JP6398351B2 - Phosphor dispersed glass - Google Patents
Phosphor dispersed glass Download PDFInfo
- Publication number
- JP6398351B2 JP6398351B2 JP2014121946A JP2014121946A JP6398351B2 JP 6398351 B2 JP6398351 B2 JP 6398351B2 JP 2014121946 A JP2014121946 A JP 2014121946A JP 2014121946 A JP2014121946 A JP 2014121946A JP 6398351 B2 JP6398351 B2 JP 6398351B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- phosphor
- mass
- dispersed
- total
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011521 glass Substances 0.000 title claims description 163
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims description 104
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 23
- 150000004767 nitrides Chemical class 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000011256 inorganic filler Substances 0.000 claims description 13
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 13
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 12
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 12
- 229910001887 tin oxide Inorganic materials 0.000 claims description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 7
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 7
- 239000000843 powder Substances 0.000 description 49
- 239000000463 material Substances 0.000 description 26
- 239000000203 mixture Substances 0.000 description 21
- 238000005245 sintering Methods 0.000 description 20
- 230000009849 deactivation Effects 0.000 description 15
- 230000005284 excitation Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 102100032047 Alsin Human genes 0.000 description 5
- 101710187109 Alsin Proteins 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000009877 rendering Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000004031 devitrification Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000007496 glass forming Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000075 oxide glass Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- -1 B 2 O 3 Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- QVMHUALAQYRRBM-UHFFFAOYSA-N [P].[P] Chemical compound [P].[P] QVMHUALAQYRRBM-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000006121 base glass Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/066—Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C14/00—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/14—Silica-free oxide glass compositions containing boron
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77348—Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
Description
本発明は発光材料である蛍光体をガラス中に封止することを特徴とする蛍光体分散用ガラスに関する。 The present invention relates to a phosphor dispersion glass characterized in that a phosphor as a light emitting material is sealed in glass.
近年、白色光源として白色LEDの開発がなされており、省電力かつ高演色性な白色LEDが求められている。現在、市販されている白色LEDにおいては、青色GaN系LEDを光源とし、黄色の蛍光を発するセリウム添加YAG酸化物蛍光体を励起する構成である。この光源の光と蛍光が混合され、人間の目には擬似白色光として映る。 In recent years, white LEDs have been developed as white light sources, and power-saving and high color rendering white LEDs are required. Currently, commercially available white LEDs have a configuration in which a blue GaN-based LED is used as a light source and a cerium-doped YAG oxide phosphor that emits yellow fluorescence is excited. The light from this light source and the fluorescence are mixed and appear to the human eye as pseudo white light.
この従来の青色LEDとセリウム添加YAG酸化物蛍光体の組み合わせでは、シアン色(〜500nm)、赤色(600nm)の成分が少ないため、色温度の高い白色光(昼光色)を得ることはできるが、色温度の低い白色光(電球色)を得ることができない。従って、複数の蛍光体を添加して不足する赤色等の波長成分を補うことによって、高演色な白色光源を実現している。 In the combination of this conventional blue LED and the cerium-doped YAG oxide phosphor, since there are few components of cyan (˜500 nm) and red (600 nm), white light (daylight color) with a high color temperature can be obtained. White light (bulb color) with a low color temperature cannot be obtained. Therefore, a white light source with high color rendering is realized by adding a plurality of phosphors to compensate for a short wavelength component such as red.
近年、高効率な赤色蛍光体として窒化物蛍光体が知られており、例えば特許文献1ではEuで賦活されたCaAlSiN3蛍光体粉末が作製されており、焼結時の含有成分の蒸発を防ぐために、高圧の窒素雰囲気下、かつ1600〜2000℃で原料を焼結することが提案されている。 In recent years, nitride phosphors are known as high-efficiency red phosphors. For example, in Patent Document 1, a CaAlSiN 3 phosphor powder activated with Eu has been produced, and evaporation of contained components during sintering is prevented. Therefore, it has been proposed to sinter the raw material at 1600 to 2000 ° C. under a high-pressure nitrogen atmosphere.
照明に使用されるLED用蛍光体は、ほとんどの場合エポキシ樹脂、シリコーン樹脂、又はフッ素樹脂などで封止されていた。しかし、上記部材では素子の発熱、光及び環境中の水分による劣化を受けやすく、寿命が短いことが指摘されている。長期間の使用により、LEDから放出される紫外線または青色光によって樹脂が劣化し、変色、光透過特性が低下する等の問題があった。 In most cases, the phosphor for LED used for illumination is sealed with an epoxy resin, a silicone resin, or a fluororesin. However, it has been pointed out that the above members are susceptible to deterioration due to heat generation of elements, light and moisture in the environment, and have a short life. Due to long-term use, the resin deteriorates due to ultraviolet light or blue light emitted from the LED, causing problems such as discoloration and deterioration of light transmission characteristics.
そこで、被覆する部材として樹脂よりも耐久性が高く、水バリア性の高いガラスが注目されており、例えば特許文献2に示すような低融点酸化物ガラスが提案されている。 Accordingly, attention has been focused on glass having higher durability and higher water barrier property than resin as a member to be coated. For example, a low melting point oxide glass as shown in Patent Document 2 has been proposed.
上記のように、ガラス中に蛍光体を封止することによって、耐候性の高いLEDが実現できるが、実際にガラス内部に蛍光体を封止する際、蛍光体とガラスの混合物をガラス転移点以上の温度に上昇させ、焼結する必要があり、その時の熱により蛍光体が失活する可能性がある。ガラスを用いた場合の失活を防止するものとして、酸化物蛍光体は特許文献3や特許文献4に記載されているような蛍光体分散ガラスが、酸窒化物蛍光体は特許文献5に記載されているような蛍光体分散ガラスがそれぞれ報告されている。 As described above, a highly weather-resistant LED can be realized by encapsulating the phosphor in the glass. However, when the phosphor is actually encapsulated in the glass, the mixture of the phosphor and the glass has a glass transition point. The temperature needs to be raised to the above temperature and sintered, and the phosphor may be deactivated by the heat at that time. In order to prevent deactivation when glass is used, the phosphor-dispersed glass described in Patent Document 3 and Patent Document 4 is used for the oxide phosphor, and Patent Document 5 is used for the oxynitride phosphor. Each phosphor-dispersed glass has been reported.
前述したように、蛍光体を封止する材料としてガラスを用いる場合、焼結時の熱により蛍光体が失活する可能性がある。 As described above, when glass is used as a material for sealing the phosphor, the phosphor may be deactivated by heat during sintering.
また、窒化物蛍光体を酸素が存在する環境で加熱した場合、蛍光体が失活することが報告されている(非特許文献1)。非特許文献1では、Sr2−xSi5N8:Eu2+蛍光体は加熱時に酸素が存在すると、2価のEuが3価に酸化されることが報告されている。すなわち、窒化物蛍光体と酸素を含むガラスとを混合して焼結した場合、窒化物蛍光体の発光効率が大幅に低下する可能性がある。 Further, it has been reported that when a nitride phosphor is heated in an environment where oxygen is present, the phosphor is deactivated (Non-Patent Document 1). Non-Patent Document 1 reports that Sr 2−x Si 5 N 8 : Eu 2+ phosphor is oxidized to trivalent divalent Eu when oxygen is present during heating. That is, when the nitride phosphor and glass containing oxygen are mixed and sintered, the light emission efficiency of the nitride phosphor may be significantly reduced.
従って、本発明は蛍光体の失活が抑制された蛍光体分散ガラスを得ることを目的とした。 Accordingly, an object of the present invention is to obtain a phosphor-dispersed glass in which phosphor deactivation is suppressed.
発明者らは、窒化物蛍光体は酸素を含むガラスと混合して焼結を行うと、得られる蛍光体分散ガラスが黒色や灰色となり、発光効率が大きく損なわれることを確かめた。上記の知見より、特定組成の酸化物ガラスを用いた場合、窒化物蛍光体粉末と混合して焼結を行っても上記のような失活を抑制できることが明らかとなった。また、さらに検討を進めることにより、蛍光体を構成する成分とガラスの組成成分とが反応することにより失活が生じることがわかり、上記の組成範囲の酸化物ガラスを用いると、波長350〜475nmに励起光を持つ蛍光体であれば蛍光体の種類に拠らず、発光効率の失活を抑制できることが明らかとなった。 The inventors have confirmed that when the phosphor phosphor is mixed with glass containing oxygen and sintered, the resulting phosphor-dispersed glass becomes black or gray and the luminous efficiency is greatly impaired. From the above findings, it has been clarified that, when an oxide glass having a specific composition is used, the above deactivation can be suppressed even if it is mixed with a nitride phosphor powder and sintered. Further, further investigation shows that deactivation occurs due to the reaction between the components constituting the phosphor and the glass composition components, and when the oxide glass having the above composition range is used, the wavelength is 350 to 475 nm. It has been clarified that inactivation of the luminous efficiency can be suppressed regardless of the type of phosphor if the phosphor has excitation light.
