JP4661419B2 - Phosphor and light emitting device using the same - Google Patents

Phosphor and light emitting device using the same Download PDF

Info

Publication number
JP4661419B2
JP4661419B2 JP2005205827A JP2005205827A JP4661419B2 JP 4661419 B2 JP4661419 B2 JP 4661419B2 JP 2005205827 A JP2005205827 A JP 2005205827A JP 2005205827 A JP2005205827 A JP 2005205827A JP 4661419 B2 JP4661419 B2 JP 4661419B2
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting device
light source
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005205827A
Other languages
Japanese (ja)
Other versions
JP2007023128A (en
Inventor
正彦 吉野
昌義 三上
統之 茂岩
薫 寺田
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005205827A priority Critical patent/JP4661419B2/en
Publication of JP2007023128A publication Critical patent/JP2007023128A/en
Application granted granted Critical
Publication of JP4661419B2 publication Critical patent/JP4661419B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、高発光効率の蛍光体と、この蛍光体を用いた発光装置に関するものである。詳しくは、高効率の発光を示す赤色ないし橙色発光蛍光体と、半導体発光素子等の励起光源からの光の少なくとも一部を波長変換する波長変換材料として、この赤色ないし橙色発光蛍光体を用いた、高効率で演色性の高い発光装置に関する。
本発明はまた、このような発光装置を用いた照明装置及び画像表示装置に関する。
The present invention relates to a phosphor with high luminous efficiency and a light emitting device using the phosphor. Specifically, red or orange light-emitting phosphors exhibiting high-efficiency light emission and the red or orange light-emitting phosphors used as wavelength conversion materials for wavelength-converting at least part of light from an excitation light source such as a semiconductor light-emitting element were used. The present invention relates to a light emitting device with high efficiency and high color rendering.
The present invention also relates to an illumination device and an image display device using such a light emitting device.

水銀の放電による紫外光で青、緑、赤の3色の蛍光体を励起し、白色光を発生することは蛍光ランプにおいて実現された技術である。そして、近年、発光効率の高い、青色発光のGaN系の半導体発光素子が開発され、この青色光によって黄色の発光をする蛍光体を励起し、青と黄色の補色関係を利用して白色光を得る方法が開示された。しかしながら、この方式では白色光に赤色成分が存在せず演色性が劣ることが指摘されている。このため、近紫外発光の半導体発光素子により蛍光ランプと同様の原理で、青、緑、赤3色の蛍光体を励起する方法が提案された。この方法は、蛍光ランプに比べ未だ効率、演色性が劣るが、半導体発光素子並びに蛍光体の改善が進めば、蛍光ランプの性能凌駕は達成可能な目標とされている。   Excitation of phosphors of three colors of blue, green, and red with ultraviolet light generated by mercury discharge to generate white light is a technology realized in a fluorescent lamp. In recent years, blue light-emitting GaN-based semiconductor light-emitting elements with high luminous efficiency have been developed. The blue light is used to excite a phosphor that emits yellow light, and white light is emitted using the complementary color relationship between blue and yellow. A method of obtaining has been disclosed. However, it has been pointed out that in this method, there is no red component in white light and color rendering is inferior. For this reason, a method has been proposed in which phosphors of three colors, blue, green, and red, are excited by a semiconductor light emitting element that emits near ultraviolet light based on the same principle as a fluorescent lamp. Although this method is still inferior in efficiency and color rendering as compared with a fluorescent lamp, if the semiconductor light emitting device and the phosphor are improved, the performance of the fluorescent lamp can be surpassed.

この用途に使用できる赤色ないし橙色発光蛍光体として、Eu2+及びMn2+をドープした蛍光体が知られている。この蛍光体において、Eu2+は一般に増感剤として作用し、Mn2+は一般にアクチベータとして作用する。すなわち、Eu2+は励起源から放出された光子を吸収し、吸収エネルギーをMn2+に伝達する。これにより、Mn2+は励起状態になり、赤色ないし橙色発光をもたらす。Euは通常3価が2価より安定であり、Eu源としてはEuが用いられる。従って、EuをMnの増感剤として有効に作用する2価イオンとするためには3価イオンを還元する必要がある。しかしながら、従来においては、全Euの中でどれだけが2価に還元されているかを明らかにする手段がなく、製造プロセス設計上の指針が明確でなかった。 As red to orange light-emitting phosphors that can be used for this purpose, phosphors doped with Eu 2+ and Mn 2+ are known. In this phosphor, Eu 2+ generally acts as a sensitizer and Mn 2+ generally acts as an activator. That is, Eu 2+ absorbs photons emitted from the excitation source and transmits the absorbed energy to Mn 2+ . As a result, Mn 2+ enters an excited state and emits red or orange light. Eu is usually more trivalent than bivalent, and Eu 2 O 3 is used as the Eu source. Therefore, in order to convert Eu into a divalent ion that effectively acts as a sensitizer for Mn, it is necessary to reduce the trivalent ion. However, in the past, there was no means for clarifying how much of the total Eu was reduced to divalent, and guidelines for manufacturing process design were not clear.

Eu2+の定量については、非特許文献1に一例が開示されているように、EuのX線吸収端近傍微細構造スペクトル(X−ray Absorption Near Edge Structure:以下「XANES」と略称)の解析からEu2+を定量することが行われている。例えば、特許文献1では、Ca0.92Sr0.05Eu0.03MgSiで示される組成式の蛍光体について測定を行い、En2+が全Euの78%であったことを開示している。ただし、この蛍光体は真空紫外領域紫外線(波長145nm、又は172nm)で励起されるプラズマディスプレイパネル用に開発されたものであり、Eu含有量が0.03と低い蛍光体である。
特開2005−68169公報 清水川豊ほか2名、「長残光性を示すEu2+ドープストロンチウムアルミノシリケートガラスの局所構造」、1999年、50頁、日本セラミック協会年会講演予講集
Regarding the quantification of Eu 2+ , as disclosed in Non-Patent Document 1, an X-ray Absorption Near Edge Structure (hereinafter abbreviated as “XANES”) analysis of Eu X-ray absorption near-end fine structure spectrum (X-ray Absorption Near Edge Structure) Eu 2+ is quantified. For example, Patent Document 1 discloses that a phosphor having a composition formula represented by Ca 0.92 Sr 0.05 Eu 0.03 MgSi 2 O 6 was measured, and that En 2+ was 78% of the total Eu. is doing. However, this phosphor has been developed for a plasma display panel excited by ultraviolet rays in the vacuum ultraviolet region (wavelength 145 nm or 172 nm), and is a phosphor having a low Eu content of 0.03.
JP 2005-68169 A Yutaka Shimizukawa and two others, "Local structure of Eu2 + -doped strontium aluminosilicate glass exhibiting long afterglow", 1999, p. 50, Lectures of Annual Meeting of the Ceramic Society of Japan

本発明は、上記従来の実状に鑑みてなされたものであって、近紫外領域の励起光による発光効率の高い蛍光体を実現するために、蛍光体中に必要なEu2+の量を明らかにし、これにより、高効率の蛍光体の安定生産を図ることを目的とする。
本発明はまた、このような高発光効率の蛍光体を用いて、高効率で演色性の高い発光装置と、この発光装置を用いた照明装置及び画像表示装置を提供することを目的とする。
The present invention has been made in view of the above-described conventional situation, and clarifies the amount of Eu 2+ required in a phosphor in order to realize a phosphor having high emission efficiency by excitation light in the near ultraviolet region. Thus, an object is to achieve stable production of highly efficient phosphors.
Another object of the present invention is to provide a light-emitting device having high efficiency and high color rendering using such a phosphor with high light-emitting efficiency, and an illumination device and an image display device using the light-emitting device.

本発明者らは、ユーロピウム・マンガン共付活アルカリ土類金属珪酸塩よりなる蛍光体において、高効率発光が得られる組成範囲を特定すると共に、Eu2+量を定量化し、これにより、最適な生産プロセスを実現して、本発明を完成させた。
即ち、本発明は以下を要旨とするものである。
The present inventors specify a composition range in which high-efficiency luminescence can be obtained in a phosphor composed of europium / manganese co-activated alkaline earth metal silicate, and quantify the amount of Eu 2+ , thereby achieving optimum production. A process was realized to complete the present invention.
That is, the gist of the present invention is as follows.

[1] 組成式:(BaCaSrMgEuMn)SiOで表されるユーロピウム・マンガン共付活アルカリ土類金属珪酸塩よりなる蛍光体において、該組成式中、係数a、b、c、d、x及びyが
a+b+c+d+x+y=2
0<a<2
0<b<2
0≦c<0.5
0≦d<0.5
0<x≦0.5
0<y≦0.5
を満足し、かつ全Euイオンの50%以上がEu2+イオンであることを特徴とする蛍光体。
[1] Composition formula: In (Ba a Ca b Sr c Mg d Eu x Mn y) phosphor consisting activated alkaline earth metal silicate europium-manganese co represented by SiO 4, in the composition formula, coefficient a, b, c, d, x and y are a + b + c + d + x + y = 2
0 <a <2
0 <b <2
0 ≦ c <0.5
0 ≦ d <0.5
0 <x ≦ 0.5
0 <y ≦ 0.5
And 50% or more of the total Eu ions are Eu 2+ ions.

[2] 赤色ないし橙色に発光することを特徴とする[1]に記載の蛍光体。 [2] The phosphor according to [1], which emits red or orange light.

[3] [1]又は[2]に記載の蛍光体の製造方法であって、Ba、Ca、Eu、Mn及びSiの元素源化合物と、必要に応じて用いられるSr及び/又はMgの元素源化合物との混合物を炭素共存下の非酸化性ガス雰囲気中で焼成することを特徴とする蛍光体の製造方法。 [3] A method for producing a phosphor according to [1] or [2], wherein the element source compounds of Ba, Ca, Eu, Mn and Si, and the elements of Sr and / or Mg used as necessary A method for producing a phosphor, comprising firing a mixture with a source compound in a non-oxidizing gas atmosphere in the presence of carbon.

[4] 非酸化性ガスが還元性を有するガス及び/又は不活性ガスであることを特徴とする[3]に記載の蛍光体の製造方法。 [4] The method for producing a phosphor according to [3], wherein the non-oxidizing gas is a reducing gas and / or an inert gas.

[5] 励起光源と、該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有する発光装置において、該蛍光体が[1]又は[2]に記載の蛍光体或いは[3]又は[4]に記載の製造方法により得られた蛍光体を含むことを特徴とする発光装置。 [5] In a light-emitting device having an excitation light source and a phosphor that converts the wavelength of at least part of light from the excitation light source, the phosphor described in [1] or [2] or [3] Or a phosphor obtained by the production method according to [4].

[6] [5]に記載の発光装置を含むことを特徴とする照明装置。 [6] An illumination device including the light-emitting device according to [5].

[7] [5]に記載の発光装置を含むことを特徴とする画像表示装置。 [7] An image display device comprising the light emitting device according to [5].

前述の如く、高効率の赤色ないし橙色発光蛍光体を得るためには、原料として添加したEuが赤色ないし橙色発光するMn2+イオンの増感剤として作用するために、Eu2+に還元されている必要がある。 As described above, in order to obtain a highly efficient red or orange light emitting phosphor, Eu added as a raw material is reduced to Eu 2+ because it acts as a sensitizer for Mn 2+ ions emitting red to orange light. There is a need.

本発明によれば、特定の組成のユーロピウム・マンガン共付活アルカリ土類金属珪酸塩系蛍光体において、蛍光体中に存在すべきEu2+を定量化することにより、その生産プロセスにおいて、必要十分な還元条件を設計することが可能となり、最適な生産プロセスにより、高効率の蛍光体、特に赤色ないし橙色発光蛍光体を安定生産することが可能となる。
そして、この赤色ないし橙色発光蛍光体を用いることにより、高効率で演色性の高い白色発光装置を提供することができ、この発光装置を用いて高性能の照明装置及び画像表示装置が提供される。
According to the present invention, in a europium / manganese co-activated alkaline earth metal silicate phosphor having a specific composition, it is necessary and sufficient in the production process by quantifying Eu 2+ to be present in the phosphor. Therefore, it is possible to design a highly efficient phosphor, and it is possible to stably produce a highly efficient phosphor, particularly a red or orange light-emitting phosphor, by an optimum production process.
By using the red or orange light emitting phosphor, a white light emitting device with high efficiency and high color rendering can be provided, and a high performance lighting device and image display device are provided using the light emitting device. .

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.

[蛍光体]
本発明の蛍光体は、ユーロピウム・マンガン共付活アルカリ土類金属珪酸塩(BaCaSrMgEuMn)SiOにおいて、係数a、b、c、d、x及びyが
a+b+c+d+x+y=2
0<a<2
0<b<2
0≦c<0.5
0≦d<0.5
0<x≦0.5
0<y≦0.5
を満足し、かつ全Euイオンの50%以上がEu2+イオンであることを特徴とする。
[Phosphor]
Phosphor of the present invention, the europium-manganese co-activated alkaline earth metal silicate (Ba a Ca b Sr c Mg d Eu x Mn y) SiO 4, coefficients a, b, c, d, x and y a + b + c + d + x + y = 2
0 <a <2
0 <b <2
0 ≦ c <0.5
0 ≦ d <0.5
0 <x ≦ 0.5
0 <y ≦ 0.5
And 50% or more of the total Eu ions are Eu 2+ ions.

組成式(BaCaSrMgEuMn)SiOにおいて、アルカリ土類金属Ba、Ca、Sr、Mg、並びに付活剤であるEu及びMnについて、モル数合計a+b+c+d+x+y=2が成立する。但し、元素源化合物の純度、実験誤差等によって、a+b+c+d+x+yの値は±1%程度ずれることもあるため、この±1%程度ずれた場合も本発明の範囲に含まれる。 In the composition formula (Ba a Ca b Sr c Mg d Eu x Mn y) SiO 4, alkaline earth metals Ba, Ca, Sr, Mg, and the Eu and Mn as an activator, the molar number of total a + b + c + d + x + y = 2 To establish. However, since the value of a + b + c + d + x + y may deviate by about ± 1% depending on the purity of the element source compound, experimental error, etc., the case of deviation of about ± 1% is also included in the scope of the present invention.

Baの係数aは、通常0<a<2であり、赤色ないし橙色の発光強度等の面から好ましくは0.5<a<2.0である。
Caの係数bは、通常0<b<2であり、赤色ないし橙色の発光強度等の面から好ましくは0<b<1.5である。
Srの係数cは、通常0≦c<0.5であり、赤色ないし橙色の発光強度等の面から好ましくは0≦c<0.25である。
Mgの係数dは、通常0≦d<0.5であり、赤色ないし橙色の発光強度等の面から好ましくは0≦d<0.25である。
Euの係数xは、通常0<x≦0.5であり、赤色ないし橙色の発光強度等の面から好ましくは0.05≦x≦0.4である。
Mnの係数yは、通常0<y≦0.3であり、赤色ないし橙色の発光強度等の面から好ましくは0.05≦y≦0.2である。
The coefficient a of Ba is normally 0 <a <2, and preferably 0.5 <a <2.0 from the viewpoint of red to orange light emission intensity.
The coefficient b of Ca is usually 0 <b <2, and preferably 0 <b <1.5 from the viewpoint of red to orange emission intensity.
The coefficient c of Sr is usually 0 ≦ c <0.5, and preferably 0 ≦ c <0.25 in terms of red to orange emission intensity.
The coefficient d of Mg is usually 0 ≦ d <0.5, and preferably 0 ≦ d <0.25 from the viewpoint of red or orange emission intensity.
The Eu coefficient x is usually 0 <x ≦ 0.5, and preferably 0.05 ≦ x ≦ 0.4 from the viewpoint of the emission intensity of red to orange.
The coefficient y of Mn is usually 0 <y ≦ 0.3, and preferably 0.05 ≦ y ≦ 0.2 from the viewpoint of red or orange emission intensity.

BaとCaの割合(モル比a/b)は、好ましくは1.50以上、4.13以下であるが、より好ましくは2.8以上、3.2以下である。赤色ないし橙色の発光強度等の面から、BaとCaの合計がアルカリ土類金属中に占める割合が70mol%以上であることが好ましく、90mol%以上であることがより好ましく、100mol%であることが更に好ましい。   The ratio of Ba to Ca (molar ratio a / b) is preferably 1.50 or more and 4.13 or less, more preferably 2.8 or more and 3.2 or less. From the aspect of red to orange emission intensity, the ratio of the total of Ba and Ca in the alkaline earth metal is preferably 70 mol% or more, more preferably 90 mol% or more, and 100 mol%. Is more preferable.

SiはGe又は他の4価の元素によって一部置換されうるが、Si及びGeを合計で90mol%以上含むことが好ましく、赤色ないし橙色の発光強度等の面から、Siを80mol%以上含むことが好ましく、全てがSiからなることがより好ましい。Si,Ge以外の4価の元素としては、Zn,Ti,Hf等が挙げられ、赤色ないし橙色の発光強度等の点から、性能を損なわない範囲でこれらを含んでいてもよい。   Si can be partially substituted by Ge or other tetravalent elements, but preferably contains 90 mol% or more of Si and Ge in total, and contains 80 mol% or more of Si in terms of red to orange emission intensity, etc. It is more preferable that all are made of Si. Examples of tetravalent elements other than Si and Ge include Zn, Ti, Hf, and the like, and these may be included within a range that does not impair performance in terms of red or orange emission intensity.

Euモル比xについては、Eu2+はアルカリ土類金属元素を置換するので(BaCaSrMgEuMn)SiOと表記することができ、式中、xは0<x≦0.5を満足する数である。Euのモル比xが小さすぎると、増感効果が少ないため発光強度が小さくなる傾向がある。一方、大き過ぎると増感効果の向上が顕著ではなくなるおそれがある。また、濃度消光が起こり、発光強度が低下する。一般的に近紫外光による励起では、真空紫外光や蛍光ランプで使用される波長254nm付近の紫外光励起に比べ、Euが直接励起されるため相対的に高濃度のEuが好ましい。下限としては、0.05≦xが好ましく、0.1≦xがより好ましく、上限としては、x≦0.4がより好ましい。 For Eu molar ratio x, since Eu 2+ replaces the alkaline earth metal element (Ba a Ca b Sr c Mg d Eu x Mn y) can be expressed as SiO 4, wherein, x is 0 <x It is a number satisfying ≦ 0.5. If the Eu molar ratio x is too small, the sensitizing effect is small and the emission intensity tends to be small. On the other hand, if it is too large, the improvement of the sensitization effect may not be significant. In addition, concentration quenching occurs and the emission intensity decreases. Generally, in excitation by near ultraviolet light, Eu is directly excited as compared with ultraviolet light excitation in the vicinity of a wavelength of 254 nm used in vacuum ultraviolet light or a fluorescent lamp, and therefore a relatively high concentration of Eu is preferable. The lower limit is preferably 0.05 ≦ x, more preferably 0.1 ≦ x, and the upper limit is more preferably x ≦ 0.4.

本発明において、Eu2+の全Euに占める割合は高いほど好ましく、通常50%以上であるが、好ましくは80%以上、より好ましくは90%以上、最も好ましくは95%以上である。 In the present invention, the ratio of Eu 2+ to the total Eu is preferably as high as possible, and is usually 50% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more.

なお、Eu2+の全Euに占める割合を求める手法の一例を以下に示す。
Eu2+の全Euに占める割合は、例えばEu−L3吸収端のXANESスペクトルを測定することにより算出できる。XANESは、各元素の特性吸収端とその近傍に現れる共鳴吸収ピークの総称で、その元素の価数や構造を敏感に反映している。一般に、希土類のL3吸収端XANESスペクトルに現れる強い共鳴ピークエネルギーは、希土類元素の価数によって決まることが知られており、Euの場合、Eu2+のピークはEu3+のピークより約8eV低いエネルギーを持つので、2つを分離して定量することが可能である。
An example of a method for obtaining the ratio of Eu 2+ to the total Eu is shown below.
The ratio of Eu 2+ to the total Eu can be calculated, for example, by measuring the XANES spectrum at the Eu-L3 absorption edge. XANES is a general term for resonance absorption peaks appearing at and near the characteristic absorption edge of each element, and sensitively reflects the valence and structure of the element. In general, it is known that the strong resonance peak energy appearing in the L3 absorption edge XANES spectrum of rare earth is determined by the valence of the rare earth element. In the case of Eu, the Eu 2+ peak has an energy about 8 eV lower than the Eu 3+ peak. It is possible to separate and quantify the two.

Mnモル比yについては、Mn2+はアルカリ土類金属元素を置換するので(BaCaSrMgEuMn)SiOと表記することができ、式中、yは0<y≦0.5を満足する数である。Mn2+の濃度が小さすぎると発光強度が低く、高すぎても濃度消光のため発光強度が同じく低下する。yの好ましい範囲は0<y≦0.3、より好ましくは0.05<y≦0.2である。 The Mn molar ratio y, Mn 2+ can be so replacing alkaline earth metal elements and (Ba a Ca b Sr c Mg d Eu x Mn y) SiO 4 notation, where, y is 0 <y It is a number satisfying ≦ 0.5. If the concentration of Mn 2+ is too small, the emission intensity is low, and if it is too high, the emission intensity is also lowered due to concentration quenching. A preferred range of y is 0 <y ≦ 0.3, more preferably 0.05 <y ≦ 0.2.

[蛍光体の製造方法]
本発明の蛍光体は、前記に示されるような組成となるようにアルカリ土類金属源、Si源、及び、付活元素であるEu,Mnの元素源化合物を、下記の(A)又は(B)の混合法により混合した混合物(以下「原料混合物」と称す。)を加熱焼成することにより製造することができる。
(A)ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、又は、乳鉢と乳棒等を用いる粉砕と、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、又は、乳鉢と乳棒を用いる混合とを合わせた乾式混合法。
(B)水等を加えてスラリー状態又は溶液状態で、粉砕機、乳鉢と乳棒、又は蒸発皿と撹拌棒等により混合し、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる湿式混合法。
[Phosphor production method]
In the phosphor of the present invention, an alkaline earth metal source, an Si source, and an element source compound of Eu and Mn, which are activators, so as to have the composition as described above are prepared by the following (A) or ( It can be produced by heating and firing the mixture (hereinafter referred to as “raw material mixture”) mixed by the mixing method of B).
(A) Dry pulverizer such as hammer mill, roll mill, ball mill, jet mill, etc., pulverization using mortar and pestle, etc., mixer such as ribbon blender, V-type blender and Henschel mixer, or mortar and pestle Dry mixing method combined with mixing.
(B) A wet mixing method in which water or the like is added and mixed in a slurry state or a solution state by a pulverizer, a mortar and pestle, or an evaporating dish and a stirring rod, and then dried by spray drying, heat drying, natural drying or the like.

