JP6168284B2 - Wavelength conversion material, wavelength conversion member, and light emitting device - Google Patents

Wavelength conversion material, wavelength conversion member, and light emitting device Download PDF

Info

Publication number
JP6168284B2
JP6168284B2 JP2013077304A JP2013077304A JP6168284B2 JP 6168284 B2 JP6168284 B2 JP 6168284B2 JP 2013077304 A JP2013077304 A JP 2013077304A JP 2013077304 A JP2013077304 A JP 2013077304A JP 6168284 B2 JP6168284 B2 JP 6168284B2
Authority
JP
Japan
Prior art keywords
glass
wavelength conversion
powder
phosphor powder
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013077304A
Other languages
Japanese (ja)
Other versions
JP2014203899A (en
Inventor
藤田 直樹
直樹 藤田
克 岩尾
克 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013077304A priority Critical patent/JP6168284B2/en
Publication of JP2014203899A publication Critical patent/JP2014203899A/en
Application granted granted Critical
Publication of JP6168284B2 publication Critical patent/JP6168284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材を作製するための波長変換材料に関するものである。   The present invention relates to a wavelength conversion material for producing a wavelength conversion member that converts the wavelength of light emitted from a light emitting diode (LED) or a laser diode (LD) to another wavelength. .

近年、蛍光ランプや白熱灯に変わる次世代の光源として、LEDやLDを用いた光源に対する注目が高まってきている。そのような次世代光源の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。   In recent years, attention has been focused on light sources using LEDs and LDs as next-generation light sources that replace fluorescent lamps and incandescent lamps. As an example of such a next-generation light source, for example, Patent Document 1 discloses a light source in which a wavelength conversion member that absorbs part of light from an LED and converts it into yellow light is disposed on an LED that emits blue light. Is disclosed. This light source emits white light which is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.

波長変換部材としては、従来、樹脂マトリックス中に無機蛍光体粉末を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂が劣化し、光源の輝度が低くなりやすいという問題がある。特に、LEDが発する熱や高エネルギーの短波長(青色〜紫外)光によって樹脂が劣化し、変色や変形を起こすという問題がある。   As the wavelength conversion member, a material in which an inorganic phosphor powder is dispersed in a resin matrix has been conventionally used. However, when the wavelength conversion member is used, there is a problem that the resin is deteriorated by the light from the LED and the luminance of the light source tends to be lowered. In particular, there is a problem that the resin deteriorates due to heat generated by the LED or high-energy short wavelength (blue to ultraviolet) light, causing discoloration or deformation.

そこで、樹脂に代えてガラスマトリクス中に無機蛍光体粉末を分散固定した完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2参照)。当該波長変換部材は、無機蛍光体粉末の分散媒であるガラスがLEDチップの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。   Therefore, a wavelength conversion member made of a completely inorganic solid in which an inorganic phosphor powder is dispersed and fixed in a glass matrix instead of a resin has been proposed (for example, see Patent Document 2). The wavelength conversion member has a feature that glass, which is a dispersion medium of inorganic phosphor powder, is not easily deteriorated by the heat or irradiation light of the LED chip, and problems such as discoloration and deformation hardly occur.

特開2000−208815号公報JP 2000-208815 A 特開2003−258308号公報JP 2003-258308 A

上記波長変換部材は、ガラス粉末と無機蛍光体粉末の焼結体から構成されているため、ガラス粉末と無機蛍光体粉末の界面に粒界や気泡が存在する。当該粒界や気泡に起因して、内部散乱が増大し、励起光が無機蛍光体粉末に当たる頻度が多くなり、発光強度が高くなるという特徴がある。   Since the wavelength conversion member is composed of a sintered body of glass powder and inorganic phosphor powder, there are grain boundaries and bubbles at the interface between the glass powder and inorganic phosphor powder. Due to the grain boundaries and bubbles, the internal scattering increases, the excitation light hits the inorganic phosphor powder more frequently, and the emission intensity increases.

しかしながら、例えばガラスマトリクスと無機蛍光体粉末の屈折率差が小さい場合は、両者の界面における光の散乱が少なくなる。励起光が十分に拡散されずに直進成分が多くなると、励起光が無機蛍光体粉末に当たる頻度が少なくなるため、蛍光強度が低下する傾向がある。また、波長変換部材から射出される光が不均質になる傾向がある。   However, for example, when the difference in refractive index between the glass matrix and the inorganic phosphor powder is small, light scattering at the interface between the two is reduced. If the excitation light is not sufficiently diffused and the straight component increases, the frequency at which the excitation light hits the inorganic phosphor powder decreases, and the fluorescence intensity tends to decrease. Further, the light emitted from the wavelength conversion member tends to be inhomogeneous.

なお、波長変換部材における無機蛍光体粉末の含有量を多くすることにより、全体としてガラスマトリクスと無機蛍光体粉末の界面における光の散乱量は多くなるが、色度が所望の範囲から外れてしまうという別の問題が発生してしまう。   Increasing the content of the inorganic phosphor powder in the wavelength conversion member increases the amount of light scattering at the interface between the glass matrix and the inorganic phosphor powder as a whole, but the chromaticity falls outside the desired range. Another problem will occur.

以上に鑑み、本発明は、所望の色度範囲を維持しながら、均質かつ高い発光強度の光を得ることが可能な波長変換部材を作製するための波長変換材料を提供することを目的とする。   In view of the above, an object of the present invention is to provide a wavelength conversion material for producing a wavelength conversion member capable of obtaining light with uniform and high emission intensity while maintaining a desired chromaticity range. .

本発明の波長変換材料は、屈折率の異なる2種以上のガラス粉末と、無機蛍光体粉末とを含有することを特徴とする。   The wavelength conversion material of the present invention is characterized by containing two or more kinds of glass powders having different refractive indexes and an inorganic phosphor powder.

既述の通り、無機蛍光体粉末をガラスマトリクス中に分散させてなる波長変換部材において、励起光の直進成分が多いと、励起光が無機蛍光体粉末に当たる頻度が少なくなるため、蛍光強度が低下する。また、波長変換部材からの射出光が均質でなくなり、射出角度によって色度に差が生じてしまう。そこで、屈折率の異なる2種以上のガラス粉末と、無機蛍光体粉末とを含有する波長変換材料を用いることにより、ガラスマトリクス中に屈折率の異なる領域が緻密に形成された波長変換部材を作製することが可能となる。当該波長変換部材は、励起光の散乱作用が大きく、均質かつ高い発光強度の光を射出することが可能である。   As described above, in the wavelength conversion member in which the inorganic phosphor powder is dispersed in the glass matrix, if there is a large amount of the linear component of the excitation light, the frequency of the excitation light hitting the inorganic phosphor powder decreases, and the fluorescence intensity decreases. To do. Further, the light emitted from the wavelength conversion member is not uniform, and the chromaticity varies depending on the emission angle. Therefore, by using a wavelength conversion material containing two or more types of glass powders having different refractive indexes and inorganic phosphor powders, a wavelength conversion member in which regions having different refractive indexes are densely formed in a glass matrix is produced. It becomes possible to do. The wavelength conversion member has a large scattering effect of excitation light, and can emit light with uniform and high emission intensity.