従って本発明は、蛍光体粒子がガラス内に分散された蛍光体分散ガラスであって、該ガラスは、質量%で、SiO2を1〜40%、B2O3を15〜65%、ZnOを1〜50%、RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)を0〜40%、R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)を0〜30%、ZrO2を0〜5%含む(ただし、SiO2+B2O3+ZnO+RO+R2O+ZrO2が80%以上)ものであることを特徴とする蛍光体分散ガラスである。 Accordingly, the present invention is a phosphor-dispersed glass in which phosphor particles are dispersed in glass, and the glass is 1% to 40% of SiO 2 , 15 to 65% of B 2 O 3 , ZnO by mass%. 1 to 50%, RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) 0 to 40%, R 2 O (Li 2 O, Na 2 O, and K 2 O) A total of at least one selected from the group consisting of 0 to 30% and 0 to 5% of ZrO 2 (however, SiO 2 + B 2 O 3 + ZnO + RO + R 2 O + ZrO 2 is 80% or more) The phosphor-dispersed glass.
また、本明細書における「失活」とは、得られる蛍光体分散ガラスが、目視で黒色もしくは灰色である、又は内部量子効率が20%未満を示す場合を指すものとする。このように失活した蛍光体分散ガラスを白色LEDに用いることは適切ではない。 In addition, “deactivation” in the present specification refers to the case where the obtained phosphor-dispersed glass is visually black or gray, or the internal quantum efficiency is less than 20%. It is not appropriate to use the phosphor-dispersed glass thus deactivated for the white LED.
本発明の蛍光体分散ガラスは、例えば前述したガラスのガラス粉末材料を準備し、該ガラス粉末材料と蛍光体粉末とを混合した後、焼結させることによって得ることが可能である。 The phosphor-dispersed glass of the present invention can be obtained, for example, by preparing a glass powder material of the glass described above, mixing the glass powder material and the phosphor powder, and then sintering them.
本発明により、蛍光体の失活が抑制された蛍光体分散ガラスを得ることが可能となった。また、本発明は波長350〜475nmに励起光を持つ蛍光体であれば蛍光体の種類に依存せず、発光効率の失活を抑制しながら窒化物蛍光体粒子をガラス中に封止することが可能なため、高演色な白色LEDを得ることが可能となった。 According to the present invention, it is possible to obtain a phosphor-dispersed glass in which phosphor deactivation is suppressed. The present invention is not limited to the type of phosphor as long as the phosphor has excitation light at a wavelength of 350 to 475 nm, and the nitride phosphor particles are sealed in the glass while suppressing the deactivation of the luminous efficiency. Therefore, it is possible to obtain a high color rendering white LED.
本発明の好適な実施形態のひとつは、蛍光体粒子がガラス内に分散された蛍光体分散ガラスであって、該ガラスは、質量%で、SiO2を1〜40%、B2O3を15〜65%、ZnOを1〜50%、RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)を0〜40%、R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)を0〜30%、ZrO2を0〜5%含む(ただし、SiO2+B2O3+ZnO+RO+R2O+ZrO2が80%以上)ものであることを特徴とする蛍光体分散ガラスである。 One of the preferred embodiments of the present invention is a phosphor-dispersed glass in which phosphor particles are dispersed in glass, and the glass contains 1 to 40% of SiO 2 and B 2 O 3 by mass%. 15 to 65%, ZnO 1 to 50%, RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) 0 to 40%, R 2 O (Li 2 O, Na 2 O, and at least one total) of 0-30% is selected from the group consisting of K 2 O, containing ZrO 2 0 to 5% (however, SiO 2 + B 2 O 3 + ZnO + RO + R 2 O + ZrO 2 is 80% or more) It is a phosphor-dispersed glass characterized by being a thing.
上記に示した特定の組成のガラスとすることにより、ガラスと蛍光体との反応を抑制し、蛍光体が失活することを抑制することが可能となった。また、上記のガラスは軟化点の上昇を抑えた組成であり、焼結時に熱によって蛍光体が失活するのを抑制することが可能である。 By using the glass having the specific composition shown above, the reaction between the glass and the phosphor can be suppressed, and the phosphor can be prevented from being deactivated. Moreover, said glass is a composition which suppressed the raise of the softening point, and it can suppress that a fluorescent substance deactivates with a heat | fever at the time of sintering.
以下、本発明のガラスの組成について記載する。尚、ガラスに含まれる成分の含有量を示す「%」は質量%のことを示し、以下「%」と記載することもある。 Hereinafter, the composition of the glass of the present invention will be described. In addition, "%" which shows content of the component contained in glass shows the mass%, and may be described as "%" below.
SiO2はガラス形成成分であり、別のガラス形成成分であるB2O3と共存させることにより、安定したガラスを形成することができ、1〜40%の範囲で含有させるものである。40%を越えるとガラスの軟化点が上昇し、成形性、作業性が困難となる。好ましくは2〜35%の範囲である。 SiO 2 is a glass forming component, and can coexist with B 2 O 3 , which is another glass forming component, to form a stable glass, and is contained in the range of 1 to 40%. If it exceeds 40%, the softening point of the glass rises, and formability and workability become difficult. Preferably it is 2 to 35% of range.
B2O3はガラス形成成分であり、ガラス溶融を容易とし、ガラスの線膨張係数において過度の上昇を抑え、かつ、焼付け時にガラスに適度の流動性を与えるものである。ガラス中に15〜65%の範囲で含有させる。15%未満では他の成分との関係によっては、ガラスの流動性が不充分となり、焼結性が損なわれることがある。他方65%を越えるとガラスの軟化点が上昇し、成形性、作業性が困難となる。好ましくは20〜61%の範囲である。また、上限値については、より好ましくは44%以下としてもよい。 B 2 O 3 is a glass-forming component, facilitates glass melting, suppresses an excessive increase in the linear expansion coefficient of glass, and imparts moderate fluidity to glass during baking. It is made to contain in 15 to 65% of range in glass. If it is less than 15%, depending on the relationship with other components, the fluidity of the glass may be insufficient, and the sinterability may be impaired. On the other hand, if it exceeds 65%, the softening point of the glass rises, and the moldability and workability become difficult. Preferably it is 20 to 61% of range. Also, the upper limit value is more preferably 44% or less.
ZnOはガラスの軟化点を下げ、線膨張係数を適宜範囲に調整するもので、ガラス中に1〜50%の範囲で含有させる。50%を越えるとガラスが不安定となり失透を生じ易い。より好ましくは3〜45%の範囲である。 ZnO lowers the softening point of the glass and adjusts the linear expansion coefficient to an appropriate range, and is contained in the glass in the range of 1 to 50%. If it exceeds 50%, the glass becomes unstable and devitrification tends to occur. More preferably, it is 3 to 45% of range.
また、本発明に用いるガラスは、B2O3とZnOを合計で20〜80%として、軟化点と熱膨張係数を調整し、ガラスの失透抑制が可能なように、他の成分を含有させるのが好ましい。また、より好ましくは30〜78%としてもよい。特に蛍光体の失活を抑制する為には熱による蛍光体の損傷を防ぐのが有効であるため、ガラスを安定化させ軟化点を上昇させるSiO2を含有させる一方で、RO成分やR2O成分を含有させて過度の軟化点の上昇を抑制するのが好ましい。 In addition, the glass used in the present invention contains B 2 O 3 and ZnO in a total of 20 to 80%, adjusts the softening point and the thermal expansion coefficient, and contains other components so that the glass can be devitrified. It is preferable to do so. More preferably, it may be 30 to 78%. In particular, in order to suppress the deactivation of the phosphor, it is effective to prevent the phosphor from being damaged by heat. Therefore, while containing SiO 2 which stabilizes the glass and raises the softening point, the RO component and R 2 are contained. It is preferable to contain an O component to suppress an excessive increase in the softening point.
ZrO2はガラスの溶融時又は焼結時の失透を抑制し、ガラスの化学的耐久性を向上させるもので、0〜5%の範囲で含有させる。5%を超えるとガラスの安定性を低下させる。好ましくは1〜3%の範囲である。 ZrO 2 suppresses devitrification at the time of melting or sintering of the glass and improves the chemical durability of the glass, and is contained in the range of 0 to 5%. If it exceeds 5%, the stability of the glass is lowered. Preferably it is 1 to 3% of range.
RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)はガラスの軟化点を下げるものであり、ガラス中に0〜40%含有させる。一方で40%を越えるとガラスの熱膨張係数が高くなりすぎることがある。好ましくは37%以下の範囲である。また、好ましくは下限値を0.2質量%以上としてもよい。 RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) lowers the softening point of the glass and is contained in the glass in an amount of 0 to 40%. On the other hand, if it exceeds 40%, the thermal expansion coefficient of the glass may become too high. Preferably it is 37% or less of range. Moreover, it is good also considering a lower limit as 0.2 mass% or more preferably.
R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)はガラスの軟化点を下げ熱膨張係数を適宜範囲に調整するものであり、0〜30%の範囲で含有させる。一方で30%を越えると熱膨張係数を過度に上昇させる。好ましくは26%以下の範囲である。また、好ましくは下限値を0.2質量%以上としてもよい。 R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O) lowers the softening point of the glass and adjusts the thermal expansion coefficient to an appropriate range. It is made to contain in 30% of range. On the other hand, if it exceeds 30%, the thermal expansion coefficient is excessively increased. Preferably it is 26% or less of range. Moreover, it is good also considering a lower limit as 0.2 mass% or more preferably.
当該ガラスは、SiO2+B2O3+ZnO+RO+R2O+ZrO2が80質量%以上となるようにガラスの各成分の含有量を調整する。上記の成分の合計が80質量%以上となり、蛍光体を失活させないのであれば任意の第三成分を含有してもよい。好ましくは84質量%以上の範囲である。また、上限は100質量%としてもよく、より好ましくは98質量%以下としてもよい。 The glass adjusts the content of each component of the glass so that SiO 2 + B 2 O 3 + ZnO + RO + R 2 O + ZrO 2 is 80 mass% or more. As long as the total of the above components is 80% by mass or more and the phosphor is not deactivated, an optional third component may be contained. Preferably it is the range of 84 mass% or more. Moreover, an upper limit is good also as 100 mass%, More preferably, it is good also as 98 mass% or less.
本発明の好適な実施形態のひとつは、蛍光体分散ガラスであって、該ガラスが、質量%で、SiO2を1〜20%、B2O3を10〜40%、ZnOを20〜50%、RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)を20〜40%、R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)を0〜10%、ZrO2を0〜5%含む(ただし、SiO2+B2O3+ZnO+RO+R2O+ZrO2が80%以上)ものであることを特徴とする蛍光体分散ガラスである。 One preferred embodiment of the present invention, the phosphor dispersion glass, the glass is, in mass%, the SiO 2 1~20%, B 2 O 3 10 to 40%, the ZnO 20 to 50 %, RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) 20-40%, R 2 O (from the group consisting of Li 2 O, Na 2 O, and K 2 O) Phosphor characterized by containing 0 to 10% of ZrO 2 and 0 to 5% of ZrO 2 (however, SiO 2 + B 2 O 3 + ZnO + RO + R 2 O + ZrO 2 is 80% or more) Dispersion glass.
本実施形態において、RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)は必須成分であり、ガラス中に20〜40%含有させる。また、好ましくは25〜38%としてもよい。 In the present embodiment, RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) is an essential component and is contained in the glass at 20 to 40%. Moreover, it is good also as 25 to 38% preferably.
また、本実施形態において、SiO2は1〜20%の範囲で含有させるものである。好ましくは2〜15%としてもよい。 Further, in this embodiment, SiO 2 is intended to be contained in the range of 1-20%. Preferably it is good also as 2 to 15%.
また、本実施形態において、B2O3はガラス中に10〜40%の範囲で含有させる。好ましくは15〜35%、より好ましくは20〜35%としてもよい。 Further, in the present embodiment, B 2 O 3 is included at a content within a range of 10-40% in the glass. Preferably it may be 15 to 35%, more preferably 20 to 35%.
また、本実施形態において、ZnOはガラス中に20〜50%の範囲で含有させる。好ましくは25〜45%としてもよい。 Moreover, in this embodiment, ZnO is contained in 20 to 50% of range in glass. Preferably it is good also as 25 to 45%.
また、本実施形態において、B2O3とZnOが合計で30〜70%となるように、他の成分を含有させるのが好ましい。また、より好ましくは40〜65%としてもよい。 Further, in the present embodiment, as B 2 O 3 and ZnO is 30 to 70% in total, is preferable to contain other components. More preferably, it may be 40 to 65%.
また、本実施形態において、ZrO2はガラス中に0〜5%の範囲で含有させる。好ましくは1〜3%としてもよい。 Further, in the present embodiment, ZrO 2 is included at a content within a range of 0-5% in the glass. Preferably it is good also as 1-3%.
また、本実施形態において、R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)は0〜10%の範囲で含有させる。好ましくは下限値を0.2質量%以上としてもよい。 In this embodiment, R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O) is contained in the range of 0 to 10%. Preferably, the lower limit may be 0.2% by mass or more.
また、本発明の好適な実施形態のひとつは、前記の蛍光体分散ガラスであって、該ガラスが、質量%で、SiO2を10〜40%、B2O3を15〜65%、ZnOを1〜40%、RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)を0〜20%、R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)を8〜30%、ZrO2を0〜5%含む(ただし、SiO2+B2O3+ZnO+RO+R2O+ZrO2が80%以上)ものであることを特徴とする蛍光体分散ガラスである。 One of the preferred embodiments of the present invention is the phosphor-dispersed glass described above, wherein the glass is 10% by mass, SiO 2 is 10 to 40%, B 2 O 3 is 15 to 65%, ZnO. 1 to 40%, RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) 0 to 20%, R 2 O (Li 2 O, Na 2 O, and K 2 O) A total of at least one selected from the group consisting of 8 to 30% and 0 to 5% of ZrO 2 (however, SiO 2 + B 2 O 3 + ZnO + RO + R 2 O + ZrO 2 is 80% or more) The phosphor-dispersed glass.
また、本実施形態において、R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)は必須成分であり、8〜30%の範囲で含有させる。好ましくは10%以上、15%以下の範囲である。 In this embodiment, R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O) is an essential component and is contained in the range of 8 to 30%. . Preferably it is 10% or more and 15% or less of range.
また、本実施形態において、SiO2は10〜40%の範囲で含有させるものである。好ましくは10〜35%としてもよい。また、下限値を好ましくは12%以上、より好ましくは20%以上としてもよい。 Further, in this embodiment, SiO 2 is intended to be contained in the range of 10-40%. Preferably, it may be 10 to 35%. The lower limit is preferably 12% or more, more preferably 20% or more.
また、本実施形態において、B2O3はガラス中に15〜65%の範囲で含有させる。好ましくは20〜61%としてもよい。 Further, in the present embodiment, B 2 O 3 is included at a content within a range of 15 to 65% in the glass. Preferably it is good also as 20 to 61%.
また、本実施形態において、ZnOはガラス中に1〜40%の範囲で含有させる。好ましくは5〜35%としてもよい。また、上限値についてはより好ましくは30%以下としてもよい。 Moreover, in this embodiment, ZnO is contained in 1 to 40% of range in glass. Preferably, it may be 5 to 35%. Further, the upper limit value may be more preferably 30% or less.
また、本実施形態においては、B2O3とZnOを合計で20〜80%として、軟化点と熱膨張係数を調整し、ガラスの失透抑制が可能なように、他の成分を含有させるのが好ましい。また、より好ましくは30〜78%としてもよい。特に蛍光体の失活を抑制する為には熱による蛍光体の損傷を防ぐのが有効であるため、ガラスを安定化させ軟化点を上昇させるSiO2を含有させる一方で、RO成分やR2O成分を含有させて過度の軟化点の上昇を抑制するのが好ましい。 In the present embodiment, as 20-80% of B 2 O 3 and ZnO in the total, and adjust the softening point and coefficient of thermal expansion, so that possible glass devitrification suppression, the inclusion of other ingredients Is preferred. More preferably, it may be 30 to 78%. In particular, in order to suppress the deactivation of the phosphor, it is effective to prevent the phosphor from being damaged by heat. Therefore, while containing SiO 2 which stabilizes the glass and raises the softening point, the RO component and R 2 are contained. It is preferable to contain an O component to suppress an excessive increase in the softening point.
また、本実施形態において、ZrO2はガラス中に0〜5%の範囲で含有させる。好ましくは1〜3%としてもよい。 Further, in the present embodiment, ZrO 2 is included at a content within a range of 0-5% in the glass. Preferably it is good also as 1-3%.
