JP2007314657A - Wavelength converting material using fluorescent substance - Google Patents

Wavelength converting material using fluorescent substance Download PDF

Info

Publication number
JP2007314657A
JP2007314657A JP2006145452A JP2006145452A JP2007314657A JP 2007314657 A JP2007314657 A JP 2007314657A JP 2006145452 A JP2006145452 A JP 2006145452A JP 2006145452 A JP2006145452 A JP 2006145452A JP 2007314657 A JP2007314657 A JP 2007314657A
Authority
JP
Japan
Prior art keywords
phosphor
wavelength conversion
light
conversion material
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006145452A
Other languages
Japanese (ja)
Inventor
Yoshio Mayahara
芳夫 馬屋原
Katsu Iwao
克 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2006145452A priority Critical patent/JP2007314657A/en
Publication of JP2007314657A publication Critical patent/JP2007314657A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength-converting material that has high emission intensity, excellent weather resistance and high reliability. <P>SOLUTION: The wavelength-converting material comprises a nitride fluorescent substance absorbing near ultraviolet rays or blue color ray and emitting red light and represented by the formula: M<SB>w</SB>Al<SB>x</SB>Si<SB>y</SB>B<SB>z</SB>N<SB>((2/3)w+x(4/3)y+z)</SB>: Eu (M is at least one of Mg, Ca, Sr and Ba; 0.5≤w≤3, x=1, 0.5≤y≤3, 0≤z≤0.5), at least one kind of fluoresence body among the Ce-activated structure fluorescent substances represented by the formula: M'<SB>3</SB>(Al<SB>1-v</SB>Ga<SB>v</SB>)<SB>5</SB>O<SB>12</SB>(wherein M' is Lu, Y, Gd, and Tb, 0 ≤ v ≤ 0.8) and at least one of fluorescent substance among Ce activated garnet structure fluorescent substances is represented by general formula rR<SB>2</SB>O-sB<SB>2</SB>O<SB>3</SB>-tZnO<SB>2</SB>-uSiO<SB>2</SB>(wherein R is one of Li, Na, K, Rb, and Cs; 0.1≤r≤0.15, 0.4≤s≤0.6, 0.2≤t≤0.4, 0.05≤u≤0.2). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蛍光体を用いた波長変換材料に関するものである。   The present invention relates to a wavelength conversion material using a phosphor.

蛍光体を用いた波長変換材料は、蛍光体粉末を発光素子の発光面をシールドする有機系または無機系バインダー樹脂からなるモールド樹脂等に混合してモールドし、発光素子の発光を吸収して所定の波長に変換し発光している。しかしながら、波長変換材料が有機系バインダー樹脂を含有する蛍光体層により構成されていると、有機系バインダー樹脂自身が高出力の短波長領域(紫外線領域〜青色領域)の光によって劣化し、着色等により発光輝度が大きく低下してしまうという問題がある。   A wavelength conversion material using a phosphor is prepared by mixing phosphor powder with a mold resin or the like made of an organic or inorganic binder resin that shields the light emitting surface of the light emitting element, and absorbing the light emitted from the light emitting element. The light is converted into the wavelength of. However, when the wavelength conversion material is composed of a phosphor layer containing an organic binder resin, the organic binder resin itself is deteriorated by light in a short wavelength region (ultraviolet region to blue region) with high output, coloring, etc. As a result, there is a problem that the light emission luminance is greatly reduced.

特許文献1においては、蛍光体粉末、有機系バインダー樹脂及び無機系焼結助剤の混合物を所望の形状に成型し、蛍光体層の劣化の原因となる有機系バインダー樹脂を焼結して除去することが提案されている。   In Patent Document 1, a mixture of phosphor powder, organic binder resin, and inorganic sintering aid is molded into a desired shape, and organic binder resin that causes deterioration of the phosphor layer is sintered and removed. It has been proposed to do.

特許文献2においては、ガラス中に無機蛍光体を分散した発光色変換部材が提案されている。   Patent Document 2 proposes an emission color conversion member in which an inorganic phosphor is dispersed in glass.

しかしながら、有機系バインダー樹脂を焼結し除去する方法では、十分な耐候性及び信頼性を得ることができない場合があった。また、高温で焼結させる場合、蛍光体の種類によっては、蛍光体が劣化または分解してしまい、発光強度が低下してしまう場合があった。   However, there are cases where sufficient weather resistance and reliability cannot be obtained by the method of sintering and removing the organic binder resin. In addition, when sintering is performed at a high temperature, depending on the type of phosphor, the phosphor may be deteriorated or decomposed, resulting in a decrease in emission intensity.