なお、フィラーなどの光拡散材を波長変換材料に配合することにより、波長変換部材の光拡散性を向上させることは可能であるが、光拡散材の含有量が多すぎると、焼成時におけるガラス粉末の軟化流動が阻害されたり、光散乱損失が大きくなるといった問題がある。そのため、波長変換材料における光拡散材の配合量はあまり多くすることができない。一方、本発明では、焼成温度を適宜調整することにより、配合する各ガラス粉末を十分に軟化流動させることが可能であるため、所望の光散乱量を得ることでき、しかも上記のような光散乱損失の問題がほとんど生じない。   In addition, it is possible to improve the light diffusibility of the wavelength conversion member by blending a light diffusing material such as a filler into the wavelength conversion material, but if the content of the light diffusing material is too large, the glass during firing There are problems that the softening flow of the powder is hindered and the light scattering loss increases. Therefore, the amount of the light diffusing material in the wavelength conversion material cannot be increased too much. On the other hand, in the present invention, each glass powder to be blended can be sufficiently softened and flowed by appropriately adjusting the firing temperature, so that a desired amount of light scattering can be obtained, and the light scattering as described above. There is almost no loss problem.

各ガラス粉末間の屈折率差が0.001〜1であることが好ましい。   It is preferable that the refractive index difference between each glass powder is 0.001-1.

各ガラス粉末間の軟化点の差が150℃以下であることが好ましい。   It is preferable that the difference of the softening point between each glass powder is 150 degrees C or less.

ガラス粉末が、SiO−B−RO(RはMg、Ca、SrまたはBa)系ガラス、SiO−B−R’O(R’はLi、NaまたはKa)系ガラス、または、SiO−B−RO−R’O系ガラスからなることが好ましい。 Glass powder is SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr or Ba) glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li, Na or Ka) It is preferably made of glass or SiO 2 —B 2 O 3 —RO—R ′ 2 O-based glass.

無機蛍光体粉末が、窒化物蛍光体粉末、酸窒化物蛍光体粉末、酸化物蛍光体粉末、硫化物蛍光体粉末、酸硫化物蛍光体粉末、ハロゲン化物蛍光体粉末及びアルミン酸塩蛍光体粉末から選択される1種以上であることが好ましい。   Inorganic phosphor powder is nitride phosphor powder, oxynitride phosphor powder, oxide phosphor powder, sulfide phosphor powder, oxysulfide phosphor powder, halide phosphor powder and aluminate phosphor powder It is preferable that it is 1 or more types selected from.

無機蛍光体粉末を0.01〜50体積%を含有することが好ましい。   It is preferable to contain 0.01-50 volume% of inorganic fluorescent substance powder.

本発明の波長変換部材は、前記いずれかの波長変換材料を焼成してなることを特徴とする。   The wavelength conversion member of the present invention is obtained by firing any one of the wavelength conversion materials.

本発明の波長変換部材は、ガラスマトリクス中に無機蛍光体粉末が分散してなる波長変換部材であって、ガラスマトリクスが、互いに融着した、屈折率の異なる2種以上のガラス粉末から構成されていることを特徴とする。   The wavelength conversion member of the present invention is a wavelength conversion member in which inorganic phosphor powder is dispersed in a glass matrix, and the glass matrix is composed of two or more types of glass powders fused to each other and having different refractive indexes. It is characterized by.

本発明の発光デバイスは、波長変換部材、及び、波長変換部材に励起光を照射する光源を備えてなることを特徴とする。   The light-emitting device of the present invention includes a wavelength conversion member and a light source that irradiates the wavelength conversion member with excitation light.

本発明の波長変換部材の製造方法は、前記いずれかの波長変換材料を焼成する工程を含む、波長変換部材の製造方法であって、焼成温度が、各ガラス粉末のうち、最高軟化点を有するガラス粉末の軟化点以上であることを特徴とする。   The method for producing a wavelength conversion member of the present invention is a method for producing a wavelength conversion member comprising a step of firing any one of the wavelength conversion materials, wherein the firing temperature has the highest softening point of each glass powder. It is characterized by being above the softening point of the glass powder.

本発明によれば、所望の色度範囲を維持しながら、均質かつ高い発光強度の光を得ることが可能な波長変換部材を作製するための波長変換材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the wavelength conversion material for producing the wavelength conversion member which can obtain the light of uniform and high light emission intensity, maintaining a desired chromaticity range can be provided.

本発明の発光デバイスの一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the light-emitting device of this invention.

本発明の波長変換材料は、屈折率の異なる2種以上のガラス粉末と、無機蛍光体粉末とを含有することを特徴とする。   The wavelength conversion material of the present invention is characterized by containing two or more kinds of glass powders having different refractive indexes and an inorganic phosphor powder.

各ガラス粉末間の屈折率差が小さすぎると、十分な光散乱性が得られにくくなる。一方、屈折率差が大きすぎると、励起光の散乱が過剰になり、散乱損失となって逆に発光効率が低下する傾向がある。以上に鑑み、各ガラス粉末間の屈折率差は、好ましくは0.001〜1、より好ましくは0.01〜0.5である。   If the refractive index difference between the glass powders is too small, it becomes difficult to obtain sufficient light scattering properties. On the other hand, if the refractive index difference is too large, the excitation light is excessively scattered, resulting in a scattering loss and conversely, the light emission efficiency tends to decrease. In view of the above, the refractive index difference between the glass powders is preferably 0.001-1, more preferably 0.01-0.5.

各ガラス粉末間の軟化点の差は、好ましくは150℃以下、より好ましくは100℃以下、さらに好ましくは60℃以下である。軟化点の差が大きすぎると、焼成時に軟化点が低いガラス粉末において結晶や発泡等が生じて透過率が低下する傾向にある。結果として、得られる波長変換部材の発光強度が低下しやすくなる。   The difference in softening point between the glass powders is preferably 150 ° C. or less, more preferably 100 ° C. or less, and still more preferably 60 ° C. or less. If the difference between the softening points is too large, the glass powder having a low softening point during firing tends to cause crystals, foaming, etc., and the transmittance tends to decrease. As a result, the light emission intensity of the obtained wavelength conversion member tends to decrease.