本実施形態において、RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)はガラス中に0〜20%含有させる。また、好ましくは0〜15%としてもよい。 In the present embodiment, RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) is contained in the glass in an amount of 0 to 20%. Moreover, it is good also as 0 to 15% preferably.
また、上記のSiO2、B2O3、ZnO、RO、R2O及びZrO2のガラスの各成分の他に、特定の成分を含有することにより、ガラスと蛍光体との反応を抑制できることがわかり、より蛍光体の失活を抑制できることが明らかとなった。上記の特定の成分は1種類だけ用いても、複数種類を用いるものでもよい。 In addition to the glass components of SiO 2 , B 2 O 3 , ZnO, RO, R 2 O and ZrO 2 , the reaction between the glass and the phosphor can be suppressed by containing specific components. It became clear that the deactivation of the phosphor could be further suppressed. One kind of the specific component may be used, or a plurality of kinds may be used.
すなわち、本発明は前記ガラスにAl2O3を0〜18質量%含有するのが好ましい。 That is, the present invention preferably contains 0 to 18% by mass of Al 2 O 3 in the glass.
Al2O3はガラスの溶融時、焼結時の失透を抑制する或いは蛍光体との反応性を抑制するもので、0〜18質量%の範囲で含有させるのが好ましい。18質量%を超えるとガラスの安定性を低下させる。より好ましくは16質量%以下の範囲である。また、好ましくは下限値を0.2質量%以上としてもよい。 Al 2 O 3 suppresses devitrification at the time of melting and sintering of the glass or suppresses reactivity with the phosphor, and is preferably contained in the range of 0 to 18% by mass. When it exceeds 18 mass%, stability of glass will be reduced. More preferably, it is the range of 16 mass% or less. Moreover, it is good also considering a lower limit as 0.2 mass% or more preferably.
また、本発明は前記ガラスに酸化アンチモンを0〜10質量%含有するのが好ましい。 In the present invention, the glass preferably contains 0 to 10% by mass of antimony oxide.
酸化アンチモンはガラス内にSb2O3、Sb2O5の形で含有されていると推測され、主にSb2O3として存在していると考えられる。Sb2O3は蛍光体との反応性を抑制するもので、0〜10質量%の範囲で含有させるのが好ましい。10質量%を超えるとガラスの安定性を低下させる。より好ましくは8質量%以下の範囲である。また、好ましくは下限値を0.2質量%以上としてもよい。 Antimony oxide is presumed to be contained in the glass in the form of Sb 2 O 3 and Sb 2 O 5 , and is considered to exist mainly as Sb 2 O 3 . Sb 2 O 3 suppresses the reactivity with the phosphor and is preferably contained in the range of 0 to 10% by mass. When it exceeds 10 mass%, stability of glass will be reduced. More preferably, it is the range of 8 mass% or less. Moreover, it is good also considering a lower limit as 0.2 mass% or more preferably.
また、本発明は前記ガラスに酸化スズを0〜10質量%含有するのが好ましい。 In the present invention, the glass preferably contains 0 to 10% by mass of tin oxide.
酸化スズはSnO(2−x)(ただし、0≦x<2)の形で含有されていると推測され、例えばSnO2やSnOとして存在していると考えられる。該酸化スズは蛍光体との反応性を抑制するもので、0〜10質量%の範囲で含有させるのが好ましい。10質量%を超えるとガラスの安定性を低下させる。より好ましくは8%以下の範囲である。また、好ましくは下限値を0.2質量%以上としてもよい。 Tin oxide is presumed to be contained in the form of SnO 2 (2-x) (where 0 ≦ x <2), and is considered to exist as, for example, SnO 2 or SnO. The tin oxide suppresses the reactivity with the phosphor and is preferably contained in the range of 0 to 10% by mass. When it exceeds 10 mass%, stability of glass will be reduced. More preferably, it is 8% or less. Moreover, it is good also considering a lower limit as 0.2 mass% or more preferably.
また、前述したAl2O3、酸化アンチモン、及び酸化スズを加えることによって、ガラスと蛍光体との反応を抑制することが可能である。従って、前記ガラスにAl2O3、酸化アンチモン、及び酸化スズからなる群から選ばれる少なくとも1種の合計を0.2質量%以上、18質量%以下含有することが好ましい。上記の範囲内となるようにガラス組成中に含有する各成分を調整することによって、蛍光体の失活を抑制する効果を向上させることが可能となる。また、SiO2+B2O3+ZnO+RO+R2O+ZrO2+Al2O3+酸化アンチモン+酸化スズが100質量%となってもよい。 Further, Al 2 O 3 described above, by the addition of antimony oxide, and tin oxide, it is possible to suppress the reaction between the glass and the phosphor. Therefore, it is preferable that the glass contains 0.2% by mass or more and 18% by mass or less of a total of at least one selected from the group consisting of Al 2 O 3 , antimony oxide, and tin oxide. By adjusting each component contained in the glass composition so as to be within the above range, the effect of suppressing the deactivation of the phosphor can be improved. Further, SiO 2 + B 2 O 3 + ZnO + RO + R 2 O + ZrO 2 + Al 2 O 3 + antimony oxide + tin oxide may be 100% by mass.
上記の他にも、一般的な酸化物で表すNb2O5、TiO2、WO3、TeO2、La2O3、CeO2、及びP2O5などを微量加えてもよい。 In addition to the above, a small amount of Nb 2 O 5 , TiO 2 , WO 3 , TeO 2 , La 2 O 3 , CeO 2 , P 2 O 5 or the like represented by a general oxide may be added.
また、Fe2O3等を上記のガラス中に含有するとガラスの透過率が低下してしまうことがあり、本発明の目的には適さない。従って、上記成分は実質的に含有しないのが好ましい。具体的には、上記成分の含有量が0.01質量%以下であるのが好ましい。 Further, if Fe 2 O 3 or the like is contained in the glass, the transmittance of the glass may be lowered, which is not suitable for the purpose of the present invention. Therefore, it is preferable not to contain the said component substantially. Specifically, the content of the above components is preferably 0.01% by mass or less.
また、PbOを上記のガラス中に含有するとガラスが黄色に着色し励起光を吸収してしまうことから、実質的にPbOを含有しない事が好ましい。具体的には、上記成分の含有量が0.01質量%以下であるのが好ましい。 Further, when PbO is contained in the glass, the glass is colored yellow and absorbs excitation light. Therefore, it is preferable that PbO is not substantially contained. Specifically, the content of the above components is preferably 0.01% by mass or less.
また、本発明のガラスは30℃〜300℃における線膨張係数が6〜13ppm/℃、軟化点が650℃以下の範囲内であるのが好ましい。軟化点を低くすることにより、焼結時の熱で蛍光体が失活することを抑制することが可能である。好ましくは630℃以下としてもよい。また、軟化点が低くなりすぎると耐湿性が低下してしまうことがあるため、下限値を好ましくは500℃以上としてもよい。 The glass of the present invention preferably has a linear expansion coefficient of 6 to 13 ppm / ° C. and a softening point of 650 ° C. or less at 30 ° C. to 300 ° C. By lowering the softening point, it is possible to suppress the phosphor from being deactivated by heat during sintering. Preferably it is good also as 630 degrees C or less. Further, if the softening point is too low, the moisture resistance may be lowered, so the lower limit may be preferably 500 ° C. or higher.
通常蛍光体は、蛍光体を構成する成分によって励起光を発光する波長が異なる。本発明は波長350〜475nmに励起光を持つ蛍光体であれば蛍光体の種類を特に限定することなく蛍光体分散ガラスに使用することを可能としたものである。すなわち、本発明は前記蛍光体粒子が、波長350〜475nmに励起光を持つことが好ましい。また、本発明は特に415nm〜475nmに励起光を持つ蛍光体粒子に好適であることから、より好ましくは415〜475nmとしてもよい。 Usually, phosphors have different wavelengths for emitting excitation light depending on components constituting the phosphors. In the present invention, a phosphor having excitation light at a wavelength of 350 to 475 nm can be used for the phosphor-dispersed glass without any particular limitation on the type of the phosphor. That is, in the present invention, the phosphor particles preferably have excitation light at a wavelength of 350 to 475 nm. The present invention is particularly suitable for phosphor particles having excitation light at 415 nm to 475 nm, and more preferably 415 to 475 nm.