原料混合物の調製に用いるアルカリ土類金属源、珪素源、及び、付活元素のEu,Mn源化合物としては、それぞれの酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等が挙げられ、これらの中から、複合酸化物への反応性、及び、焼成時におけるNOx、SOx等の非発生性等を考慮して選択される。   The alkaline earth metal source, silicon source, and active element Eu and Mn source compounds used in the preparation of the raw material mixture include oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, and carboxyls. Acid salts, halides and the like can be mentioned, and these are selected in consideration of reactivity to the composite oxide and non-generation of NOx, SOx, etc. during firing.

アルカリ土類金属として挙げられている前記Ba、Ca、Sr、Mg源化合物について、具体的に例示すれば、Ba源化合物としては、BaO、Ba(OH)2・8H2O、BaCO3、Ba(NO32、BaSO4、Ba(OCO)2・2H2O、Ba(OCOCH32、BaCl2等が、また、Ca源化合物としては、CaO、Ca(OH)2、CaCO3、Ca(NO32・4H2O、CaSO4・2H2O、Ca(OCO)2・H2O、Ca(OCOCH32・H2O、CaCl2等が、また、Sr源化合物としては、SrO、Sr(OH)2・8H2O、SrCO3、Sr(NO32、SrSO4、Sr(OCO)2・H2O、Sr(OCOCH32・0.5H2O、SrCl2等がそれぞれ挙げられる。Mg源化合物としては、MgO、Mg(OH)2、MgCO3、Mg(OH)2・3MgCO3・3H2O、Mg(NO32・6H2O、MgSO4、Mg(OCO)2・2H2O、Mg(OCOCH32・4H2O、MgCl2等が挙げられる。 Specific examples of the Ba, Ca, Sr, and Mg source compounds mentioned as alkaline earth metals include BaO, Ba (OH) 2 .8H 2 O, BaCO 3 , Ba. (NO 3 ) 2 , BaSO 4 , Ba (OCO) 2 .2H 2 O, Ba (OCOCH 3 ) 2 , BaCl 2, etc., and Ca source compounds include CaO, Ca (OH) 2 , CaCO 3 , Ca (NO 3 ) 2 .4H 2 O, CaSO 4 .2H 2 O, Ca (OCO) 2 .H 2 O, Ca (OCOCH 3 ) 2 .H 2 O, CaCl 2 and the like are also used as Sr source compounds. Are SrO, Sr (OH) 2 .8H 2 O, SrCO 3 , Sr (NO 3 ) 2 , SrSO 4 , Sr (OCO) 2 .H 2 O, Sr (OCOCH 3 ) 2 .0.5H 2 O, Examples thereof include SrCl 2 . The Mg source compound, MgO, Mg (OH) 2 , MgCO 3, Mg (OH) 2 · 3MgCO 3 · 3H 2 O, Mg (NO 3) 2 · 6H 2 O, MgSO 4, Mg (OCO) 2 · 2H 2 O, Mg (OCOCH 3 ) 2 .4H 2 O, MgCl 2 and the like.

前記Si、Geについて、原料となる化合物を具体的に例示すれば、Si源化合物としては、SiO2、H4SiO4、Si(OCOCH34等が、また、Ge源化合物としは、GeO2、Ge(OH)4、Ge(OCOCH34、GeCl4等がそれぞれ挙げられる。 Specific examples of compounds that are raw materials for Si and Ge include SiO 2 , H 4 SiO 4 , Si (OCOCH 3 ) 4 and the like as the Si source compound, and GeO as the Ge source compound. 2 , Ge (OH) 4 , Ge (OCOCH 3 ) 4 , GeCl 4 and the like.

更に、付活元素として挙げられている前記Eu,Mnについて、その元素源化合物を具体的に例示すれば、Eu源化合物としては、Eu23、Eu2(SO43、Eu2(OCO)6、EuCl2、EuCl3、Eu(NO33・6H2O等が、Mn源化合物としては、Mn(NO32・6H2O、MnO2、Mn23、Mn34、MnO、Mn(OH)2、MnCO3、Mn(OCOCH32・2H2O、Mn(OCOCH33・nH2O、MnCl2・4H2O等が挙げられる。 Further, with respect to Eu and Mn mentioned as the activator elements, specific examples of the element source compound include Eu 2 O 3 , Eu 2 (SO 4 ) 3 , Eu 2 ( OCO) 6 , EuCl 2 , EuCl 3 , Eu (NO 3 ) 3 .6H 2 O, etc., as the Mn source compound, Mn (NO 3 ) 2 .6H 2 O, MnO 2 , Mn 2 O 3 , Mn 3 Examples include O 4 , MnO, Mn (OH) 2 , MnCO 3 , Mn (OCOCH 3 ) 2 .2H 2 O, Mn (OCOCH 3 ) 3 .nH 2 O, MnCl 2 .4H 2 O, and the like.

これらの各元素源化合物は、各々、1種を単独で用いても良く、2種以上を混合して用いても良い。   Each of these element source compounds may be used alone or in combination of two or more.

なお、原料混合物には、必要に応じて、焼成助剤(フラックスとも呼ばれる)を添加混合することができ、焼成助剤の添加により、粒子成長の促進や反応温度の低下などが期待でき、好ましい蛍光体を合成するために有効である。焼成助剤としては、例えば、NHClやNHF・HFのようなハロゲン化アンモニウム、NaCO,LiCO等のアルカリ金属炭酸塩、LiCl,NaCl,KCl等のアルカリハロゲン化物、CaCl,CaF,BaFのようなアルカリ土類金属のハロゲン化物、B,HBO,NaBのようなホウ酸塩化合物、LiPO,NHPOのようなリン酸塩化合物、等の1種又は2種以上が使用できる。 In addition, a firing aid (also referred to as a flux) can be added to and mixed with the raw material mixture as necessary, and the addition of the firing aid can be expected to promote particle growth and lower the reaction temperature. It is effective for synthesizing phosphors. The sintering aids, for example, NH 4 ammonium halide, such as Cl or NH 4 F · HF, NaCO 3 , alkali metal carbonate such as LiCO 3, LiCl, NaCl, alkali halides KCl, etc., CaCl 2, Alkaline earth metal halides such as CaF 2 and BaF 2 , borate compounds such as B 2 O 3 , H 3 BO 3 , and NaB 4 O 7 , Li 3 PO 4 , NH 4 H 2 PO 4 1 type (s) or 2 or more types, such as such a phosphate compound, can be used.

