換部材に関するものである。   The present invention relates to a wavelength conversion member used as a constituent member of a light emitting device such as a white LED.

近年、白色LED等の発光デバイスの開発が盛んになっている。白色LEDは白熱灯や蛍光灯に比べ消費電力が低く、寿命が長いことを特徴としており、携帯電話やデジタルカメラ等のバックライトとして使用されつつある。今後は、白熱灯や蛍光灯に替わる次世代の光源として、照明用途への応用が期待されている。   In recent years, light-emitting devices such as white LEDs have been actively developed. White LEDs are characterized by low power consumption and long life compared to incandescent lamps and fluorescent lamps, and are being used as backlights for mobile phones and digital cameras. In the future, as a next-generation light source that replaces incandescent and fluorescent lamps, it is expected to be applied to lighting applications.

白色LEDは、例えば青色や紫外の励起光を発するLEDチップと、無機蛍光体粉末が樹脂等のマトリクス中に分散してなる波長変換部材から構成されている。無機蛍光体粉末はLEDチップからの励起光を受けて励起光とは異なる波長の光(蛍光)を発する。一方、励起光のうち一部は波長変換に寄与せずに波長変換部材を透過する。これらの光が混ざり合って白色光が得られる。   The white LED is composed of, for example, an LED chip that emits blue or ultraviolet excitation light, and a wavelength conversion member in which inorganic phosphor powder is dispersed in a matrix such as a resin. The inorganic phosphor powder receives excitation light from the LED chip and emits light (fluorescence) having a wavelength different from that of the excitation light. On the other hand, some of the excitation light passes through the wavelength conversion member without contributing to wavelength conversion. These lights are mixed to obtain white light.

ところで、白色LEDは用途によってはますます高い輝度(ハイパワー化)が要求されている。従来のように樹脂マトリクス中に無機蛍光体粉末を分散させる方法では、LEDチップからの熱によって樹脂マトリクスが変色し、長期間使用すると輝度が低下するという問題があった。また、無機蛍光体粉末を含有する樹脂をLEDチップ上に塗布する際、厚みを均一に調整することが困難であり、色度ばらつきが生じやすいといった問題があった。   Incidentally, white LEDs are required to have higher luminance (higher power) depending on applications. In the conventional method of dispersing the inorganic phosphor powder in the resin matrix, there is a problem that the resin matrix is discolored by heat from the LED chip and the luminance is lowered when used for a long time. In addition, when a resin containing an inorganic phosphor powder is applied on the LED chip, there is a problem that it is difficult to adjust the thickness uniformly and chromaticity variations are likely to occur.

これらの問題を解決するために、無機蛍光体粉末をガラスマトリクス中に分散させることにより、波長変換部材を完全に無機化する方法が提案されている(例えば、特許文献1および2参照)。当該方法によれば、波長変換部材の耐熱性および耐候性を向上させることが可能となる。具体的には、長時間の高温環境下(例えば、150℃で600時間)や長時間の高温高湿環境下(例えば、温度85℃、湿度85%で2000時間)に晒しても白色LEDの発光特性がほとんど変化せず、また太陽光の紫外線に長時間晒されても着色や劣化がほとんどない。さらには、加工性に優れることから、厚みの不均一性が原因となって生じる色度ばらつきも抑制することが可能となる。   In order to solve these problems, a method has been proposed in which the inorganic phosphor powder is dispersed in a glass matrix to completely mineralize the wavelength conversion member (see, for example, Patent Documents 1 and 2). According to this method, the heat resistance and weather resistance of the wavelength conversion member can be improved. Specifically, the white LED can be exposed to a long-time high temperature environment (for example, 150 ° C. for 600 hours) or a long-time high temperature and high humidity environment (for example, temperature 85 ° C. and humidity 85% for 2000 hours). The light emission characteristics hardly change, and there is almost no coloring or deterioration even when exposed to ultraviolet rays of sunlight for a long time. Furthermore, since it is excellent in workability, it is possible to suppress chromaticity variations caused by thickness non-uniformity.

特開2005−11933号公報JP 2005-11933 A 特開2003−258308号公報JP 2003-258308 A

無機蛍光体粉末をガラスマトリクスに分散させてなる波長変換部材は、LEDの励起光が波長変換部材内部で十分に散乱せずに直進してしまうという問題がある。特にガラスマトリクスと無機蛍光体粉末との屈折率差が小さい場合は、両者の界面における光の散乱が少なくなるためその傾向が顕著となる。励起光の直進成分が多いと、白色LEDから照射される光の拡散にばらつきが生じて、励起光源の光軸に近い範囲と光軸から離れた位置では色度が異なる傾向がある。また、励起光が無機蛍光体粉末に当たる頻度が少なくなるため全光束値が低くなりやすい。   A wavelength conversion member obtained by dispersing inorganic phosphor powder in a glass matrix has a problem that the excitation light of the LED goes straight without being sufficiently scattered inside the wavelength conversion member. In particular, when the difference in refractive index between the glass matrix and the inorganic phosphor powder is small, the tendency becomes remarkable because light scattering at the interface between the two is reduced. When the straight component of the excitation light is large, the diffusion of light emitted from the white LED varies, and the chromaticity tends to be different between a range close to the optical axis of the excitation light source and a position away from the optical axis. Moreover, since the frequency with which the excitation light strikes the inorganic phosphor powder is reduced, the total luminous flux value tends to be lowered.

なお、波長変換部材における無機蛍光体粉末の含有量を多くすることにより、全体としてガラスマトリクスと無機蛍光体粉末の界面における光の散乱量が多くなり拡散特性は改善されるが、色度が所望の範囲からずれてしまうという別の問題が発生してしまう。また、無機蛍光体粉末の量を増やすと、無機蛍光体粉末自身が励起光を過剰に遮断して、かえって全光束値が低下する傾向がある。   Increasing the content of the inorganic phosphor powder in the wavelength conversion member increases the amount of light scattering at the interface between the glass matrix and the inorganic phosphor powder as a whole and improves the diffusion characteristics, but the chromaticity is desired. Another problem will arise that will deviate from this range. In addition, when the amount of the inorganic phosphor powder is increased, the inorganic phosphor powder itself blocks the excitation light excessively, and the total luminous flux value tends to decrease.

以上に鑑み、本発明は、ガラスマトリクス中に無機蛍光体粉末が分散された波長変換部材であって、所望の色度範囲を有しつつ光拡散特性に優れ、かつ、全光束値の高い波長変換部材を提供することを課題とする。   In view of the above, the present invention is a wavelength conversion member in which inorganic phosphor powder is dispersed in a glass matrix, having a desired chromaticity range, excellent light diffusion characteristics, and a wavelength with a high total luminous flux value. It is an object to provide a conversion member.

本発明者は鋭意検討した結果、ガラスマトリクス中に無機蛍光体粉末が分散してなる波長変換部材において、ガラスマトリクスが特定の構造を有することにより、無機蛍光体粉末の含有量が少なくても、励起光の拡散特性が良好であり、かつ、全光束値も高くなることを見出し、本発明として提案するものである。   As a result of intensive studies, the wavelength conversion member in which the inorganic phosphor powder is dispersed in the glass matrix, the present inventors have a specific structure, so that even if the content of the inorganic phosphor powder is small, It has been found that the diffusion characteristics of excitation light are good and the total luminous flux value is high, and is proposed as the present invention.