上記の蛍光体粒子としては、例えば、酸化物、酸窒化物、窒化物、及びYAG系化合物からなる群から選ばれる少なくとも1種を用いるのが好ましい。特に、失活しやすいとされている窒化物について、本発明は特に好適に利用可能である。また、本実施例においては、窒化物蛍光体である(SrCa)AlSiN3:Eu2+と酸化物赤蛍光体であるLu3Al5O12:Ce3+とを混合して使用し良好な結果を得られた事から、本発明は複数種類の蛍光体を含んでもよい。 As said fluorescent substance particle, it is preferable to use at least 1 sort (s) chosen from the group which consists of an oxide, an oxynitride, a nitride, and a YAG type compound, for example. In particular, the present invention can be particularly suitably used for nitrides that are considered to be easily deactivated. In this example, (SrCa) AlSiN 3 : Eu 2+ which is a nitride phosphor and Lu 3 Al 5 O 12 : Ce 3+ which is an oxide red phosphor are mixed and used, and good results are obtained. As a result, the present invention may include a plurality of types of phosphors.
また、本発明の蛍光体分散ガラスの変換効率(励起光と蛍光の強度比)や発光効率は、ガラス中に分散した蛍光体粒子の種類や含有量、及び蛍光体分散ガラスの厚みによって変化する。蛍光体粒子の含有量と蛍光体分散ガラスの厚みは、発光効率、演色性が最適になるように調整すればよいが、蛍光体粒子が多くなりすぎると焼結しにくくなったり、励起光が効率良く蛍光体粒子に照射されない問題が生じる。また、含有量が少なすぎると十分に発光させることが難しくなる。よって、前記蛍光体粒子の含有量が該蛍光体分散ガラスの全質量に対して0.01〜50%質量%となるように混合することが好ましい。特に0.5〜40質量%であることが好ましい。 In addition, the conversion efficiency (excitation light to fluorescence intensity ratio) and light emission efficiency of the phosphor-dispersed glass of the present invention vary depending on the type and content of phosphor particles dispersed in the glass and the thickness of the phosphor-dispersed glass. . The content of phosphor particles and the thickness of the phosphor-dispersed glass may be adjusted so as to optimize the luminous efficiency and color rendering properties. There arises a problem that phosphor particles are not efficiently irradiated. Moreover, when there is too little content, it will become difficult to make it fully light-emit. Therefore, it is preferable to mix so that the content of the phosphor particles may be 0.01 to 50% by mass with respect to the total mass of the phosphor-dispersed glass. In particular, the content is preferably 0.5 to 40% by mass.
前述したように、本発明の蛍光体分散ガラスは、ガラス粉末材料と蛍光体粉末とを混合した後、焼結させることによって得ることが可能である。その際、ガラス粉末材料と蛍光体粉末とを混合した後、加圧等によって一度成型したものを焼結すると、熱に由来する蛍光体の失活を抑制できるため好ましい。また、上記以外でもガラス粉末材料と蛍光体粉末を混合した後、一度溶融させた後に型等を用いて成型してもよい。 As described above, the phosphor-dispersed glass of the present invention can be obtained by mixing a glass powder material and a phosphor powder and then sintering them. In that case, it is preferable to mix the glass powder material and the phosphor powder, and then to sinter the molded material once by pressurization or the like because the deactivation of the phosphor derived from heat can be suppressed. In addition to the above, the glass powder material and the phosphor powder may be mixed and then melted once and then molded using a mold or the like.
上記の焼結を行う際、ガラス粉末材料の軟化点以上、軟化点+100℃以下、特に軟化点以上、軟化点+50℃以下の温度範囲内で焼結させることが望ましい。軟化点未満ではガラスが流動しにくく、緻密な焼結体を得ることが難しくなる。軟化点+100℃を超える高い温度では蛍光体が失活することがあり、本発明の目的には適さない。 When performing the above-mentioned sintering, it is desirable to sinter within the temperature range of the softening point of the glass powder material to the softening point + 100 ° C. or less, particularly the softening point to the softening point + 50 ° C. or less. Below the softening point, the glass is difficult to flow and it is difficult to obtain a dense sintered body. At high temperatures exceeding the softening point + 100 ° C., the phosphor may be deactivated and is not suitable for the purpose of the present invention.
また、本発明の蛍光体分散ガラスは、無機フィラーを含有するものであってもよい。 The phosphor-dispersed glass of the present invention may contain an inorganic filler.
上記の無機フィラーを含有することにより、蛍光体分散ガラスを焼結する時の線膨張係数や軟化点等の熱的性質を調整することが可能である。該無機フィラーとしては、例えばジルコン、ムライト、シリカ、チタニア、及びアルミナ等が使用できる。また、該無機フィラーの含有量は適宜調整すれば良いが、例えば該蛍光体分散ガラスの全質量に対して、0.1質量%以上、40質量%以下となるように混合してもよい。 By containing the inorganic filler, it is possible to adjust thermal properties such as a linear expansion coefficient and a softening point when the phosphor-dispersed glass is sintered. Examples of the inorganic filler that can be used include zircon, mullite, silica, titania, and alumina. Moreover, what is necessary is just to adjust content of this inorganic filler suitably, For example, you may mix so that it may become 0.1 mass% or more and 40 mass% or less with respect to the total mass of this fluorescent substance dispersion | distribution glass.
蛍光体分散ガラスに用いるガラス(以下「母材」又は「母材ガラス」と記載することもある)は、混合する蛍光体粉末の粒子径(1〜100μm)に近いサイズまで粉砕したガラス粉末材料を用いるのが好ましい。また、粉砕には、乳鉢やボールミルを用いて粉砕してもよいが、作業工程での汚染が少ないジェットミル方式の粉砕機を用いても良い。 Glass used for the phosphor-dispersed glass (hereinafter sometimes referred to as “base material” or “base glass”) is a glass powder material pulverized to a size close to the particle diameter (1 to 100 μm) of the phosphor powder to be mixed Is preferably used. The pulverization may be performed using a mortar or a ball mill, but a jet mill type pulverizer with less contamination in the work process may be used.
上記のようにして得られた母材のガラス粉末材料と蛍光体粉末を所望の割合で混合した混合物を、加圧によりペレットに成型し、そのペレットを加熱により焼結して蛍光体分散ガラスを得ることが可能である。この時、蛍光体粉末の含有量を0.01〜50質量%とするのが好ましい。蛍光体粉末が50質量%を超えると焼結しにくくなったり、励起光が効率良く蛍光体粒子に照射されない問題が生じる。また、0.01質量%未満だと含有量が少なすぎるため、十分に発光させることが難しくなる。 The mixture obtained by mixing the glass powder material of the base material and the phosphor powder obtained in the above manner in a desired ratio is molded into a pellet by pressurization, and the pellet is sintered by heating to obtain a phosphor-dispersed glass. It is possible to obtain. At this time, the phosphor powder content is preferably 0.01 to 50% by mass. When the phosphor powder exceeds 50% by mass, it becomes difficult to sinter, or the excitation light is not efficiently irradiated onto the phosphor particles. On the other hand, when the content is less than 0.01% by mass, the content is too small, and it becomes difficult to emit light sufficiently.
また、加圧によりペレット成型する際は、熱を加えない工程で行うのが好ましく、プレス成型法等を用いるのが好適である。加熱時の雰囲気は大気中でもよく、窒素ガスやArガスなどの不活性ガス雰囲気中でも良いが、製造コストを考えると大気雰囲気が望ましい。さらには、蛍光体分散用ガラスの内部に含まれる気泡を抑制するため、減圧下で焼結しても良いし、焼結中に加圧しても良い。 Moreover, when pellet-forming by pressurization, it is preferable to carry out in a process in which heat is not applied, and it is preferable to use a press molding method or the like. The atmosphere at the time of heating may be in the air or in an inert gas atmosphere such as nitrogen gas or Ar gas, but the air atmosphere is desirable in view of manufacturing costs. Furthermore, in order to suppress bubbles contained in the phosphor dispersion glass, sintering may be performed under reduced pressure, or pressure may be applied during sintering.
また、前述した方法以外でも、母材のガラス粉末材料と蛍光体粉末とを有機ビヒクルに混練し、ペースト状にして塗布した後、焼結することによって蛍光体分散ガラスを得ても良い。この時、目的に応じて前述した無機フィラーを混合してもよい。有機ビヒクルはガラスの焼結温度において脱離するものであれば好適に用いることが可能である。 In addition to the methods described above, the phosphor-dispersed glass may be obtained by kneading the glass powder material of the base material and the phosphor powder into an organic vehicle, applying the paste in a paste form, and then sintering. At this time, you may mix the inorganic filler mentioned above according to the objective. The organic vehicle can be suitably used as long as it desorbs at the glass sintering temperature.
本発明の蛍光体分散ガラスは白色LEDとして好適に利用できる。特に赤色蛍光体として有用な窒化物蛍光体を封止することが可能であるため、高演色な白色LEDを得ることが可能である。 The phosphor-dispersed glass of the present invention can be suitably used as a white LED. In particular, since a nitride phosphor useful as a red phosphor can be sealed, a high color rendering white LED can be obtained.
