JP5016187B2 - Nitride phosphor, method for producing nitride phosphor, light source and LED using the nitride phosphor - Google Patents

Nitride phosphor, method for producing nitride phosphor, light source and LED using the nitride phosphor Download PDF

Info

Publication number
JP5016187B2
JP5016187B2 JP2004207271A JP2004207271A JP5016187B2 JP 5016187 B2 JP5016187 B2 JP 5016187B2 JP 2004207271 A JP2004207271 A JP 2004207271A JP 2004207271 A JP2004207271 A JP 2004207271A JP 5016187 B2 JP5016187 B2 JP 5016187B2
Authority
JP
Japan
Prior art keywords
phosphor
light
nitride phosphor
nitride
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004207271A
Other languages
Japanese (ja)
Other versions
JP2006028295A (en
JP2006028295A5 (en
Inventor
昌大 後藤
晶 永富
堅之 坂根
修次 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Dowa Electronics Materials Co Ltd
Original Assignee
Nichia Corp
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp, Dowa Electronics Materials Co Ltd filed Critical Nichia Corp
Priority to JP2004207271A priority Critical patent/JP5016187B2/en
Priority to TW094105848A priority patent/TWI262609B/en
Priority to KR1020050016250A priority patent/KR100702757B1/en
Priority to DE602005014296T priority patent/DE602005014296D1/en
Priority to CNB2005100525227A priority patent/CN100340631C/en
Priority to EP05004375A priority patent/EP1568753B1/en
Publication of JP2006028295A publication Critical patent/JP2006028295A/en
Publication of JP2006028295A5 publication Critical patent/JP2006028295A5/ja
Application granted granted Critical
Publication of JP5016187B2 publication Critical patent/JP5016187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02B20/181

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、CRT、PDP、FED、ELなどのディスプレイ装置や、蛍光表示管、蛍光ランプなどの照明装置等に使用される蛍光体に関するものであり、特に、紫外〜緑色の光により励起され、可視光または白色光を発光させるための窒化物蛍光体、窒化物蛍光体の製造方法、並びに上記窒化物蛍光体を用いた光源及びLEDに関する。   The present invention relates to a phosphor used in display devices such as CRT, PDP, FED, EL, etc., and illumination devices such as fluorescent display tubes, fluorescent lamps, etc., and is excited by ultraviolet to green light, The present invention relates to a nitride phosphor for emitting visible light or white light, a method for producing the nitride phosphor, and a light source and an LED using the nitride phosphor.

現在、照明装置として用いられている放電式蛍光灯や白熱電球などは、水銀などの有害物質が含まれ、且つ寿命が短いといった諸問題を抱えている。ところが近年になって青色や紫外に発光するLEDが次々と開発され、そのLEDから発生する紫外〜緑色の光と、紫外〜緑色の波長域に励起帯を持つ蛍光体との組み合わせにより、白色の光を発する次世代の照明装置を得ようとする研究、開発が盛んに行われている。この照明装置は、熱の発生量が少なく、また、半導体素子(LED)と蛍光体から構成されているため白熱電球のように切れる心配がなく長寿命であり、更に、水銀などの有害物質が不要であるなどの多くの利点があり、理想的な照明装置である。   Currently, discharge fluorescent lamps and incandescent lamps used as lighting devices have various problems such as containing harmful substances such as mercury and short life. However, in recent years, LEDs that emit blue and ultraviolet light have been developed one after another, and the combination of ultraviolet to green light generated from the LED and a phosphor having an excitation band in the ultraviolet to green wavelength range has allowed white light to be emitted. Research and development to obtain a next-generation lighting device that emits light is actively conducted. This lighting device has a small amount of heat generation, and is composed of a semiconductor element (LED) and a phosphor, so it has a long life without fear of breaking like an incandescent light bulb. There are many advantages such as unnecessary, and it is an ideal lighting device.

ここで、上述のLEDと蛍光体とを組み合せて白色光を得るには、一般的に2つの方式が考えられる。一つは、青色を発光するLEDと、当該青色発光を受けて励起され黄色を発光する蛍光体とを組み合せ、これら補色関係にある青色発光と黄色発光との組み合せにより白色発光を得るものである。   Here, in order to obtain white light by combining the above-described LED and phosphor, generally two methods are conceivable. One is a combination of an LED that emits blue light and a phosphor that receives the blue light emission and is excited to emit yellow light, and obtains white light emission by a combination of blue light emission and yellow light emission that are complementary to each other. .

他の一つは、近紫外や紫外を発光するLEDと、当該近紫外や紫外の発光により励起されて赤色(R)を発光する蛍光体、緑色(G)を発光する蛍光体、青色(B)を発光する蛍光体、他の色を発光する蛍光体とを組み合せ、当該RGB等の光の混合により白色発光を得るものである。このRGB等の光により白色発光を得る方法は、RGB等の光を発光する蛍光体の組み合せや混合比などにより、白色光以外にも任意の発光色を得ることが可能であり、照明装置としての応用範囲が広い。   The other one is an LED that emits near ultraviolet or ultraviolet light, a phosphor that emits red (R) when excited by the near ultraviolet or ultraviolet light emission, a phosphor that emits green (G), and blue (B ) And a phosphor emitting another color, and white light emission is obtained by mixing light such as RGB. This method of obtaining white light emission by light such as RGB can obtain any light emission color other than white light depending on the combination or mixing ratio of phosphors that emit light such as RGB. Wide application range.

この用途に使用される蛍光体としては、赤色蛍光体であれば、例えば、YS:Eu、LaS:Eu、3.5MgO・0.5MgF・GeO:Mn、(La、Mn、Sm)S・Gaがあり、緑色蛍光体であれば、例えば、ZnS:Cu,Al、SrAl:Eu、BAM:Eu,Mnがあり、黄色蛍光体であれば、例えば、YAG:Ceがあり、青色蛍光体であれば、例えば、BAM:Eu、Sr(POCl:Eu、ZnS:Ag、(Sr、Ca、Ba、Mg)10(POCl:Euがある。そして、これらのRGB等を発光する蛍光体を、近紫外や紫外を発光するLEDなどの発光部(発光素子)と組み合せることにより、白色または所望の単色を発光するLEDを始めとした光源や、当該光源を備えた照明装置を得ることが可能となる。 As a phosphor used for this application, if it is a red phosphor, for example, Y 2 O 2 S: Eu, La 2 O 2 S: Eu, 3.5MgO · 0.5MgF 2 · GeO 2 : Mn, If there is (La, Mn, Sm) 2 O 2 S · Ga 2 O 3 and it is a green phosphor, for example, there are ZnS: Cu, Al, SrAl 2 O 4 : Eu, BAM: Eu, Mn, yellow For example, YAG: Ce may be used as the phosphor, and BAM: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, ZnS: Ag, (Sr, Ca, Ba, Mg) may be used as the blue phosphor. ) 10 (PO 4 ) 6 Cl: Eu. And, by combining these phosphors that emit RGB and the like with light emitting parts (light emitting elements) such as LEDs that emit near ultraviolet or ultraviolet light, light sources such as LEDs that emit white light or a desired single color, It is possible to obtain an illumination device including the light source.