すなわち、本発明は、ガラス粉末と無機蛍光体粉末を含有する混合粉末の焼結体からなる波長変換部材であって、ガラス粉末の粒界に、ガラス粉末とは異なる組成からなる異質層を有することを特徴とする波長変換部材に関する。   That is, the present invention is a wavelength conversion member composed of a sintered body of a mixed powder containing glass powder and inorganic phosphor powder, and has a heterogeneous layer having a composition different from that of the glass powder at the grain boundary of the glass powder. The present invention relates to a wavelength conversion member.

既述の通り、無機蛍光体粉末をガラスマトリクスに分散させてなる波長変換部材において、LEDチップからの励起光の直進成分が多いと、白色LEDの照射光の拡散にばらつきが生じて、照射角度によって色度が異なるという問題がある。そこで、波長変換部材がガラス粉末と無機蛍光体粉末を含有する混合粉末の焼結体からなり、ガラス粉末の粒界に、ガラス粉末とは異なる組成からなる異質層を有するものであれば、当該異質層が散乱体として機能して励起光の散乱を高め、結果として拡散特性に優れ、全光束値の高い波長変換部材を得ることができる。   As described above, in the wavelength conversion member in which the inorganic phosphor powder is dispersed in the glass matrix, if there are many linear components of the excitation light from the LED chip, the diffusion of the irradiation light of the white LED will vary, and the irradiation angle There is a problem that chromaticity differs depending on the type. Therefore, if the wavelength conversion member is made of a sintered powder of mixed powder containing glass powder and inorganic phosphor powder, and has a heterogeneous layer having a composition different from that of the glass powder at the grain boundary of the glass powder, The heterogeneous layer functions as a scatterer to increase the scattering of excitation light, and as a result, a wavelength conversion member having excellent diffusion characteristics and a high total luminous flux value can be obtained.

第二に、本発明の波長変換部材は、異質層の厚さが0.001〜5μmであることが好ましい。   2ndly, it is preferable that the thickness of a heterogeneous layer is 0.001-5 micrometers in the wavelength conversion member of this invention.

当該構成によれば、励起光が異質層によって散乱されやすく、拡散特性に優れ、全光束値の高い波長変換部材が得られやすくなる。   According to the said structure, excitation light is easily scattered by a heterogeneous layer, it becomes easy to obtain the wavelength conversion member which is excellent in a diffusion characteristic, and has a high total light flux value.

第三に、本発明の波長変換部材は、ガラス粉末と異質層の屈折率差が0.001〜0.5であることが好ましい。   Third, the wavelength conversion member of the present invention preferably has a refractive index difference between the glass powder and the heterogeneous layer of 0.001 to 0.5.

第四に、本発明の波長変換部材は、原料として、表面に異質層を有するガラス粉末を用いることが好ましい。   Fourthly, the wavelength conversion member of the present invention preferably uses glass powder having a heterogeneous layer on the surface as a raw material.

当該構成によれば、ガラス粉末の粒界に、ガラス粉末とは異なる組成からなる異質層を有する波長変換部材を容易に作製することが可能となる。   According to the said structure, it becomes possible to produce easily the wavelength conversion member which has the heterogeneous layer which consists of a composition different from glass powder in the grain boundary of glass powder.

第五に、本発明の波長変換部材は、JIS K7105に準拠して測定した平行光線透過率が10%以下、ヘイズが80%以上であることが好ましい。   Fifth, the wavelength conversion member of the present invention preferably has a parallel light transmittance measured in accordance with JIS K7105 of 10% or less and a haze of 80% or more.

第六に、本発明の波長変換部材は、セラミック粉末を0.1〜10質量%含有することが好ましい。   Sixth, the wavelength conversion member of the present invention preferably contains 0.1 to 10% by mass of ceramic powder.

当該構成によれば、励起光を散乱させる効果がより大きくなり、拡散特性に優れ、全光束値の高い波長変換部材が得られやすくなる。   According to the said structure, the effect which scatters excitation light becomes larger, it becomes easy to obtain the wavelength conversion member which is excellent in a diffusion characteristic, and has a high total light flux value.

第七に、本発明の波長変換部材は、無機蛍光体粉末が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物またはハロリン酸塩化物からなることが好ましい。   Seventhly, in the wavelength conversion member of the present invention, the inorganic phosphor powder is made of oxide, nitride, oxynitride, sulfide, oxysulfide, rare earth sulfide, aluminate chloride, or halophosphate chloride. It is preferable.

第八に、本発明は、前記いずれかの波長変換部材、および、波長変換部材に励起光を照射する光源を備えてなることを特徴とする発光デバイスに関する。   Eighth, the present invention relates to a light emitting device comprising any one of the wavelength conversion members and a light source that irradiates the wavelength conversion member with excitation light.

本発明によれば、所望の色度範囲を有しつつ拡散特性に優れ、かつ、全光束値が高い波長変換部材を提供することが可能となる。   According to the present invention, it is possible to provide a wavelength conversion member that has a desired chromaticity range, is excellent in diffusion characteristics, and has a high total luminous flux value.

本発明の波長変換部材は、ガラス粉末と無機蛍光体粉末を含有する混合粉末の焼結体からなる。   The wavelength conversion member of the present invention is made of a sintered body of mixed powder containing glass powder and inorganic phosphor powder.

ガラス粉末には無機蛍光体粉末を安定に保持するための媒体としての役割がある。また、ガラス粉末のガラス組成によって無機蛍光体粉末との反応性に差が出るため、使用する無機蛍光体粉末に適したガラス組成を選択することが好ましい。   The glass powder has a role as a medium for stably holding the inorganic phosphor powder. In addition, since the reactivity with the inorganic phosphor powder varies depending on the glass composition of the glass powder, it is preferable to select a glass composition suitable for the inorganic phosphor powder to be used.

ガラス粉末としては、例えばSiO−B系ガラス、SnO−P系ガラス、TeO系ガラス、Bi系ガラス等が挙げられる。 Examples of the glass powder include SiO 2 —B 2 O 3 glass, SnO—P 2 O 5 glass, TeO 2 glass, Bi 2 O 3 glass, and the like.

SiO−B系ガラスとしては、例えば組成としてモル%で、SiO 30〜80%、B 1〜40%、MgO 0〜10%、CaO 0〜30%、SrO 0〜20%、BaO 0〜40%、MgO+CaO+SrO+BaO 5〜45%、Al 0〜20%、ZnO 0〜20%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SiO 2 -B 2 O 3 based glass, for example, in mol% composition, SiO 2 30~80%, B 2 O 3 1~40%, 0~10% MgO, CaO 0~30%, SrO 0~ 20%, BaO 0~40%, MgO + CaO + SrO + BaO 5~45%, Al 2 O 3 0~20%, those containing 0 to 20% ZnO preferred. The reason for limiting the glass composition in this way will be described below.

SiOはガラス骨格を形成する成分である。SiOの含有量は30〜80%、特に40〜60%であることが好ましい。SiOの含有量が少なすぎると、化学的耐久性が低下する傾向にある。一方、SiOの含有量が多すぎると、焼成温度が高温になり、無機蛍光体粉末が劣化しやすくなる。 SiO 2 is a component that forms a glass skeleton. The content of SiO 2 is preferably 30 to 80%, particularly preferably 40 to 60%. When the content of SiO 2 is too small, chemical durability tends to decrease. On the other hand, if the content of SiO 2 is too large, the firing temperature becomes a high temperature, inorganic phosphor powder is likely to deteriorate.

は溶融温度を低下させて溶融性を改善する効果が大きい成分である。Bの含有量は1〜40%、5〜35%、特に10〜30%であることが好ましい。Bの含有量が少なすぎると、前記効果が得られにくくなる。一方、Bの含有量が多すぎると、化学的耐久性が低下する傾向にある。 B 2 O 3 is a component having a great effect of improving the meltability by lowering the melting temperature. The content of B 2 O 3 is preferably 1 to 40%, 5 to 35%, particularly preferably 10 to 30%. If the content of B 2 O 3 is too small, the effect is difficult to obtain. On the other hand, when the content of B 2 O 3 is too large, chemical durability tends to decrease.

MgOは溶融温度を低下させて溶融性を改善する成分である。MgOの含有量は0〜10%、特に0.1〜5%であることが好ましい。MgOの含有量が多すぎると、化学的耐久性が低下する傾向にある。   MgO is a component that improves the meltability by lowering the melting temperature. The content of MgO is preferably 0 to 10%, particularly preferably 0.1 to 5%. When the content of MgO is too large, chemical durability tends to decrease.

CaOは溶融温度を低下させて溶融性を改善する成分である。CaOの含有量は0〜30%、特に3〜20%であることが好ましい。CaOの含有量が多すぎると、化学的耐久性が低下する傾向にある。   CaO is a component that improves the meltability by lowering the melting temperature. The CaO content is preferably 0 to 30%, particularly preferably 3 to 20%. When there is too much content of CaO, it exists in the tendency for chemical durability to fall.

SrOは溶融温度を低下させて溶融性を改善する成分である。SrOの含有量は0〜20%、0〜10%、特に0.1〜5%であることが好ましい。SrOの含有量が多すぎると、化学的耐久性が低下する傾向にある。   SrO is a component that improves the meltability by lowering the melting temperature. The SrO content is preferably 0 to 20%, 0 to 10%, particularly preferably 0.1 to 5%. When the content of SrO is too large, chemical durability tends to decrease.

BaOは溶融温度を低下させて溶融性を改善するとともに、無機蛍光体粉末との反応を抑制する成分である。BaOの含有量は0〜40%、特に5〜30%であることが好ましい。BaOの含有量が多すぎると、化学的耐久性が低下する傾向にある。   BaO is a component that improves the meltability by lowering the melting temperature and suppresses the reaction with the inorganic phosphor powder. The BaO content is preferably 0 to 40%, particularly preferably 5 to 30%. When there is too much content of BaO, it exists in the tendency for chemical durability to fall.

なお、化学的耐久性を低下させることなく溶融性を向上させるためには、MgO、CaO、SrOおよびBaOの合量を5〜45%、特に10〜40%とすることが好ましい。これらの成分の合量が少なすぎると、溶融性を改善する効果が得られにくくなり、一方、多すぎると、化学的耐久性が低下しやすくなる。   In order to improve the meltability without reducing the chemical durability, the total amount of MgO, CaO, SrO and BaO is preferably 5 to 45%, particularly 10 to 40%. If the total amount of these components is too small, it will be difficult to obtain the effect of improving the meltability. On the other hand, if the total amount is too large, the chemical durability tends to decrease.

Alは化学的耐久性を向上させる成分である。Alの含有量は0〜20%、好ましくは1〜18%である。Alの含有量が多すぎると、溶融性が低下する傾向にある。 Al 2 O 3 is a component that improves chemical durability. The content of Al 2 O 3 is 0 to 20%, preferably 1 to 18%. When the content of Al 2 O 3 is too large, there is a tendency that the meltability decreases.

ZnOは溶融温度を低下させて溶融性を改善する成分である。また、分相を促進する効果もある。ガラスが分相することにより、励起光の拡散特性の向上が期待できる。ZnOの含有量は0〜20%、特に1〜18%であることが好ましい。ZnOの含有量が多すぎると、化学的耐久性が低下する傾向にある。   ZnO is a component that improves the meltability by lowering the melting temperature. It also has the effect of promoting phase separation. Improvement of the diffusion property of excitation light can be expected by the phase separation of the glass. The content of ZnO is preferably 0 to 20%, particularly preferably 1 to 18%. When there is too much content of ZnO, it exists in the tendency for chemical durability to fall.

上記成分以外にも、溶融性を向上させたり、軟化点を低下させて低温焼成しやすくするために、LiO、NaOまたはKOを合量で5%まで添加することができる。他にも、溶融性を向上させるためにPを5%まで、化学的耐久性を向上させるためにTa、TiO、Nb、Gd、La、Y、CeO、Sb、SnO、Bi、TeOまたはZrOを合量で15%まで添加してもよい。 In addition to the above components, Li 2 O, Na 2 O or K 2 O can be added up to 5% in total in order to improve the meltability or lower the softening point to facilitate low-temperature firing. . In addition, P 2 O 5 is increased to 5% for improving the meltability, and Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O for improving the chemical durability. 3 , Y 2 O 3 , CeO 2 , Sb 2 O 3 , SnO 2 , Bi 2 O 3 , TeO 2 or ZrO 2 may be added up to 15% in total.

SnO−P系ガラス粉末としては、ガラス組成としてモル%で、SnO 35〜80%、P 5〜40%、B 0〜30%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SnO-P 2 O 5 based glass powder, in mol% as a glass composition, SnO 35~80%, P 2 O 5 5~40%, those containing 2 O 3 0 to 30% B is preferred. The reason for limiting the glass composition in this way will be described below.

SnOはガラス骨格を形成するとともに、軟化点を低下させる成分である。SnOの含有量は35〜80%、特に45〜75%であることが好ましい。SnOの含有量が少なすぎると、軟化点が上昇したり、耐候性が低下する傾向がある。一方、SnOの含有量が多すぎると、Snに起因する失透ブツが析出して透過率が低下する傾向にあり、結果として、波長変換部材部材の発光強度が低下しやすくなる。また、ガラス化しにくくなる。   SnO is a component that forms a glass skeleton and lowers the softening point. The SnO content is preferably 35 to 80%, particularly 45 to 75%. When there is too little content of SnO, there exists a tendency for a softening point to raise or for a weather resistance to fall. On the other hand, when there is too much content of SnO, the devitrification pattern resulting from Sn exists and it exists in the tendency for the transmittance | permeability to fall, As a result, the emitted light intensity of a wavelength conversion member member falls easily. Moreover, it becomes difficult to vitrify.