本発明の実施例、参考例及び比較例を以下に記載する。
Examples , Reference Examples and Comparative Examples of the present invention are described below.
まず、表1、表2に記載したA〜Tの原料組成となるように各種無機原料を秤量、混合して原料バッチを作製した。この原料バッチを白金ルツボに投入し、電気加熱炉内で1100〜1300℃、1〜2時間で加熱溶融して表1、表2のガラス試料(A〜S)を得た。尚、Tの組成はガラス化しなかった為、以後の検討は行わなかった。得られたガラスの一部は型に流し込み、ブロック状にして熱物性(熱膨張係数、軟化点)測定用に供した。残余のガラスは急冷双ロール成形機にてフレーク状とし、粉砕装置で平均粒径1〜30μm、最大粒径100μm未満のガラス粉末試料に整粒した。なお、本実施例において酸化スズはSnOを原料として用いた。ガラス中の酸化スズはSnO(2−x)(ただし0≦x<2)であり、明確な酸化状態を測定することは困難であるため、表1、表2においてはSnO(2−x)と記載した。 First, various inorganic raw materials were weighed and mixed so as to have the raw material compositions A to T described in Tables 1 and 2, to prepare a raw material batch. This raw material batch was put into a platinum crucible and heated and melted in an electric heating furnace at 1100 to 1300 ° C. for 1 to 2 hours to obtain glass samples (A to S) shown in Tables 1 and 2. Since the composition of T was not vitrified, no further examination was performed. A part of the obtained glass was poured into a mold, made into a block shape, and used for measurement of thermal properties (thermal expansion coefficient, softening point). The remaining glass was formed into flakes with a rapid cooling twin roll molding machine, and sized into glass powder samples having an average particle size of 1 to 30 μm and a maximum particle size of less than 100 μm by a pulverizer. In this example, SnO was used as a raw material for tin oxide. Since tin oxide in the glass is SnO (2-x) (where 0 ≦ x <2) and it is difficult to measure a clear oxidation state, SnO (2-x) is shown in Tables 1 and 2. It was described.
上記の軟化点は、熱分析装置TG―DTA(リガク(株)製)を用いて測定した。また、上記の熱膨張係数は熱膨張計を用い、5℃/分で昇温したときの30〜300℃での伸び量から線膨張係数を求めた。 The softening point was measured using a thermal analyzer TG-DTA (manufactured by Rigaku Corporation). Moreover, the said thermal expansion coefficient calculated | required the linear expansion coefficient from the amount of elongation at 30-300 degreeC when it heated up at 5 degree-C / min using the thermal dilatometer.
実施例1、参考例1
得られたガラス粉末材料に窒化物赤蛍光体粉末((SrCa)AlSiN3:Eu2+、発光中心波長610nm)を添加、混合して混合粉末(蛍光体含有量;4質量%)とした。なお、ガラス粉末材料は表1のD、E、K〜Nの組成を実施例として、A〜C、F〜Jの組成を参考例としてそれぞれ用いた。次に、金型で加圧成型して直径10mm、厚み2mmのボタン状予備成型体を作製した。次に、大気中においてそれぞれ30分間加熱することによって焼結し、焼結体を得た。使用したガラス粉末材料、蛍光体粉末、焼結温度、得られた焼結体の色調を表3に示した。
Example 1 and Reference Example 1
Nitride red phosphor powder ((SrCa) AlSiN 3 : Eu 2+ , emission center wavelength 610 nm) was added to the obtained glass powder material and mixed to obtain a mixed powder (phosphor content: 4 mass%). In addition, the glass powder material used the composition of D, E, and KN of Table 1 as an example, and used the composition of AC and FJ as a reference example, respectively . Next, a button-shaped preform having a diameter of 10 mm and a thickness of 2 mm was produced by pressure molding with a mold. Next, it sintered by heating for 30 minutes in air | atmosphere, and obtained the sintered compact. Table 3 shows the used glass powder material, phosphor powder, sintering temperature, and color tone of the obtained sintered body.
参考例2
ガラス粉末材料に表1のB及びIの組成を使用し、蛍光体粉末に窒化物赤蛍光体(CaAlSiN3:Eu2+、発光中心波長630nm)粉末を使用した以外は、実施例1と同様の方法で焼結体を得た。なお、焼結温度は表3に記載した通りである。
Reference example 2
Example 1 except that the composition of B and I in Table 1 was used for the glass powder material and a nitride red phosphor (CaAlSiN 3 : Eu 2+ , emission center wavelength of 630 nm) powder was used for the phosphor powder. A sintered body was obtained by this method. The sintering temperature is as described in Table 3.
比較例1
ガラス粉末材料に表2のO〜Sの組成を使用した以外は、実施例1と同様の方法で焼結体を得た。なお、焼結温度は表3に記載した通りである。
Comparative Example 1
A sintered body was obtained in the same manner as in Example 1 except that the composition of O to S in Table 2 was used for the glass powder material. The sintering temperature is as described in Table 3.
参考例3
ガラス粉末材料に表1のEの組成を使用し、蛍光体粉末に酸化物赤蛍光体(Y3Al5O12:Ce3+、発光中心555nm)粉末を使用した以外は、実施例1と同様の方法で焼結体を得た。なお、焼結温度は表4に記載した通りである。
Reference example 3
Example 1 except that the composition of E in Table 1 was used for the glass powder material and oxide red phosphor (Y 3 Al 5 O 12 : Ce 3+ , emission center 555 nm) powder was used for the phosphor powder. Thus, a sintered body was obtained. The sintering temperature is as described in Table 4.
参考例4
ガラス粉末材料に表1のC、E及びJ〜Nの組成を使用し、蛍光体粉末に酸化物赤蛍光体(Lu3Al5O12:Ce3+、発光中心540nm)粉末を使用した以外は、実施例1と同様の方法で焼結体を得た。なお、焼結温度は表4に記載した通りである。
Reference example 4
The composition of C, E, and J to N of Table 1 was used for the glass powder material, and oxide red phosphor (Lu 3 Al 5 O 12 : Ce 3+ , emission center 540 nm) powder was used for the phosphor powder. A sintered body was obtained in the same manner as in Example 1. The sintering temperature is as described in Table 4.
実施例2
得られたガラス粉末材料に、無機フィラー(SiO2フィラー、粒子径0.3μm)、及び窒化物赤蛍光体粉末((SrCa)AlSiN3:Eu2+、発光中心波長610nm)を混合して混合粉末(無機フィラー含有量;2質量%、蛍光体含有量;4質量%)とした。なお、ガラス粉末材料は表1のNの組成を用いた。次に、金型で加圧成型して直径10mm、厚み2mmのボタン状予備成型体を作製した。次に、大気中においてそれぞれ30分間加熱することによって焼結し、焼結体を得た。使用したガラス粉末材料、無機フィラー、蛍光体粉末、焼結温度、得られた焼結体の色調を表3に示した。
Example 2
The obtained glass powder material is mixed with an inorganic filler (SiO 2 filler, particle size 0.3 μm) and nitride red phosphor powder ((SrCa) AlSiN 3 : Eu 2+ , emission center wavelength 610 nm). (Inorganic filler content: 2 mass%, phosphor content: 4 mass%). In addition, the composition of N of Table 1 was used for the glass powder material. Next, a button-shaped preform having a diameter of 10 mm and a thickness of 2 mm was produced by pressure molding with a mold. Next, it sintered by heating for 30 minutes in air | atmosphere, and obtained the sintered compact. Table 3 shows the glass powder material, inorganic filler, phosphor powder, sintering temperature, and color tone of the obtained sintered body.
参考例5
使用する蛍光体粉末に酸化物赤蛍光体(Y3Al5O12:Ce3+、発光中心555nm) 粉末を使用した以外は、実施例2と同様の方法で焼結体を得た。使用したガラス粉末材料、無機フィラー、蛍光体粉末、焼結温度、得られた焼結体の色調を表4に示した。
Reference Example 5
A sintered body was obtained in the same manner as in Example 2 except that oxide red phosphor (Y 3 Al 5 O 12 : Ce 3+ , emission center 555 nm) powder was used as the phosphor powder to be used. Table 4 shows the glass powder material, inorganic filler, phosphor powder, sintering temperature, and color tone of the obtained sintered body.