ガラス粉末は、波長変換部材において無機蛍光体粉末を安定に保持するための媒体としての役割がある。ここで、ガラス粉末の組成によって、焼成時における無機蛍光体粉末との反応性に差が出るため、使用する無機蛍光体粉末に適したガラス組成を選択することが好ましい。   The glass powder has a role as a medium for stably holding the inorganic phosphor powder in the wavelength conversion member. Here, since the reactivity with the inorganic phosphor powder during firing varies depending on the composition of the glass powder, it is preferable to select a glass composition suitable for the inorganic phosphor powder to be used.

ガラス粉末の組成としては、例えば、SiO、B、P、Bi及びTeOのいずれか1種以上を10〜99モル%含有するものが好ましい。具体的には、SiO−B−RO(RはMg、Ca、SrまたはBa)系ガラス、SiO−B−R’O(R’はLi、NaまたはKa)系ガラス、SiO−B−RO−R’O系ガラス、SiO−B−ZnO系ガラス、SnO−P系ガラス、TeO系ガラス、Bi系ガラス等が挙げられる。 As the composition of the glass powder, for example, SiO 2, B 2 O 3 , P 2 O 5, Bi 2 O 3 and any one or more of TeO 2 which contains 10 to 99 mol% are preferred. Specifically, SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr or Ba) -based glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li, Na or Ka). Glass, SiO 2 —B 2 O 3 —RO—R ′ 2 O glass, SiO 2 —B 2 O 3 —ZnO glass, SnO—P 2 O 5 glass, TeO 2 glass, Bi 2 O 3 System glass and the like.

SiO−B−RO系ガラスとしては、例えば、モル%で、SiO 30〜80%、B 1〜40%、Al 0〜20%、MgO 0〜10%、CaO 0〜30%、SrO 0〜20%、BaO 0〜40%、MgO+CaO+SrO+BaO 0〜45%、LiO 0〜20%、NaO 0〜20%、KO 0〜20%、LiO+NaO+KO 0〜20%及びZnO 0〜20%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SiO 2 -B 2 O 3 -RO based glass, for example, in mol%, SiO 2 30~80%, B 2 O 3 1~40%, Al 2 O 3 0~20%, MgO 0~10% , CaO 0~30%, SrO 0~20% , BaO 0~40%, MgO + CaO + SrO + BaO 0~45%, Li 2 O 0~20%, Na 2 O 0~20%, K 2 O 0~20%, Li Those containing 2 O + Na 2 O + K 2 O 0-20% and ZnO 0-20% are preferred. The reason for limiting the glass composition in this way will be described below.

SiOはガラスネットワークを形成する成分である。SiOの含有量は好ましくは30〜80%、より好ましくは40〜60%である。SiOの含有量が少なすぎると、化学的耐久性が低下する傾向にある。一方、SiOの含有量が多すぎると、軟化点が高くなることから、十分に焼結させるために高温焼成が必要となる。その結果、焼成時に無機蛍光体粉末が劣化しやすくなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 30 to 80%, more preferably 40 to 60%. When the content of SiO 2 is too small, chemical durability tends to decrease. On the other hand, if the content of SiO 2 is too large, the softening point becomes high, so that high-temperature firing is necessary for sufficient sintering. As a result, the inorganic phosphor powder tends to deteriorate during firing.

は溶融温度を低下させて溶融性を改善する効果が大きい成分である。また、Bを含有させることにより分相しやすくなるため、光拡散性を向上させる効果もある。Bの含有量は好ましくは1〜40%、より好ましくは5〜30%である。Bの含有量が少なすぎると、前記効果が得られにくくなる。一方、Bの含有量が多すぎると、化学的耐久性が低下する傾向にある。 B 2 O 3 is a component having a great effect of improving the meltability by lowering the melting temperature. Further, it becomes likely to undergo phase separation by the inclusion of B 2 O 3, an effect of improving a light diffusing property. The content of B 2 O 3 is preferably 1 to 40%, more preferably 5 to 30%. If the content of B 2 O 3 is too small, the effect is difficult to obtain. On the other hand, when the content of B 2 O 3 is too large, chemical durability tends to decrease.

Alは化学的耐久性を向上させる成分である。Alの含有量は好ましくは0〜20%、より好ましくは1〜18%である。Alの含有量が多すぎると、溶融性が低下する傾向がある。 Al 2 O 3 is a component that improves chemical durability. The content of Al 2 O 3 is preferably 0 to 20%, more preferably 1 to 18%. When the content of Al 2 O 3 is too large, there is a tendency that the melting is lowered.

MgO、CaO、SrO及びBaOは溶融温度を低下させて溶融性を改善する成分である。また、分相を促進する効果もある。なお、BaOには無機蛍光体粉末との反応を抑制する効果もある。これらの成分の含有量が多すぎると、化学的耐久性が低下する傾向にある。また、分相性が大きくなりすぎて、熱処理温度の小さな変化に対しても、分相状態が大きく変動する傾向がある。その結果、得られる波長変換部材のロット間での光拡散性にばらつきが生じやすくなる。   MgO, CaO, SrO and BaO are components that improve the meltability by lowering the melting temperature. It also has the effect of promoting phase separation. BaO also has an effect of suppressing the reaction with the inorganic phosphor powder. When there is too much content of these components, it exists in the tendency for chemical durability to fall. Further, the phase separation property becomes too large, and the phase separation state tends to fluctuate greatly even with a small change in the heat treatment temperature. As a result, the light diffusibility between lots of the obtained wavelength conversion member tends to vary.

これらの成分の好ましい範囲は以下の通りである。MgOの含有量は好ましくは0〜10%、より好ましくは0〜5%である。CaOの含有量は好ましくは0〜30%、より好ましくは0〜20%である。SrOの含有量は好ましくは0〜20%、より好ましくは0〜10%である。BaOの含有量は好ましくは0〜40%、より好ましくは0〜30%である。なお、MgO、CaO、SrO及びBaOの合量は、好ましくは0〜45%、より好ましくは2〜35%である。   Preferred ranges for these components are as follows. The content of MgO is preferably 0 to 10%, more preferably 0 to 5%. The content of CaO is preferably 0 to 30%, more preferably 0 to 20%. The content of SrO is preferably 0 to 20%, more preferably 0 to 10%. The BaO content is preferably 0 to 40%, more preferably 0 to 30%. The total amount of MgO, CaO, SrO and BaO is preferably 0 to 45%, more preferably 2 to 35%.