原料混合物の焼成雰囲気としては、付活元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明における赤色ないし橙色発光をもたらす発光中心元素はMn2+イオンである。共付活剤であるEuはEu2+である必要があるが、EuなどEuイオンが3+である原料が通常用いられる。従って、Eu2+の赤色ないし橙色発光をもたらす蛍光体を得るためには、焼成中に3価のEuを2価のEuに還元する必要がある。このために、従来は、一酸化炭素、窒素/水素、水素などの何らかの還元雰囲気下で焼成されるのが一般的であった。 As a firing atmosphere of the raw material mixture, an atmosphere necessary for obtaining an ion state (valence) in which the activating element contributes to light emission is selected. In the present invention, the emission center element that causes red or orange emission is Mn 2+ ions. Eu that is a coactivator needs to be Eu 2+ , but a raw material such as Eu 2 O 3 in which Eu ions are 3+ is usually used. Therefore, in order to obtain a phosphor that emits red or orange light of Eu 2+ , it is necessary to reduce trivalent Eu to divalent Eu during firing. For this reason, conventionally, firing is generally performed in some kind of reducing atmosphere such as carbon monoxide, nitrogen / hydrogen, or hydrogen.

これに対して、本発明者等は、原料混合物を焼成して、3価のEuイオンを2価イオンに還元すると同時に母体結晶中に導入するに際し、炭素(固体のカーボン)を共存させるという特殊な還元条件のもとに焼成を行うと、輝度の高い発光をもたらす赤色ないし橙色発光蛍光体を実現し得ることを見出した。   On the other hand, the present inventors specialize that carbon (solid carbon) coexists when the raw material mixture is calcined and trivalent Eu ions are reduced to divalent ions and simultaneously introduced into the host crystal. It has been found that red or orange light-emitting phosphors capable of emitting light with high luminance can be realized by firing under various reducing conditions.

ここで固体のカーボンとしては種々の形態の材料が使用できる。例えば、カーボンブラック、活性炭、ピッチ、コークス、黒鉛等の1種又は2種以上を使用することができる。   Here, various types of materials can be used as the solid carbon. For example, 1 type (s) or 2 or more types, such as carbon black, activated carbon, pitch, coke, graphite, can be used.

ここでカーボン共存下の焼成とは、同一焼成容器内にカーボンが存在すればよいのであって、原料混合物とカーボンを混合して焼成する必要はない。一般的に蛍光体製品中にカーボンが混入すると黒色であるカーボンが光を吸収するため効率が落ちる。共存の一例を挙げれば、焼成容器として黒鉛の坩堝を使用する方法が挙げられる。また、黒鉛以外の坩堝、例えばアルミナ坩堝を使用する場合には、黒鉛のビーズ、粒状物、ブロックなどを次のようにして共存させる方法が挙げられる。すなわち、同一の坩堝内において、蓋のない(蓋があっても雰囲気が連通するように、隙間のある蓋)別容器にカーボンを入れたものを用い、この容器を、充填された原料の上部に設置する、原料粉体中に埋め込む、又は反対に別の蓋なし(蓋があっても雰囲気が連通するように、隙間のある蓋)容器に原料混合物を充填し、周囲にカーボンを配置するなどの方法が挙げられる。いずれの場合も、共存するカーボンと原料混合物とが同一雰囲気中に存在し、また、カーボンが得られる蛍光体中に混入しないように工夫することが重要である。   Here, the firing in the presence of carbon is sufficient if carbon is present in the same firing container, and it is not necessary to mix the raw material mixture and carbon for firing. In general, when carbon is mixed in a phosphor product, the black carbon absorbs light and the efficiency is lowered. As an example of coexistence, there is a method of using a graphite crucible as a firing container. In addition, when using a crucible other than graphite, for example, an alumina crucible, a method of coexisting graphite beads, granules, blocks and the like as follows can be mentioned. That is, in the same crucible, use a container with carbon in a separate container without a lid (a lid with a gap so that the atmosphere communicates even if there is a lid). Place in the raw material powder, or on the other hand, without another lid (a lid with a gap so that the atmosphere communicates even if there is a lid), fill the container with the raw material mixture, and place carbon around it And the like. In any case, it is important to devise so that the coexisting carbon and the raw material mixture are present in the same atmosphere and that carbon is not mixed into the phosphor from which the carbon is obtained.

なお、焼成は、原料混合物と反応性の低い材料を使用した坩堝やトレイ等の耐熱容器中で、通常750〜1400℃、好ましくは900〜1300℃の温度で、非酸化性ガス雰囲気下、例えば還元性を有するガス及び/又は不活性ガス雰囲気下、具体的には一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単独或いは混合雰囲気下で、上述のようにカーボンと共存する条件で10分〜24時間、加熱することによりなされる。なお、加熱処理後、必要に応じて、洗浄、乾燥、分級処理等がなされる。
このような加熱処理後は、必要に応じて、洗浄、乾燥、分級処理等がなされる。
The firing is performed in a heat-resistant container such as a crucible or a tray using a material having low reactivity with the raw material mixture, usually at a temperature of 750 to 1400 ° C., preferably 900 to 1300 ° C., in a non-oxidizing gas atmosphere, for example, Conditions for coexistence with carbon as described above in a reducing gas and / or inert gas atmosphere, specifically, in a single or mixed atmosphere of gases such as carbon monoxide, carbon dioxide, nitrogen, hydrogen, and argon For 10 minutes to 24 hours. In addition, after heat processing, washing | cleaning, drying, a classification process, etc. are made as needed.
After such heat treatment, washing, drying, classification, etc. are performed as necessary.