また、軟化点がガラス中に蛍光体を分散させる場合においても、加工温度が高くなるため、蛍光体が劣化または分解してしまい、発光強度が低下する場合があった。
特開2004−161871号公報 特開2003−258308号公報
Further, even when the phosphor has a softening point dispersed in the glass, the processing temperature becomes high, so that the phosphor is deteriorated or decomposed, and the emission intensity may be lowered.
JP 2004-161871 A JP 2003-258308 A

本発明の目的は、発光強度が高く、耐候性及び信頼性に優れた波長変換材料を提供することにある。   An object of the present invention is to provide a wavelength conversion material having high emission intensity and excellent weather resistance and reliability.

本発明の波長変換材料は、一般式MAlSi((2/3)w+x+(4/3)y+z):Eu(式中、Mは、Mg、Ca、Sr及びBaから選ばれる少なくとも一種であり、w、x、y、及びzは、0.5≦w≦3、x=1、0.5≦y≦3、0≦z≦0.5を満たす。)で表され、近紫外線ないし青色光を吸収して赤色に発光する、ユーロピウム(Eu)で付活された窒化物蛍光体、及び一般式M’(Al1−vGa12:Ce(式中、Mは、Lu、Y、Gd、及びTbから選ばれる少なくとも1種であり、vは、0≦v≦0.8を満たす。)で表され、セリウム(Ce)で付活されたガーネット構造蛍光体のうちの少なくとも1種の蛍光体が、一般式rRO−sB−tZnO−uSiO(式中、Rは、Li、Na、K、Rb、及びCsから選ばれる少なくとも1種であり、r、s、t、及びuはモル比を表し、0.1≦r≦0.15、0.4≦s≦0.6、0.2≦t≦0.4、0.05≦u≦0.2を満たす。)で表されるガラス材料中に含有されている。 Wavelength converting material of the present invention have the general formula M w Al x Si y B z N ((2/3) w + x + (4/3) y + z): Eu ( wherein, M represents, Mg, Ca, Sr and Ba At least one selected, and w, x, y, and z satisfy 0.5 ≦ w ≦ 3, x = 1, 0.5 ≦ y ≦ 3, and 0 ≦ z ≦ 0.5. A nitride phosphor activated with europium (Eu) that absorbs near-ultraviolet or blue light and emits red light, and a general formula M ′ 3 (Al 1-v Ga v ) 5 O 12 : Ce ( In the formula, M is at least one selected from Lu, Y, Gd, and Tb, and v is 0 ≦ v ≦ 0.8, and is activated by cerium (Ce). at least one phosphor of garnet structure phosphors formula rR 2 O-sB 2 O 3 -tZnO-uSiO 2 (wherein R is at least one selected from Li, Na, K, Rb, and Cs, r, s, t, and u represent a molar ratio, and 0.1 ≦ r ≦ 0.15) 0.4 ≦ s ≦ 0.6, 0.2 ≦ t ≦ 0.4, and 0.05 ≦ u ≦ 0.2.).

上記の一般式でそれぞれ示される窒化物蛍光体及びガーネット構造蛍光体は、一般に耐熱性が低く、高温に加熱されると、劣化または分解しやすい蛍光体である。このため、従来のガラス材料を用いてガラス中に蛍光体が分散した波長変換材料を作製する場合、加工温度が高くなり、蛍光体が劣化または分解し、波長変換材料の発光強度が低下するという問題があった。   The nitride phosphor and the garnet structure phosphor respectively represented by the above general formulas are generally phosphors having low heat resistance, and are easily deteriorated or decomposed when heated to a high temperature. For this reason, when producing a wavelength conversion material in which a phosphor is dispersed in glass using a conventional glass material, the processing temperature increases, the phosphor deteriorates or decomposes, and the emission intensity of the wavelength conversion material decreases. There was a problem.

また、低い軟化点を有するガラス材料は、一般に透明になりにくいガラス材料が多く、単に軟化点が低いだけでは上記の蛍光体を分散させる材料としては適切ではない。また、ガラス材料中に含まれる特定の成分が蛍光体と反応し、蛍光体を劣化させるという問題もあった。   Further, many glass materials having a low softening point are generally difficult to become transparent, and simply having a low softening point is not suitable as a material for dispersing the phosphor. There is also a problem that a specific component contained in the glass material reacts with the phosphor to deteriorate the phosphor.