<量子効率の測定>
実施例1〜2、参考例1〜5、比較例1で得られたそれぞれの焼結体について内部量子効率(ηint)及び外部量子効率(ηext)を測定し、表3、表4に示した。測定は、積分球(日本分光製ILF−533)が接続された蛍光分光光度計(日本分光製FP−6500)を用いて、積分球内に進入した励起光スペクトルの積分強度をA、サンプルで吸収された励起光スペクトルの積分強度をB、サンプルから放出された蛍光スペクトルの積分強度をCとして、内部量子効率をC/B、外部量子効率をC/Aで求めた。内部量子効率及び外部量子効率が高い程、発光効率が高いと言える。
<Measurement of quantum efficiency>
The internal quantum efficiency (η int ) and the external quantum efficiency (η ext ) of each sintered body obtained in Examples 1 and 2, Reference Examples 1 to 5, and Comparative Example 1 were measured. Indicated. The measurement is performed using a fluorescence spectrophotometer (FP-6500 manufactured by JASCO Corporation) to which an integrating sphere (ILF-533 manufactured by JASCO Corporation) is connected. Assuming that the integrated intensity of the absorbed excitation light spectrum is B, the integrated intensity of the fluorescence spectrum emitted from the sample is C, the internal quantum efficiency is C / B, and the external quantum efficiency is C / A. It can be said that the higher the internal quantum efficiency and the external quantum efficiency, the higher the light emission efficiency.
尚、検討に使用した窒化物赤蛍光体の内部量子効率を、ガラス封止する前に測定したところ、(SrCa)AlSiN3:Eu2+は84%、CaAlSiN3:Eu2+は83%、Y3Al5O12:Ce3+は83%、Lu3Al5O12:Ce3+は81%であった。 In addition, when the internal quantum efficiency of the nitride red phosphor used in the study was measured before glass sealing, (SrCa) AlSiN 3 : Eu 2+ was 84%, CaAlSiN 3 : Eu 2+ was 83%, and Y 3 Al 5 O 12 : Ce 3+ was 83%, and Lu 3 Al 5 O 12 : Ce 3+ was 81%.
窒化物赤蛍光体を用いた実施例1、参考例1、2、及び比較例1を比較すると、比較例1の内部量子効率及び外部量子効率はいずれも10%以下であったのに対し、実施例1、参考例1、2はいずれも18%以上であった。また、焼結体の色調も比較例1は黒色や灰色であるのに対し、実施例1、参考例1、2はいずれも暗橙色、橙色、明橙色であった。以上より、本発明は窒化物赤蛍光体の失活を抑制可能であることが示された。
Nitride red phosphor in Example 1 using, whereas Reference Examples 1 and 2, and a comparison of Comparative Example 1, the internal quantum efficiency and external quantum efficiency of Comparative Example 1 was less than 10% both, Example 1 and Reference Examples 1 and 2 were both 18% or more. Also, the color tone of the sintered body was black or gray in Comparative Example 1, whereas in Example 1 and Reference Examples 1 and 2 , all were dark orange, orange, and bright orange. From the above, it was shown that the present invention can suppress the deactivation of the nitride red phosphor.
また、酸化物赤蛍光体を用いた参考例3、4は内部量子効率が60〜81%であった。ガラス封止する前の該酸化物赤蛍光体の内部量子効率はそれぞれ83%、81%であり、内部量子効率が低下しないものや内部量子効率の低下を抑制したものが得られた。また、焼結体の色調はいずれも明黄色であった。以上より、本発明の参考例3、4は酸化物赤蛍光体の失活を抑制可能であることが示された。
In Reference Examples 3 and 4 using an oxide red phosphor, the internal quantum efficiency was 60 to 81%. The internal quantum efficiency of the oxide red phosphor before glass sealing was 83% and 81%, respectively, and the internal quantum efficiency did not decrease or the internal quantum efficiency was suppressed from decreasing. In addition, the color tone of the sintered body was light yellow. From the above, it was shown that Reference Examples 3 and 4 of the present invention can suppress the deactivation of the oxide red phosphor.
また、無機フィラーを混合した実施例2、参考例5は、無機フィラーを混合させなかった他の実施例と同様に内部量子効率及び外部量子効率の低下を抑制できた。また、焼結体の色調も大きな変化はないことから、本発明は無機フィラーを利用可能であることが示された。
Moreover, Example 2 which mixed the inorganic filler, and Reference Example 5 were able to suppress the fall of an internal quantum efficiency and an external quantum efficiency similarly to the other Example which was not made to mix an inorganic filler. Moreover, since there was no big change in the color tone of a sintered compact, it was shown that this invention can utilize an inorganic filler.
実施例3
ガラス粉末試料として表1のEの組成、窒化物蛍光体粉末として(SrCa)AlSiN3:Eu2+粉末を5重量% 、及び酸化物赤蛍光体としてLu3Al5O12:Ce3+粉末を3重量% それぞれ混合して混合粉末とした。次に、該混合粉末を金型で加圧成型し、直径10mm、厚み2mmのボタン状予備成型体を作製した。次に、大気中において、610℃で30分間加熱し焼結体を得た。その結果、焼結体は明橙色となった。
Example 3
The composition of E in Table 1 as a glass powder sample, 5% by weight of (SrCa) AlSiN 3 : Eu 2+ powder as nitride phosphor powder, and 3 of Lu 3 Al 5 O 12 : Ce 3+ powder as oxide red phosphor Weight% Each was mixed to make a mixed powder. Next, the mixed powder was pressure-molded with a mold to prepare a button-shaped preform having a diameter of 10 mm and a thickness of 2 mm. Next, it was heated at 610 ° C. for 30 minutes in the air to obtain a sintered body. As a result, the sintered body became bright orange.
実施例3で得られた焼結体の内部量子効率及び外部量子効率を前述した方法を用いて測定したところ、内部量子効率は61%、外部量子効率は50%であった。すなわち、酸化物蛍光体と窒化物蛍光体を併用しても蛍光体の失活を抑制可能であることが明らかとなった。従って、複数種類の蛍光体を併用して封止する蛍光体分散ガラスにも利用できることが確認された。 When the internal quantum efficiency and the external quantum efficiency of the sintered body obtained in Example 3 were measured using the method described above, the internal quantum efficiency was 61% and the external quantum efficiency was 50%. That is, it has been clarified that the deactivation of the phosphor can be suppressed even when the oxide phosphor and the nitride phosphor are used in combination. Therefore, it was confirmed that the present invention can also be used for phosphor-dispersed glass that is sealed by using a plurality of types of phosphors in combination.
Claims (10)
SiO2を1〜40%、
B2O3を15〜65%、
ZnOを1〜50%、
RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)を0〜40%、
Li2Oを0〜3%、
R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)を0〜30%、
酸化スズを0.2〜10質量%、
ZrO2を0〜5%含む(ただし、SiO2+B2O3+ZnO+RO+R2O+ZrO2が80%以上)ものであることを特徴とする蛍光体分散ガラス。 A phosphor-dispersed glass in which nitride phosphor particles are dispersed in a glass, the glass being in mass%,
The SiO 2 1~40%,
15 to 65% of B 2 O 3
ZnO 1-50%,
RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) is 0 to 40%,
Li 2 O 0-3%,
0 to 30% of R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O),
0.2 to 10% by mass of tin oxide,
A phosphor-dispersed glass comprising 0 to 5% of ZrO 2 (however, SiO 2 + B 2 O 3 + ZnO + RO + R 2 O + ZrO 2 is 80% or more).
SiO2を1〜20%、
B2O3を10〜40%、
ZnOを20〜50%、
RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)を20〜40%、
R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)を0〜10%、
酸化スズを0.2〜10質量%、
ZrO2を0〜5%含む(ただし、SiO2+B2O3+ZnO+RO+R2O+ZrO2が80%以上)ものであることを特徴とする蛍光体分散ガラス。 A phosphor-dispersed glass in which nitride phosphor particles are dispersed in glass, and the glass is in mass%,
The SiO 2 1~20%,
10 to 40% of B 2 O 3
ZnO 20-50%,
RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) is 20 to 40%,
R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O) is 0 to 10%,
0.2 to 10% by mass of tin oxide,
A phosphor-dispersed glass comprising 0 to 5% of ZrO 2 (however, SiO 2 + B 2 O 3 + ZnO + RO + R 2 O + ZrO 2 is 80% or more).