はガラス骨格を形成する成分である。Pの含有量は5〜40%、特に10〜30%であることが好ましい。Pの含有量が少なすぎると、ガラス化しにくくなる。一方、Pの含有量が多すぎると、軟化点が上昇したり、耐候性が著しく低下する傾向にある。 P 2 O 5 is a component that forms a glass skeleton. The content of P 2 O 5 is preferably 5 to 40%, particularly preferably 10 to 30%. When the content of P 2 O 5 is too small, it is difficult to vitrify. On the other hand, when the content of P 2 O 5 is too large, or the softening point rises, there is a tendency that weather resistance is significantly lowered.

は耐候性を向上させる成分であるとともに、分相を促進させるための成分である。また、ガラスを安定化させる効果もある。Bの含有量は0〜30%、特に1〜25%であることが好ましい。Bの含有量が多すぎると、耐候性が低下しやすくなる。また、軟化点が上昇する傾向がある。 B 2 O 3 is a component for improving weather resistance and a component for promoting phase separation. It also has the effect of stabilizing the glass. The content of B 2 O 3 is preferably 0 to 30%, particularly preferably 1 to 25%. If the B 2 O 3 content is too large, the weather resistance tends to lower. Also, the softening point tends to increase.

上記成分以外にも、溶融性を向上させたり、軟化点を低下させて低温焼成しやすくするために、CaO、MgO、SrOまたはBaOを合量で5%まで、また、LiO、NaOまたはKOを合量で5%まで添加することができる。他にも、化学的耐久性を向上させるためにAl、ZrO、ZnO、Ta、TiO、Nb、Gd、La、Y、CeO、Sb、BiまたはTeOを合量で15%まで添加してもよい。 In addition to the above components, the total amount of CaO, MgO, SrO or BaO can be up to 5%, Li 2 O, Na 2 in order to improve the meltability or lower the softening point to facilitate low-temperature firing. O or K 2 O can be added up to 5% in total. In addition, in order to improve chemical durability, Al 2 O 3 , ZrO, ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 , Y 2 O 3 , CeO 2 , Sb 2 O 3 , Bi 2 O 3 or TeO 2 may be added up to 15% in total.

ガラス粉末の平均粒径D50は0.1〜100μm、特に1〜50μmであることが好ましい。ガラス粉末の平均粒径D50が小さすぎると、焼成する際に気泡の発生量が多くなる。波長変換部材中に気泡が多く含まれると、光吸収の原因となり全光束値が低下する傾向がある。また、水分等が内部に浸入しやすくなり化学的耐久性が低下するおそれがある。好ましい気孔率は2体積%以下、特に1体積%以下である。一方、平均粒径D50が大きすぎると、波長変換部材中に無機蛍光体粉末が均一に分散されにくくなり、結果として、波長変換部材の全光束値が低下する傾向がある。 The average particle diameter D50 of the glass powder is preferably from 0.1 to 100 [mu] m, particularly preferably from 1 to 50 [ mu] m. When the average particle diameter D 50 of the glass powder is too small, the greater the amount of generation of bubbles during the firing. When many bubbles are contained in the wavelength conversion member, light absorption is caused and the total luminous flux value tends to decrease. In addition, moisture and the like can easily enter the inside, and the chemical durability may be reduced. The preferred porosity is 2% by volume or less, particularly 1% by volume or less. On the other hand, when the average particle diameter D 50 is too large, the inorganic phosphor powder is less likely to be uniformly dispersed in the wavelength conversion member, as a result, total light flux value of the wavelength conversion member tends to decrease.

本発明の波長変換部材は、ガラス粉末の粒界に、ガラス粉末とは異なる組成からなる異質層を有することを特徴とする。異質層は、例えば、SiO、Al、Y、P、SnO、B、TeO、Bi、La、TiO、ZnO、ZrOのいずれか1種類以上を含む非晶質からなることが好ましい。異質層が結晶を含んでなるものであると、結晶に励起光が吸収され、全光束値の低下するおそれがある。 The wavelength conversion member of the present invention is characterized by having a heterogeneous layer having a composition different from that of the glass powder at the grain boundary of the glass powder. Heterogeneous layer, for example, SiO 2, Al 2 O 3 , Y 2 O 3, P 2 O 5, SnO, B 2 O 3, TeO 2, Bi 2 O 3, La 2 O 3, TiO 2, ZnO, ZrO It is preferably made of an amorphous material containing any one or more of 2 . If the heterogeneous layer contains crystals, the excitation light is absorbed by the crystals and the total luminous flux value may be reduced.

本発明の波長変換部材を得るためには、原料として、表面に異質層を有するガラス粉末を使用して、当該ガラス粉末と無機蛍光体粉末を含有する混合粉末を焼結することが好ましい。   In order to obtain the wavelength conversion member of the present invention, it is preferable to use a glass powder having a heterogeneous layer on the surface as a raw material and sinter the mixed powder containing the glass powder and the inorganic phosphor powder.

表面に異質層を有するガラス粉末の製造方法としては、ガラス粉末の表面にゾルゲル法やスパッタ法等によりコーティングを行う方法(コーティング法);ガラス粉末を水、酸またはアルカリ等に浸漬し、表面からガラス成分の一部を溶出させる方法(溶出法);ジェットミル、遊星ボールミル等の高エネルギー粉砕機によりガラス粉末を粉砕し、メカノケミカル効果によりガラス表面を改質する方法(メカノケミカル法);異なる組成を有するガラス粉末と混合して焼成後、粉砕する方法(焼成法)等が挙げられる。   As a method for producing a glass powder having a heterogeneous layer on the surface, a method of coating the surface of the glass powder by a sol-gel method or a sputtering method (coating method); immersing the glass powder in water, acid or alkali, Method of eluting a part of glass component (elution method); Method of pulverizing glass powder with high energy pulverizer such as jet mill, planetary ball mill, etc., and modifying glass surface by mechanochemical effect (mechanochemical method); different Examples thereof include a method (firing method) of pulverizing after mixing with glass powder having a composition and firing.

異質層の厚さは0.001〜5μm、0.001〜3μm、特に0.01〜2μmであることが好ましい。異質層の厚さが小さすぎると、励起光を散乱させる効果が得られにくい。一方、異質層の厚さが大きすぎると、散乱損失が大きくなり全光束値が低下する傾向がある。   The thickness of the heterogeneous layer is preferably 0.001 to 5 μm, 0.001 to 3 μm, and particularly preferably 0.01 to 2 μm. If the thickness of the heterogeneous layer is too small, it is difficult to obtain the effect of scattering the excitation light. On the other hand, if the thickness of the heterogeneous layer is too large, the scattering loss increases and the total luminous flux value tends to decrease.

ガラス粉末と異質層との屈折率差は0.001〜0.5、特に0.001〜0.4であることが好ましい。ガラス粉末と異質層との屈折率差が小さすぎると、励起光を散乱させる効果が得られにくい。一方、ガラス粉末と異質層との屈折率差が大きすぎると、散乱損失が大きくなり全光束値が低下する傾向がある。   The difference in refractive index between the glass powder and the extraneous layer is preferably 0.001 to 0.5, particularly preferably 0.001 to 0.4. If the refractive index difference between the glass powder and the foreign layer is too small, it is difficult to obtain the effect of scattering the excitation light. On the other hand, if the refractive index difference between the glass powder and the foreign layer is too large, the scattering loss tends to increase and the total luminous flux value tends to decrease.

無機蛍光体粉末としては、紫外域または可視域の励起光を入射すると、当該励起光の波長よりも長波長の蛍光を発するものが挙げられる。   Examples of the inorganic phosphor powder include those that emit fluorescence having a wavelength longer than the wavelength of the excitation light when the excitation light in the ultraviolet region or visible region is incident.

本発明において使用可能な無機蛍光体粉末としては、一般に市場で入手できるものであれば特に限定されない。例えば、YAG等のガーネット系、その他の酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物、ハロリン酸塩化物等からなるものが挙げられる。   The inorganic phosphor powder usable in the present invention is not particularly limited as long as it is generally available on the market. Examples thereof include garnets such as YAG, and other oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, halophosphates, and the like.

上記無機蛍光体粉末の中でも、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)、赤色(波長600〜700nm)に発光するものを用いることが好ましい。   Among the inorganic phosphor powders, those having an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength 540) ˜595 nm) and red (wavelength of 600 to 700 nm) are preferably used.

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体粉末としては、Sr(POCl:Eu2+、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+などが挙げられる。 Examples of inorganic phosphor powder that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、SrSiOn:Eu2+、ZnS:Al3+,Cu、CaS:Sn2+、CaS:Sn2+,F、CaSO:Ce3+,Mn2+、LiAlO:Mn2+、BaMgAl1017:Eu2+,Mn2+、ZnS:Cu,Cl、CaWO:U、CaSiOCl:Eu2+、Sr0.2Ba0.7Cl1.1Al3.45:Ce3+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、ZnO:S、ZnO:Zn、CaBa(POCl:Eu2+、BaAl:Eu2+などが挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm, SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS : In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ , ZnS: Al 3+ , Cu + , CaS: Sn 2+ , CaS: Sn 2+ , F, CaSO 4 : Ce 3+ , Mn 2+ , LiAlO 2 : Mn 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , ZnS: Cu + , Cl , Ca 3 WO 6 : U, Ca 3 SiO 4 Cl 2: Eu 2+, Sr 0.2 Ba 0.7 Cl 1.1 Al 2 O 3.45: Ce 3+ Mn 2+, Ba 2 MgSi 2 O 7: Eu 2+, Ba 2 SiO 4: Eu 2+, Ba 2 Li 2 Si 2 O 7: Eu 2+, ZnO: S, ZnO: Zn, Ca 2 Ba 3 (PO 4) 3 Cl: Eu 2+ , BaAl 2 O 4 : Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、SrSiOn:Eu2+などが挙げられる。 Examples of inorganic phosphor powders that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、ZnS:Eu2+、Ba(POCl:U、SrWO:U、CaGa:Eu2+、SrSO:Eu2+,Mn2+、ZnS:P、ZnS:P3−,Cl、ZnS:Mn2+などが挙げられる。 Examples of inorganic phosphor powder that emits yellow fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include ZnS: Eu 2+ , Ba 5 (PO 4 ) 3 Cl: U, Sr 3 WO 6 : U, CaGa 2 S 4 : Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ , ZnS: P, ZnS: P 3− , Cl , ZnS: Mn 2+ and the like can be mentioned.

波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、Y(Al,Gd)12:Ce2+、Ba(POCl:U、CaGa:Eu2+、SrSiO:Eu2+が挙げられる。 As an inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm, Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ba 5 (PO 4 ) 3 Cl: U, CaGa 2 S 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、CaS:Yb2+,Cl、GdGa12:Cr3+、CaGa:Mn2+、Na(Mg,Mn)LiSi10:Mn、ZnS:Sn2+、YAl12:Cr3+、SrB13:Sm2+、MgSrSi:Eu2+,Mn2+、α−SrO・3B:Sm2+、ZnS−CdS、ZnSe:Cu,Cl、ZnGa:Mn2+、ZnO:Bi3+、BaS:Au,K、ZnS:Pb2+、ZnS:Sn2+,Li、ZnS:Pb,Cu、CaTiO:Pr3+、CaTiO:Eu3+、Y:Eu3+、(Y、Gd):Eu3+、CaS:Pb2+,Mn2+、YPO:Eu3+、CaMgSi:Eu2+,Mn2+、Y(P、V)O:Eu3+、YS:Eu3+、SrAl:Eu3+、CaYAlO:Eu3+、LaOS:Eu3+、LiW:Eu3+,Sm3+、(Sr,Ca,Ba,Mg)10(POCl:Eu2+,Mn2+、BaMgSi:Eu2+,Mn2+などが挙げられる。 Examples of the inorganic phosphor powder that emits red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include CaS: Yb 2+ , Cl, Gd 3 Ga 4 O 12 : Cr 3+ , CaGa 2 S 4 : Mn. 2+ , Na (Mg, Mn) 2 LiSi 4 O 10 F 2 : Mn, ZnS: Sn 2+ , Y 3 Al 5 O 12 : Cr 3+ , SrB 8 O 13 : Sm 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , α-SrO · 3B 2 O 3 : Sm 2+ , ZnS—CdS, ZnSe: Cu + , Cl, ZnGa 2 S 4 : Mn 2+ , ZnO: Bi 3+ , BaS: Au, K, ZnS: Pb 2+ , ZnS: Sn 2+ , Li + , ZnS: Pb, Cu, CaTiO 3 : Pr 3+ , CaTiO 3 : Eu 3+ , Y 2 O 3 : Eu 3+ , ( Y, Gd) 2 O 3 : Eu 3+ , CaS: Pb 2+ , Mn 2+ , YPO 4 : Eu 3+ , Ca 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ , Y (P, V) O 4 : Eu 3+ , Y 2 O 2 S: Eu 3+ , SrAl 4 O 7 : Eu 3+ , CaYAlO 4 : Eu 3+ , LaO 2 S: Eu 3+ , LiW 2 O 8 : Eu 3+ , Sm 3+ , (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , Mn 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Mn 2+ and the like.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、ZnS:Mn2+,Te2+、MgTiO:Mn4+、KSiF:Mn4+、SrS:Eu2+、CaS:Eu2+、Na1.230.42Eu0.12TiSi11、Na1.230.42Eu0.12TiSi13:Eu3+、CdS:In,Te、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、Euなどが挙げられる。 Examples of inorganic phosphor powders that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include ZnS: Mn 2+ , Te 2+ , Mg 2 TiO 4 : Mn 4+ , K 2 SiF 6 : Mn 4+ , SrS: Eu 2+ , CaS: Eu 2+ , Na 1.23 K 0.42 Eu 0.12 TiSi 4 O 11 , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 : Eu 3+ , CdS: In, Te CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , Eu 2 W 2 O 7 and the like.