本発明においては、一般式rRO−sB−tZnO−uSiO(式中、Rは、Li、Na、K、Rb、及びCsから選ばれる少なくとも1種であり、r、s、t、及びuはモル比を表し、0.1≦r≦0.15、0.4≦s≦0.6、0.2≦t≦0.4、0.05≦u≦0.2を満たす。)で表わされるガラス材料を分散媒体として用いることにより、上記蛍光体を用いても、発光強度が高く、耐候性及び信頼性に優れた波長変換材料とすることができる。 In the present invention, the general formula rR 2 O—sB 2 O 3 —tZnO—uSiO 2 (wherein R is at least one selected from Li, Na, K, Rb, and Cs, and r, s, t and u represent molar ratios, and 0.1 ≦ r ≦ 0.15, 0.4 ≦ s ≦ 0.6, 0.2 ≦ t ≦ 0.4, 0.05 ≦ u ≦ 0.2. By using the glass material represented by the following formula as a dispersion medium, it is possible to obtain a wavelength conversion material having high emission intensity and excellent weather resistance and reliability even when the phosphor is used.

上記ガラス材料において、ROは、アルカリ金属酸化物であり、RはLi、Na、K、Rb、Csから選ばれる少なくとも一種以上を含有する。ROはガラスの軟化点を低下させる成分である。ROのモル比であるrの値が0.15よりも大きくなると、耐湿性が低下しやすくなる。一方、rの値が0.1より小さくなると、ガラスの軟化点が高くなる傾向にあり、蛍光体が劣化しやすくなる。 In the glass material, R 2 O is an alkali metal oxide, and R contains at least one selected from Li, Na, K, Rb, and Cs. R 2 O is a component that lowers the softening point of the glass. If the value of r, which is the molar ratio of R 2 O, is greater than 0.15, the moisture resistance tends to be reduced. On the other hand, if the value of r is smaller than 0.1, the softening point of the glass tends to be high, and the phosphor tends to deteriorate.

は、ガラスのネットワークを形成する成分であり、そのモル比であるsの値が0.4〜0.6の範囲にあるときに安定してガラス化する。尚、sの値がこの範囲から外れると、ガラスが結晶化しやすくなる傾向にあり、透過率が低下して、輝度が低下したり、発光強度が低下しやすくなる。 B 2 O 3 is a component that forms a glass network, and vitrifies stably when the value of s, which is the molar ratio thereof, is in the range of 0.4 to 0.6. In addition, when the value of s is out of this range, the glass tends to be crystallized easily, the transmittance is lowered, the luminance is lowered, and the light emission intensity is easily lowered.

ZnOは、ガラスのネットワークを形成する成分であり、そのモル比であるtの値が0.2〜0.4の範囲にあるときに安定してガラス化する。尚、tの値がこの範囲から外れると、ガラスが結晶化しやすくなる傾向にあり、透過率が低下して、輝度が低下したり、発光強度が低下しやすくなる。   ZnO is a component that forms a network of glass, and vitrifies stably when the value of t, which is the molar ratio thereof, is in the range of 0.2 to 0.4. When the value of t is out of this range, the glass tends to be crystallized easily, the transmittance is lowered, the luminance is lowered, and the light emission intensity is easily lowered.

SiOは、耐湿性を高める成分である。SiOのモル比であるuの値が0.2より大きくなると、ガラスの軟化点が高くなる傾向にあり、蛍光体が劣化しやすくなる。一方、uの値が0.05より小さくなると、耐湿性を高める効果が得難くなる。 SiO 2 is a component that enhances moisture resistance. If the value of u, which is the molar ratio of SiO 2 , is greater than 0.2, the softening point of the glass tends to be high, and the phosphor tends to deteriorate. On the other hand, when the value of u is smaller than 0.05, it is difficult to obtain the effect of improving moisture resistance.

上記本発明のガラス材料の軟化点は、600℃以下であることが好ましく、さらに好ましくは、500〜560℃の範囲である。ガラス材料の軟化点が高くなると、蛍光体が劣化または分解しやすくなる傾向にある。また、ガラス材料の軟化点が低くなると、ガラス材料と蛍光体材料が反応しやすくなる傾向にある。ガラス材料の軟化点をこのような範囲とすることにより、ガラスと蛍光体との反応、蛍光体の劣化または分解を生じることなく、ガラス材料中に蛍光体が分散した波長変換材料を作製することができる。   The softening point of the glass material of the present invention is preferably 600 ° C. or less, and more preferably in the range of 500 to 560 ° C. When the softening point of the glass material is increased, the phosphor tends to be easily degraded or decomposed. Further, when the softening point of the glass material is lowered, the glass material and the phosphor material tend to react easily. By making the softening point of the glass material in such a range, a wavelength conversion material in which the phosphor is dispersed in the glass material is produced without causing a reaction between the glass and the phosphor, or deterioration or decomposition of the phosphor. Can do.