LiO、NaO及びKOは軟化点を低下させるとともに、分相を促進する成分である。なかでも、LiOは上記効果が顕著である。これらの成分の含有量は、各々好ましくは0〜20%、より好ましくは0.1〜10%である。これらの成分の含有量が多すぎると、化学的耐久性が低下しやすくなる。また、分相性が大きくなりすぎる傾向がある。 Li 2 O, Na 2 O and K 2 O are components that lower the softening point and promote phase separation. Among these, Li 2 O has a remarkable effect. The content of these components is preferably 0 to 20%, more preferably 0.1 to 10%. When there is too much content of these components, chemical durability will fall easily. Also, the phase separation tends to be too large.

なお、LiO、NaO及びKOの合量は、好ましくは0〜20%、より好ましくは0.1〜17%、さらに好ましくは1〜16%である。 The total amount of Li 2 O, Na 2 O and K 2 O is preferably 0 to 20%, more preferably 0.1 to 17%, and further preferably 1 to 16%.

ZnOは分相を顕著に促進するとともに、溶融温度を低下させて溶融性を改善する成分である。ZnOの含有量は好ましくは0〜20%、より好ましくは0.1〜10%である。ZnOの含有量が多すぎると、化学的耐久性が低下しやすくなる。また、分相性が大きくなりすぎる傾向がある。   ZnO is a component that significantly promotes phase separation and lowers the melting temperature to improve the meltability. The content of ZnO is preferably 0 to 20%, more preferably 0.1 to 10%. When there is too much content of ZnO, chemical durability will fall easily. Also, the phase separation tends to be too large.

また上記成分以外にも、化学的耐久性の向上等を目的として、Ta、TiO、Nb、Gd、La、Y、CeO、Sb、SnO、BiまたはZrOをそれぞれ15%まで含有させてもよい。 In addition to the above components, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 , Y 2 O 3 , CeO 2 , Sb are used for the purpose of improving chemical durability. 2 O 3 , SnO 2 , Bi 2 O 3 or ZrO 2 may be contained up to 15% each.

SnO−P系ガラスとしては、例えば、モル%で、SnO 35〜80%、P 5〜40%、B 0〜30%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SnO-P 2 O 5 based glass, for example, in mol%, SnO 35~80%, P 2 O 5 5~40%, those containing 2 O 3 0~30% B is preferred. The reason for limiting the glass composition in this way will be described below.

SnOはガラスネットワークを形成するとともに、軟化点を低下させる成分である。SnOの含有量は好ましくは35〜80%、より好ましくは45〜75%である。SnOの含有量が少なすぎると、軟化点が高くなったり、耐候性が低下する傾向がある。一方、SnOの含有量が多すぎると、Snに起因する失透物が析出して透過率が低下する傾向にあり、結果として、波長変換部材の発光強度が低下しやすくなる。また、ガラス化しにくくなる。   SnO is a component that forms a glass network and lowers the softening point. The content of SnO is preferably 35 to 80%, more preferably 45 to 75%. When there is too little content of SnO, there exists a tendency for a softening point to become high or for a weather resistance to fall. On the other hand, when there is too much content of SnO, the devitrification thing resulting from Sn will precipitate and it will exist in the tendency for the transmittance | permeability to fall, As a result, the emitted light intensity of a wavelength conversion member will fall easily. Moreover, it becomes difficult to vitrify.

はガラスネットワークを形成する成分である。Pの含有量は好ましくは5〜40%、より好ましくは10〜30%である。Pの含有量が少なすぎると、ガラス化しにくくなる。一方、Pの含有量が多すぎると、軟化点が高くなったり、耐候性が著しく低下したりする傾向がある。 P 2 O 5 is a component that forms a glass network. The content of P 2 O 5 is preferably 5 to 40%, more preferably 10 to 30%. When the content of P 2 O 5 is too small, it is difficult to vitrify. On the other hand, when the content of P 2 O 5 is too large, or higher the softening point tends to weather resistance is remarkably lowered.

は耐候性を向上させるとともに、分相を促進する成分である。また、ガラスを安定化させる効果もある。Bの含有量は好ましくは0〜30%、より好ましくは1〜25%である。Bの含有量が多すぎると、耐候性が低下しやすくなる。また、軟化点が高くなりすぎる傾向がある。 B 2 O 3 is a component that improves weather resistance and promotes phase separation. It also has the effect of stabilizing the glass. The content of B 2 O 3 is preferably 0 to 30%, more preferably 1 to 25%. If the B 2 O 3 content is too large, the weather resistance tends to lower. Also, the softening point tends to be too high.

また上記成分以外にも、溶融性を向上させたり、軟化点を低下させて低温焼成しやすくするために、CaO、MgO、SrOまたはBaOを合量で5%まで、またLiO、NaOまたはKOを合量で5%まで含有させることができる。他にも、化学的耐久性の向上等を目的として、Al、ZrO、ZnO、Ta、TiO、Nb、Gd、Bi、TeOまたはLaをそれぞれ15%まで含有させてもよい。 In addition to the above components, the total amount of CaO, MgO, SrO or BaO is up to 5%, Li 2 O, Na 2 in order to improve the meltability or lower the softening point to facilitate low temperature firing. O or K 2 O can be contained up to 5% in total. In addition, for the purpose of improving chemical durability, Al 2 O 3 , ZrO, ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , Bi 2 O 3 , TeO 2 or Each of La 2 O 3 may be contained up to 15%.

SiO−B−R’O系ガラスとしては、例えば、モル%で、SiO 30〜80%、B 1〜55%、LiO 0〜20%、NaO 0〜25%、KO 0〜25%、LiO+NaO+KO 5〜35%、Al 0〜10%、ZnO 0〜10%を含有するものが好ましい。 Examples of the SiO 2 —B 2 O 3 —R ′ 2 O glass include mol%, SiO 2 30 to 80%, B 2 O 3 1 to 55%, Li 2 O 0 to 20%, and Na 2 O. 0~25%, K 2 O 0~25% , Li 2 O + Na 2 O + K 2 O 5~35%, Al 2 O 3 0~10%, those containing 0% ZnO preferred.

また上記成分以外にも、溶融性を向上させるためにMgO、CaO、SrOおよびBaOを合量で5%まで含有させることができる。他にも、溶融性を向上させるためにPを5%まで、化学的耐久性を向上させるためにTa、TiO、Nb、GdまたはLaをそれぞれ15%まで含有させてもよい。 In addition to the above components, MgO, CaO, SrO and BaO can be contained in a total amount of up to 5% in order to improve the meltability. Besides, P 2 O 5 is increased to 5% for improving the meltability, and Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 or La 2 O for improving the chemical durability. 3 may be contained up to 15% each.