しかし、青色LEDと黄色蛍光体(YAG:Ce)の組み合せにより白色を得る照明にあっては、可視光領域の長波長側の発光が不足してしまうため、若干青みを帯びた白色の発光となってしまい、電球のようなやや赤みを帯びた白色発光を得ることができない。   However, in the illumination that obtains white color by combining the blue LED and the yellow phosphor (YAG: Ce), the light emission on the long wavelength side in the visible light region is insufficient. As a result, it is not possible to obtain white light emission that is slightly reddish like a light bulb.

また、近紫外・紫外LEDとRGB等を発光する蛍光体との組み合せにより白色を得る照明では、3色の蛍光体のうち赤色蛍光体が他の蛍光体に比べ長波長側の励起効率が悪く、発光効率が低下するため、赤色蛍光体の混合割合を多くせざるを得ず、輝度を向上させる蛍光体が不足して高輝度の白色が得られない。   In addition, in illumination that obtains white color by combining near-ultraviolet / ultraviolet LEDs and phosphors that emit RGB, etc., the red phosphor of the three color phosphors has lower excitation efficiency on the longer wavelength side than the other phosphors. Since the luminous efficiency is reduced, the mixing ratio of the red phosphors must be increased, and the phosphors for improving the luminance are insufficient, and a high luminance white color cannot be obtained.

そのため最近では、長波長側に良好な励起を持ち、半値幅の広い発光ピークが得られるオキシ窒化物ガラス蛍光体(例えば、特許文献1参照)や、サイアロンを母体とする蛍光体(例えば、特許文献2、3、4参照)、シリコンナイトライド系などの窒素を含有した蛍光体(例えば、特許文献5、6参照)が提案されている。これらの窒素を含有した蛍光体は、酸化物系蛍光体などに比べて共有結合の割合が多くなるため、波長400nm以上の光においても良好な励起帯を有し、白色の光を発する照明装置用の蛍光体として注目されている。   Therefore, recently, an oxynitride glass phosphor that has good excitation on the long wavelength side and a broad emission half-width emission peak (see, for example, Patent Document 1), and a phosphor based on sialon (for example, a patent) References 2, 3, and 4) and phosphors containing nitrogen such as silicon nitride (for example, see Patent Documents 5 and 6) have been proposed. Since these phosphors containing nitrogen have a higher covalent bond ratio than oxide-based phosphors and the like, they have a good excitation band even in light with a wavelength of 400 nm or more and emit white light. It is attracting attention as a fluorescent material for use.

特開2001-214162号公報Japanese Patent Laid-Open No. 2001-214162 特開2003-336059号公報JP2003-336059 特開2003-124527号公報Japanese Patent Laid-Open No. 2003-124527 特願2004-067837号公報Japanese Patent Application No. 2004-067837 特表2003-515655号公報Special table 2003-515655 特開2003-277746号公報JP 2003-277746 A

上述の紫外〜緑色に発光する発光素子と、当該発光素子から発生する紫外〜緑色の波長域に対して励起帯を持つ蛍光体との組合せにより可視光、白色光を発するLEDを始めとした光源においては、可視光または白色光の発光特性向上のために、発光素子及び蛍光体の発光効率の向上や安定性が求められる。ところが従来の技術に係る蛍光体においては、発光効率が製造バッチ毎に安定しているとは限らず、発光効率にバラツキがみられることがあった。ここで、本発明者らは当該バラツキの原因を究明し、その対策を打つことが出きれば、当該蛍光体の発光効率をより高めることができるのではないかと考えた。
そこで本発明者らは、様々な蛍光体の試料を調製し当該バラツキの原因を追求したところ、当該蛍光体中に不純物として含まれる炭素および/または酸素が原因であることに想到した。
ここで本発明者らは、当該不純物として含まれる炭素および/または酸素の由来について、さらに研究をおこなった。その結果、当該元素は、当初予想された雰囲気等に由来するものだけでなく、窒化物蛍光体製造時の焼結工程において、焼成容器内から窒化物蛍光体中に拡散して不純物となるものもあることに想到した。
Light sources such as LEDs that emit visible light and white light by combining the light emitting element that emits ultraviolet to green light and a phosphor having an excitation band in the ultraviolet to green wavelength range generated from the light emitting element. However, in order to improve the light emission characteristics of visible light or white light, improvement in light emission efficiency and stability of the light emitting element and the phosphor are required. However, in the phosphor according to the conventional technique, the light emission efficiency is not always stable for each production batch, and the light emission efficiency sometimes varies. Here, the present inventors have investigated the cause of the variation, and thought that the luminous efficiency of the phosphor could be further improved if the countermeasure can be taken.
Therefore, the present inventors prepared various phosphor samples and pursued the cause of the variation, and came up with the cause of carbon and / or oxygen contained as impurities in the phosphor.
Here, the present inventors have further studied the origin of carbon and / or oxygen contained as the impurities. As a result, the element is not only derived from the originally anticipated atmosphere, but also diffuses into the nitride phosphor from the firing vessel and becomes an impurity in the sintering process when producing the nitride phosphor. I came up with that.

本発明の目的は、上述の事情を考慮してなされたものであり、窒化物蛍光体中に当該不純物として含まれる炭素および/または酸素を抑制することで、発光効率が向上した窒化物蛍光体を提供することにある。
本発明の他の目的は、窒化物蛍光体中に当該不純物として含まれる炭素および/または酸素を抑制して、当該蛍光体の発光効率を向上させることができる窒化物蛍光体の製造方法を提供することにある。
本発明の更に他の目的は、当該発光効率が向上した窒化物蛍光体を用いた光源及びLEDを提供することにある。
An object of the present invention has been made in consideration of the above-described circumstances, and a nitride phosphor having improved luminous efficiency by suppressing carbon and / or oxygen contained as impurities in the nitride phosphor. Is to provide.
Another object of the present invention is to provide a method for producing a nitride phosphor capable of improving the luminous efficiency of the phosphor by suppressing carbon and / or oxygen contained as the impurity in the nitride phosphor. There is to do.
Still another object of the present invention is to provide a light source and an LED using a nitride phosphor with improved luminous efficiency.