SiO2を10〜40%、
B2O3を15〜65%、
ZnOを1〜40%、
RO(MgO、CaO、SrO、及びBaOからなる群から選ばれる少なくとも1種の合計)を0〜20%、
Li2Oを0〜3%、
Na2Oを4〜17%、
K2Oを2〜18%、
R2O(Li2O、Na2O、及びK2Oからなる群から選ばれる少なくとも1種の合計)を8〜30%、
酸化スズを0.2〜10質量%、
ZrO2を0〜5%含む(ただし、SiO2+B2O3+ZnO+RO+R2O+ZrO2が80%以上)ものであることを特徴とする蛍光体分散ガラス。 A phosphor-dispersed glass in which nitride phosphor particles are dispersed in glass, and the glass is in mass%,
The SiO 2 10~40%,
15 to 65% of B 2 O 3
1-40% ZnO,
RO (total of at least one selected from the group consisting of MgO, CaO, SrO, and BaO) is 0 to 20%,
Li 2 O 0-3%,
Na 2 O and 4-17%,
2-18% K 2 O,
8-30% of R 2 O (total of at least one selected from the group consisting of Li 2 O, Na 2 O, and K 2 O),
0.2 to 10% by mass of tin oxide,
A phosphor-dispersed glass comprising 0 to 5% of ZrO 2 (however, SiO 2 + B 2 O 3 + ZnO + RO + R 2 O + ZrO 2 is 80% or more).
A white LED comprising the phosphor-dispersed glass according to any one of claims 1 to 3.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014121946A JP6398351B2 (en) | 2013-07-25 | 2014-06-13 | Phosphor dispersed glass |
PCT/JP2014/066786 WO2015012052A1 (en) | 2013-07-25 | 2014-06-25 | Phosphor-dispersed glass |
KR1020167004183A KR101806054B1 (en) | 2013-07-25 | 2014-06-25 | Phosphor-dispersed glass |
CN201480021301.0A CN105121375B (en) | 2013-07-25 | 2014-06-25 | Fluorophor dispersing glass |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013154274 | 2013-07-25 | ||
JP2013154274 | 2013-07-25 | ||
JP2014121946A JP6398351B2 (en) | 2013-07-25 | 2014-06-13 | Phosphor dispersed glass |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018040332A Division JP2018131380A (en) | 2013-07-25 | 2018-03-07 | Phosphor-dispersed glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015042606A JP2015042606A (en) | 2015-03-05 |
JP6398351B2 true JP6398351B2 (en) | 2018-10-03 |
Family
ID=52393104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014121946A Expired - Fee Related JP6398351B2 (en) | 2013-07-25 | 2014-06-13 | Phosphor dispersed glass |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6398351B2 (en) |
KR (1) | KR101806054B1 (en) |
CN (1) | CN105121375B (en) |
WO (1) | WO2015012052A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9871176B2 (en) * | 2015-02-02 | 2018-01-16 | Ferro Corporation | Glass compositions and glass frit composites for use in optical applications |
JP6617948B2 (en) * | 2015-05-11 | 2019-12-11 | 日本電気硝子株式会社 | Wavelength conversion member and light emitting device |
JP6450936B2 (en) * | 2015-07-15 | 2019-01-16 | 岡本硝子株式会社 | Phosphor dispersed glass |
JP6740616B2 (en) * | 2015-09-15 | 2020-08-19 | 日本電気硝子株式会社 | Wavelength conversion member and light emitting device |
WO2017047412A1 (en) * | 2015-09-15 | 2017-03-23 | 日本電気硝子株式会社 | Wavelength conversion member and light-emitting device |
KR101729512B1 (en) * | 2015-10-01 | 2017-04-24 | 한국세라믹기술원 | Manufacturing method of white light emitting diode apparatus |
WO2018037760A1 (en) * | 2016-08-25 | 2018-03-01 | セントラル硝子株式会社 | Wavelength conversion member |
JP6693360B2 (en) * | 2016-09-14 | 2020-05-13 | Agc株式会社 | Light conversion member, illumination light source, and method for manufacturing light conversion member |
CN106800371B (en) * | 2017-01-25 | 2019-12-03 | 上海应用技术大学 | A kind of high thermal conductivity coefficient borosilicate fluorescent glass material and preparation method thereof |
CN106746687B (en) * | 2017-01-25 | 2019-10-01 | 上海应用技术大学 | A method of LED encapsulation fluorescent glass piece is prepared using silk screen print method |
CN109206009A (en) * | 2017-07-04 | 2019-01-15 | 白金光学科技(苏州)有限公司 | The effective fluorescent glass of light-emitting diodes and its preparation process |
CN108249772A (en) * | 2018-01-19 | 2018-07-06 | 南昌大学 | Preparation method based on the nanocrystalline luminescent microcrystal glass of rare earth ion doped Yttrium Orthovanadate |
KR102149988B1 (en) * | 2018-09-07 | 2020-08-31 | 대주전자재료 주식회사 | Laminated body for preparing wavelength conversion member and preparation method of wavelength conversion member |
CN109516694B (en) * | 2018-11-07 | 2021-11-30 | 深圳市齐尚光科技有限公司 | Fluorescent glass, preparation method thereof and light-emitting device |
CN113272260A (en) * | 2019-03-08 | 2021-08-17 | 日本电气硝子株式会社 | Wavelength conversion member and light emitting apparatus |
KR102215135B1 (en) * | 2019-04-12 | 2021-02-10 | 주식회사 베이스 | Glass composition and color conversion glass comprising it |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4158012B2 (en) | 2002-03-06 | 2008-10-01 | 日本電気硝子株式会社 | Luminescent color conversion member |
CN101171205A (en) * | 2005-05-11 | 2008-04-30 | 日本电气硝子株式会社 | Fluorescent composite glass, fluorescent composite glass green sheet and process for production of fluorescent composite glass |
JP2007191702A (en) * | 2005-12-22 | 2007-08-02 | Nippon Electric Glass Co Ltd | Light emission color converting material |
JP2007314657A (en) * | 2006-05-25 | 2007-12-06 | Nippon Electric Glass Co Ltd | Wavelength converting material using fluorescent substance |
JP4802923B2 (en) * | 2006-08-03 | 2011-10-26 | 日本電気硝子株式会社 | Wavelength conversion member |
JP5152687B2 (en) * | 2006-12-07 | 2013-02-27 | 日本電気硝子株式会社 | Luminescent color conversion material |
JP5757238B2 (en) * | 2009-07-27 | 2015-07-29 | コニカミノルタ株式会社 | Phosphor-dispersed glass and method for producing the same |
JP5569094B2 (en) * | 2010-03-28 | 2014-08-13 | セントラル硝子株式会社 | Low melting point glass composition and conductive paste material using the same |
JP5854367B2 (en) * | 2011-06-21 | 2016-02-09 | 日本電気硝子株式会社 | Method for manufacturing phosphor composite member |
DE112011103756T5 (en) * | 2010-11-12 | 2013-09-19 | Asahi Glass Company, Limited | Glass which emits white light, glass-covered light-emitting element and light-emitting device |
JP6168284B2 (en) * | 2013-04-03 | 2017-07-26 | 日本電気硝子株式会社 | Wavelength conversion material, wavelength conversion member, and light emitting device |
-
2014
- 2014-06-13 JP JP2014121946A patent/JP6398351B2/en not_active Expired - Fee Related
- 2014-06-25 WO PCT/JP2014/066786 patent/WO2015012052A1/en active Application Filing
- 2014-06-25 CN CN201480021301.0A patent/CN105121375B/en not_active Expired - Fee Related
- 2014-06-25 KR KR1020167004183A patent/KR101806054B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
JP2015042606A (en) | 2015-03-05 |
CN105121375A (en) | 2015-12-02 |
CN105121375B (en) | 2017-11-24 |
KR101806054B1 (en) | 2017-12-07 |
KR20160034968A (en) | 2016-03-30 |
WO2015012052A1 (en) | 2015-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6398351B2 (en) | Phosphor dispersed glass | |
KR102271648B1 (en) | Wavelength conversion member and light emitting device using same | |
JP4894186B2 (en) | Phosphor and light emitting diode | |
JP5757238B2 (en) | Phosphor-dispersed glass and method for producing the same | |
JP4873361B2 (en) | Luminescent color conversion member | |
JP6273799B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
TWI636970B (en) | Phosphor dispersion glass | |
JP6311715B2 (en) | Phosphor-dispersed glass and method for producing the same | |
JP6425001B2 (en) | Wavelength conversion material, wavelength conversion member and light emitting device | |
JP6365828B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
US9434876B2 (en) | Phosphor-dispersed glass | |
TW201527487A (en) | Wavelength-conversion member and light-emitting device | |
JP2016084269A (en) | Phosphor-dispersed glass | |
KR101679682B1 (en) | Glass Composition for Wavelength Conversion Glasses | |
JP2018131380A (en) | Phosphor-dispersed glass | |
CN111480098B (en) | Wavelength conversion member and light emitting device using same | |
JP2019151546A (en) | Glass member | |
JP2019151522A (en) | Wavelength conversion member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180807 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6398351 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |