JP2012052018A - Phosphor-containing composition and wavelength conversion member obtained by firing the same - Google Patents

Phosphor-containing composition and wavelength conversion member obtained by firing the same Download PDF

Info

Publication number
JP2012052018A
JP2012052018A JP2010195608A JP2010195608A JP2012052018A JP 2012052018 A JP2012052018 A JP 2012052018A JP 2010195608 A JP2010195608 A JP 2010195608A JP 2010195608 A JP2010195608 A JP 2010195608A JP 2012052018 A JP2012052018 A JP 2012052018A
Authority
JP
Japan
Prior art keywords
phosphor
powder
containing composition
glass
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010195608A
Other languages
Japanese (ja)
Inventor
Ryota Suzuki
良太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2010195608A priority Critical patent/JP2012052018A/en
Publication of JP2012052018A publication Critical patent/JP2012052018A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a phosphor-containing composition for producing a wavelength conversion member which comprises inorganic powder including glass powder and inorganic phosphor powder and an organic resin, in which the organic resin is hard to remain after firing, and which can produce a wavelength conversion member having excellent emission intensity.SOLUTION: The phosphor-containing composition comprises: the inorganic powder including glass powder and inorganic phosphor powder; and a polyalkylene carbonate-based resin. The wavelength conversion member is obtained by firing the same.

Description

本発明は、白色LED等に用いられる波長変換部材を作製するために好適な蛍光体含有組成物および当該蛍光体含有組成物を焼成してなる波長変換部材に関するものである。   The present invention relates to a phosphor-containing composition suitable for producing a wavelength conversion member used for white LEDs and the like, and a wavelength conversion member formed by firing the phosphor-containing composition.

白色LEDは、低消費電力、水銀フリー、長寿命等の利点を有しており、白熱電球や蛍光灯に代わる次世代光源として、一般照明、液晶バックライト、ヘッドランプ等へ応用されている。白色LEDは、例えばLEDチップの発光面が無機蛍光体粉末を含む有機系バインダー樹脂によってモールドされた構成を有している。このモールド部分をLEDチップから発せられた励起光が通過する際に、その励起光の全部が無機蛍光体粉末に吸収されて波長変換する、あるいは、励起光の一部が無機蛍光体粉末に吸収され、波長変換された光と透過した励起光とが合成されて所望の光が発せられる。   White LEDs have advantages such as low power consumption, mercury-free, and long life, and are applied to general lighting, liquid crystal backlights, headlamps, and the like as next-generation light sources that replace incandescent bulbs and fluorescent lamps. The white LED has a configuration in which, for example, a light emitting surface of an LED chip is molded with an organic binder resin containing an inorganic phosphor powder. When excitation light emitted from the LED chip passes through this mold part, all of the excitation light is absorbed by the inorganic phosphor powder and wavelength-converted, or part of the excitation light is absorbed by the inorganic phosphor powder. Then, the wavelength-converted light and the transmitted excitation light are combined to emit desired light.

しかしながら、上記LED素子を構成するモールド樹脂は、青色〜紫外線領域の高出力の短波長の光によって劣化し、変色を引き起こすという問題がある。この問題を解決するために、500℃以上の軟化点を有する非鉛系ガラス粉末と無機蛍光体粉末を含む無機粉末をガラス粉末の軟化点以上の温度で焼成することで、ガラスマトリクス中に無機蛍光体粉末を分散させた波長変換部材が提案されている(例えば、特許文献1参照)。特許文献1に開示されている波長変換部材は、無機蛍光体粉末が無機材料であるガラス中に分散されているため、化学的に安定であり、しかも、高出力の励起光に長時間晒されても変色が少ないという特徴を有する。   However, there is a problem that the mold resin constituting the LED element is deteriorated by high-power short-wavelength light in the blue to ultraviolet region, and causes discoloration. In order to solve this problem, inorganic powder containing a lead-free glass powder having a softening point of 500 ° C. or higher and an inorganic phosphor powder is baked at a temperature equal to or higher than the softening point of the glass powder, so that an inorganic substance is contained in the glass matrix. A wavelength conversion member in which phosphor powder is dispersed has been proposed (for example, see Patent Document 1). The wavelength conversion member disclosed in Patent Document 1 is chemically stable because the inorganic phosphor powder is dispersed in glass, which is an inorganic material, and is exposed to high-power excitation light for a long time. However, it has the characteristic that there is little discoloration.

特許文献1に記載されている波長変換部材は、ガラス粉末と無機蛍光体粉末を含有する無機粉末を所望形状の金型を用いて予備成型した後、ガラス粉末の軟化点以上の温度で焼成することにより作製される。   The wavelength conversion member described in Patent Document 1 is pre-molded with inorganic powder containing glass powder and inorganic phosphor powder using a mold having a desired shape, and then fired at a temperature equal to or higher than the softening point of the glass powder. It is produced by this.

特開2003−258308号公報JP 2003-258308 A

近年、用途の多様化にともない、従来の円盤状や直方体状以外の複雑な形状(例えば、球状、半球状、メニスカスレンズ状、箱状、円錐状、薄板状等)の波長変換部材が要求されている。このような複雑な形状を有する波長変換部材を寸法精度よく作製するためには、例えば、原料粉末を顆粒状に造粒して粉末粒度を揃えることが有効である。この際、原料無機粉末に有機樹脂が添加されるが、当該原料無機粉末を焼成して得られる波長変換部材は発光強度に劣るという問題があった。   In recent years, with the diversification of applications, there is a demand for wavelength conversion members having complicated shapes (eg, spherical, hemispherical, meniscus lens, box, conical, thin plate, etc.) other than the conventional disk shape and rectangular parallelepiped shape. ing. In order to produce a wavelength conversion member having such a complicated shape with high dimensional accuracy, it is effective to granulate the raw material powder into a granular shape and make the powder particle size uniform, for example. At this time, an organic resin is added to the raw inorganic powder, but the wavelength conversion member obtained by firing the raw inorganic powder has a problem in that the emission intensity is inferior.

したがって、本発明は、ガラス粉末および無機蛍光体粉末を含有する無機粉末と有機樹脂とを含有する、波長変換部材を作製するための蛍光体含有組成物であって、発光強度に優れた波長変換部材を作製することが可能な蛍光体含有組成物を提供することを目的とする。   Therefore, the present invention is a phosphor-containing composition for producing a wavelength conversion member, which contains an inorganic powder containing glass powder and an inorganic phosphor powder, and an organic resin, and has a superior wavelength conversion. It aims at providing the fluorescent substance containing composition which can produce a member.

本発明者は鋭意検討した結果、ガラス粉末および無機蛍光体粉末を含有する無機粉末と有機樹脂とを含有する蛍光体含有組成物において、低温で熱分解可能な特定の有機樹脂を使用することにより、前記課題を解決できることを見出し、本発明として提案するものである。   As a result of intensive studies, the present inventor uses a specific organic resin that can be thermally decomposed at a low temperature in a phosphor-containing composition containing an inorganic powder and an organic resin containing glass powder and an inorganic phosphor powder. The present inventors have found that the above problems can be solved, and propose the present invention.

すなわち、本発明は、ガラス粉末および無機蛍光体粉末を含有する無機粉末と、ポリアルキレンカーボネート系樹脂とを含有することを特徴とする蛍光体含有組成物に関する。   That is, the present invention relates to a phosphor-containing composition comprising an inorganic powder containing glass powder and an inorganic phosphor powder, and a polyalkylene carbonate resin.

本発明の蛍光体含有組成物は、ガラス粉末および無機蛍光体粉末を含有してなるものであるため、当該蛍光体含有組成物を焼成してなる波長変換部材において、ガラスマトリクス中に無機蛍光体粉末を均一に分散させることが容易である。また、組成物中に有機樹脂を含んでいるため、顆粒状に造粒することが容易である。ここで、本発明において有機樹脂として使用されているポリアルキレンカーボネート系樹脂は、250〜300℃という比較的低温で分解するため、焼成後に炭素成分が残存しにくく、発光強度に優れた波長変換部材を作製することが可能となる。   Since the phosphor-containing composition of the present invention comprises a glass powder and an inorganic phosphor powder, in the wavelength conversion member formed by firing the phosphor-containing composition, the inorganic phosphor is contained in the glass matrix. It is easy to uniformly disperse the powder. Moreover, since the composition contains an organic resin, it can be easily granulated. Here, since the polyalkylene carbonate-based resin used as the organic resin in the present invention decomposes at a relatively low temperature of 250 to 300 ° C., the wavelength conversion member excellent in emission intensity because the carbon component hardly remains after firing. Can be produced.