蛍光体として用いられる窒化物蛍光体は、近紫外線ないし青色光を吸収して赤色に発光する蛍光体である。近紫外線ないし青色光は、一般に波長360nm〜480nmの範囲の光である。また、赤色光は、一般に波長600nm〜700nmの範囲の光である。   The nitride phosphor used as the phosphor is a phosphor that absorbs near ultraviolet light or blue light and emits red light. Near ultraviolet or blue light is generally light having a wavelength in the range of 360 nm to 480 nm. Red light is generally light having a wavelength in the range of 600 nm to 700 nm.

本発明において用いる窒化物蛍光体は、一般式MAlSi((2/3)w+x+(4/3)y+z):Eu(式中、Mは、Mg、Ca、Sr及びBaから選ばれる少なくとも一種であり、w、x、y、及びzは、0.5≦w≦3、x=1、0.5≦y≦3、0≦z≦0.5を満たす。)で表わされる。w、x、y、及びzが、上記の範囲内に設定されることにより、発光輝度の高い蛍光体とすることができる。 Nitride phosphor used in the present invention have the general formula M w Al x Si y B z N ((2/3) w + x + (4/3) y + z): Eu ( wherein, M is Mg, Ca, Sr and (At least one selected from Ba, and w, x, y, and z satisfy 0.5 ≦ w ≦ 3, x = 1, 0.5 ≦ y ≦ 3, and 0 ≦ z ≦ 0.5.) It is represented by By setting w, x, y, and z within the above range, a phosphor with high emission luminance can be obtained.

本発明において用いるガーネット構造蛍光体は、一般式M’(Al1−vGa12:Ce(式中、M’は、Lu、Y、Gd、及びTbから選ばれる少なくとも1種であり、vは、0≦v≦0.8を満たす。)で表わされる。tが、上記範囲内に設定されることにより、発光輝度の高い蛍光体とすることができる。本発明におけるガーネット構造蛍光体は、近紫外線ないし青色光を吸収して黄色〜緑色の光を発光させることができる。従って、上記の窒化物蛍光体とガーネット構造蛍光体を併用することにより、白色光を発光する波長変換材料とすることができる。 The garnet structure phosphor used in the present invention has a general formula M ′ 3 (Al 1-v Ga v ) 5 O 12 : Ce (where M ′ is at least one selected from Lu, Y, Gd, and Tb). And v satisfies 0 ≦ v ≦ 0.8. By setting t within the above range, a phosphor with high emission luminance can be obtained. The garnet structure phosphor in the present invention can absorb near ultraviolet light or blue light and emit yellow to green light. Therefore, by using the nitride phosphor and the garnet structure phosphor in combination, a wavelength conversion material that emits white light can be obtained.

本発明の波長変換材料における蛍光体の含有量は、蛍光体の種類により適宜選択され、特に限定されるものではないが、一般には、1.0〜25重量%の範囲であることが好ましく、さらに好ましくは、8〜15重量%の範囲である。蛍光体の含有量が多過ぎると、蛍光体とガラス材料を混合して焼結させる際に、発生する泡が焼結体中に残存しやすくなる傾向にあり、その結果、透過率が低下して、輝度が低下したり、発光強度が低下しやすくなる。また、蛍光体の含有量が少な過ぎると、励起光の割合が多くなり過ぎ、色度がずれる傾向にある。   The content of the phosphor in the wavelength conversion material of the present invention is appropriately selected depending on the type of the phosphor and is not particularly limited, but is generally preferably in the range of 1.0 to 25% by weight, More preferably, it is in the range of 8 to 15% by weight. If the phosphor content is too large, bubbles will tend to remain in the sintered body when the phosphor and glass material are mixed and sintered. As a result, the transmittance decreases. As a result, the luminance decreases and the emission intensity tends to decrease. Moreover, when there is too little content of a fluorescent substance, the ratio of excitation light will increase too much and it exists in the tendency for chromaticity to shift | deviate.

本発明の波長変換材料は、蛍光体とガラス材料を混合し、この混合粉末をガラス材料の軟化点以上の温度で焼結させて製造することができる。必要に応じて樹脂バインダーを添加して加圧成型し、所定の形状の予備成型体を作製し、これを焼成させて所定の形状の波長変換材料を作製することができる。   The wavelength conversion material of the present invention can be produced by mixing a phosphor and a glass material and sintering the mixed powder at a temperature equal to or higher than the softening point of the glass material. If necessary, a resin binder can be added and pressure-molded to prepare a preform having a predetermined shape, which is then fired to prepare a wavelength conversion material having a predetermined shape.

本発明に従えば、発光強度が高く、耐候性及び信頼性に優れた波長変換材料とすることができる。   According to the present invention, a wavelength conversion material having high emission intensity and excellent weather resistance and reliability can be obtained.

以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to the following examples.

(実施例1)
表1に示す蛍光体及びガラス材料(軟化点520℃)を用いて波長変換材料を作製した。具体的には、表1に示す蛍光体とガラス材料を混合機によって乾式で十分に混合し、この原料を、るつぼに詰め、大気雰囲気中にて520℃で20分間加熱し焼成した。これにより、所望の波長変換材料を得た。
Example 1
A wavelength conversion material was produced using the phosphor and glass material (softening point 520 ° C.) shown in Table 1. Specifically, the phosphor and glass material shown in Table 1 were sufficiently mixed by a dry method using a mixer, and this raw material was packed in a crucible and heated and fired at 520 ° C. for 20 minutes in an air atmosphere. Thereby, a desired wavelength conversion material was obtained.

(実施例2)
表1に示す蛍光体及びガラス材料(軟化点520℃)を用いて波長変換材料を作製した。具体的には、表1に示す蛍光体とガラス材料を混合機によって乾式で十分に混合し、この原料を、るつぼに詰め、大気雰囲気中にて530℃で20分間加熱し焼成した。これにより、所望の波長変換材料を得た。
(Example 2)
A wavelength conversion material was produced using the phosphor and glass material (softening point 520 ° C.) shown in Table 1. Specifically, the phosphor and glass material shown in Table 1 were sufficiently mixed by a dry method using a mixer, and this raw material was packed in a crucible and heated and fired at 530 ° C. for 20 minutes in an air atmosphere. Thereby, a desired wavelength conversion material was obtained.

(実施例3)
表1に示す蛍光体及びガラス材料(軟化点540℃)を用いて波長変換材料を作製した。具体的には、表1に示す蛍光体とガラス材料を混合機によって乾式で十分に混合し、この原料を、るつぼに詰め、大気雰囲気中にて540℃で20分間加熱し焼成した。これにより、所望の波長変換材料を得た。
(Example 3)
A wavelength conversion material was prepared using the phosphor and glass material (softening point 540 ° C.) shown in Table 1. Specifically, the phosphor and glass material shown in Table 1 were sufficiently mixed by a dry method using a mixer, and this raw material was packed in a crucible and heated at 540 ° C. for 20 minutes in an air atmosphere and fired. Thereby, a desired wavelength conversion material was obtained.

(実施例4)
表1に示す蛍光体及びガラス材料(軟化点550℃)を用いて波長変換材料を作製した。具体的には、表1に示す蛍光体とガラス材料を混合機によって乾式で十分に混合し、この原料を、るつぼに詰め、大気雰囲気中にて540℃で20分間加熱し焼成した。これにより、所望の波長変換材料を得た。
Example 4
A wavelength conversion material was prepared using the phosphor and glass material (softening point 550 ° C.) shown in Table 1. Specifically, the phosphor and glass material shown in Table 1 were sufficiently mixed by a dry method using a mixer, and this raw material was packed in a crucible and heated at 540 ° C. for 20 minutes in an air atmosphere and fired. Thereby, a desired wavelength conversion material was obtained.

(比較例1)
表1に示す蛍光体及びガラス材料(軟化点820℃)を用いて波長変換材料を作製した。具体的には、表1に示す蛍光体とガラス材料を混合機によって乾式で十分に混合し、この原料を、るつぼに詰め、大気雰囲気中にて800℃で20分間加熱し焼成した。これにより、所望の波長変換材料を得た。
(Comparative Example 1)
A wavelength conversion material was prepared using the phosphor and glass material (softening point 820 ° C.) shown in Table 1. Specifically, the phosphor and glass material shown in Table 1 were sufficiently mixed by a dry method using a mixer, and this raw material was packed in a crucible and heated and baked at 800 ° C. for 20 minutes in an air atmosphere. Thereby, a desired wavelength conversion material was obtained.

Figure 2007314657
Figure 2007314657

〔発光色の評価〕
実施例1〜4及び比較例1で作製した波長変換材料に、460nmの励起光を照射して、波長変換材料から発光した発光色を色度計を用いて測定した。発光色の色とCIE座標(x,y)は以下の通りである。
実施例1:白色:x/y=0.343/0.345
実施例2:白色:x/y=0.402/0.389
実施例3:赤色:x/y=0.655/0.337
実施例4:黄緑色:x/y=0.335/0.589
比較例1:発光はほとんど得られなかった
[Evaluation of luminescent color]
The wavelength conversion materials prepared in Examples 1 to 4 and Comparative Example 1 were irradiated with excitation light of 460 nm, and the emission color emitted from the wavelength conversion material was measured using a chromaticity meter. The color of the emission color and the CIE coordinates (x, y) are as follows.
Example 1: White: x / y = 0.343 / 0.345
Example 2: White: x / y = 0.402 / 0.389
Example 3: Red: x / y = 0.655 / 0.337
Example 4: Yellowish green: x / y = 0.335 / 0.589
Comparative Example 1: little luminescence was obtained

〔発光輝度の評価〕
実施例1〜4の波長変換材料に460nmの励起光を照射して、発光される光の発光輝度を測定した。発光輝度は、樹脂封止のYAG蛍光体を100%としたときの相対値である。
実施例1:95.5%
実施例2:90.4%
実施例3:20.3%
実施例4:112.3%
[Evaluation of luminous intensity]
The wavelength conversion materials of Examples 1 to 4 were irradiated with excitation light of 460 nm, and the emission luminance of the emitted light was measured. The light emission luminance is a relative value when the resin-sealed YAG phosphor is 100%.
Example 1: 95.5%
Example 2: 90.4%
Example 3: 20.3%
Example 4: 112.3%

〔信頼性の評価〕
実施例1で作製した波長変換材料を用いて信頼性を評価した。比較例2として、実施例1において、ガラス材料に代えて等量の樹脂を用いて樹脂中に蛍光体を分散させた波長変換材料を作製し、これについても信頼性を評価した。照射光のパワーを変化させ、そのときの波長変換材料から発光される光の光束を測定して評価した。
[Reliability evaluation]
Reliability was evaluated using the wavelength conversion material produced in Example 1. As Comparative Example 2, a wavelength conversion material in which a phosphor was dispersed in a resin using an equal amount of resin instead of the glass material in Example 1, was evaluated for reliability. The power of the irradiation light was changed, and the luminous flux of light emitted from the wavelength conversion material at that time was measured and evaluated.

図2は、信頼性の評価に用いた発光装置を示す模式図である。光源10内には、レーザーダイオード(LD)からなる発光素子11が設けられており、発光素子11から出射された光1は、レンズ13を通り、出射部12から出射される。出射部12には、光ファイバー20の一方端が接続されており、光ファイバー20の他方端である出力部21には、波長変換材料30が取り付けられている。発光素子11は、GaN系の半導体素子であり、405nm近傍の光が出射される。この光は、波長変換材料30において、波長が変換され、白色光2が波長変換材料30から照射される。   FIG. 2 is a schematic view showing a light emitting device used for reliability evaluation. A light emitting element 11 made of a laser diode (LD) is provided in the light source 10, and the light 1 emitted from the light emitting element 11 passes through the lens 13 and is emitted from the emitting unit 12. One end of an optical fiber 20 is connected to the emitting section 12, and a wavelength conversion material 30 is attached to the output section 21 that is the other end of the optical fiber 20. The light emitting element 11 is a GaN-based semiconductor element and emits light in the vicinity of 405 nm. The wavelength of the light is converted in the wavelength conversion material 30, and the white light 2 is irradiated from the wavelength conversion material 30.

上記のようにして信頼性を評価した評価結果を図1に示す。信頼性を評価する際の温度(保持温度:Ta)を25℃、60℃、100℃にそれぞれ変化させ、それぞれの条件で評価した。図1において、横軸は、レーザーダイオード(LD)からの光出力を示しており、縦軸は、波長変換材料における発光の光束を示している。高出力のエネルギーを照射した際に、光束が低下すると信頼性が低いことを意味している。   FIG. 1 shows the evaluation results of evaluating the reliability as described above. The temperature (retention temperature: Ta) at the time of evaluating reliability was changed to 25 ° C., 60 ° C., and 100 ° C., respectively, and the evaluation was performed under each condition. In FIG. 1, the horizontal axis indicates the light output from the laser diode (LD), and the vertical axis indicates the luminous flux of the light emitted from the wavelength conversion material. This means that the reliability is low when the luminous flux is reduced when high output energy is irradiated.

図1に示すように、本発明のガラス材料を用いた実施例1においては高出力のエネルギーを照射しても、光束は低下していない。これに対して、樹脂を用いた比較例2の波長変換材料においては、高出力のエネルギーを照射すると、光束が低下している。   As shown in FIG. 1, in Example 1 using the glass material of the present invention, the luminous flux does not decrease even when high output energy is irradiated. On the other hand, in the wavelength conversion material of Comparative Example 2 using a resin, when high-power energy is irradiated, the luminous flux is lowered.

以上のように、実施例の波長変換材料を用いることにより、発光輝度が高く、信頼性に優れた波長変換材料とすることができる。   As described above, by using the wavelength conversion material of the example, a wavelength conversion material having high emission luminance and excellent reliability can be obtained.

発光素子からの出力と波長変換材料からの光束との関係を示す図。The figure which shows the relationship between the output from a light emitting element, and the light beam from a wavelength conversion material. 信頼性の評価に用いた発光装置を示す模式図。The schematic diagram which shows the light-emitting device used for evaluation of reliability.

符号の説明Explanation of symbols

1…光
2…波長変換材料からの発光
10…光源
11…発光素子
12…出射部
13…レンズ
20…光ファイバー
21…出力部
30…波長変換材料
DESCRIPTION OF SYMBOLS 1 ... Light 2 ... Light emission from wavelength conversion material 10 ... Light source 11 ... Light emitting element 12 ... Output part 13 ... Lens 20 ... Optical fiber 21 ... Output part 30 ... Wavelength conversion material

Claims (1)

一般式MAlSi((2/3)w+x+(4/3)y+z):Eu(式中、Mは、Mg、Ca、Sr及びBaから選ばれる少なくとも一種であり、w、x、y、及びzは、0.5≦w≦3、x=1、0.5≦y≦3、0≦z≦0.5を満たす。)で表され、近紫外線ないし青色光を吸収して赤色に発光する、ユーロピウム(Eu)で付活された窒化物蛍光体、及び一般式M’(Al1−vGa12:Ce(式中、M’は、Lu、Y、Gd、及びTbから選ばれる少なくとも1種であり、vは、0≦v≦0.8を満たす。)で表され、セリウム(Ce)で付活されたガーネット構造蛍光体のうちの少なくとも1種の蛍光体が、
一般式rRO−sB−tZnO−uSiO(式中、Rは、Li、Na、K、Rb、及びCsから選ばれる少なくとも1種であり、r、s、t、及びuはモル比を表し、0.1≦r≦0.15、0.4≦s≦0.6、0.2≦t≦0.4、0.05≦u≦0.2を満たす。)で表されるガラス材料中に含有されていることを特徴とする波長変換材料。
Formula M w Al x Si y B z N ((2/3) w + x + (4/3) y + z): Eu ( wherein, M is at least one selected from Mg, Ca, Sr and Ba, w , X, y, and z satisfy 0.5 ≦ w ≦ 3, x = 1, 0.5 ≦ y ≦ 3, and 0 ≦ z ≦ 0.5). A nitride phosphor activated with europium (Eu) that absorbs and emits red light, and a general formula M ′ 3 (Al 1-v Ga v ) 5 O 12 : Ce (where M ′ is Lu , Y, Gd, and Tb, and v is 0 ≦ v ≦ 0.8.) Of the garnet structure phosphor activated by cerium (Ce) At least one phosphor,
Formula rR in 2 O-sB 2 O 3 -tZnO -uSiO 2 ( wherein, R, Li, at least one selected Na, K, Rb, and from Cs, r, s, t, and u The molar ratio is 0.1 ≦ r ≦ 0.15, 0.4 ≦ s ≦ 0.6, 0.2 ≦ t ≦ 0.4, and 0.05 ≦ u ≦ 0.2. A wavelength conversion material characterized by being contained in a glass material.
JP2006145452A 2006-05-25 2006-05-25 Wavelength converting material using fluorescent substance Pending JP2007314657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145452A JP2007314657A (en) 2006-05-25 2006-05-25 Wavelength converting material using fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145452A JP2007314657A (en) 2006-05-25 2006-05-25 Wavelength converting material using fluorescent substance

Publications (1)

Publication Number Publication Date
JP2007314657A true JP2007314657A (en) 2007-12-06

Family

ID=38848812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145452A Pending JP2007314657A (en) 2006-05-25 2006-05-25 Wavelength converting material using fluorescent substance

Country Status (1)

Country Link
JP (1) JP2007314657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314658A (en) * 2006-05-25 2007-12-06 Nichia Chem Ind Ltd Light emitting device
JP2014207436A (en) * 2013-03-18 2014-10-30 日本碍子株式会社 Wavelength converter
JP2015042606A (en) * 2013-07-25 2015-03-05 セントラル硝子株式会社 Phosphor-dispersed glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649445A (en) * 1992-07-29 1994-02-22 Nichia Chem Ind Ltd Coating solution for fluorescent lamp
JP2001294443A (en) * 2000-04-11 2001-10-23 Nippon Electric Glass Co Ltd Material for display
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member
JP2005011933A (en) * 2003-06-18 2005-01-13 Asahi Glass Co Ltd Light emitting diode device
JP2007308562A (en) * 2006-05-17 2007-11-29 Okamoto Glass Co Ltd Luminescent glass, illuminating device using this, and display device
JP2007314658A (en) * 2006-05-25 2007-12-06 Nichia Chem Ind Ltd Light emitting device
JP2008541335A (en) * 2005-07-29 2008-11-20 松下電器産業株式会社 Fluorescent lamp, backlight unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649445A (en) * 1992-07-29 1994-02-22 Nichia Chem Ind Ltd Coating solution for fluorescent lamp
JP2001294443A (en) * 2000-04-11 2001-10-23 Nippon Electric Glass Co Ltd Material for display
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member
JP2005011933A (en) * 2003-06-18 2005-01-13 Asahi Glass Co Ltd Light emitting diode device
JP2008541335A (en) * 2005-07-29 2008-11-20 松下電器産業株式会社 Fluorescent lamp, backlight unit
JP2007308562A (en) * 2006-05-17 2007-11-29 Okamoto Glass Co Ltd Luminescent glass, illuminating device using this, and display device
JP2007314658A (en) * 2006-05-25 2007-12-06 Nichia Chem Ind Ltd Light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314658A (en) * 2006-05-25 2007-12-06 Nichia Chem Ind Ltd Light emitting device
JP2014207436A (en) * 2013-03-18 2014-10-30 日本碍子株式会社 Wavelength converter
JP2015042606A (en) * 2013-07-25 2015-03-05 セントラル硝子株式会社 Phosphor-dispersed glass

Similar Documents

Publication Publication Date Title
JP4957110B2 (en) Light emitting device
JP4802923B2 (en) Wavelength conversion member
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
JP5016187B2 (en) Nitride phosphor, method for producing nitride phosphor, light source and LED using the nitride phosphor
JP5511820B2 (en) Alpha-sialon phosphor
US20060208270A1 (en) Borate phosphor materials for use in lighting applications
US20060049414A1 (en) Novel oxynitride phosphors
TWI636970B (en) Phosphor dispersion glass
JP2010270196A (en) Phosphor, method for manufacturing phosphor, phosphor-containing composition, light-emitting device, lighting apparatus, image display, and fluorescent paint
KR100802873B1 (en) Orange-emitting phosphor
JP5402008B2 (en) Phosphor production method, phosphor, and light emitting device using the same
JP2011256340A (en) Phosphor, phosphor-containing composition using the phosphor, light emitting device, image display device and lighting device
JP2010196049A (en) Phosphor and method for producing the same, phosphor-containing composition, and light-emitting device, image display device and lighting device using the phosphor
JP2007314657A (en) Wavelength converting material using fluorescent substance
JP4098354B2 (en) White light emitting device
JP4661419B2 (en) Phosphor and light emitting device using the same
JP2007314658A (en) Light emitting device
CN104073257B (en) A kind of thiosilicic acid salt fluorophor and application thereof
JP2013144794A (en) Oxynitride-based phosphor and light-emitting device using the same
JP2013185011A (en) Method for manufacturing phosphor, and phosphor obtained by the method
JP5955835B2 (en) Phosphor and light emitting device
JP2015000953A (en) Oxynitride-based fluorescent material and light-emitting device using the same
JPWO2014203483A1 (en) Red phosphor material and light emitting device
JP2015183084A (en) Fluorescent material for violet ray excitation, composition containing fluorescent material and light-emitting device using the fluorescent material and lightening apparatus and picture display unit using the light-emitting device
JP2013214718A (en) Oxynitride-based fluorescent material, and light-emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221