SiO−B−ZnO系ガラスとしては、例えば、モル%で、SiO 5〜50%、B 15〜55%、ZnO 30〜80%、LiO 0〜20%、NaO 0〜20%、KO 0〜20%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%を含有するものが好ましい。 As SiO 2 —B 2 O 3 —ZnO-based glass, for example, mol%, SiO 2 5-50%, B 2 O 3 15-55%, ZnO 30-80%, Li 2 O 0-20%, Na 2 O 0~20%, K 2 O 0~20%, 0~10% MgO, CaO 0~10%, SrO 0~10%, those preferably contain 0% BaO.

また上記成分以外にも、化学的耐久性を向上させるためにAlを5%まで、Ta、TiO、Nb、GdまたはLaをそれぞれ15%まで含有させてもよい。 In addition to the above components, in order to improve chemical durability, Al 2 O 3 is added up to 5%, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 or La 2 O 3 is added to 15%. % May be included.

ガラス粉末の粒度は特に限定されないが、例えば、最大粒子径Dmaxが200μm以下(特に150μm以下、さらには105μm以下)、かつ、平均粒子径D50が0.1μm以上(特に1μm以上、さらには2μm以上)であることが好ましい。ガラス粉末の最大粒子径Dmaxが大きすぎると、得られる波長変換部材において、励起光が散乱しにくくなり発光効率が低下しやすくなる。また、平均粒子径D50が小さすぎると、得られる波長変換部材において、励起光が過剰に散乱して発光効率が低下しやすくなる。   The particle size of the glass powder is not particularly limited. For example, the maximum particle size Dmax is 200 μm or less (especially 150 μm or less, more preferably 105 μm or less), and the average particle size D50 is 0.1 μm or more (particularly 1 μm or more, further 2 μm or more). ) Is preferable. When the maximum particle diameter Dmax of the glass powder is too large, the excitation light is hardly scattered in the obtained wavelength conversion member, and the light emission efficiency tends to be lowered. Moreover, when the average particle diameter D50 is too small, in the obtained wavelength conversion member, excitation light will be scattered excessively and luminous efficiency will fall easily.

なお、本発明において、最大粒子径Dmax及び平均粒子径D50はレーザー回折法により測定した値を指す。   In the present invention, the maximum particle diameter Dmax and the average particle diameter D50 indicate values measured by a laser diffraction method.

各ガラス粉末の混合比は、所望の光散乱量が得られるように適宜調整すればよい。光拡散量を多く必要とする場合は、各ガラス粉末の体積比率が同程度になるように調整すれば良い。例えば、2種のガラス粉末を混合する場合は、各ガラス粉末の混合比率(体積比)は、30〜70:70〜30であることが好ましく、40〜60:60〜40であることがより好ましい。   What is necessary is just to adjust suitably the mixing ratio of each glass powder so that a desired amount of light scattering may be obtained. When a large amount of light diffusion is required, the volume ratio of each glass powder may be adjusted to be approximately the same. For example, when mixing 2 types of glass powder, it is preferable that the mixing ratio (volume ratio) of each glass powder is 30-70: 70-30, and it is more preferable that it is 40-60: 60-40. preferable.

無機蛍光体粉末としては、一般に市場で入手できるものであれば特に限定されない。例えば、窒化物蛍光体粉末、酸窒化物蛍光体粉末、酸化物蛍光体粉末(YAG蛍光体粉末等のガーネット系蛍光体粉末を含む)、硫化物蛍光体粉末、酸硫化物蛍光体粉末、ハロゲン化物蛍光体粉末(ハロリン酸塩化物等)及びアルミン酸塩蛍光体粉末等が挙げられる。これらの無機蛍光体粉末のうち、窒化物蛍光体粉末、酸窒化物蛍光体粉末及び酸化物蛍光体粉末は耐熱性が高く、焼成時に比較的劣化しにくいため好ましい。なお、窒化物蛍光体粉末及び酸窒化物蛍光体粉末は、近紫外〜青の励起光を緑〜赤という幅広い波長領域に変換し、しかも発光強度も比較的高いという特徴を有している。そのため、窒化物蛍光体粉末及び酸窒化物蛍光体粉末は、特に白色LED素子用波長変換部材に用いられる無機蛍光体粉末として有効である。   The inorganic phosphor powder is not particularly limited as long as it is generally available on the market. For example, nitride phosphor powder, oxynitride phosphor powder, oxide phosphor powder (including garnet phosphor powder such as YAG phosphor powder), sulfide phosphor powder, oxysulfide phosphor powder, halogen Fluoride phosphor powder (halophosphate chloride, etc.) and aluminate phosphor powder. Of these inorganic phosphor powders, nitride phosphor powders, oxynitride phosphor powders and oxide phosphor powders are preferable because they have high heat resistance and are relatively unlikely to deteriorate during firing. The nitride phosphor powder and the oxynitride phosphor powder are characterized by converting near-ultraviolet to blue excitation light into a wide wavelength region from green to red and having a relatively high emission intensity. Therefore, the nitride phosphor powder and the oxynitride phosphor powder are particularly effective as inorganic phosphor powders used for the wavelength conversion member for white LED elements.

上記無機蛍光体粉末としては、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)または赤色(波長600〜700nm)に発光するものが挙げられる。   Examples of the inorganic phosphor powder include those having an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength 540). ˜595 nm) or red light (wavelength 600 to 700 nm).

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体粉末としては、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+等が挙げられる。 Examples of inorganic phosphor powder that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8. : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce2+、SrSiO:Eu2+、BaMgAl1017:Eu2+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、BaAl:Eu2+等が挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm, SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , SrSiO n : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , Ba 2 MgSi 2 O 7 : Eu 2+ , Ba 2 SiO 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ , BaAl 2 O 4 : Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiO:Eu2+、β−SiAlON:Eu2+等が挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm, SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiO n : Eu 2+ , β-SiAlON: Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、LaSi11:Ce3+等が挙げられる。 Examples of the inorganic phosphor powder that emits yellow fluorescence when irradiated with excitation light having a wavelength of 300 to 440 nm include La 3 Si 6 N 11 : Ce 3+ .

波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、Y(Al,Gd)12:Ce3+、SrSiO:Eu2+が挙げられる。 Examples of the inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 3+ and Sr 2 SiO 4 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、CaGa:Mn2+、MgSrSi:Eu2+,Mn2+、CaMgSi:Eu2+,Mn2+等が挙げられる。 Inorganic phosphor powders that emit red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include CaGa 2 S 4 : Mn 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Ca 2. MgSi 2 O 7: Eu 2+, Mn 2+ , and the like.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、α−SiAlON:Eu2+等が挙げられる。 Inorganic phosphor powders that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , α-SiAlON: Eu 2+ and the like can be mentioned.

なお、励起光や発光の波長域に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する無機蛍光体粉末を混合して使用すればよい。   A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders emitting blue, green, yellow, and red fluorescence may be mixed and used.

波長変換材料における無機蛍光体粉末の含有量が多くなりすぎると、焼結しにくくなったり、気孔率が大きくなる傾向がある。その結果、得られる波長変換部材において、励起光が効率良く無機蛍光体粉末に照射されにくくなったり、機械強度が低下しやすくなる等の問題が生じる。一方、無機蛍光体粉末の含有量が少なすぎると、所望の発光強度を得ることが困難になる。このような観点から、波長変換材料における無機蛍光体粉末の含有量は、体積%で、好ましくは0.01〜50%、より好ましくは0.05〜40%、さらに好ましくは0.1〜30%の範囲で調整される。   When the content of the inorganic phosphor powder in the wavelength conversion material is too large, sintering tends to be difficult and the porosity tends to increase. As a result, in the obtained wavelength conversion member, problems such as it becomes difficult for the excitation light to be efficiently irradiated onto the inorganic phosphor powder, and the mechanical strength tends to decrease. On the other hand, when there is too little content of inorganic fluorescent substance powder, it will become difficult to obtain desired luminescence intensity. From such a viewpoint, the content of the inorganic phosphor powder in the wavelength conversion material is in volume%, preferably 0.01 to 50%, more preferably 0.05 to 40%, and still more preferably 0.1 to 30. % Is adjusted.

なお、波長変換部材において発生した蛍光を、励起光入射側へ反射させ、主に蛍光のみを外部に取り出すことを目的とした波長変換部材においては、上記の限りではなく、発光強度が最大になるように、無機蛍光体粉末の含有量を多くする(例えば、50%〜80%、さらには55〜75%)ことができる。   Note that the wavelength conversion member for the purpose of reflecting the fluorescence generated in the wavelength conversion member to the excitation light incident side and mainly taking out only the fluorescence to the outside is not limited to the above, and the emission intensity is maximized. Thus, the content of the inorganic phosphor powder can be increased (for example, 50% to 80%, and further 55 to 75%).

本発明の波長変換材料を焼成することにより波長変換部材を得ることができる。焼成温度は、各ガラス粉末のうち、最高軟化点を有するガラス粉末の軟化点以上であることが好ましい。これにより、各ガラス粉末が互いに融着してなるガラスマトリクスを形成できる。一方、焼成温度が高すぎると、無機蛍光体粉末がガラス中に溶出して発光強度が低下したり、無機蛍光体粉末に含まれる成分がガラス中に拡散してガラスが着色し、発光強度が低下するおそれがある。そのため、焼成温度は、最高軟化点を有するガラス粉末の軟化点+150℃以下であることが好ましく、最高軟化点を有するガラス粉末の軟化点+100℃以下であることがより好ましい。   A wavelength conversion member can be obtained by baking the wavelength conversion material of the present invention. It is preferable that a calcination temperature is more than the softening point of the glass powder which has the highest softening point among each glass powder. Thereby, the glass matrix which each glass powder fuse | melts mutually can be formed. On the other hand, if the firing temperature is too high, the inorganic phosphor powder elutes in the glass and the emission intensity decreases, or the components contained in the inorganic phosphor powder diffuse into the glass and the glass is colored. May decrease. Therefore, the firing temperature is preferably the softening point of the glass powder having the highest softening point + 150 ° C. or lower, and more preferably the softening point of the glass powder having the highest softening point + 100 ° C. or lower.

焼成は減圧雰囲気中で行うことが好ましい。具体的には、焼成は、好ましくは1.013×10Pa未満、より好ましくは1000Pa以下、さらに好ましくは400Pa以下の雰囲気下で行う。それにより、波長変換部材中に残存する気泡の量を少なくすることができる。その結果、波長変換部材内の散乱因子を少なくすることができ、発光効率を向上させることができる。なお、焼成工程全体を減圧雰囲気中で行ってもよいし、焼成工程のみを減圧雰囲気中で行い、その前後の昇温工程や降温工程を、減圧雰囲気ではない雰囲気(例えば大気圧下)で行ってもよい。 Firing is preferably performed in a reduced-pressure atmosphere. Specifically, the firing is preferably performed in an atmosphere of less than 1.013 × 10 5 Pa, more preferably 1000 Pa or less, and even more preferably 400 Pa or less. Thereby, the amount of bubbles remaining in the wavelength conversion member can be reduced. As a result, the scattering factor in the wavelength conversion member can be reduced, and the luminous efficiency can be improved. Note that the entire firing process may be performed in a reduced-pressure atmosphere, or only the firing process is performed in a reduced-pressure atmosphere, and the temperature raising and lowering steps before and after the firing process are performed in an atmosphere other than the reduced-pressure atmosphere (for example, under atmospheric pressure). May be.

本発明の波長変換部材の形状は特に制限されず、例えば、板状、柱状、球状、半球状、半球ドーム状等、それ自身が特定の形状を有する部材だけでなく、ガラス基板やセラミック基板等の基材表面に形成された被膜状のものであってもよい。   The shape of the wavelength conversion member of the present invention is not particularly limited. For example, a plate shape, a column shape, a spherical shape, a hemispherical shape, a hemispherical dome shape, etc. It may be a film formed on the surface of the substrate.

図1に、本発明の発光デバイスの実施形態を示す。図1に示すように、発光デバイス1は波長変換部材2及び光源3を備えてなる。光源3は、波長変換部材2に対して励起光を照射する。波長変換部材2に入射した励起光は、別の波長の光に変換され、光源3とは反対側から出射する。この際、波長変換後の光と、波長変換されずに透過した励起光との合成光を出射させるようにしてもよい。   FIG. 1 shows an embodiment of a light emitting device of the present invention. As shown in FIG. 1, the light emitting device 1 includes a wavelength conversion member 2 and a light source 3. The light source 3 irradiates the wavelength conversion member 2 with excitation light. The excitation light incident on the wavelength conversion member 2 is converted into light having a different wavelength and is emitted from the side opposite to the light source 3. At this time, the combined light of the light after wavelength conversion and the excitation light transmitted without wavelength conversion may be emitted.

以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

(1)ガラス粉末の作製
表1は本実施例で使用するガラス粉末の組成を示している。
(1) Production of glass powder Table 1 shows the composition of the glass powder used in this example.

まず、表1に示す組成となるように原料を調合した。原料を白金坩堝内において800〜1500℃の温度で1〜2時間溶融してガラス化し、溶融ガラスを一対の冷却ローラー間に流し出すことによりフィルム状に成形した。フィルム状のガラスをボールミルで粉砕した後、分級して平均粒子径D50が2.5μmのガラス粉末を得た。   First, the raw materials were prepared so as to have the composition shown in Table 1. The raw material was melted and vitrified in a platinum crucible at a temperature of 800 to 1500 ° C. for 1 to 2 hours, and the molten glass was cast between a pair of cooling rollers to form a film. The film-like glass was pulverized with a ball mill and classified to obtain glass powder having an average particle diameter D50 of 2.5 μm.

各ガラス粉末の密度、軟化点及び屈折率(nd)は、溶融ガラスを各測定に応じてブロック状または円柱状に成形し、アニールして得られた試料を用いて測定した。密度はアルキメデス法より求めた。軟化点は、ファイバーエロンゲーション法を用い、粘度が107.6dPa・sとなる温度を採用した。屈折率は、屈折率計(カルニュー社製 KPR−200)を用いて、ヘリウムランプのd線(波長:587.6nm)における測定値で示した。 The density, softening point, and refractive index (nd) of each glass powder were measured using a sample obtained by forming molten glass into a block shape or a cylindrical shape according to each measurement and annealing. The density was determined by the Archimedes method. For the softening point, a fiber elongation method was used, and a temperature at which the viscosity was 10 7.6 dPa · s was adopted. The refractive index was indicated by a measured value at the d-line (wavelength: 587.6 nm) of a helium lamp using a refractometer (KPR-200 manufactured by Kalnew).

(2)波長変換部材の作製
表2〜5は、本発明の実施例(試料No.6〜17)及び比較例(試料No.1〜5)を示している。
(2) Production of Wavelength Conversion Member Tables 2 to 5 show Examples (Sample Nos. 6 to 17) and Comparative Examples (Sample Nos. 1 to 5) of the present invention.

表1に記載のガラス粉末のうちの1種、または2種の混合物に対し、Y(Al,Gd)12:Ce3+(YAG)蛍光体粉末を所定量混合して波長変換材料を得た。波長変換材料を金型で加圧成型して直径1cmの円柱状予備成型体を作製した。この予備成型体を表に記載の温度で焼成して得られた焼結体に加工を施すことにより、直径8mm、厚さ0.2mmの円盤状の波長変換部材を得た。得られた波長変換部材について全光束値を算出した。結果を表2〜5に示す。 A predetermined amount of Y 3 (Al, Gd) 5 O 12 : Ce 3+ (YAG) phosphor powder is mixed with one or two of the glass powders listed in Table 1 to obtain a wavelength conversion material. Obtained. The wavelength conversion material was pressure-molded with a mold to prepare a cylindrical preform with a diameter of 1 cm. A disk-shaped wavelength conversion member having a diameter of 8 mm and a thickness of 0.2 mm was obtained by processing a sintered body obtained by firing this preformed body at a temperature shown in the table. The total luminous flux value was calculated for the obtained wavelength conversion member. The results are shown in Tables 2-5.

全光束値は次のようにして測定した。励起波長460nmの光源上に波長変換部材を載置し、積分球内で波長変換部材に励起光を照射し、波長変換部材上面から発せられる光のエネルギー分布スペクトルを汎用の発光スペクトル測定装置を用いて測定した。得られたスペクトルに標準比視感度を掛け合わせることにより、全光束値を算出した。   The total luminous flux value was measured as follows. A wavelength conversion member is placed on a light source having an excitation wavelength of 460 nm, the wavelength conversion member is irradiated with excitation light in an integrating sphere, and the energy distribution spectrum of light emitted from the upper surface of the wavelength conversion member is used using a general-purpose emission spectrum measurement device. Measured. The total luminous flux value was calculated by multiplying the obtained spectrum by the standard relative luminous sensitivity.

表2〜5から明らかなように、1種のガラス粉末を用いて作製した波長変換部材よりも、2種のガラス粉末の混合物を用いて作製した波長変換部材のほうが全光束値が高かった。なお、表3及び表5の比較から明らかなように、2種のガラス粉末の体積比率が同程度であるほうが全光束値が高かった。   As is clear from Tables 2 to 5, the wavelength conversion member produced using a mixture of two types of glass powders had a higher total luminous flux value than the wavelength conversion member produced using one type of glass powder. As is clear from the comparison between Tables 3 and 5, the total luminous flux value was higher when the volume ratio of the two types of glass powders was about the same.

本発明の波長変換材料は、白色LED等の一般照明、特殊照明(例えば、プロジェクター光源、自動車のヘッドランプ光源)等に使用される波長変換部材用材料として好適である。   The wavelength conversion material of the present invention is suitable as a material for wavelength conversion members used for general illumination such as white LED, special illumination (for example, projector light source, automobile headlamp light source) and the like.

1 発光デバイス
2 波長変換部材
3 光源
DESCRIPTION OF SYMBOLS 1 Light emitting device 2 Wavelength conversion member 3 Light source

Claims (9)

屈折率の異なる2種以上のガラス粉末と、無機蛍光体粉末とを含有する波長変換材料であって、ガラス粉末が、SiO −B −RO(RはMg、Ca、SrまたはBa)系ガラス、SiO −B −R’ O(R’はLi、NaまたはKa)系ガラス、または、SiO −B −RO−R’ O系ガラスからなり、各ガラス粉末間の軟化点の差が150℃以下であることを特徴とする波長変換材料Two or more glass powder having a different refractive index, a wavelength converting material you containing an inorganic phosphor powder, glass powder, SiO 2 -B 2 O 3 -RO (R is Mg, Ca, Sr Or Ba) based glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li, Na or Ka) based glass, or SiO 2 —B 2 O 3 —RO—R ′ 2 O based glass. And a difference in softening point between the glass powders is 150 ° C. or less . 各ガラス粉末間の屈折率差が0.001〜1であることを特徴とする請求項1に記載の波長変換材料。   The wavelength conversion material according to claim 1, wherein a difference in refractive index between the glass powders is 0.001 to 1. 2種のガラス粉末を含有し、各ガラス粉末の混合比率(体積比)が30〜70:70〜30であることを特徴とする請求項1または2に記載の波長変換材料。3. The wavelength conversion material according to claim 1, comprising two kinds of glass powders, wherein a mixing ratio (volume ratio) of each glass powder is 30 to 70:70 to 30. 4. 無機蛍光体粉末が、窒化物蛍光体粉末、酸窒化物蛍光体粉末、酸化物蛍光体粉末、硫化物蛍光体粉末、酸硫化物蛍光体粉末、ハロゲン化物蛍光体粉末及びアルミン酸塩蛍光体粉末から選択される1種以上であることを特徴とする請求項1〜のいずれか一項に記載の波長変換材料。 Inorganic phosphor powder is nitride phosphor powder, oxynitride phosphor powder, oxide phosphor powder, sulfide phosphor powder, oxysulfide phosphor powder, halide phosphor powder and aluminate phosphor powder wavelength converting material according to any one of claims 1 to 3, characterized in that at least one selected from the. 無機蛍光体粉末を0.01〜50体積%を含有することを特徴とする請求項1〜のいずれか一項に記載の波長変換材料。 Wavelength converting material according to any one of claims 1 to 4, characterized in that it contains 0.01 to 50% by volume of inorganic phosphor powder. 請求項1〜5のいずれか一項に記載の波長変換材料を焼成してなることを特徴とする波長変換部材。   A wavelength conversion member obtained by firing the wavelength conversion material according to any one of claims 1 to 5. ガラスマトリクス中に無機蛍光体粉末が分散してなる波長変換部材であって、ガラスマトリクスが、互いに融着した、屈折率の異なる2種以上のガラス粉末から構成されており、ガラス粉末が、SiO −B −RO(RはMg、Ca、SrまたはBa)系ガラス、SiO −B −R’ O(R’はLi、NaまたはKa)系ガラス、または、SiO −B −RO−R’ O系ガラスからなり、各ガラス粉末間の軟化点の差が150℃以下であることを特徴とする波長変換部材。 A wavelength conversion member inorganic phosphor powder is dispersed in a glass matrix, the glass matrix was fused together, is composed of two or more kinds of glass powders having different refractive index, glass powder, SiO 2- B 2 O 3 —RO (R is Mg, Ca, Sr or Ba) glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ is Li, Na or Ka) glass, or SiO 2 -B 2 O 3 -RO-R ' consists 2 O-based glass, the wavelength conversion member difference of the softening point, characterized in der Rukoto 0.99 ° C. or less between each glass powder. 請求項またはに記載の波長変換部材、及び、波長変換部材に励起光を照射する光源を備えてなることを特徴とする発光デバイス。 Wavelength conversion member according to claim 6 or 7, and, the light emitting device characterized by including a light source for irradiating excitation light wavelength conversion member. 請求項1〜のいずれか一項に記載の波長変換材料を焼成する工程を含む、波長変換部材の製造方法であって、焼成温度が、各ガラス粉末のうち、最高軟化点を有するガラス粉末の軟化点以上であることを特徴とする波長変換部材の製造方法。 It is a manufacturing method of the wavelength conversion member including the process of baking the wavelength conversion material as described in any one of Claims 1-5 , Comprising: The glass powder which has the highest softening point among each glass powder in baking temperature A method for producing a wavelength conversion member, characterized by being at or above the softening point.
JP2013077304A 2013-04-03 2013-04-03 Wavelength conversion material, wavelength conversion member, and light emitting device Active JP6168284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077304A JP6168284B2 (en) 2013-04-03 2013-04-03 Wavelength conversion material, wavelength conversion member, and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077304A JP6168284B2 (en) 2013-04-03 2013-04-03 Wavelength conversion material, wavelength conversion member, and light emitting device

Publications (2)

Publication Number Publication Date
JP2014203899A JP2014203899A (en) 2014-10-27
JP6168284B2 true JP6168284B2 (en) 2017-07-26

Family

ID=52354093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077304A Active JP6168284B2 (en) 2013-04-03 2013-04-03 Wavelength conversion material, wavelength conversion member, and light emitting device

Country Status (1)

Country Link
JP (1) JP6168284B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398351B2 (en) * 2013-07-25 2018-10-03 セントラル硝子株式会社 Phosphor dispersed glass
JP7022367B2 (en) 2017-09-27 2022-02-18 日本電気硝子株式会社 Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
KR102040975B1 (en) * 2018-05-28 2019-11-06 주식회사 베이스 Manufacturing method of color conversion structure for micro led display
KR102471078B1 (en) * 2020-12-24 2022-11-28 공주대학교 산학협력단 Glass composite comprising light emitting nanoparticle and LED device comprinsing the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319372A (en) * 1995-03-23 1996-12-03 Asahi Glass Co Ltd Composition for molding
JP4062557B2 (en) * 1997-07-04 2008-03-19 東レ株式会社 Plasma display substrate
JPH11157851A (en) * 1997-12-01 1999-06-15 Matsushita Electric Ind Co Ltd Mold for forming optical element and production of optical element, using the same
JP2000111911A (en) * 1998-10-09 2000-04-21 Hitachi Ltd Lamp and liquid crystal display device
JP4158012B2 (en) * 2002-03-06 2008-10-01 日本電気硝子株式会社 Luminescent color conversion member
JP2005194120A (en) * 2004-01-06 2005-07-21 Sumitomo Metal Mining Co Ltd Glass ceramic powder composition and glass paste
JP2007023267A (en) * 2005-06-16 2007-02-01 Nippon Electric Glass Co Ltd Emission color-converting material
JP2007191702A (en) * 2005-12-22 2007-08-02 Nippon Electric Glass Co Ltd Light emission color converting material
JP2010219166A (en) * 2009-03-13 2010-09-30 Nippon Electric Glass Co Ltd Semiconductor light emitting element device
JPWO2010140417A1 (en) * 2009-06-05 2012-11-15 コニカミノルタアドバンストレイヤー株式会社 Method for producing glass member for wavelength conversion
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP2012136686A (en) * 2010-12-07 2012-07-19 Sharp Corp Wavelength conversion member, light emitting device, illuminating device, vehicle headlamp, and production method
JP2013033854A (en) * 2011-08-02 2013-02-14 Koito Mfg Co Ltd Light wavelength conversion member

Also Published As

Publication number Publication date
JP2014203899A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
KR102588721B1 (en) Wavelength conversion member, and light emitting device using same
KR102588722B1 (en) Wavelength conversion member, and light emitting device using same
JP6425001B2 (en) Wavelength conversion material, wavelength conversion member and light emitting device
JP6222452B2 (en) Wavelength conversion member and light emitting device
JP2014234487A (en) Wavelength conversion member and light-emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2013055269A (en) Wavelength conversion member and light-emitting device
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
JP6004250B2 (en) Wavelength conversion member and light emitting device
JP2011222751A (en) Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP2013095849A (en) Wavelength conversion member and light emitting device using the same
KR102654998B1 (en) Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices
JP6617948B2 (en) Wavelength conversion member and light emitting device
TW202021922A (en) Powder material for wavelength conversion member
CN111480098B (en) Wavelength conversion member and light emitting device using same
JP6861952B2 (en) Wavelength conversion member and light emitting device using it
JP2022063277A (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP2016052968A (en) Raw material powder for wavelength conversion member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R150 Certificate of patent or registration of utility model

Ref document number: 6168284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150