第二に、本発明の蛍光体含有組成物は、ポリアルキレンカーボネート系樹脂が、ポリエチレンカーボネート系樹脂またはポリプロピレンカーボネート系樹脂であることを特徴とする。   Secondly, the phosphor-containing composition of the present invention is characterized in that the polyalkylene carbonate resin is a polyethylene carbonate resin or a polypropylene carbonate resin.

第三に、本発明の蛍光体含有組成物は、無機粉末100質量部に対して、ポリアルキレンカーボネート系樹脂を0.1〜20質量部含有することを特徴とする。   Thirdly, the phosphor-containing composition of the present invention is characterized by containing 0.1 to 20 parts by mass of a polyalkylene carbonate-based resin with respect to 100 parts by mass of the inorganic powder.

第四に、本発明の蛍光体含有組成物は、ガラス粉末が、SnO−P系ガラスであることを特徴とする。 Fourthly, the phosphor-containing composition of the present invention is characterized in that the glass powder is SnO—P 2 O 5 glass.

SnO−P系ガラスは軟化点が比較的低く、低温焼結が可能であるため、焼成時における無機蛍光体粉末の劣化を抑制することができる。結果として、発光強度に優れた波長変換部材を得ることが可能となる。 Since the SnO—P 2 O 5 glass has a relatively low softening point and can be sintered at a low temperature, deterioration of the inorganic phosphor powder during firing can be suppressed. As a result, it becomes possible to obtain a wavelength conversion member having excellent emission intensity.

第五に、本発明の蛍光体含有組成物は、SnO−P系ガラスが、組成としてモル%で、SnO 35〜80%、P 5〜40%、B 0〜30%を含有することを特徴とする。 Fifth, in the phosphor-containing composition of the present invention, SnO—P 2 O 5 glass is mol% as a composition, SnO 35-80%, P 2 O 5 5-40%, B 2 O 3 0 It is characterized by containing ~ 30%.

第六に、本発明の蛍光体含有組成物は、無機蛍光体粉末が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物から選ばれた少なくとも1種であることを特徴とする。   Sixth, in the phosphor-containing composition of the present invention, the inorganic phosphor powder comprises oxide, nitride, oxynitride, sulfide, oxysulfide, rare earth sulfide, aluminate chloride, and halophosphate chloride. It is at least one selected from the above.

第七に、本発明の蛍光体含有組成物は、無機粉末における無機蛍光体粉末の含有量が0.01〜30質量%であることを特徴とする。   Seventh, the phosphor-containing composition of the present invention is characterized in that the content of the inorganic phosphor powder in the inorganic powder is 0.01 to 30% by mass.

第八に、本発明の蛍光体含有組成物は、顆粒状であることを特徴とする。   Eighth, the phosphor-containing composition of the present invention is granular.

蛍光体含有組成物が顆粒状であることにより、造粒前の微粉状の粉末と比較して、取扱いが容易になる。具体的には、蛍光体含有組成物粒子の形状を略球形にすることができ、かつ粒度を揃えることができるため、蛍光体含有組成物の流動性が向上し、予備成型する際の金型への充填量の再現性が良好となる。その結果、寸法精度に優れ、発光特性のばらつきが少ない波長変換部材を得ることが可能となる。   When the phosphor-containing composition is granular, it is easy to handle compared to a fine powder before granulation. Specifically, since the shape of the phosphor-containing composition particles can be made substantially spherical and the particle size can be made uniform, the fluidity of the phosphor-containing composition is improved, and a mold for preforming The reproducibility of the filling amount is good. As a result, it is possible to obtain a wavelength conversion member that is excellent in dimensional accuracy and has little variation in light emission characteristics.

第九に、本発明は、前記いずれかの蛍光体含有組成物を焼成してなることを特徴とする波長変換部材に関する。   Ninth, the present invention relates to a wavelength conversion member obtained by firing any of the phosphor-containing compositions.

第十に、本発明は、前記波長変換部材を用いたことを特徴とするLEDデバイスに関する。   10thly, this invention relates to the LED device characterized by using the said wavelength conversion member.

第十一に、本発明は、前記いずれかの蛍光体含有組成物を製造する方法であって、ガラス粉末および無機蛍光体粉末を含有する無機粉末と、溶媒に溶解させたポリアルキレンカーボネート系樹脂を混合した後、脱溶媒することを特徴とする蛍光体含有組成物の製造方法に関する。   Eleventhly, the present invention is a method for producing any one of the above phosphor-containing compositions, comprising an inorganic powder containing glass powder and an inorganic phosphor powder, and a polyalkylene carbonate resin dissolved in a solvent. The present invention relates to a method for producing a phosphor-containing composition, wherein the solvent is removed after mixing.

第十二に、本発明の蛍光体含有組成物の製造方法は、脱溶媒を、造粒機により行うことを特徴とする。   12thly, the manufacturing method of the fluorescent substance containing composition of this invention is characterized by performing a solvent removal with a granulator.

当該構成によれば、所望の粒径を有する略球形の顆粒状の蛍光体含有組成物を容易に作製することが可能となる。   According to this configuration, it is possible to easily produce a substantially spherical granular phosphor-containing composition having a desired particle size.

第十三に、本発明は、前記いずれかにの蛍光体含有組成物を所定形状に成形して予備成形体を得る工程、予備成形体を熱処理して脱脂する工程、脱脂後の予備成形体を、ガラス粉末の軟化点以上の温度で焼成する工程、を含むことを特徴とする波長変換部材の製造方法に関する。   Thirteenthly, the present invention relates to a process for obtaining a preform by molding any one of the phosphor-containing compositions into a predetermined shape, a process for heat degreasing the preform, and a preform after degreasing. And a step of baking the glass powder at a temperature equal to or higher than the softening point of the glass powder.

第十四に、本発明の波長変換部材の製造方法は、脱脂後の予備成形体の焼成を、不活性雰囲気中で行うことを特徴とする。   14thly, the manufacturing method of the wavelength conversion member of this invention is characterized by performing baking of the preform after degreasing | defatting in inert atmosphere.

使用するガラス粉末の種類によっては、大気等の酸化雰囲気下で焼成を行うと、黒変して波長変換部材の発光強度が著しく低下する場合がある(例えば、SnO−P系ガラス)。そのようなガラス粉末を使用した場合であっても、予備成形体の焼成を不活性雰囲気中で行うことにより、黒変を抑制し、発光強度に優れた波長変換部材を作製することが可能となる。 Depending on the type of glass powder to be used, when baked in an oxidizing atmosphere such as the air, the luminescence intensity of the wavelength conversion member may be significantly reduced due to blackening (for example, SnO—P 2 O 5 glass). . Even when such glass powder is used, it is possible to produce a wavelength conversion member that suppresses blackening and has excellent emission intensity by firing the preform in an inert atmosphere. Become.

また、予備成形体の焼成を不活性雰囲気中で行うことにより、焼成時における無機蛍光体粉末の劣化を抑制することが可能となる。   In addition, by performing the firing of the preform in an inert atmosphere, it is possible to suppress the deterioration of the inorganic phosphor powder during firing.

第十五に、本発明の波長変換部材の製造方法は、不活性雰囲気が、真空、窒素またはアルゴンであることを特徴とする。   Fifteenth, the wavelength conversion member manufacturing method of the present invention is characterized in that the inert atmosphere is vacuum, nitrogen, or argon.

実施例の波長変換部材について測定した発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum measured about the wavelength conversion member of an Example.

本発明の蛍光体含有組成物は、ガラス粉末および無機蛍光体粉末を含有する無機粉末と、ポリアルキレンカーボネート系樹脂とを含有することを特徴とする。   The phosphor-containing composition of the present invention is characterized by containing an inorganic powder containing a glass powder and an inorganic phosphor powder, and a polyalkylene carbonate resin.

ガラス粉末としては、低温で焼結可能な低融点ガラスであることが好ましい。そのようなガラスとしては、SnO−P系ガラス、RO−B−SiO系ガラス(R=Mg、Ca、Sr、Ba)、ZnO−B−SiO系ガラス等が挙げられる。 The glass powder is preferably a low melting point glass that can be sintered at a low temperature. Examples of such glass include SnO—P 2 O 5 glass, RO—B 2 O 3 —SiO 2 glass (R = Mg, Ca, Sr, Ba), ZnO—B 2 O 3 —SiO 2 glass. Etc.

SnO−P系ガラスとしては、組成としてモル%で、SnO 35〜80%、P 5〜40%、B 0〜30%を含有するものであることが好ましい。ガラス組成を当該範囲に限定した理由を以下に説明する。 The SnO-P 2 O 5 based glass, in mol% as composition, SnO 35~80%, P 2 O 5 5~40%, it is preferable that contain 2 O 3 0~30% B. The reason why the glass composition is limited to this range will be described below.

SnOはガラスの骨格を形成するとともに、軟化点を低下させる成分である。SnOの含有量は35〜80%、40〜70%、50〜70%、特に55〜65%であることが好ましい。SnOの含有量が35%より少なくなると、ガラスの軟化点が上昇する傾向にあり、低温焼結が困難となる。結果として、焼成時に無機蛍光体粉末が劣化しやすくなり、波長変換部材の発光強度低下の原因となる。一方、SnOの含有量が80%より多くなると、ガラス中にSnに起因する失透ブツが析出し、ガラスの透過率が低下する傾向にあり、結果として、高い発光強度を有する波長変換部材が得られにくくなる。また、ガラス化しにくくなる。   SnO is a component that forms a glass skeleton and lowers the softening point. The SnO content is preferably 35 to 80%, 40 to 70%, 50 to 70%, particularly 55 to 65%. If the SnO content is less than 35%, the softening point of the glass tends to increase, and low-temperature sintering becomes difficult. As a result, the inorganic phosphor powder easily deteriorates during firing, which causes a decrease in the emission intensity of the wavelength conversion member. On the other hand, when the content of SnO is more than 80%, devitrification bumps resulting from Sn are precipitated in the glass, and the transmittance of the glass tends to be lowered. As a result, the wavelength conversion member having high emission intensity is obtained. It becomes difficult to obtain. Moreover, it becomes difficult to vitrify.

はガラスの骨格を形成する成分である。Pの含有量は5〜40%、10〜30%、特に15〜24%であることが好ましい。Pの含有量が5%より少なくなると、ガラス化しにくくなる。一方、Pの含有量が40%より多くなると、ガラスの軟化点が上昇する傾向にあり、低温焼結が困難となる。結果として、焼成時に無機蛍光体粉末が劣化しやすくなり、波長変換部材の発光強度低下の原因となる。また、耐候性が著しく低下する傾向にある。 P 2 O 5 is a component that forms a glass skeleton. The content of P 2 O 5 is preferably 5 to 40%, 10 to 30%, particularly preferably 15 to 24%. When the content of P 2 O 5 is less than 5%, vitrification becomes difficult. On the other hand, when the content of P 2 O 5 is more than 40%, the softening point of the glass tends to increase, and low-temperature sintering becomes difficult. As a result, the inorganic phosphor powder easily deteriorates during firing, which causes a decrease in the emission intensity of the wavelength conversion member. Further, the weather resistance tends to be remarkably lowered.

なお、ガラスの軟化点を低下させ、かつ安定化させるには、SnO/Pの値が、モル比で、0.9〜16、1.5〜16、1.5〜10、特に2〜5であることが好ましい。SnO/Pの値が0.9より小さくなると、ガラスの軟化点が上昇する傾向にあり、低温焼結が困難となる。結果として、焼成時に無機蛍光体粉末が劣化しやすくなり、波長変換部材の発光強度低下の原因となる。また、ガラスの耐候性が著しく低下する傾向にある。一方、SnO/Pの値が16より大きくなると、ガラス中にSnに起因する失透ブツが析出し、ガラスの透過率が低下する傾向にあり、結果として、高い発光効率を有する波長変換部材が得られにくくなる。 In order to lower and stabilize the softening point of the glass, the value of SnO / P 2 O 5 is 0.9 to 16, 1.5 to 16, 1.5 to 10, particularly in molar ratio. It is preferable that it is 2-5. When the value of SnO / P 2 O 5 is smaller than 0.9, the softening point of the glass tends to increase, and low-temperature sintering becomes difficult. As a result, the inorganic phosphor powder easily deteriorates during firing, which causes a decrease in the emission intensity of the wavelength conversion member. Moreover, it exists in the tendency for the weather resistance of glass to fall remarkably. On the other hand, when the value of SnO / P 2 O 5 is larger than 16, devitrification bumps due to Sn are precipitated in the glass, and the transmittance of the glass tends to be lowered. As a result, the wavelength having high luminous efficiency. It becomes difficult to obtain the conversion member.

はガラスと無機蛍光体粉末の反応を抑制するとともに、耐候性を向上させる成分である。また、ガラスを安定化させる成分でもある。Bの含有量は0〜30%、1〜30%、2〜20%、特に4〜18%であることが好ましい。Bの含有量が30%より多くなると、無機蛍光体粉末と反応したり、耐候性が低下しやすくなる。また、ガラスの軟化点が上昇する傾向にあり、低温焼結が困難となる。結果として、焼成時に無機蛍光体粉末が劣化しやすくなり、波長変換部材の発光強度低下の原因となる。 B 2 O 3 is a component that suppresses the reaction between the glass and the inorganic phosphor powder and improves the weather resistance. It is also a component that stabilizes the glass. The content of B 2 O 3 is preferably 0 to 30%, 1 to 30%, 2 to 20%, particularly 4 to 18%. When the content of B 2 O 3 is more than 30%, it reacts with the inorganic phosphor powder and the weather resistance tends to decrease. In addition, the softening point of the glass tends to increase, and low temperature sintering becomes difficult. As a result, the inorganic phosphor powder easily deteriorates during firing, which causes a decrease in the emission intensity of the wavelength conversion member.

また、上記成分以外にも下記の成分を添加することが可能である。   In addition to the above components, the following components can be added.

Alはガラスを安定化させる成分である。Alの含有量は0〜10%、0〜7%、特に1〜5%であることが好ましい。Alの含有量が10%より多くなると、ガラスの軟化点が上昇する傾向にあり、低温焼結が困難となる。結果として、焼成時に無機蛍光体粉末が劣化しやすくなり、波長変換部材の発光強度低下の原因となる。 Al 2 O 3 is a component that stabilizes the glass. The content of Al 2 O 3 is preferably 0 to 10%, 0 to 7%, particularly preferably 1 to 5%. When the content of Al 2 O 3 is more than 10%, the softening point of the glass tends to increase and low temperature sintering becomes difficult. As a result, the inorganic phosphor powder easily deteriorates during firing, which causes a decrease in the emission intensity of the wavelength conversion member.

SiOは、Alと同様にガラスを安定化させる成分である。SiOの含有量は0〜10%、0〜7%、特に1〜5%であることが好ましい。SiOの含有量が10%より多くなると、ガラスの軟化点が上昇する傾向にあり、低温焼結が困難となる。結果として、焼成時に無機蛍光体粉末が劣化しやすくなり、波長変換部材の発光強度低下の原因となる。また、ガラスが分相しやすくなる。 SiO 2 is a component that stabilizes the glass in the same manner as Al 2 O 3 . The content of SiO 2 is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. When the content of SiO 2 exceeds 10%, the softening point of the glass tends to increase, and low-temperature sintering becomes difficult. As a result, the inorganic phosphor powder easily deteriorates during firing, which causes a decrease in the emission intensity of the wavelength conversion member. Moreover, it becomes easy to phase-separate glass.

LiOはガラスの軟化点を著しく低下させるとともに、無機蛍光体粉末の発光強度を向上させる効果が大きい成分である。LiOの含有量は0〜10%、0〜7%、特に1〜5%であることが好ましい。LiOの含有量が10%より多くなると、ガラスが著しく不安定になってガラス化しにくくなる。 Li 2 O is a component that greatly reduces the softening point of the glass and has a large effect of improving the emission intensity of the inorganic phosphor powder. The content of Li 2 O is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. When the content of Li 2 O is more than 10%, the glass becomes extremely unstable and becomes difficult to vitrify.

NaOはガラスの軟化点を低下させるとともに、無機蛍光体粉末の発光強度を向上させる効果を有する成分である。NaOの含有量は0〜10%、0〜7%、1〜5%であることが好ましい。NaOの含有量が10%より多くなると、ガラスが不安定になってガラス化しにくくなる。 Na 2 O is a component that has the effect of lowering the softening point of the glass and improving the emission intensity of the inorganic phosphor powder. The content of Na 2 O is preferably 0 to 10%, 0 to 7%, or 1 to 5%. When the content of Na 2 O is more than 10%, the glass becomes unstable and becomes difficult to vitrify.

Oはガラスの軟化点を低下させるとともに、無機蛍光体粉末の発光強度を向上させる効果を有する成分である。KOの含有量は0〜10%、0〜7%、特に1〜5%であることが好ましい。KOの含有量が10%より多くなると、ガラスが不安定になってガラス化しにくくなる。 K 2 O is a component having an effect of lowering the softening point of the glass and improving the emission intensity of the inorganic phosphor powder. The content of K 2 O is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. If the content of K 2 O is more than 10%, the glass becomes unstable and is difficult to vitrify.

なお、LiO、NaOおよびKOを合量で0〜10%、0〜7%、特に1〜5%とすることが好ましい。これら成分の合量が10%より多くなると、ガラスが不安定になってガラス化しにくくなる。 Incidentally, 0% Li 2 O, Na 2 O and K 2 O in total 0 to 7%, and particularly preferably 1 to 5%. If the total amount of these components exceeds 10%, the glass becomes unstable and it is difficult to vitrify.

MgOはガラスを安定化させてガラス化しやすくするとともに、無機蛍光体粉末の発光強度を向上させる効果が大きい成分である。MgOの含有量は0〜10%、0〜7%、特に1〜5%であることが好ましい。MgOの含有量が10%より多くなると、ガラスが失透しやすく、透過率が低下する傾向にあり、結果として、高い発光強度を有する波長変換部材が得られにくくなる。   MgO is a component that has a great effect of stabilizing the glass to facilitate vitrification and improving the emission intensity of the inorganic phosphor powder. The content of MgO is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. When the content of MgO is more than 10%, the glass tends to be devitrified and the transmittance tends to decrease, and as a result, it becomes difficult to obtain a wavelength conversion member having high emission intensity.

CaOはガラスを安定化させてガラス化しやすくする成分である。CaOの含有量は0〜10%、0〜7%、特に1〜5%であることが好ましい。CaOの含有量が10%より多くなると、ガラスが失透しやすく、ガラスの透過率が低下する傾向にあり、結果として、高い発光強度を有する波長変換部材が得られにくくなる。   CaO is a component that stabilizes glass and facilitates vitrification. The content of CaO is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. If the content of CaO is more than 10%, the glass tends to be devitrified, and the transmittance of the glass tends to decrease. As a result, it becomes difficult to obtain a wavelength conversion member having high emission intensity.

SrOはガラスを安定化させてガラス化しやすくする成分である。SrOの含有量は0〜10%、0〜7%、特に1〜5%であることが好ましい。SrOの含有量が10%より多くなると、ガラスが失透しやすく、透過率が低下する傾向にあり、結果として、高い発光強度を有する波長変換部材が得られにくくなる。   SrO is a component that stabilizes glass and facilitates vitrification. The content of SrO is preferably 0 to 10%, 0 to 7%, particularly 1 to 5%. If the SrO content is more than 10%, the glass tends to be devitrified, and the transmittance tends to decrease. As a result, it becomes difficult to obtain a wavelength conversion member having high emission intensity.

BaOはガラスを安定化させてガラス化しやすくする成分である。BaOの含有量は0〜5%、0〜3%、0.1〜1%であることが好ましい。BaOの含有量が5%より多くなると、ガラスが著しく失透しやすく、透過率が低下する傾向にあり、結果として、高い発光強度を有する波長変換部材が得られにくくなる。   BaO is a component that stabilizes glass and facilitates vitrification. The BaO content is preferably 0 to 5%, 0 to 3%, and 0.1 to 1%. If the content of BaO is more than 5%, the glass tends to devitrify significantly and the transmittance tends to decrease. As a result, it becomes difficult to obtain a wavelength conversion member having high emission intensity.

なお、MgO、CaO、SrOおよびBaOを合量で0〜10%、0〜7%、特に1〜5%とすることが好ましい。これら成分の合量が10%より多くなると、ガラスが失透しやすく、透過率が低下する傾向にあり、結果として、高い発光強度を有する波長変換部材が得られにくくなる。   In addition, it is preferable that MgO, CaO, SrO and BaO are 0 to 10%, 0 to 7%, particularly 1 to 5% in total. When the total amount of these components exceeds 10%, the glass tends to be devitrified, and the transmittance tends to decrease. As a result, it becomes difficult to obtain a wavelength conversion member having high emission intensity.

また、上記成分以外にも、本発明の主旨を損なわない範囲で種々の成分を添加することができる。例えば、耐候性を向上させるために、ZnO、Ta、TiO、Nb、Gd、Laを合量で10%まで添加してもよい。 In addition to the above components, various components can be added as long as the gist of the present invention is not impaired. For example, in order to improve the weather resistance, ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 may be added up to 10% in total.

ただし、Fe、Cr、CoO、CuO、NiO等の着色成分を添加すると、ガラスが着色して内部透過率が低下するため、これら成分は合量で0.02%以下に制限することが好ましい。 However, when colored components such as Fe 2 O 3 , Cr 2 O 3 , CoO, CuO, NiO are added, the glass is colored and the internal transmittance is lowered. Therefore, these components are combined in an amount of 0.02% or less. It is preferable to limit.

ガラス粉末の平均粒径D50は0.1〜10μm、1〜10μm、特に1〜4μmであることが好ましい。ガラス粉末の平均粒径D50が0.1μm未満であると、静電気を帯びやすくなり、取り扱いが困難になる傾向がある。一方、平均粒径D50が10μmを超えると、焼成して得られる波長変換部材において、ガラス粒子に起因するヌケが発生しやすくなり、色度ばらつきが大きくなる傾向がある。   The average particle diameter D50 of the glass powder is preferably 0.1 to 10 μm, 1 to 10 μm, particularly 1 to 4 μm. When the average particle diameter D50 of the glass powder is less than 0.1 μm, it tends to be charged with static electricity and tends to be difficult to handle. On the other hand, when the average particle diameter D50 exceeds 10 μm, in the wavelength conversion member obtained by firing, the leakage due to the glass particles tends to occur, and the chromaticity variation tends to increase.

ガラス粉末は、ボールミル、らいかい機、ジェットミル、ビーズミル等の公知の粉砕装置を使用して、所望の平均粒径に調整すればよい。   The glass powder may be adjusted to a desired average particle size by using a known pulverizing apparatus such as a ball mill, a rake machine, a jet mill, or a bead mill.

ガラス粉末の軟化点は500℃以下、450℃以下、特に400℃以下であることが好ましい。軟化点が500℃を超えると、低温焼結が困難となる。結果として、焼成時に無機蛍光体粉末が劣化しやすくなり、波長変換部材の発光強度低下の原因となる。   The softening point of the glass powder is preferably 500 ° C. or lower, 450 ° C. or lower, and particularly preferably 400 ° C. or lower. If the softening point exceeds 500 ° C., low-temperature sintering becomes difficult. As a result, the inorganic phosphor powder easily deteriorates during firing, which causes a decrease in the emission intensity of the wavelength conversion member.

本発明において使用される無機蛍光体粉末としては、紫外または可視の励起光を入射すると、当該励起光の波長よりも長波長の蛍光を発するものが挙げられる。例えば、可視光線からなる励起光を入射すると当該励起光の色相に対して補色の蛍光を発する無機蛍光体粉末を用いると、透過した励起光と蛍光との合成により白色光が得られるため、容易に白色LEDデバイスを製造することができる。例えば、可視光線からなる励起光が中心波長430〜490nmを有する光線であり、蛍光が中心波長530〜590nmを有する光線であると、容易に白色光が得ることができる。   Examples of the inorganic phosphor powder used in the present invention include those that emit fluorescence having a wavelength longer than the wavelength of the excitation light when ultraviolet or visible excitation light is incident. For example, when an inorganic phosphor powder that emits complementary fluorescence to the hue of the excitation light when incident excitation light composed of visible light is incident, white light is easily obtained by synthesizing the transmitted excitation light and fluorescence. A white LED device can be manufactured. For example, when the excitation light composed of visible light is light having a central wavelength of 430 to 490 nm and fluorescence is light having a central wavelength of 530 to 590 nm, white light can be easily obtained.

本発明において使用可能な無機蛍光体粉末の具体例としては、一般に市場で入手できるものであれば特に限定されない。例えば、YAG等のガーネット系やその他の酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物、ハロリン酸塩化物などからなるものが挙げられる。   Specific examples of the inorganic phosphor powder that can be used in the present invention are not particularly limited as long as they are generally available on the market. Examples thereof include garnets such as YAG and other oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, halophosphates, and the like.

上記無機蛍光体粉末の中でも、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)、赤色(波長600〜700nm)に発光するものを用いることが好ましい。   Among the inorganic phosphor powders, those having an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength 540) ˜595 nm) and red (wavelength of 600 to 700 nm) are preferably used.

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体粉末としては、Sr(POCl:Eu2+、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+などが挙げられる。 Examples of inorganic phosphor powder that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、SrSiOn:Eu2+、ZnS:Al3+,Cu、CaS:Sn2+、CaS:Sn2+,F、CaSO:Ce3+,Mn2+、LiAlO:Mn2+、BaMgAl1017:Eu2+,Mn2+、ZnS:Cu,Cl、CaWO:U、CaSiOCl:Eu2+、Sr0.2Ba0.7Cl1.1Al3.45:Ce3+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、ZnO:S、ZnO:Zn、CaBa(POCl:Eu2+、BaAl:Eu2+などが挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm, SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS : In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ , ZnS: Al 3+ , Cu + , CaS: Sn 2+ , CaS: Sn 2+ , F, CaSO 4 : Ce 3+ , Mn 2+ , LiAlO 2 : Mn 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , ZnS: Cu + , Cl , Ca 3 WO 6 : U, Ca 3 SiO 4 Cl 2: Eu 2+, Sr 0.2 Ba 0.7 Cl 1.1 Al 2 O 3.45: Ce 3+ Mn 2+, Ba 2 MgSi 2 O 7: Eu 2+, Ba 2 SiO 4: Eu 2+, Ba 2 Li 2 Si 2 O 7: Eu 2+, ZnO: S, ZnO: Zn, Ca 2 Ba 3 (PO 4) 3 Cl: Eu 2+ , BaAl 2 O 4 : Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、SrSiOn:Eu2+などが挙げられる。 Examples of inorganic phosphor powders that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、ZnS:Eu2+、Ba(POCl:U、SrWO:U、CaGa:Eu2+、SrSO:Eu2+,Mn2+、ZnS:P、ZnS:P3−,Cl、ZnS:Mn2+などが挙げられる。 Examples of inorganic phosphor powder that emits yellow fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include ZnS: Eu 2+ , Ba 5 (PO 4 ) 3 Cl: U, Sr 3 WO 6 : U, CaGa 2 S 4 : Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ , ZnS: P, ZnS: P 3− , Cl , ZnS: Mn 2+ and the like can be mentioned.

波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、Y(Al,Gd)12:Ce2+、Ba(POCl:U、CaGa:Eu2+、SrSiO:Eu2+が挙げられる。 As an inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm, Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ba 5 (PO 4 ) 3 Cl: U, CaGa 2 S 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、CaS:Yb2+,Cl、GdGa12:Cr3+、CaGa:Mn2+、Na(Mg,Mn)LiSi10:Mn、ZnS:Sn2+、YAl12:Cr3+、SrB13:Sm2+、MgSrSi:Eu2+,Mn2+、α−SrO・3B:Sm2+、ZnS−CdS、ZnSe:Cu,Cl、ZnGa:Mn2+、ZnO:Bi3+、BaS:Au,K、ZnS:Pb2+、ZnS:Sn2+,Li、ZnS:Pb,Cu、CaTiO:Pr3+、CaTiO:Eu3+、Y:Eu3+、(Y、Gd):Eu3+、CaS:Pb2+,Mn2+、YPO:Eu3+、CaMgSi:Eu2+,Mn2+、Y(P、V)O:Eu3+、YS:Eu3+、SrAl:Eu3+、CaYAlO:Eu3+、LaOS:Eu3+、LiW:Eu3+,Sm3+、(Sr,Ca,Ba,Mg)10(POCl:Eu2+,Mn2+、BaMgSi:Eu2+,Mn2+などが挙げられる。 Examples of the inorganic phosphor powder that emits red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include CaS: Yb 2+ , Cl, Gd 3 Ga 4 O 12 : Cr 3+ , CaGa 2 S 4 : Mn. 2+ , Na (Mg, Mn) 2 LiSi 4 O 10 F 2 : Mn, ZnS: Sn 2+ , Y 3 Al 5 O 12 : Cr 3+ , SrB 8 O 13 : Sm 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , α-SrO · 3B 2 O 3 : Sm 2+ , ZnS—CdS, ZnSe: Cu + , Cl, ZnGa 2 S 4 : Mn 2+ , ZnO: Bi 3+ , BaS: Au, K, ZnS: Pb 2+ , ZnS: Sn 2+ , Li + , ZnS: Pb, Cu, CaTiO 3 : Pr 3+ , CaTiO 3 : Eu 3+ , Y 2 O 3 : Eu 3+ , ( Y, Gd) 2 O 3 : Eu 3+ , CaS: Pb 2+ , Mn 2+ , YPO 4 : Eu 3+ , Ca 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ , Y (P, V) O 4 : Eu 3+ , Y 2 O 2 S: Eu 3+ , SrAl 4 O 7 : Eu 3+ , CaYAlO 4 : Eu 3+ , LaO 2 S: Eu 3+ , LiW 2 O 8 : Eu 3+ , Sm 3+ , (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , Mn 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Mn 2+ and the like.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、ZnS:Mn2+,Te2+、MgTiO:Mn4+、KSiF:Mn4+、SrS:Eu2+、CaS:Eu2+、Na1.230.42Eu0.12TiSi11、Na1.230.42Eu0.12TiSi13:Eu3+、CdS:In,Te、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、Euなどが挙げられる。 Examples of inorganic phosphor powders that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include ZnS: Mn 2+ , Te 2+ , Mg 2 TiO 4 : Mn 4+ , K 2 SiF 6 : Mn 4+ , SrS: Eu 2+ , CaS: Eu 2+ , Na 1.23 K 0.42 Eu 0.12 TiSi 4 O 11 , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 : Eu 3+ , CdS: In, Te CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , Eu 2 W 2 O 7 and the like.

なお、励起光や発光の波長域に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する無機蛍光体粉末を混合して使用すればよい。   A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders emitting blue, green, yellow, and red fluorescence may be mixed and used.

無機粉末中における無機蛍光体粉末の含有量が多くなりすぎると、焼結しにくくなり、気孔率が大きくなって、光散乱損失が大きくなるなどの問題が生じる。一方、無機蛍光体粉末の含有量が少なすぎると、十分な発光が得られにくくなる。よって、無機粉末における無機蛍光体粉末の含有量は、0.01〜30質量%、0.05〜20質量%、特に0.08〜15質量%であることが好ましい。   When the content of the inorganic phosphor powder in the inorganic powder is too large, it becomes difficult to sinter, resulting in problems such as increased porosity and increased light scattering loss. On the other hand, when there is too little content of inorganic fluorescent substance powder, it becomes difficult to obtain sufficient light emission. Therefore, the content of the inorganic phosphor powder in the inorganic powder is preferably 0.01 to 30% by mass, 0.05 to 20% by mass, and particularly 0.08 to 15% by mass.

本発明の蛍光体含有組成物においては、有機樹脂として、ポリアルキレンカーボネート系樹脂が使用される。ポリアルキレンカーボネート系樹脂とは、アルキレン基およびカーボネート基からなるアルキレンカーボネート構造を有する重合体である。ポリアルキレンカーボネート系樹脂としては、ポリエチレンカーボネート系樹脂、ポリプロピレンカーボネート系樹脂、ポリブテンカーボネート系樹脂、ポリペンテンカーボネート系樹脂、ポリヘキセンカーボネート系樹脂等が挙げられる。なかでも、熱処理により比較的容易に分解しやすい点で、ポリエチレンカーボネート系樹脂およびポリプロピレンカーボネート系樹脂を使用することが好ましい。   In the phosphor-containing composition of the present invention, a polyalkylene carbonate resin is used as the organic resin. The polyalkylene carbonate-based resin is a polymer having an alkylene carbonate structure composed of an alkylene group and a carbonate group. Examples of the polyalkylene carbonate resin include polyethylene carbonate resin, polypropylene carbonate resin, polybutene carbonate resin, polypentene carbonate resin, polyhexene carbonate resin, and the like. Among these, it is preferable to use a polyethylene carbonate resin and a polypropylene carbonate resin because they are relatively easily decomposed by heat treatment.

ポリアルキレンカーボネート系樹脂の重量平均分子量は特に限定されず、例えば、1万〜100万、さらには20万〜50万の範囲のものを使用することができる。   The weight average molecular weight of the polyalkylene carbonate-based resin is not particularly limited, and, for example, those in the range of 10,000 to 1,000,000, further 200,000 to 500,000 can be used.

本発明の蛍光体含有組成物において、ポリアルキレンカーボネート系樹脂の含有量は、無機粉末100質量部に対し、0.1〜20質量部、0.5〜15質量部、1〜10質量部、特に1〜5質量部であることが好ましい。ポリアルキレンカーボネート系樹脂の含有量が0.1質量部未満であると、顆粒の作製が困難になる傾向がある。一方、ポリアルキレンカーボネート系樹脂の含有量が20質量部を超えると、焼成後に炭素成分が残存しやすくなり、波長変換部材の発光強度低下の原因となる傾向がある。   In the phosphor-containing composition of the present invention, the content of the polyalkylene carbonate-based resin is 0.1 to 20 parts by mass, 0.5 to 15 parts by mass, 1 to 10 parts by mass with respect to 100 parts by mass of the inorganic powder. In particular, it is preferably 1 to 5 parts by mass. If the content of the polyalkylene carbonate resin is less than 0.1 parts by mass, it tends to be difficult to produce granules. On the other hand, when the content of the polyalkylene carbonate-based resin exceeds 20 parts by mass, the carbon component tends to remain after firing, which tends to cause a decrease in emission intensity of the wavelength conversion member.

本発明の蛍光体含有組成物は顆粒状であることが好ましい。顆粒の平均粒径D50は、10〜300μm、特に40〜100μmであることが好ましい。顆粒の平均粒径D50が10μm未満であると、流動性に劣り、金型への充填量にばらつきが生じやすくなる。一方、顆粒の平均粒径D50が300μmを超えると、金型への充填する際に、粒子間の空隙が大きくなり、やはり充填量にばらつきが生じやすくなる。したがって、いずれの場合も、焼成後に得られる波長変換部材の寸法精度に劣り、また発光強度にばらつきが生じやすくなる。   The phosphor-containing composition of the present invention is preferably granular. The average particle diameter D50 of the granules is preferably 10 to 300 μm, particularly 40 to 100 μm. When the average particle diameter D50 of the granules is less than 10 μm, the fluidity is inferior and the filling amount in the mold tends to vary. On the other hand, when the average particle diameter D50 of the granules exceeds 300 μm, the gap between the particles becomes large when filling the mold, and the filling amount is likely to vary. Therefore, in any case, the dimensional accuracy of the wavelength conversion member obtained after firing is inferior, and the emission intensity tends to vary.

本発明の蛍光体含有組成物は、ガラス粉末および無機蛍光体粉末を含有する無機粉末と、溶媒に溶解させたポリアルキレンカーボネート系樹脂とを混合した後、脱溶媒することにより作製することができる。   The phosphor-containing composition of the present invention can be prepared by mixing an inorganic powder containing a glass powder and an inorganic phosphor powder and a polyalkylene carbonate resin dissolved in a solvent and then removing the solvent. .

溶媒としては、アセトン、炭酸ジメチル等の公知の有機溶媒が挙げられる。   Examples of the solvent include known organic solvents such as acetone and dimethyl carbonate.

無機粉末と溶媒に溶解させたポリアルキレンカーボネート系樹脂の混合方法は特に限定されず、容器内で両者を混練してもよく、無機粉末に対して溶媒に溶解させたポリアルキレンカーボネート系樹脂を噴霧してもよい。   The mixing method of the inorganic powder and the polyalkylene carbonate resin dissolved in the solvent is not particularly limited, and both may be kneaded in a container, and the inorganic powder is sprayed with the polyalkylene carbonate resin dissolved in the solvent. May be.

脱溶媒の方法は特に限定されないが、造粒機により行うことが好ましい。これにより、所望の粒径を有する略球形の顆粒状の蛍光体含有組成物を容易に作製することが可能となる。造粒機としては特に限定されず、一般的な撹拌式造粒機のほか、スプレードライヤーであってもよい。なお、目的とする蛍光体含有組成物の平均粒径によって、使用する造粒機を選択することが好ましい。例えば、平均粒径D50が150μm以下の蛍光体含有組成物を作製する場合はスプレードライヤーを使用することが好ましく、平均粒径が150μmより大きい蛍光体含有組成物を作製する場合は撹拌式造粒機を使用することが好ましい。   The method for removing the solvent is not particularly limited, but it is preferably performed by a granulator. This makes it possible to easily produce a substantially spherical granular phosphor-containing composition having a desired particle size. It does not specifically limit as a granulator, A spray dryer other than a general stirring type granulator may be sufficient. In addition, it is preferable to select the granulator to be used according to the average particle diameter of the target fluorescent substance-containing composition. For example, when preparing a phosphor-containing composition having an average particle diameter D50 of 150 μm or less, it is preferable to use a spray dryer, and when preparing a phosphor-containing composition having an average particle diameter larger than 150 μm, stirring granulation It is preferable to use a machine.

本発明の波長変換部材は、前記蛍光体含有組成物を所定形状に成形して予備成形体を得る工程、予備成形体を熱処理して脱脂する工程、脱脂後の予備成形体を、ガラス粉末の軟化点以上の温度で焼成する工程、を経ることにより作製することができる。   The wavelength conversion member of the present invention comprises a step of forming the phosphor-containing composition into a predetermined shape to obtain a preform, a step of heat-treating the preform and degreasing, and a preform after degreasing of the glass powder. It can be manufactured through a step of baking at a temperature equal to or higher than the softening point.

予備成形体は、例えば、蛍光体含有組成物を金型に充填してプレス成形することにより作製することができる。   The preform can be produced, for example, by filling a phosphor-containing composition in a mold and press molding.

予備成形体の熱処理は、ポリアルキレンカーボネート系樹脂が十分に分解(脱脂)する温度であれば特に限定されず、例えば200〜400℃、特に250〜350℃で行うことが好ましい。   The heat treatment of the preform is not particularly limited as long as the polyalkylene carbonate-based resin is sufficiently decomposed (degreased), and is preferably performed at, for example, 200 to 400 ° C, particularly 250 to 350 ° C.

脱脂後の予備成形体の焼成温度は、ガラス粉末の軟化点以上で行われる。上限は特に限定されるものではないが、焼成温度が高すぎると、無機蛍光体粉末がガラス粉末と反応して劣化しやすくなるため、軟化点+100℃以下、特に軟化点+50℃以下であることが好ましい。   The calcining temperature of the preform after degreasing is performed at or above the softening point of the glass powder. The upper limit is not particularly limited, but if the firing temperature is too high, the inorganic phosphor powder reacts with the glass powder and tends to deteriorate, so the softening point is + 100 ° C. or less, especially the softening point + 50 ° C. or less. Is preferred.

脱脂後の予備成形体の焼成雰囲気は、不活性雰囲気であることが好ましい。特に、SnO−P系ガラスは、大気中で焼結するとSn成分が酸化され、十分に焼結しないという問題がある。また、不活性雰囲気焼成であれば、焼成時における無機蛍光体粉末の劣化を抑制することが可能となる。 The firing atmosphere of the preform after degreasing is preferably an inert atmosphere. In particular, SnO—P 2 O 5 glass has a problem that when it is sintered in the air, the Sn component is oxidized and does not sinter sufficiently. Moreover, if it is an inert atmosphere baking, it will become possible to suppress degradation of the inorganic fluorescent substance powder at the time of baking.

不活性雰囲気としては、真空、窒素、アルゴン等が挙げられる。真空雰囲気の真空度は特に限定されないが、例えば10−5〜10Paの範囲に調整することが好ましい。 Examples of the inert atmosphere include vacuum, nitrogen, argon, and the like. Although the vacuum degree of a vacuum atmosphere is not specifically limited, For example, it is preferable to adjust to the range of 10 <-5 > -10 < 4 > Pa.

本発明の波長変換部材は、青色、紫外、近紫外のLEDチップ等と組み合わせることにより、白色LEDあるいは白色以外の有色LEDとして使用することが可能である。波長変換部材の形状は、必要に応じて、球状、半球状、メニスカスレンズ状、箱状、円錐状、薄板状とすることが可能である。   The wavelength conversion member of the present invention can be used as a white LED or a colored LED other than white by combining with a blue, ultraviolet, or near ultraviolet LED chip. The shape of the wavelength conversion member can be spherical, hemispherical, meniscus lens, box, conical, or thin plate as required.

以下、実施例に基づき本発明を説明するが、本発明はかかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

(実施例1)
(1)蛍光体含有組成物の作製
まず、モル%で、SnO 59% P 26% B 13% Al 2%の組成となるように、ガラス原料を秤量した。ガラス原料をアルミナ坩堝に投入し、電気炉内で950℃、窒素雰囲気にて2時間溶融した。その後、ガラス融液を一対の冷却ロール間に流し込みフィルム状に成形し、次いでそのフィルムガラスをジェットミルを用いて粉砕し、ガラス粉末(平均粒径D50=3μm、軟化点400℃)を得た。
Example 1
(1) Production of phosphor-containing composition First, glass raw materials were weighed so as to have a composition of mol%, SnO 59% P 2 O 5 26% B 2 O 3 13% Al 2 O 3 2%. The glass raw material was put into an alumina crucible and melted in an electric furnace at 950 ° C. in a nitrogen atmosphere for 2 hours. Thereafter, the glass melt was poured between a pair of cooling rolls to form a film, and the film glass was then pulverized using a jet mill to obtain glass powder (average particle diameter D50 = 3 μm, softening point 400 ° C.). .

無機蛍光体粉末として、黄色発光を発するシリケート系蛍光体(Intematix社製、RSiO:Eu2+、R=アルカリ土類金属)を準備し、ガラス粉末:無機蛍光体粉末=95:5(質量比)となるように混合した。 As the inorganic phosphor powder, a silicate phosphor emitting yellow light (manufactured by Intematix, R 2 SiO 4 : Eu 2+ , R = alkaline earth metal) is prepared, and glass powder: inorganic phosphor powder = 95: 5 ( (Mass ratio).

ガラス粉末と無機蛍光体粉末の混合物100質量部に対し、10質量部に相当するポリプロピレンカーボネート樹脂を所定量のアセトンに溶解させた。その後、ガラス粉末、無機蛍光体粉末、ポリプロピレンカーボネート系樹脂溶液をスターラーで混合し、均一なスラリーを得た。   A polypropylene carbonate resin corresponding to 10 parts by mass was dissolved in a predetermined amount of acetone with respect to 100 parts by mass of a mixture of glass powder and inorganic phosphor powder. Thereafter, glass powder, inorganic phosphor powder, and polypropylene carbonate resin solution were mixed with a stirrer to obtain a uniform slurry.

得られたスラリーを、スプレードライヤーを用いて噴霧、乾燥させ、顆粒状の蛍光体含有組成物を得た。   The obtained slurry was sprayed and dried using a spray dryer to obtain a granular phosphor-containing composition.

(2)波長変換部材の作製
顆粒状の蛍光体含有組成物を、プレス機を用いて板状(10×10×0.5mm)にプレス成形して予備成形体を作製した。予備成形体を雰囲気置換炉に投入し、真空中(10Pa)、300℃で1時間脱脂した後、400℃まで昇温し、30分保持して焼成を行い、波長変換部材を作製した。
(2) Production of Wavelength Conversion Member A granular phosphor-containing composition was press-molded into a plate shape (10 × 10 × 0.5 mm) using a press to produce a preform. The preform was put into an atmosphere substitution furnace, degreased in vacuum (10 3 Pa) at 300 ° C. for 1 hour, heated to 400 ° C., held for 30 minutes and fired to prepare a wavelength conversion member. .

(3)全光束値の測定
波長460nmの青色LED上に波長変換部材を設置し、校正された積分球内で電流600mAで青色LEDを点灯させた。得られた光を光ファイバーを通して小型分光器(オーシャンオプティクス製 USB−4000)に取り込み、制御PC上に発光スペクトル(エネルギー分布曲線)を得た(図1)。制御ソフト(オーシャンフォトニクス製 OP Wave)を用いて、発光スペクトルから全光束値(lm)を算出した。結果を表1に示す。
(3) Measurement of total luminous flux value A wavelength conversion member was installed on a blue LED having a wavelength of 460 nm, and the blue LED was turned on at a current of 600 mA in a calibrated integrating sphere. The obtained light was taken into a small spectroscope (USB-4000 manufactured by Ocean Optics) through an optical fiber, and an emission spectrum (energy distribution curve) was obtained on the control PC (FIG. 1). The total luminous flux value (lm) was calculated from the emission spectrum using control software (OP Wave manufactured by Ocean Photonics). The results are shown in Table 1.

(実施例2)
樹脂溶液として、ガラス粉末と無機蛍光体粉末の混合物100質量部に対し、10質量部に相当するポリエチレンカーボネート樹脂を所定量の炭酸ジメチルに溶解させたものを使用した以外は、実施例1と同様の方法で顆粒状の蛍光体含有組成物を得た。
(Example 2)
The resin solution was the same as in Example 1 except that a resin solution in which a polyethylene carbonate resin corresponding to 10 parts by mass was dissolved in a predetermined amount of dimethyl carbonate with respect to 100 parts by mass of a mixture of glass powder and inorganic phosphor powder was used. A granular phosphor-containing composition was obtained by this method.

さらに、得られた蛍光体含有組成物を用いて、実施例1と同様の方法で予備成型および焼成を行い、波長変換部材を作製した。得られた波長変換部材について、実施例1と同様の方法により全光束値を測定した。得られたスペクトルは、図1とほぼ同様であった。   Furthermore, using the obtained phosphor-containing composition, preforming and firing were performed in the same manner as in Example 1 to prepare a wavelength conversion member. With respect to the obtained wavelength conversion member, the total luminous flux value was measured by the same method as in Example 1. The obtained spectrum was almost the same as in FIG.

(比較例)
ポリプロピレンカーボネートの代わりにアクリル樹脂(商品名:エルバサイト2044)を使用した以外は、実施例と同様の方法で蛍光体含有組成物および波長変換部材を作製した。
(Comparative example)
A phosphor-containing composition and a wavelength conversion member were produced in the same manner as in the examples except that an acrylic resin (trade name: Elbasite 2044) was used instead of polypropylene carbonate.

得られた波長変換部材について、実施例1と同様の方法により全光束値を測定した。結果を表1に示す。   With respect to the obtained wavelength conversion member, the total luminous flux value was measured by the same method as in Example 1. The results are shown in Table 1.

実施例1および2では、外観が透明な波長変換部材が得られ、白色光が得られた。一方、比較例の波長変換部材は、外観が不透明であり、全く発光しなかった。   In Examples 1 and 2, a wavelength conversion member having a transparent appearance was obtained, and white light was obtained. On the other hand, the wavelength conversion member of the comparative example was opaque in appearance and did not emit light at all.

Claims (15)

ガラス粉末および無機蛍光体粉末を含有する無機粉末と、ポリアルキレンカーボネート系樹脂とを含有することを特徴とする蛍光体含有組成物。   A phosphor-containing composition comprising: an inorganic powder containing glass powder and an inorganic phosphor powder; and a polyalkylene carbonate resin. ポリアルキレンカーボネート系樹脂が、ポリエチレンカーボネート系樹脂またはポリプロピレンカーボネート系樹脂であることを特徴とする請求項1に記載の蛍光体含有組成物。   The phosphor-containing composition according to claim 1, wherein the polyalkylene carbonate resin is a polyethylene carbonate resin or a polypropylene carbonate resin. 無機粉末100質量部に対して、ポリアルキレンカーボネート系樹脂を0.1〜20質量部含有することを特徴とする請求項1または2に記載の蛍光体含有組成物。   The phosphor-containing composition according to claim 1 or 2, comprising 0.1 to 20 parts by mass of a polyalkylene carbonate-based resin with respect to 100 parts by mass of the inorganic powder. ガラス粉末が、SnO−P系ガラスであることを特徴とする請求項1〜3のいずれかに記載の蛍光体含有組成物。 The phosphor-containing composition according to claim 1, wherein the glass powder is SnO—P 2 O 5 glass. SnO−P系ガラスが、組成としてモル%で、SnO 35〜80%、P 5〜40%、B 0〜30%を含有することを特徴とする請求項4に記載の蛍光体含有組成物。 SnO-P 2 O 5 based glass, in mol% as the composition, according to claim 4, characterized in that it contains SnO 35~80%, P 2 O 5 5~40%, the 2 O 3 0 to 30% B 2. The phosphor-containing composition according to 1. 無機蛍光体粉末が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物から選ばれた少なくとも1種であることを特徴とする請求項1〜5のいずれかに記載の蛍光体含有組成物。   The inorganic phosphor powder is at least one selected from oxide, nitride, oxynitride, sulfide, oxysulfide, rare earth sulfide, aluminate chloride, and halophosphate chloride The phosphor-containing composition according to any one of claims 1 to 5. 無機粉末における無機蛍光体粉末の含有量が0.01〜30質量%であることを特徴とする請求項1〜6のいずれかに記載の蛍光体含有組成物。   Content of the inorganic fluorescent substance powder in inorganic powder is 0.01-30 mass%, The fluorescent substance containing composition in any one of Claims 1-6 characterized by the above-mentioned. 顆粒状であることを特徴とする請求項1〜7のいずれかに記載の蛍光体含有組成物。   The phosphor-containing composition according to claim 1, wherein the phosphor-containing composition is granular. 請求項1〜8のいずれかに記載の蛍光体含有組成物を焼成してなることを特徴とする波長変換部材。   A wavelength conversion member obtained by firing the phosphor-containing composition according to claim 1. 請求項9に記載の波長変換部材を用いたことを特徴とするLEDデバイス。   An LED device using the wavelength conversion member according to claim 9. 請求項1〜8のいずれかに記載の蛍光体含有組成物を製造する方法であって、ガラス粉末および無機蛍光体粉末を含有する無機粉末と、溶媒に溶解させたポリアルキレンカーボネート系樹脂とを混合した後、脱溶媒することを特徴とする蛍光体含有組成物の製造方法。   A method for producing the phosphor-containing composition according to any one of claims 1 to 8, comprising: an inorganic powder containing glass powder and an inorganic phosphor powder; and a polyalkylene carbonate-based resin dissolved in a solvent. A process for producing a phosphor-containing composition, wherein the solvent is removed after mixing. 脱溶媒を、造粒機により行うことを特徴とする請求項11に記載の蛍光体含有組成物の製造方法。   The method for producing a phosphor-containing composition according to claim 11, wherein the solvent removal is performed by a granulator. 請求項1〜8のいずれかに記載の蛍光体含有組成物を所定形状に成形して予備成形体を得る工程、予備成形体を熱処理して脱脂する工程、脱脂後の予備成形体を、ガラス粉末の軟化点以上の温度で焼成する工程、を含むことを特徴とする波長変換部材の製造方法。   A step of forming the phosphor-containing composition according to any one of claims 1 to 8 into a predetermined shape to obtain a preform, a step of heat-treating the preform and degreasing, and a preform after degreasing the glass And a step of firing at a temperature equal to or higher than the softening point of the powder. 脱脂後の予備成形体の焼成を、不活性雰囲気中で行うことを特徴とする請求項13に記載の波長変換部材の製造方法。   The method for producing a wavelength conversion member according to claim 13, wherein the preform after degreasing is fired in an inert atmosphere. 不活性雰囲気が、真空、窒素またはアルゴンであることを特徴とする請求項14に記載の波長変換部材の製造方法。   The method for producing a wavelength conversion member according to claim 14, wherein the inert atmosphere is vacuum, nitrogen, or argon.
JP2010195608A 2010-09-01 2010-09-01 Phosphor-containing composition and wavelength conversion member obtained by firing the same Pending JP2012052018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010195608A JP2012052018A (en) 2010-09-01 2010-09-01 Phosphor-containing composition and wavelength conversion member obtained by firing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010195608A JP2012052018A (en) 2010-09-01 2010-09-01 Phosphor-containing composition and wavelength conversion member obtained by firing the same

Publications (1)

Publication Number Publication Date
JP2012052018A true JP2012052018A (en) 2012-03-15

Family

ID=45905726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195608A Pending JP2012052018A (en) 2010-09-01 2010-09-01 Phosphor-containing composition and wavelength conversion member obtained by firing the same

Country Status (1)

Country Link
JP (1) JP2012052018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046308A1 (en) 2012-09-21 2014-03-27 Dow Corning Toray Co., Ltd. Highly refractive surface treatment agent, and fine member and optical material surface-treated using the same
WO2015022998A1 (en) 2013-08-14 2015-02-19 Dow Corning Toray Co., Ltd. Novel organic silicon compound, surface treatment agent containing same, resin composition containing same, and gel or cured product of same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226669A (en) * 2000-02-16 2001-08-21 Taiyo Ink Mfg Ltd Paste composition of fluorescent substance
JP2007039657A (en) * 2005-06-13 2007-02-15 Samsung Electronics Co Ltd Paste composition including mixed dispersant and displaying element by adopting the same
JP2008019421A (en) * 2006-06-14 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite material and phosphor composite member
JP2008143978A (en) * 2006-12-07 2008-06-26 Nippon Electric Glass Co Ltd Luminescent color converting material
JP2010185009A (en) * 2009-02-12 2010-08-26 Showa Denko Kk Raw material mixture for nitride-based or oxynitride-based fluorescent material and method for producing nitride-based or oxynitride-based fluorescent material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226669A (en) * 2000-02-16 2001-08-21 Taiyo Ink Mfg Ltd Paste composition of fluorescent substance
JP2007039657A (en) * 2005-06-13 2007-02-15 Samsung Electronics Co Ltd Paste composition including mixed dispersant and displaying element by adopting the same
JP2008019421A (en) * 2006-06-14 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite material and phosphor composite member
JP2008143978A (en) * 2006-12-07 2008-06-26 Nippon Electric Glass Co Ltd Luminescent color converting material
JP2010185009A (en) * 2009-02-12 2010-08-26 Showa Denko Kk Raw material mixture for nitride-based or oxynitride-based fluorescent material and method for producing nitride-based or oxynitride-based fluorescent material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046308A1 (en) 2012-09-21 2014-03-27 Dow Corning Toray Co., Ltd. Highly refractive surface treatment agent, and fine member and optical material surface-treated using the same
WO2015022998A1 (en) 2013-08-14 2015-02-19 Dow Corning Toray Co., Ltd. Novel organic silicon compound, surface treatment agent containing same, resin composition containing same, and gel or cured product of same
US10604658B2 (en) 2013-08-14 2020-03-31 Dow Toray Co., Ltd. Organic silicon compound, surface treatment agent containing same, resin composition containing same, and gel or cured product of same

Similar Documents

Publication Publication Date Title
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP5242905B2 (en) Luminescent color conversion member manufacturing method and luminescent color conversion member
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
WO2011111462A1 (en) Wavelength conversion member, optical device, and process for production of wavelength conversion member
JP2008021868A (en) Phosphor composite member
JP6425001B2 (en) Wavelength conversion material, wavelength conversion member and light emitting device
KR101785798B1 (en) Phosphor-dispersed glass
JP6222452B2 (en) Wavelength conversion member and light emitting device
JP2013055269A (en) Wavelength conversion member and light-emitting device
JP2013219123A (en) Wavelength conversion member and method for producing the same
JP2010229002A (en) SnO-P2O5 GLASS USED FOR PHOSPHOR COMPOSITE MATERIAL
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2011122067A (en) Wavelength conversion member and method for manufacturing the same
JP2012052061A (en) Phosphor composite member
JP2011222751A (en) Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP2013095849A (en) Wavelength conversion member and light emitting device using the same
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
JP2016084269A (en) Phosphor-dispersed glass
JP2012052018A (en) Phosphor-containing composition and wavelength conversion member obtained by firing the same
JP6617948B2 (en) Wavelength conversion member and light emitting device
CN111148726A (en) Glass for wavelength conversion material, wavelength conversion member, and light-emitting device
JP5713273B2 (en) Joining material and member joining method using the same
JP5807780B2 (en) Wavelength converting member and light emitting device using the same
CN111480098B (en) Wavelength conversion member and light emitting device using same
JP2013030536A (en) Light-emitting color conversion member and light-emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150603