例えば、可視光線からなる励起光を入射すると当該励起光の色相に対して補色の蛍光を発する無機蛍光体粉末を用いると、透過した励起光と蛍光との混色により白色光が得られるため、容易に白色LEDを製造することができる。特に、可視光線からなる励起光が中心波長430〜490nmを有する光線であり、蛍光が中心波長530〜590nmを有する光線であると、白色光が得られやすいため好ましい。   For example, when an inorganic phosphor powder that emits a complementary color fluorescence to the hue of the excitation light when incident excitation light consisting of visible light is incident, white light can be easily obtained by mixing the transmitted excitation light and fluorescence. A white LED can be manufactured. In particular, it is preferable that excitation light composed of visible light is light having a central wavelength of 430 to 490 nm and fluorescence is light having a central wavelength of 530 to 590 nm because white light can be easily obtained.

なお、励起光や発光の波長域に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する無機蛍光体粉末を混合して使用すればよい。   A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders emitting blue, green, yellow, and red fluorescence may be mixed and used.

なお、波長変換部材のガラスマトリクスとして用いられるガラス粉末は、通常約1.5〜2.0の屈折率(nd)を有するのに対し、無機蛍光体粉末も1.5〜2.4程度といった幅広い屈折率を有する。ガラス粉末と無機蛍光体粉末の組み合わせは、いろいろな可能性があるが、特にガラス粉末と無機蛍光体粉末の屈折率差が小さい場合、両者の界面での散乱が少なくなる。その結果、励起光の直進成分が増加し、拡散特性が低下しやすくなる。したがって、本発明の波長変換部材は、ガラス粉末と無機蛍光体粉末の屈折率差が小さい場合(例えば、0.05未満)に特に効果が得られやすいと言える。   The glass powder used as the glass matrix of the wavelength conversion member usually has a refractive index (nd) of about 1.5 to 2.0, whereas the inorganic phosphor powder is about 1.5 to 2.4. Has a wide refractive index. There are various possibilities for combining the glass powder and the inorganic phosphor powder, but particularly when the difference in refractive index between the glass powder and the inorganic phosphor powder is small, scattering at the interface between the two is reduced. As a result, the straight component of the excitation light increases, and the diffusion characteristics are likely to deteriorate. Therefore, it can be said that the wavelength conversion member of the present invention is particularly effective when the difference in refractive index between the glass powder and the inorganic phosphor powder is small (for example, less than 0.05).

波長変換部材における無機蛍光体粉末の含有量は1〜30質量%、特に2〜20質量%であることが好ましい。無機蛍光体粉末の含有量が少なすぎると、全光束値が不十分となり、白色光が得られにくくなる。一方、無機蛍光体粉末の含有量が多すぎると、励起光が無機蛍光体粉末全体に十分に照射されず、全光束値が低下する傾向がある。また、気孔が発生しやすくなり、緻密な構造が得られにくい。   The content of the inorganic phosphor powder in the wavelength conversion member is preferably 1 to 30% by mass, particularly preferably 2 to 20% by mass. When the content of the inorganic phosphor powder is too small, the total luminous flux value becomes insufficient, and it becomes difficult to obtain white light. On the other hand, when there is too much content of inorganic fluorescent substance powder, excitation light is not fully irradiated to the whole inorganic fluorescent substance powder, and there exists a tendency for a total luminous flux value to fall. In addition, pores are easily generated, and it is difficult to obtain a dense structure.

本発明の波長変換部材は、低温型石英、低温型クリストバル石、コランダム、ガーネット、正方晶ジルコニア、ガーナイト、コージエライト等の透光性を有するセラミック粉末を含有していてもよい。波長変換部材がこれらのセラミック粉末を含有することにより、励起光を散乱させる効果がより大きくなり、拡散特性に優れた波長変換部材が得られやすくなる。なお、励起光の散乱効果を高めるには、ガラス粉末とセラミック粉末の屈折率差が大きくなるよう組み合わせることが好ましい。具体的には、ガラスとセラミック粉末の屈折率差は0.05以上、特に0.1以上であることが好ましい。   The wavelength conversion member of the present invention may contain a ceramic powder having translucency such as low temperature type quartz, low temperature type cristobalite, corundum, garnet, tetragonal zirconia, garnite, cordierite and the like. When the wavelength conversion member contains these ceramic powders, the effect of scattering excitation light is further increased, and a wavelength conversion member having excellent diffusion characteristics can be easily obtained. In order to enhance the scattering effect of the excitation light, it is preferable to combine the glass powder and the ceramic powder so that the difference in refractive index is large. Specifically, the difference in refractive index between glass and ceramic powder is preferably 0.05 or more, particularly preferably 0.1 or more.

セラミック粉末の平均粒径D50は0.1〜30μm、特に0.2〜5μmであることが好ましい。セラミック粉末の平均粒径D50が小さすぎると、励起光を散乱させる効果が得られにくい。一方、セラミック粉末の平均粒径D50が大きすぎると、散乱損失が大きくなり全光束値が低下する傾向がある。 The average particle diameter D 50 of the ceramic powder is 0.1 to 30 [mu] m, it is particularly preferably 0.2 to 5 .mu.m. When the average particle diameter D 50 of the ceramic powder is too small, the effect of scattering the excitation light is hardly obtained. On the other hand, when the average particle diameter D 50 of the ceramic powder is too large, total light flux value scattering loss becomes large tends to decrease.

波長変換部材におけるセラミック粉末の含有量は0.1〜10質量%、特に1〜8質量%であることが好ましい。セラミック粉末の含有量が少なすぎると、上記効果が得られにくくなる。一方、セラミック粉末の含有量が多すぎると、散乱損失が大きくなり全光束値が低下する傾向がある。   The content of the ceramic powder in the wavelength conversion member is preferably 0.1 to 10% by mass, particularly 1 to 8% by mass. If the content of the ceramic powder is too small, it is difficult to obtain the above effect. On the other hand, if the content of the ceramic powder is too large, the scattering loss increases and the total luminous flux value tends to decrease.

本発明の波長変換部材は、JIS K7105に準拠して測定した平行光線(直線)透過率が10%以下、特に7%以下であることが好ましく、ヘイズが80%以上、特に85%以上であることが好ましい。平行光線透過率が大きすぎる、またはヘイズが小さすぎると、励起光の直進成分が多くなりすぎて、光拡散特性に劣る傾向がある。また、所望の全光束値が得られにくくなる。   The wavelength conversion member of the present invention has a parallel ray (linear) transmittance measured according to JIS K7105 of 10% or less, particularly preferably 7% or less, and a haze of 80% or more, particularly 85% or more. It is preferable. If the parallel light transmittance is too large or the haze is too small, the straight component of the excitation light tends to be too large and the light diffusion property tends to be inferior. Moreover, it becomes difficult to obtain a desired total luminous flux value.