第1の構成は、 一般式MAlSiN3:Euで表記され、MがII価の価数をとるMg、Ca、Sr、Ba、Znからなる群から選択された一種以上の元素、Alがアルミニウム、Siが珪素、Nが窒素、Euが付活剤となる元素であり、粉末状であると共に、炭素含有量が0.08重量%より少なく、かつ、酸素含有量が3.0重量%より少ないことを特徴とする窒化物蛍光体である。
The first structure is represented by the general formula MAlSiN 3 : Eu, and M is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, where Al has a valence of II, Al is aluminum, Si is silicon, N is nitrogen, Eu is an activator, is in powder form, has a carbon content of less than 0.08% by weight, and an oxygen content of less than 3.0% by weight. This is a nitride phosphor.

の構成は、上記粉末状の窒化物蛍光体の平均粒度が20μm以下、0.1μm以上であることを特徴とする第の構成に記載の窒化物蛍光体である。
The second configuration, the average particle size of the powder of the nitride phosphor is 20μm or less, a nitride phosphor according to the first configuration, characterized in that at 0.1μm or more.

の構成は、第1又は第2の構成のいずれかに記載の窒化物蛍光体の製造方法であって、上記窒化物蛍光体の原料を窒化ホウ素材質の焼成容器内に充填し、不活性雰囲気中で焼成して窒化物蛍光体を製造することを特徴とする窒化物蛍光体の製造方法である。
A third configuration is a method for manufacturing a nitride phosphor according to any one of the first and second configurations, in which a raw material for the nitride phosphor is filled in a firing container made of a boron nitride material. A nitride phosphor manufacturing method is characterized in that a nitride phosphor is manufactured by firing in an active atmosphere.

第4の構成は、第1又は第2の構成のいずれかに記載の窒化物蛍光体と、所定波長の光を発光する発光部とを有し、上記所定波長の光の一部を励起源とし、上記窒化物蛍光体を上記所定波長と異なる波長で発光させることを特徴とする光源である。
A fourth configuration includes the nitride phosphor according to any one of the first and second configurations and a light emitting unit that emits light of a predetermined wavelength, and a part of the light of the predetermined wavelength is an excitation source. And the nitride phosphor emits light at a wavelength different from the predetermined wavelength.

の構成は、上記所定波長が250〜550nmの波長であることを特徴とする第の構成に記載の光源である。
A fifth configuration is the light source according to the fourth configuration, wherein the predetermined wavelength is a wavelength of 250 to 550 nm.

の構成は、第1又は第2の構成のいずれかに記載の窒化物蛍光体と、所定波長の光を発光する発光部とを有し、上記所定波長の光の一部を励起源とし、上記窒化物蛍光体を上記所定波長と異なる波長で発光させることを特徴とするLEDである。
A sixth configuration includes the nitride phosphor according to any one of the first and second configurations, and a light emitting unit that emits light of a predetermined wavelength, and a part of the light of the predetermined wavelength is an excitation source. And the nitride phosphor emits light at a wavelength different from the predetermined wavelength.

の構成は、上記所定波長が250〜550nmの波長であることを特徴とする第の構成に記載のLEDである。
A seventh configuration is the LED according to the sixth configuration, wherein the predetermined wavelength is a wavelength of 250 to 550 nm.

第1又は第2の構成に係る窒化物蛍光体によれば、炭素含有量が0.08重量%より少ない窒化物蛍光体、酸素含有量が3.0重量%より少ない窒化物蛍光体であることから、発光に寄与しない炭素と酸素の不純物含有量が少ないので、窒化物蛍光体の発光強度の低下を抑制でき、当該窒化物蛍光体の発光効率を向上させることができる。

The nitride phosphor according to the first or second configuration is a nitride phosphor having a carbon content of less than 0.08% by weight and a nitride phosphor having an oxygen content of less than 3.0% by weight. Therefore, since the impurity contents of carbon and oxygen that do not contribute to light emission are small, it is possible to suppress a decrease in the light emission intensity of the nitride phosphor, and to improve the light emission efficiency of the nitride phosphor.

また、一般式がM−Al−Si−N:Zで表記され、MがII価の価数をとる一種以上の元素、Alがアルミニウム、Siが珪素、Nが窒素、Zが付活剤となる元素であることから、紫外〜緑色の光を発光する発光部からの紫外〜緑色(波長域250〜550nm)の広い範囲の光に励起帯を有するので、発光効率を更に向上させることができる。
Further, the general formula is represented by M-Al-Si-N: Z, where M is one or more elements having a valence of II, Al is aluminum, Si is silicon, N is nitrogen, and Z is an activator. Since it has an excitation band in a wide range of light from ultraviolet to green (wavelength range 250 to 550 nm) from a light emitting part that emits ultraviolet to green light, the luminous efficiency can be further improved. .

第1または第2の構成に係る窒化物蛍光体が粉末状であることから、窒化物蛍光体の塗布または充填を容易に実施できる。更に、窒化物蛍光体の粉末の平均粒度が20μm以下、0.1μm以上であることから、発光効率を向上させることができる。
Since the nitride phosphor according to the first or second configuration is in a powder form, it is possible to easily apply or fill the nitride phosphor. Furthermore, since the average particle size of the nitride phosphor powder is 20 μm or less and 0.1 μm or more, the luminous efficiency can be improved.

の構成に係る窒化物蛍光体の製造方法によれば、窒化物蛍光体の原料を窒化ホウ素材質の焼成容器内に充填し、不活性雰囲気中で焼成して窒化物蛍光体を製造することから、炭素および酸素の不純物含有量が少ない窒化物蛍光体を製造することができる。このように、発光に寄与しない不純物が少ない窒化物蛍光体を製造できるので、発光強度の低下を抑制でき、窒化物蛍光体の発光効率を向上させることができる。
According to the method for producing a nitride phosphor according to the third configuration, the nitride phosphor is filled in a firing vessel made of boron nitride and fired in an inert atmosphere to produce the nitride phosphor. As a result, a nitride phosphor having a low carbon and oxygen impurity content can be produced. Thus, since the nitride phosphor with few impurities that do not contribute to light emission can be manufactured, a decrease in emission intensity can be suppressed, and the light emission efficiency of the nitride phosphor can be improved.

第4または第5の構成に係る光源は、窒化物蛍光体が、発光部が発光する所定の広い波長域(250〜550nm)の光に励起帯を有して発光するため、これらの窒化物蛍光体と発光部との組み合わせにより、可視光または白色光を発光する発光効率の高い光源を得ることができる。
In the light source according to the fourth or fifth configuration, the nitride phosphor emits light having an excitation band in light of a predetermined wide wavelength range (250 to 550 nm) emitted from the light emitting unit. By combining the phosphor and the light emitting portion, a light source with high luminous efficiency that emits visible light or white light can be obtained.

第6または第7の構成に係るLEDは、窒化物蛍光体が、発光部が発光する所定の広い波長域(250〜550nm)の光に励起帯を有して発光するため、これらの窒化物蛍光体と発光部との組み合わせにより、可視光または白色光を発光する発光効率の高いLEDを得ることができる。
In the LED according to the sixth or seventh configuration, the nitride phosphor emits light having an excitation band in light of a predetermined wide wavelength range (250 to 550 nm) emitted from the light emitting unit. By combining the phosphor and the light emitting portion, an LED having high luminous efficiency that emits visible light or white light can be obtained.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。
本発明に係る窒化物蛍光体として、一般式がM−Al−Si−N:Zで表記される窒化物蛍光体であって、MがII価の価数をとる一種以上の元素、Alがアルミニウム、Siが珪素、Nが窒素、Zが付活剤となる元素である窒化物蛍光体を例として説明する。そして当該窒化物蛍光体において、不純物である炭素含有量が0.08重量%より少なく、不純物である酸素含有量が3.0重量%より少ないものである。この不純物炭素含有量0.08重量%未満と不純物酸素含有量3.0重量%未満は、両者が満たされることが好ましいが、いずれか一方が満たされている場合でもよい。
The best mode for carrying out the present invention will be described below with reference to the drawings.
The nitride phosphor according to the present invention is a nitride phosphor represented by the general formula M-Al-Si-N: Z, wherein M is one or more elements having a valence of II, Al A nitride phosphor, which is aluminum, Si is silicon, N is nitrogen, and Z is an activator, will be described as an example. In the nitride phosphor, the carbon content as an impurity is less than 0.08% by weight and the oxygen content as an impurity is less than 3.0% by weight. Both the impurity carbon content of less than 0.08% by weight and the impurity oxygen content of less than 3.0% by weight are preferably satisfied, but either one may be satisfied.

不純物炭素含有量が0.08重量%より少ない窒化物蛍光体、不純物酸素含有量が3.0重量%より少ない窒化物蛍光体は、いずれの場合も、発光に寄与しない炭素と酸素の不純物含有量が少ないので、発光強度を相対強度で表したとき、25〜30%程度の発光強度の低下を抑制でき、従って発光効率を向上させることができる。   Nitride phosphors with an impurity carbon content of less than 0.08% by weight and nitride phosphors with an impurity oxygen content of less than 3.0% by weight contain carbon and oxygen impurities that do not contribute to light emission in any case. Since the amount is small, when the emission intensity is expressed in relative intensity, a decrease in the emission intensity of about 25 to 30% can be suppressed, and thus the emission efficiency can be improved.

また、窒化物蛍光体は、一般式がM−Al−Si−N:Zで表記され、MがII価の価数をとる一種以上の元素、Alがアルミニウム、Siが珪素、Nが窒素、Zが付活剤となる元素であることから、紫外〜緑色の光を発光する発光部からの紫外〜緑色(波長域250〜550nm)の広い範囲の光に励起帯を有するので、発光効率を更に向上させることができる。   The nitride phosphor is represented by a general formula M-Al-Si-N: Z, where M is one or more elements having a valence of II, Al is aluminum, Si is silicon, N is nitrogen, Since Z is an element that acts as an activator, it has an excitation band in a wide range of light from ultraviolet to green (wavelength range 250 to 550 nm) from the light emitting part that emits ultraviolet to green light, so that the luminous efficiency is improved. Further improvement can be achieved.

より詳しくは、当該窒化物蛍光体を組成式MmAlaSibNn:Zで表記したとき、n=2/3m+a+4/3bの関係を有する窒化物蛍光体であることが好ましい。n、m、a、b、が当該関係を満たすとき、上述の窒化物蛍光体の母体構造が化学的に安定な構造をとり、当該母体構造中に、発光に寄与しない不純物相が生じにくくなるためである。さらに、m = a = b = 1となることで安定性は向上する。ただし、母体構造の組成式からの若干の組成のずれは許容される。   More specifically, when the nitride phosphor is represented by a composition formula MmAlaSibNn: Z, a nitride phosphor having a relationship of n = 2 / 3m + a + 4 / 3b is preferable. When n, m, a, and b satisfy the relationship, the host structure of the nitride phosphor described above has a chemically stable structure, and an impurity phase that does not contribute to light emission is less likely to occur in the host structure. Because. Furthermore, stability is improved when m = a = b = 1. However, a slight compositional deviation from the composition formula of the matrix structure is allowed.

上記Mは、Be、Mg、Ca、Sr、Ba、Zn、Cd、Hgから選択される少なくとも1つ以上の元素であることが好ましく、更には、Mg、Ca、Sr、Ba、Znから選択される少なくとも1つ以上の元素であることが好ましい。   M is preferably at least one element selected from Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg, and further selected from Mg, Ca, Sr, Ba, and Zn. Preferably, the element is at least one element.

上記Zは、希土類元素または遷移金属元素から選択される少なくとも1つ以上の元素であることが好ましいが、特にEu、Mn、Sm、Ceから選択される少なくとも1つ以上の元素であることが好ましい。中でもEuを用いると、窒化物蛍光体は橙色から赤色にかけての強い発光を示すため発光効率が高く、白色を発する光源(LED)用の窒化物蛍光体の付活剤としてより好ましい。   Z is preferably at least one element selected from rare earth elements or transition metal elements, and is particularly preferably at least one element selected from Eu, Mn, Sm, and Ce. . Among these, when Eu is used, the nitride phosphor exhibits strong light emission from orange to red, and thus has high luminous efficiency, and is more preferable as an activator of the nitride phosphor for a light source (LED) that emits white light.

本発明に係る窒化物蛍光体(以下、単に「蛍光体」と記載する場合がある。)は、塗布または充填の容易さを考慮して粉状体とされるが、この場合には、当該蛍光体粉体の平均粒径が20μm以下であることが好ましい。これは、蛍光体粉体において発光は主に粒子表面で起こると考えられるため、平均粒径が20μm以下であれば、粉体単位重量あたりの表面積を確保でき輝度の低下を回避できるからである。更に、当該粉体をペースト状とし、発光体素子等に塗布した場合にも当該粉体の密度を高めることができ、この観点からも輝度の低下を回避することができる。また、本発明者らの検討によると、詳細な理由は不明であるが、蛍光体粉末の発光効率の観点から、平均粒径が0.1μmより大きいことが好ましいことも判明した。以上のことより、本発明に係る蛍光体粉体の平均粒径は、0.1μm以上20μm以下であることが好ましい。   The nitride phosphor according to the present invention (hereinafter sometimes simply referred to as “phosphor”) is a powdery material in consideration of ease of application or filling. The average particle diameter of the phosphor powder is preferably 20 μm or less. This is because light emission is considered to occur mainly on the particle surface in the phosphor powder, and if the average particle size is 20 μm or less, a surface area per unit weight of the powder can be secured and a decrease in luminance can be avoided. . Furthermore, the density of the powder can be increased even when the powder is formed into a paste and applied to a light-emitting element or the like, and a decrease in luminance can be avoided also from this viewpoint. Further, according to the study by the present inventors, although the detailed reason is unknown, it has been found that the average particle size is preferably larger than 0.1 μm from the viewpoint of the luminous efficiency of the phosphor powder. From the above, the average particle diameter of the phosphor powder according to the present invention is preferably 0.1 μm or more and 20 μm or less.

本発明に係る蛍光体の製造方法は、蛍光体の原料を窒化ホウ素材質の焼成容器内に充填し、不活性雰囲気中で焼成して蛍光体を製造する。この蛍光体の製造方法を、蛍光体としてCaAlSiN:Eu(但し、Eu/(Ca+Eu)モル比=0.015の場合)の製造を例として説明する。 In the method for producing a phosphor according to the present invention, a phosphor material is filled in a firing container made of boron nitride and fired in an inert atmosphere to produce the phosphor. This phosphor manufacturing method will be described by taking, as an example, the manufacture of CaAlSiN 3 : Eu (provided that Eu / (Ca + Eu) molar ratio = 0.015) as the phosphor.

まず、原料としてCa、Al、Siの窒化物として、それぞれCa(2N)、AlN(3N)、Si(3N)を準備する。Eu原料としては、Eu(3N)を準備する。 First, Ca 3 N 2 (2N), AlN (3N), and Si 3 N 4 (3N) are prepared as raw materials of Ca, Al, and Si, respectively. Eu 2 O 3 (3N) is prepared as the Eu raw material.

これらの原料を、各元素のモル比がCa:Al:Si:Eu=0.985:1:1:0.015となるように秤量し混合する。((Ca+Eu):Al:Si:=1:1:1となる。)当該混合は、乳鉢等を用いる通常の混合方法で良いが、窒素等の不活性雰囲気下のグローブボックス内で操作することが便宜である。   These raw materials are weighed and mixed so that the molar ratio of each element is Ca: Al: Si: Eu = 0.985: 1: 1: 0.015. ((Ca + Eu): Al: Si: = 1: 1: 1) The mixing may be performed by a normal mixing method using a mortar or the like, but operated in a glove box under an inert atmosphere such as nitrogen. It is convenient to do.

当該混合を不活性雰囲気下のグローブボックス内で操作する理由は、この操作を大気中おこなうと、上記原料の酸化や分解により母体構成元素中に含まれる酸素濃度の比率が崩れ、発光特性が低下する可能性がある上、蛍光体の目的組成からずれてしまうことが考えられるためである。更に、各原料元素の窒化物は水分の影響を受けやすいため、不活性ガスは水分を十分取り除いたものを使用するのが良い。各原料元素として窒化物原料を用いる場合、原料の分解を回避するため混合方式は乾式混合が好ましく、ボールミルや乳鉢等を用いる通常の乾式混合方法でよい。   The reason for operating the mixing in a glove box under an inert atmosphere is that if this operation is performed in the atmosphere, the ratio of the oxygen concentration contained in the matrix constituent elements collapses due to oxidation and decomposition of the above raw materials, resulting in a decrease in light emission characteristics. This is because there is a possibility of deviating from the target composition of the phosphor. Furthermore, since the nitride of each raw material element is easily affected by moisture, it is preferable to use an inert gas from which moisture has been sufficiently removed. When a nitride raw material is used as each raw material element, dry mixing is preferable as a mixing method in order to avoid decomposition of the raw material, and a normal dry mixing method using a ball mill, a mortar, or the like may be used.

混合が完了した原料を、焼成容器として窒化ホウ素製のるつぼに充填し、窒素等の不活性雰囲気中で1500℃まで15℃/min.の昇温速度で昇温し、1500℃で3時間保持し焼成する。焼成温度は1000℃以上、好ましくは1400℃以上であればよい。保持時間は焼成温度が高いほど焼成が迅速に進むため短くできる。焼成温度が低くても、長時間保持することにより目的の発光特性を得ることができる。焼成時間が長いほど粒子成長が進み、粒子形状が大きくなるため、目的の粒子サイズによって任意の焼成時間を設定すればよい。   The mixed raw material is filled in a boron nitride crucible as a firing container and is heated to 1500 ° C. in an inert atmosphere such as nitrogen at 15 ° C./min. The temperature is increased at a temperature increase rate of 1,5 ° C. and held at 1500 ° C. for 3 hours for firing. The firing temperature may be 1000 ° C. or higher, preferably 1400 ° C. or higher. The holding time can be shortened because the firing proceeds more rapidly as the firing temperature is higher. Even if the firing temperature is low, the desired light emission characteristics can be obtained by holding for a long time. As the firing time is longer, the particle growth proceeds and the particle shape becomes larger. Therefore, an arbitrary firing time may be set according to the target particle size.

ここで、本発明者らは、蛍光体の原料を焼成する焼成容器(例えば、るつぼ)として、例えばカーボン製の焼成容器を使用して焼成した場合には、カーボン製の焼成容器から焼成される蛍光体中に不純物として炭素が混入し、蛍光体の発光強度が低下するおそれがあることに想到した。本発明者らの検討によると、蛍光体中に含まれる炭素の量が0.08重量%以上となると蛍光体の発光強度が低下し始めることを見出した。また、本発明者らは、アルミナ製の焼成容器を使用して焼成した場合には、アルミナ製の焼成容器から焼成される蛍光体中に不純物として酸素が拡散し、蛍光体の発光強度が低下するおそれがあることに想到した。本発明者らの検討によると、蛍光体中に含まれる酸素の量が3.0重量%以上となると蛍光体の発光強度が低下し始めることを見出した。   Here, the present inventors, as a firing container (for example, a crucible) for firing a phosphor material, are fired from a carbon firing container when fired using, for example, a carbon firing container. It has been conceived that carbon may be mixed as an impurity in the phosphor and the emission intensity of the phosphor may be reduced. According to the study by the present inventors, it has been found that when the amount of carbon contained in the phosphor becomes 0.08% by weight or more, the emission intensity of the phosphor starts to decrease. In addition, when the present inventors baked using an alumina firing container, oxygen diffuses as an impurity in the phosphor fired from the alumina firing container, and the emission intensity of the phosphor decreases. I thought that there was a risk of doing. According to the study by the present inventors, it has been found that when the amount of oxygen contained in the phosphor becomes 3.0% by weight or more, the emission intensity of the phosphor starts to decrease.

そして本発明者らは、窒化ホウ素製の焼成容器を用いて蛍光体を焼成して製造することで、発光に寄与しない不純物炭素含有量と不純物酸素含有量の少ない蛍光体を製造することができ、発光強度の低下を抑制でき、発光体の発光効率を向上させることができることに想到した。   The inventors of the present invention can produce a phosphor with a low content of impurity carbon and low content of impurity oxygen that does not contribute to light emission by firing the phosphor using a firing container made of boron nitride. Thus, it has been conceived that a decrease in emission intensity can be suppressed and the luminous efficiency of the luminous body can be improved.

そこで、焼成容器として窒化ホウ素製の焼成容器を用い、焼成が完了した後、1500℃から200℃まで1時間で冷却し、さらに室温まで冷却した後、乳鉢、ボールミル等の粉砕手段を用いて所定(好ましくは20μm〜1μm)の平均粒径となるように粉砕し、組成式Ca0.985SiAlN:Eu0.015の蛍光体を製造する。 Therefore, a boron nitride firing container is used as the firing container, and after firing is completed, the temperature is cooled from 1500 ° C. to 200 ° C. in 1 hour, and further cooled to room temperature, and then predetermined using pulverizing means such as a mortar and ball mill. (preferably 20Myuemu~1myuemu) was ground to an average particle size of the composition formula Ca 0.985 SiAlN 3: preparing a phosphor of Eu 0.015.

Eu/(Ca+Eu)モル比の設定値が変動した場合も、各原料の仕込時の配合量を所定の組成式に合わせることで、同様の製造方法により所定の組成の蛍光体を製造することができる。得られた蛍光体はいずれも炭素含有量が0.08重量%より少なく、酸素含有量が3.0重量%より少ないものであった。   Even when the set value of Eu / (Ca + Eu) molar ratio fluctuates, a phosphor having a predetermined composition can be manufactured by a similar manufacturing method by adjusting the blending amount of each raw material to a predetermined composition formula. it can. All of the obtained phosphors had a carbon content of less than 0.08% by weight and an oxygen content of less than 3.0% by weight.

粉末状となった本発明に係る蛍光体は、公知の方法で発光部(特には、発光波長域250〜550nmのいずれかの発光をおこなう発光部)と組み合わせることで、当該発光部が発光する広い範囲の波長域の光に励起帯を有して発光するので、可視光または白色光を発光する発光効率の高い光源を得ることができる。特に、発光部として発光波長域250〜550nmのいずれかの発光をおこなうLEDと、公知の方法により組み合わせることで、可視光または白色光を発光する発光効率の高いLEDを得ることができる。
従って、この光源(LED)をCRT、PDP等のディスプレイ装置や、蛍光灯等の照明装置の多様な光源として用いることができる。
The phosphor according to the present invention in a powder form is combined with a light emitting part (particularly, a light emitting part that emits light in any of the light emission wavelength ranges of 250 to 550 nm) by a known method, so that the light emitting part emits light. Since light having an excitation band is emitted in light in a wide wavelength range, a light source with high emission efficiency that emits visible light or white light can be obtained. In particular, an LED that emits visible light or white light can be obtained by combining an LED that emits light in the emission wavelength range of 250 to 550 nm as a light emitting unit with a known method.
Therefore, this light source (LED) can be used as various light sources for display devices such as CRT and PDP and illumination devices such as fluorescent lamps.

以下、実施例に基づいて、本発明をより具体的に説明する。
(実施例1)
市販のCa(2N)、AlN(3N)、Si(3N)、Eu(3N)を準備し、各元素のモル比がCa:Al:Si:Eu=0.985:1:1:0.015となるように各原料を秤量し、窒素雰囲気下のグローブボックス中において乳鉢を用いて混合した。混合した原料を窒化ホウ素製のるつぼに充填し、窒素雰囲気中で1500℃まで15℃/min.の昇温速度で昇温し、1500℃で3時間保持し焼成した後、1500℃から200℃まで1時間で冷却し、組成式Ca0.985SiAlN:Eu0.015の蛍光体を得た。
得られた蛍光体粉末に460nmの単色光を照射したところ、図1に示すように、656nmに発光ピークを有する赤色発光を示した。また、化学分析により得られた不純物炭素濃度、不純物酸素濃度はそれぞれ0.043重量%、2.09重量%であった。
Hereinafter, based on an Example, this invention is demonstrated more concretely.
Example 1
Commercially available Ca 3 N 2 (2N), AlN (3N), Si 3 N 4 (3N), and Eu 2 O 3 (3N) were prepared, and the molar ratio of each element was Ca: Al: Si: Eu = 0. Each raw material was weighed so that it would become 985: 1: 1: 0.015, and it mixed using the mortar in the glove box of nitrogen atmosphere. The mixed raw material is filled in a crucible made of boron nitride, and 15 ° C./min. Was heated at 1500 ° C. for 3 hours and fired, and then cooled from 1500 ° C. to 200 ° C. for 1 hour to obtain a phosphor of composition formula Ca 0.985 SiAlN 3 : Eu 0.015. It was.
When the obtained phosphor powder was irradiated with monochromatic light of 460 nm, red light emission having an emission peak at 656 nm was shown as shown in FIG. The impurity carbon concentration and impurity oxygen concentration obtained by chemical analysis were 0.043 wt% and 2.09 wt%, respectively.

(比較例1)
焼成に使用する容器を窒化ホウ素製のるつぼからカーボン製のるつぼに変更した他は、実施例1と同様の条件で蛍光体を作製した。得られた蛍光体粉末に460nmの単色光を照射したところ、650nmに発光ピークを有する赤色発光を示した。図1に本比較例で作製した蛍光体の相対発光強度、並びに化学分析により得られた不純物炭素濃度及び不純物酸素濃度を示す。
図1及び図2に示すように、焼成容器にカーボン製るつぼを使用して作製した蛍光体は、窒化ホウ素製のるつぼを使用して作製した実施例1の蛍光体と比べて発光強度が約26%低下する結果となった。カーボン製るつぼを使用して作製した蛍光体は、不純物炭素量が0.080重量%に増加していることから、当該不純物炭素が発光強度を低下させているものと考えられる。
(Comparative Example 1)
A phosphor was produced under the same conditions as in Example 1 except that the container used for firing was changed from a boron nitride crucible to a carbon crucible. When the obtained phosphor powder was irradiated with monochromatic light of 460 nm, it showed red light emission having an emission peak at 650 nm. FIG. 1 shows the relative emission intensity of the phosphor produced in this comparative example, and the impurity carbon concentration and impurity oxygen concentration obtained by chemical analysis.
As shown in FIGS. 1 and 2, the phosphor produced using a carbon crucible for the firing container has a light emission intensity of about 1% compared to the phosphor of Example 1 produced using a boron nitride crucible. The result decreased by 26%. Since the phosphor produced using a carbon crucible has an impurity carbon content increased to 0.080% by weight, it is considered that the impurity carbon reduces the emission intensity.

(比較例2)
焼成に使用する容器を窒化ホウ素製のるつぼからアルミナ製のるつぼに変更した他は、実施例1と同様の条件で蛍光体を作製した。得られた蛍光体粉末に460nmの単色光を照射したところ、652nmに発光ピークを有する赤色発光を示した。図1に本比較例で作製した蛍光体の相対発光強度、並びに化学分析により得られた不純物炭素濃度及び不純物酸素濃度を示す。
図1及び図2に示すように、焼成容器にアルミナ製るつぼを使用して作製した蛍光体は、窒化ホウ素製のるつぼを使用して作製した実施例1の蛍光体と比べて発光強度が約20%低下する結果となった。アルミナ製るつぼを使用して作製した蛍光体は、不純物酸素量が3.02重量%に増加していることから、当該不純物酸素が発光強度を低下させているものと考えられる。
(Comparative Example 2)
A phosphor was produced under the same conditions as in Example 1 except that the container used for firing was changed from a boron nitride crucible to an alumina crucible. When the obtained phosphor powder was irradiated with monochromatic light of 460 nm, it showed red light emission having an emission peak at 652 nm. FIG. 1 shows the relative emission intensity of the phosphor produced in this comparative example, and the impurity carbon concentration and impurity oxygen concentration obtained by chemical analysis.
As shown in FIGS. 1 and 2, the phosphor produced using the alumina crucible for the firing container has a light emission intensity of about 1% compared to the phosphor of Example 1 produced using the boron nitride crucible. The result decreased by 20%. Since the phosphor produced using the crucible made of alumina has an impurity oxygen amount increased to 3.02% by weight, the impurity oxygen is considered to decrease the emission intensity.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.

本発明に係る蛍光体を製造する場合に使用する焼成容器(るつぼ)の材質と、製造された蛍光体の特性及び不純物濃度とを示す図表である。6 is a chart showing the material of the firing container (crucible) used when manufacturing the phosphor according to the present invention, and the characteristics and impurity concentration of the manufactured phosphor. 本発明に係る蛍光体としてのCaAlSiNを焼成して製造するための焼成容器(るつぼ)の材質と、上記蛍光体の発光強度との関係を示すグラフである。And the material of the firing vessel for preparing by firing a CaAlSiN 3 as the phosphor according to the present invention (crucible) is a graph showing the relationship between the emission intensity of the phosphor.

Claims (7)

一般式MAlSiN3:Euで表記され、MがII価の価数をとるMg、Ca、Sr、Ba、Znからなる群から選択された一種以上の元素、Alがアルミニウム、Siが珪素、Nが窒素、Euが付活剤となる元素であり、粉末状であると共に、炭素含有量が0.08重量%より少なく、かつ、酸素含有量が3.0重量%より少ないことを特徴とする窒化物蛍光体。 One or more elements selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, in which M is a valence of II, M is represented by the general formula MAlSiN 3 : Eu, Al is aluminum, Si is silicon, N is Nitrogen, Eu is an activator element, is in powder form, has a carbon content of less than 0.08% by weight, and an oxygen content of less than 3.0% by weight. Phosphor. 上記粉末状の窒化物蛍光体の平均粒度が20μm以下、0.1μm以上であることを特徴とする請求項に記載の窒化物蛍光体。 2. The nitride phosphor according to claim 1 , wherein an average particle size of the powdered nitride phosphor is 20 μm or less and 0.1 μm or more. 請求項1又は2のいずれかに記載の窒化物蛍光体の製造方法であって、
上記窒化物蛍光体の原料を窒化ホウ素材質の焼成容器内に充填し、不活性雰囲気中で焼成して窒化物蛍光体を製造することを特徴とする窒化物蛍光体の製造方法。
A method for producing a nitride phosphor according to claim 1 or 2 ,
A nitride phosphor is produced by filling a nitride phosphor material into a firing vessel made of boron nitride and firing in an inert atmosphere to produce a nitride phosphor.
請求項1又は2のいずれかに記載の窒化物蛍光体と、所定波長の光を発光する発光部とを有し、上記所定波長の光の一部を励起源とし、上記窒化物蛍光体を上記所定波長と異なる波長で発光させることを特徴とする光源。 3. The nitride phosphor according to claim 1 , and a light emitting unit that emits light of a predetermined wavelength, wherein a part of the light of the predetermined wavelength is used as an excitation source, and the nitride phosphor is A light source that emits light at a wavelength different from the predetermined wavelength. 上記所定波長が、250〜550nmの波長であることを特徴とする請求項に記載の光源。 The light source according to claim 4 , wherein the predetermined wavelength is a wavelength of 250 to 550 nm. 請求項1又は2のいずれかに記載の窒化物蛍光体と、所定波長の光を発光する発光部とを有し、上記所定波長の光の一部を励起源とし、上記窒化物蛍光体を上記所定波長と異なる波長で発光させることを特徴とするLED。 3. The nitride phosphor according to claim 1 , and a light emitting unit that emits light of a predetermined wavelength, wherein a part of the light of the predetermined wavelength is used as an excitation source, and the nitride phosphor is An LED that emits light at a wavelength different from the predetermined wavelength. 上記所定波長が、250〜550nmの波長であることを特徴とする請求項に記載のLED。 The LED according to claim 6 , wherein the predetermined wavelength is a wavelength of 250 to 550 nm.
JP2004207271A 2004-02-27 2004-07-14 Nitride phosphor, method for producing nitride phosphor, light source and LED using the nitride phosphor Expired - Lifetime JP5016187B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004207271A JP5016187B2 (en) 2004-07-14 2004-07-14 Nitride phosphor, method for producing nitride phosphor, light source and LED using the nitride phosphor
TW094105848A TWI262609B (en) 2004-02-27 2005-02-25 Phosphor and manufacturing method thereof, and light source, LED using said phosphor
KR1020050016250A KR100702757B1 (en) 2004-02-27 2005-02-26 Phosphor and manufacturing method thereof, and light source, led using said phosphor
CNB2005100525227A CN100340631C (en) 2004-02-27 2005-02-28 Phosphor and manufacturing method thereof, and led light source using said phosphor
DE602005014296T DE602005014296D1 (en) 2004-02-27 2005-02-28 Phosphor and its preparation and LED light source using this phosphor
EP05004375A EP1568753B1 (en) 2004-02-27 2005-02-28 Phosphor and manufacturing method thereof, and LED light source using said phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207271A JP5016187B2 (en) 2004-07-14 2004-07-14 Nitride phosphor, method for producing nitride phosphor, light source and LED using the nitride phosphor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010153511A Division JP2010265463A (en) 2010-07-06 2010-07-06 Nitride phosphor, manufacturing method of nitride phosphor, and light source and led using the nitride phosphor

Publications (3)

Publication Number Publication Date
JP2006028295A JP2006028295A (en) 2006-02-02
JP2006028295A5 JP2006028295A5 (en) 2010-01-21
JP5016187B2 true JP5016187B2 (en) 2012-09-05

Family

ID=35895038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207271A Expired - Lifetime JP5016187B2 (en) 2004-02-27 2004-07-14 Nitride phosphor, method for producing nitride phosphor, light source and LED using the nitride phosphor

Country Status (1)

Country Link
JP (1) JP5016187B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837588B2 (en) 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 Phosphors and light emitting devices using phosphors
JP4568894B2 (en) 2003-11-28 2010-10-27 Dowaエレクトロニクス株式会社 Composite conductor and superconducting equipment system
JP3931239B2 (en) 2004-02-18 2007-06-13 独立行政法人物質・材料研究機構 Light emitting device and lighting apparatus
JP4511849B2 (en) 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor and its manufacturing method, light source, and LED
JP4524468B2 (en) 2004-05-14 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, light source using the phosphor, and LED
JP4491585B2 (en) 2004-05-28 2010-06-30 Dowaエレクトロニクス株式会社 Method for producing metal paste
JP4414821B2 (en) 2004-06-25 2010-02-10 Dowaエレクトロニクス株式会社 Phosphor, light source and LED
JP4511885B2 (en) 2004-07-09 2010-07-28 Dowaエレクトロニクス株式会社 Phosphor, LED and light source
JP4422653B2 (en) 2004-07-28 2010-02-24 Dowaエレクトロニクス株式会社 Phosphor, production method thereof, and light source
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
JP4933739B2 (en) 2004-08-02 2012-05-16 Dowaホールディングス株式会社 Phosphor and phosphor film for electron beam excitation, and color display device using them
JP4524470B2 (en) 2004-08-20 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor, method for producing the same, and light source using the phosphor
JP4543250B2 (en) 2004-08-27 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
JP4543253B2 (en) 2004-10-28 2010-09-15 Dowaエレクトロニクス株式会社 Phosphor mixture and light emitting device
US8148886B2 (en) 2005-01-31 2012-04-03 Ube Industries, Ltd. Red nitride phosphor and production method thereof
JP4892193B2 (en) 2005-03-01 2012-03-07 Dowaホールディングス株式会社 Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
WO2006098450A1 (en) 2005-03-18 2006-09-21 Mitsubishi Chemical Corporation Light-emitting device, white light-emitting device, illuminator, and image display
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
JP4975269B2 (en) 2005-04-28 2012-07-11 Dowaホールディングス株式会社 Phosphor and method for producing the same, and light emitting device using the phosphor
CN101175835B (en) 2005-05-24 2012-10-10 三菱化学株式会社 Phosphor and utilization thereof
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
JP2008050496A (en) * 2006-08-25 2008-03-06 Sony Corp Light-emitting composition, light source device and displaying device
JP5378644B2 (en) 2006-09-29 2013-12-25 Dowaホールディングス株式会社 Method for producing nitride phosphor or oxynitride phosphor
JP5446066B2 (en) * 2006-12-28 2014-03-19 日亜化学工業株式会社 Nitride phosphor and light emitting device using the same
WO2008126500A1 (en) * 2007-03-28 2008-10-23 Hiroshima University M-c-n-o fluorescent substance
JP5395342B2 (en) * 2007-09-18 2014-01-22 株式会社東芝 Phosphor and light emitting device
JP5504178B2 (en) 2009-01-27 2014-05-28 電気化学工業株式会社 Alpha-type sialon phosphor, method for producing the same, and light emitting device
US8926864B2 (en) 2010-05-13 2015-01-06 Denki Kagaku Kogyo Kabushiki Kaisha Method of producing β-SiAION, β-SiAION, and products using the same
KR101444085B1 (en) * 2010-05-14 2014-09-26 라이트스케이프 머티어리얼스, 인코포레이티드 Carbidonitride based phosphors and light emitting devices using the same
WO2012036016A1 (en) * 2010-09-17 2012-03-22 株式会社東芝 Phosphor and light-emitting device
US8796722B2 (en) * 2011-09-29 2014-08-05 Beijing Yuji Science And Technology Co. Ltd Light-emitting material of nitrogen compound, preparation process thereof and illumination source manufactured therefrom
CN103045256B (en) * 2011-10-17 2014-08-27 有研稀土新材料股份有限公司 LED (Light Emitting Diode) red fluorescence material and luminescent device containing same
US20140015400A1 (en) * 2012-07-13 2014-01-16 Rohm And Haas Electronic Materials Llc Phosphor and light emitting devices comprising same
US20140062287A1 (en) * 2012-08-29 2014-03-06 Lightscape Materials, Inc. Oxycarbidonitride phosphor and devices using same
WO2019188630A1 (en) 2018-03-29 2019-10-03 デンカ株式会社 α-SIALON FLUORESCENT BODY AND LIGHT-EMITTING DEVICE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837588B2 (en) * 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 Phosphors and light emitting devices using phosphors
JP4568867B2 (en) * 2004-06-29 2010-10-27 独立行政法人物質・材料研究機構 Method for producing composite nitride phosphor

Also Published As

Publication number Publication date
JP2006028295A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP5016187B2 (en) Nitride phosphor, method for producing nitride phosphor, light source and LED using the nitride phosphor
JP4511885B2 (en) Phosphor, LED and light source
JP4543251B2 (en) Phosphor and light source
JP4729278B2 (en) Phosphor and light emitting device
JP4414821B2 (en) Phosphor, light source and LED
JP4511849B2 (en) Phosphor and its manufacturing method, light source, and LED
JP5503870B2 (en) Phosphors used in LEDs and blends thereof
JP4524470B2 (en) Phosphor, method for producing the same, and light source using the phosphor
TWI375710B (en)
JP4524468B2 (en) Phosphor, method for producing the same, light source using the phosphor, and LED
KR101168178B1 (en) Phospher and method for production thereof, and luminous utensil
JP5227503B2 (en) Phosphor, phosphor sheet, phosphor production method, and light emitting device using the phosphor
JP5511820B2 (en) Alpha-sialon phosphor
JP2006063214A (en) Fluorophor and method for producing the same and light source
JP2006282872A (en) Nitride phosphor or oxynitride phosphor and manufacturing method for the same, and light-emitting device using the same
JP2006028295A5 (en)
JP5378644B2 (en) Method for producing nitride phosphor or oxynitride phosphor
JP2006282809A (en) Nitrogen-containing fluorophor and method for producing the same, and light-emitting device
JP5402008B2 (en) Phosphor production method, phosphor, and light emitting device using the same
JP5394903B2 (en) Phosphor, production method thereof, and light source
JP2010265463A (en) Nitride phosphor, manufacturing method of nitride phosphor, and light source and led using the nitride phosphor
JP2006104413A (en) Phosphor and white light emitting device using the same
JP2008024852A (en) Method for producing phosphor
JP4415065B1 (en) Phosphor and light emission wavelength shifting method, light source and LED
JP2014177601A (en) Yellow light emitting phosphor and light emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091009

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100913

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5016187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250