本発明の波長変換部材は、例えば無機蛍光体粉末と既述の方法で表面に異質層を形成したガラス粉末を含有する混合粉末を予備成型し、所定の温度で焼成することにより焼結体とし、その後必要に応じて、研削、研磨、リプレス等による加工を行うことにより作製することができる。   The wavelength conversion member of the present invention is formed into a sintered body by pre-molding a mixed powder containing, for example, an inorganic phosphor powder and a glass powder having a heterogeneous layer formed on the surface by the method described above, and firing at a predetermined temperature. Thereafter, it can be produced by performing processing by grinding, polishing, repressing or the like, if necessary.

予備成型方法は特に制限されず、プレス成形法や、射出成形法、シート成形法、押し出し成形法等を採用することができる。   The preforming method is not particularly limited, and a press molding method, an injection molding method, a sheet molding method, an extrusion molding method, or the like can be employed.

ガラス粉末と無機蛍光体粉末の混合粉末の焼成温度は、ガラス粉末の軟化点以上、特に軟化点+50℃以上であることが好ましい。焼成温度が低すぎると、気孔が残存して全光束値が低下しやすくなる。一方、上限は特に限定されないが、ガラス粉末の軟化点+100℃以下であることが好ましい。焼成温度が高すぎると、ガラス粉末と無機蛍光体粉末の反応が進行し、無機蛍光体粉末が一部消失して全光束値が低下する傾向がある。   The firing temperature of the mixed powder of glass powder and inorganic phosphor powder is preferably not less than the softening point of the glass powder, particularly not less than the softening point + 50 ° C. If the firing temperature is too low, pores remain and the total luminous flux value tends to decrease. On the other hand, although an upper limit is not specifically limited, It is preferable that it is below the softening point of glass powder +100 degreeC. If the firing temperature is too high, the reaction between the glass powder and the inorganic phosphor powder proceeds, and the inorganic phosphor powder partially disappears and the total luminous flux value tends to decrease.

本発明の波長変換部材は、励起光源であるLEDチップ等の光源と組み合わせることにより発光デバイスとして使用することができる。本発明の波長変換部材は、光源上に直接接着してもよいし、光源を取り囲む函体上に接着して用いてもよい。また、板状体の波長変換部材の下側に光源を複数個設置した面発光デバイスとすることも可能である。   The wavelength conversion member of the present invention can be used as a light emitting device by combining with a light source such as an LED chip that is an excitation light source. The wavelength conversion member of the present invention may be directly adhered on the light source, or may be adhered on a box surrounding the light source. It is also possible to provide a surface emitting device in which a plurality of light sources are installed below the plate-like wavelength conversion member.

以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

表1〜3は実施例(No.1〜4、6〜9、11〜14)および比較例(No.5、10、15)を示している。   Tables 1-3 show Examples (No. 1-4, 6-9, 11-14) and Comparative Examples (No. 5, 10, 15).

まず、表1〜3に示すガラス組成となるように原料粉末を秤量して混合し、この混合物を白金坩堝中において900〜1400℃で1時間溶融してガラス化した。溶融ガラスをフィルム状に成形し、得られたフィルム状ガラスをボールミルで粉砕した後、325メッシュの篩に通して分級し、平均粒径D50が30μmのガラス粉末を得た。 First, raw material powders were weighed and mixed so as to have the glass compositions shown in Tables 1 to 3, and the mixture was melted at 900 to 1400 ° C. for 1 hour in a platinum crucible to be vitrified. Molding the molten glass into a film, and the obtained film-like glass was pulverized by a ball mill and then classified through a sieve of 325 mesh, average particle diameter D 50 was obtained glass powder 30 [mu] m.

次に、ガラス粉末に対し、表1〜3に示す無機蛍光体粉末およびセラミック粉末を混合し、金型を用いて加圧成形して直径1cmのボタン状の予備成形体を作製した。この予備成形体を表1〜3に示す焼成温度で焼成し、焼結体を得た。なお、試料No.1〜4、6〜9および11〜14のガラス粉末については、無機蛍光体粉末およびセラミック粉末と混合する前に下記方法により表面に異質層を形成した。   Next, the inorganic phosphor powder and ceramic powder shown in Tables 1 to 3 were mixed with the glass powder, and pressure-molded using a mold to prepare a button-shaped preform having a diameter of 1 cm. This preform was fired at the firing temperatures shown in Tables 1 to 3 to obtain sintered bodies. Sample No. About the glass powder of 1-4, 6-9, and 11-14, before mixing with inorganic fluorescent substance powder and ceramic powder, the heterogeneous layer was formed in the surface by the following method.

ゾルゲル法:金属アルコシドであるSi(OC、LiOCHおよびCa(OCに、エタノール、水およびアンモニアを混合して得られる溶液にガラス粉末を分散させ、加熱した。 Sol-gel method: Glass powder was dispersed in a solution obtained by mixing ethanol, water and ammonia in Si (OC 2 H 5 ) 4 , LiOCH 3 and Ca (OC 2 H 5 ) 2 which are metal alkoxides, and heated. .

溶出法:50℃に保持した濃度0.02モル%の希塩酸50ml中にガラス粉末を1時間浸漬した。   Elution method: Glass powder was immersed in 50 ml of diluted hydrochloric acid having a concentration of 0.02 mol% maintained at 50 ° C. for 1 hour.

焼結体に対して研磨処理を施し、直径8mm、厚さ0.3mmに加工し、波長変換部材を得た。得られた波長変換部材について、異質層の厚さおよび組成、ガラス粉末および異質層の屈折率、平衡光線透過率、ヘイズ、拡散特性、ならびに、全光束値を測定した。結果を表1〜3に示す。   The sintered body was polished and processed into a diameter of 8 mm and a thickness of 0.3 mm to obtain a wavelength conversion member. With respect to the obtained wavelength conversion member, the thickness and composition of the heterogeneous layer, the refractive index of the glass powder and the heterogeneous layer, the equilibrium light transmittance, the haze, the diffusion characteristics, and the total luminous flux value were measured. The results are shown in Tables 1-3.

異質層の厚さおよび組成は、EDXを備えた走査型電子顕微鏡(日立ハイテクノロジーズ製 S−4300SE)により分析した。   The thickness and composition of the heterogeneous layer were analyzed with a scanning electron microscope (S-4300SE, manufactured by Hitachi High-Technologies Corporation) equipped with EDX.

屈折率は、屈折率計(カルニュー製 KPR−200)を用いて、ヘリウムランプのd線(波長:587.6nm)における測定値で示した。なお、ガラス粉末の屈折率は粉砕前のガラスから求め、異質層の屈折率は、分析により得られた組成をもとに作製したガラスを用いて求めた。   The refractive index was shown by the measured value at the d line (wavelength: 587.6 nm) of a helium lamp using a refractometer (KPR-200 manufactured by Kalnew). In addition, the refractive index of glass powder was calculated | required from the glass before grinding | pulverization, and the refractive index of the heterogeneous layer was calculated | required using the glass produced based on the composition obtained by analysis.

平行光線透過率およびヘイズはJIS K7105に準拠して測定した。   The parallel light transmittance and haze were measured according to JIS K7105.

拡散特性は、青色LEDを波長変換部材に照射し、光軸に対して0°と60°の角度から透過光を目視によりそれぞれ観察し、色度ずれが認められない場合を「○」、色度ずれが認められた場合を「×」として評価した。   Diffusion characteristics are determined by irradiating a wavelength conversion member with a blue LED and visually observing transmitted light from angles of 0 ° and 60 ° with respect to the optical axis. When the degree deviation was recognized, it was evaluated as “×”.

波長変換部材の全光束値は次のようにして測定した。校正された積分球内で、200mAの電流で点灯した青色LEDによって波長変換部材を励起し、光ファイバーを通じてその発光を小型分光器(オーシャンオプティクス製 USB−4000)に取り込み、制御PC上に発光スペクトル(エネルギー分布曲線)を得た。得られた発光スペクトルから全光束値を算出した。   The total luminous flux value of the wavelength conversion member was measured as follows. In the calibrated integrating sphere, the wavelength conversion member is excited by a blue LED that is lit at a current of 200 mA, the emitted light is taken into a small spectroscope (USB-4000 manufactured by Ocean Optics) through an optical fiber, and an emission spectrum (on the control PC) Energy distribution curve). The total luminous flux value was calculated from the obtained emission spectrum.

表1〜3から明らかなように、実施例である試料No.1〜4、6〜9および11〜14の波長変換部材は、平行光線透過率が6.5%以下と小さく、ヘイズが84.4%以上と大きいため、拡散特性が良好であり、全光束値が15lm以上と高かった。一方、比較例である試料No.5、10および15の波長変換部材は、平行光線透過率が14.0%以上と大きく、ヘイズが77.8%以下と小さいため、拡散特性に劣っており、全光束値も13lm以下と低かった。   As is apparent from Tables 1 to 3, sample No. The wavelength conversion members 1 to 4, 6 to 9 and 11 to 14 have a small parallel light transmittance of 6.5% or less and a high haze of 84.4% or more. The value was as high as 15 lm or more. On the other hand, sample No. which is a comparative example. The wavelength conversion members 5, 10 and 15 have a high parallel light transmittance of 14.0% or more and a low haze of 77.8% or less, so they have inferior diffusion characteristics and a total luminous flux value of 13 lm or less. It was.

Claims (7)

ガラス粉末と無機蛍光体粉末を含有する混合粉末の焼結体からなる波長変換部材であって、ガラス粉末の粒界に、ガラス粉末とは異なる組成からなる異質層を有し、ガラス粉末と異質層の屈折率差が0.001〜0.5であることを特徴とする波長変換部材。 A wavelength conversion member formed of a sintered body of a mixed powder containing glass powder and an inorganic phosphor powder, the grain boundary of the glass powder, have a heterogeneous layer of different composition than the glass powder, glass powder and heterogeneity wavelength conversion member refractive index difference layers, characterized in 0.001 der Rukoto. 異質層の厚さが0.001〜5μmであることを特徴とする請求項1に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the thickness of the heterogeneous layer is 0.001 to 5 μm. 原料として、表面に異質層を有するガラス粉末を用いることを特徴とする請求項1または2に記載の波長変換部材。 The wavelength conversion member according to claim 1 or 2 , wherein a glass powder having a heterogeneous layer on the surface is used as a raw material. JIS K7105に準拠して測定した平行光線透過率が10%以下、ヘイズが80%以上であることを特徴とする請求項1〜のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 3 , wherein the parallel light transmittance measured in accordance with JIS K7105 is 10% or less and the haze is 80% or more. セラミック粉末を0.1〜10質量%含有することを特徴とする請求項1〜のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 4 , comprising 0.1 to 10% by mass of ceramic powder. 無機蛍光体粉末が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物またはハロリン酸塩化物からなることを特徴とする請求項1〜のいずれかに記載の波長変換部材。 Inorganic phosphor powder, oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, any claim 1-5, characterized in that it consists aluminate chloride or halophosphate chloride The wavelength conversion member according to any one of the above. 請求項1〜のいずれかに記載の波長変換部材、および、波長変換部材に励起光を照射する光源を備えてなることを特徴とする発光デバイス。 Wavelength converting member according to any one of claims 1 to 6, and the light emitting device characterized by including a light source for irradiating excitation light wavelength conversion member.
JP2011227546A 2011-10-17 2011-10-17 Wavelength converting member and light emitting device using the same Active JP5807780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011227546A JP5807780B2 (en) 2011-10-17 2011-10-17 Wavelength converting member and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011227546A JP5807780B2 (en) 2011-10-17 2011-10-17 Wavelength converting member and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2013089703A JP2013089703A (en) 2013-05-13
JP5807780B2 true JP5807780B2 (en) 2015-11-10

Family

ID=48533339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227546A Active JP5807780B2 (en) 2011-10-17 2011-10-17 Wavelength converting member and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP5807780B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2548706B (en) 2016-02-24 2019-12-11 Nichia Corp Method of manufacturing fluorescent-material-containing member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527402B2 (en) * 1993-06-24 1996-08-21 東和電化工業株式会社 Crystallized glass and manufacturing method thereof
JP2009270091A (en) * 2008-05-06 2009-11-19 Mitsubishi Chemicals Corp Fluorescent glass, method of manufacturing fluorescent glass, semiconductor light-emitting device, and method of manufacturing semiconductor light-emitting device
JP2009277997A (en) * 2008-05-16 2009-11-26 Asahi Glass Co Ltd Mixed glass powder for coating light-emitting element, glass-coated light-emitting element, and glass-coated light-emitting device
JP2011187798A (en) * 2010-03-10 2011-09-22 Nippon Electric Glass Co Ltd Wavelength converting member and optical device using the same

Also Published As

Publication number Publication date
JP2013089703A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
WO2011111462A1 (en) Wavelength conversion member, optical device, and process for production of wavelength conversion member
JP2014234487A (en) Wavelength conversion member and light-emitting device
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
KR102588721B1 (en) Wavelength conversion member, and light emitting device using same
KR102588722B1 (en) Wavelength conversion member, and light emitting device using same
JP2013055269A (en) Wavelength conversion member and light-emitting device
JP5532508B2 (en) Wavelength conversion member and manufacturing method thereof
JP2008021868A (en) Phosphor composite member
JP2013219123A (en) Wavelength conversion member and method for producing the same
TWI628261B (en) Wavelength conversion member and light emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2015071699A (en) Wavelength conversion material, wavelength conversion member and light-emitting device
JP2011222751A (en) Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP6004250B2 (en) Wavelength conversion member and light emitting device
JP2013095849A (en) Wavelength conversion member and light emitting device using the same
JP2014041984A (en) Wavelength conversion material
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
JP5807780B2 (en) Wavelength converting member and light emitting device using the same
JP5713273B2 (en) Joining material and member joining method using the same
JP6830750B2 (en) Wavelength conversion member and light emitting device
CN111480098B (en) Wavelength conversion member and light emitting device using same
JP6861952B2 (en) Wavelength conversion member and light emitting device using it
KR102654998B1 (en) Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices
JP2012052018A (en) Phosphor-containing composition and wavelength conversion member obtained by firing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150826

R150 Certificate of patent or registration of utility model

Ref document number: 5807780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150