なお、得られた蛍光体を用いて、後述の方法で発光装置を製造する際には、必要に応じて公知の表面処理、例えば燐酸カルシウム処理を行ってから樹脂中に分散することが好ましい。   In addition, when manufacturing a light-emitting device by the below-mentioned method using the obtained fluorescent substance, it is preferable to disperse | distribute in resin after performing well-known surface treatment, for example, a calcium phosphate process.

[発光装置]
本発明の発光装置は、励起光源と、該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有する発光装置において、波長変換材料としての蛍光体として本発明の蛍光体を用いたものであり、下記のような励起光源と組み合わせて、白色、又は、任意の色調の発光装置を構成することができる。
[Light emitting device]
The light emitting device of the present invention uses the phosphor of the present invention as a phosphor as a wavelength conversion material in a light emitting device having an excitation light source and a phosphor that converts the wavelength of at least part of light from the excitation light source. In combination with an excitation light source as described below, a light emitting device of white or any color tone can be configured.

本発明の発光装置において、前記蛍光体に光を照射する励起光源は、波長470nmより短波の光を発生するものである。励起光源の具体例としては、発光ダイオード(LED)又はレーザーダイオード(LD)等を挙げることができる。消費電力が少ない点でより好ましくはレーザーダイオードである。その中で、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系はSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlGaN発光層、GaN発光層、又はInGaN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInGaN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InGaN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。GaN系LEDはこれら発光層、p層、n層、電極、及び基板を基本構成要素としたものであり、発光層をn型とp型のAlGaN層、GaN層、又はInGaN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。 In the light emitting device of the present invention, the excitation light source for irradiating the phosphor with light generates light having a wavelength shorter than 470 nm. Specific examples of the excitation light source include a light emitting diode (LED) or a laser diode (LD). A laser diode is more preferable in terms of low power consumption. Among them, GaN LEDs and LDs using GaN compound semiconductors are preferable. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, the GaN system usually has a light emission intensity 100 times or more that of the SiC system. GaN-based LEDs and LDs preferably have an Al X Ga Y N light emitting layer, a GaN light emitting layer, or an In X Ga Y N light emitting layer. Among the GaN-based LEDs, those having an In X Ga Y N light-emitting layer are particularly preferable because the emission intensity is very strong, and in the GaN-based LD, the multiple quantum of the In X Ga Y N layer and the GaN layer is preferable. A well structure is particularly preferable because the emission intensity is very strong. In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics. A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic components, and the light-emitting layer is an n-type and p-type Al X Ga Y N layer, GaN layer, or In X Those having a heterostructure sandwiched between Ga Y N layers and the like have high luminous efficiency, and those having a heterostructure in a quantum well structure have higher luminous efficiency and are more preferable.

本発明の発光装置においては、波長変換材料として本発明の蛍光体、特に赤色ないし橙色発光蛍光体を単独で使用する方法の他に、他の発光特性を持つ蛍光体と併用することによって、所望の色を発する発光装置を構成することができる。この一例として、330〜420nmの紫外LED発光素子とこの波長で励起され450nm以上500nm以下の波長に発光ピークを持つ青色系蛍光体と、500nm以上550nm以下の波長に発光ピークを持つ緑色系蛍光体と本発明の蛍光体との組み合わせがある。   In the light emitting device of the present invention, in addition to the method of using the phosphor of the present invention as a wavelength conversion material, particularly a red or orange light emitting phosphor alone, it can be used in combination with a phosphor having other emission characteristics. A light-emitting device that emits the color can be configured. As an example of this, an ultraviolet LED light emitting device having a wavelength of 330 to 420 nm, a blue phosphor having an emission peak at a wavelength of 450 to 500 nm and a green phosphor having an emission peak at a wavelength of 500 to 550 nm. And the phosphor of the present invention.

ここで、450nm〜500nmの波長範囲に蛍光強度のピーク値を有する青色系蛍光体としては、特に制限されないが、酸化物、窒化物、酸窒化物が熱安定性が良いので好ましい。具体的な青色系蛍光体としては、次の(1)〜(4)ようなものを挙げることができる。
(1) M(PO(X):Eu2+
(式中、Mは金属Ba及び/又はCa或いは、これらとSrとの組み合わされたものを表し、XはハロゲンF及び/又はClを表す)
(2) ZnS:Ag
(3) M MgSi:Eu2+
(式中、Mは金属Ba、Ca、Srの1種又は2種以上を表す)
(4) M**MgAl1017:Eu2+
(式中、M**は金属Eu及び/又はSr、又はこれらとBaとの組み合わせを表す)
Here, the blue phosphor having a peak value of fluorescence intensity in the wavelength range of 450 nm to 500 nm is not particularly limited, but oxides, nitrides, and oxynitrides are preferable because they have good thermal stability. Specific examples of the blue phosphor include the following (1) to (4).
(1) M 5 (PO 4 ) 3 (X): Eu 2+
(In the formula, M represents metal Ba and / or Ca or a combination of these with Sr, and X represents halogen F and / or Cl)
(2) ZnS: Ag
(3) M * 3 MgSi 2 O 8 : Eu 2+
(In the formula, M * represents one or more of the metals Ba, Ca, and Sr)
(4) M ** MgAl 10 O 17 : Eu 2+
(Wherein M ** represents a metal Eu and / or Sr, or a combination thereof with Ba)

また、500nm〜550nmの波長範囲に蛍光強度のピーク値を有する緑色系蛍光体としては、特に制限されないが、酸化物、窒化物、酸窒化物が熱安定性が良いので好ましい。具体的な緑色系蛍光体としては、例えば、MSi:Eu、M−Si−Al−O−N:Ce、M−Si−Al−O−N:Eu(ただしMは1種又は2種以上のアルカリ土類金属を表す。)、好ましくは、SrSi:Eu、Ca−Si−Al−O−N:Ce、Ca−Si−Al−O−N:Eu等が挙げられる。また、他の例としては下記一般式(1)又は(2)で表される母体結晶内に発光中心イオンとして少なくともCeを含有する蛍光体が、輝度が高く、緑色域での蛍光強度が高く、温度消光が小さいので好ましい。 The green phosphor having a peak value of fluorescence intensity in the wavelength range of 500 nm to 550 nm is not particularly limited, but oxides, nitrides, and oxynitrides are preferable because they have good thermal stability. Specific green phosphors include, for example, MSi 2 N 2 O 2 : Eu, M-Si—Al—O—N: Ce, M-Si—Al—O—N: Eu (where M is one kind) Or two or more alkaline earth metals), preferably, SrSi 2 N 2 O 2 : Eu, Ca—Si—Al—O—N: Ce, Ca—Si—Al—O—N: Eu, and the like. Is mentioned. As another example, a phosphor containing at least Ce as the emission center ion in the host crystal represented by the following general formula (1) or (2) has high luminance and high fluorescence intensity in the green region. It is preferable because the temperature quenching is small.

(1)
(ここで、Mは2価の金属元素、Mは3価の金属元素、Mは4価の金属元素をそれぞれ示し、a、b、c、dはそれぞれ下記の範囲の数である。
2.7≦a≦3.3
1.8≦b≦2.2
2.7≦c≦3.3
11.0≦d≦13.0)
M 1 a M 2 b M 3 c O d (1)
(Here, M 1 is a divalent metal element, M 2 is a trivalent metal element, M 3 is a tetravalent metal element, and a, b, c, and d are numbers in the following ranges, respectively. .
2.7 ≦ a ≦ 3.3
1.8 ≦ b ≦ 2.2
2.7 ≦ c ≦ 3.3
11.0 ≦ d ≦ 13.0)

(2)
(ここで、Mは2価の金属元素、Mは3価の金属元素をそれぞれ示し、e、f、gはそれぞれ下記の範囲の数である。
0.9≦e≦1.1
1.8≦f≦2.2
3.6≦g≦4.4)
M 4 e M 5 f O g (2)
(Here, M 4 represents a divalent metal element, M 5 represents a trivalent metal element, and e, f, and g are numbers in the following ranges, respectively.
0.9 ≦ e ≦ 1.1
1.8 ≦ f ≦ 2.2
3.6 ≦ g ≦ 4.4)

波長変換材料として、本発明の赤色ないし橙色発光蛍光体と、上述のような青色系蛍光体及び緑色系蛍光体を組み合わせて用いることにより、励起光源としてのLEDが発する紫外線が蛍光体に照射されると、赤、緑、青の3色の光が発せられ、これらの混合により白色の発光装置を実現することができる。
なお、青色成分として、青色発光LEDの発光をそのまま使用することもできる。
By using the red or orange light emitting phosphor of the present invention in combination with the blue phosphor and the green phosphor as described above, the phosphor is irradiated with ultraviolet rays emitted from the LED as the excitation light source. Then, light of three colors of red, green, and blue is emitted, and a white light emitting device can be realized by mixing them.
In addition, light emission of blue light emitting LED can also be used as it is as a blue component.

以下に、このような励起光源及び蛍光体を備える本発明の発光装置について、図面を参照して詳細に説明する。   Hereinafter, a light-emitting device of the present invention including such an excitation light source and a phosphor will be described in detail with reference to the drawings.

図1は、励起光源(470nmより短波長の光を発生する半導体発光素子等)と蛍光体とを有する本発明の発光装置の一実施例を示す模式的断面図であり、図2は、図1に示す発光装置を組み込んだ面発光照明装置の一実施例を示す模式的断面図である。図1及び図2において、1は発光装置、2はマウントリード、3はインナーリード、4は励起光源、5は蛍光体含有樹脂部、6は導電性ワイヤー、7はモールド部材、8は面発光照明装置、9は拡散板、10は保持ケースである。   FIG. 1 is a schematic cross-sectional view showing an embodiment of a light-emitting device of the present invention having an excitation light source (such as a semiconductor light-emitting element that generates light having a wavelength shorter than 470 nm) and a phosphor. It is typical sectional drawing which shows one Example of the surface emitting illumination device incorporating the light-emitting device shown in FIG. 1 and 2, 1 is a light emitting device, 2 is a mount lead, 3 is an inner lead, 4 is an excitation light source, 5 is a phosphor-containing resin part, 6 is a conductive wire, 7 is a molding member, and 8 is a surface emitting light. An illuminating device, 9 is a diffusion plate, and 10 is a holding case.

この発光装置1は、図1に示されるように、一般的な砲弾型の形態をなし、マウントリード2の上部カップ内には、GaN系発光ダイオード等からなる励起光源(350〜470nm励起光源)4が、その上に、蛍光体をシリコン樹脂、エポキシ樹脂やアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより形成された蛍光体含有樹脂部5で被覆されることにより固定されている。一方、励起光源4とマウントリード2、及び励起光源4とインナーリード3は、それぞれ導電性ワイヤー6で導通されており、これら全体がエポキシ樹脂等によるモールド部材7で被覆、保護されてなる。   As shown in FIG. 1, the light emitting device 1 has a general shell shape, and an excitation light source (350 to 470 nm excitation light source) made of a GaN-based light emitting diode or the like is placed in the upper cup of the mount lead 2. 4 is fixed by being coated with a phosphor-containing resin portion 5 formed by mixing and dispersing the phosphor in a binder such as silicon resin, epoxy resin or acrylic resin, and pouring it into the cup. ing. On the other hand, the excitation light source 4 and the mount lead 2, and the excitation light source 4 and the inner lead 3 are respectively connected by a conductive wire 6, and these are entirely covered and protected by a mold member 7 made of epoxy resin or the like.

また、この発光装置1を組み込んだ面発光照明装置8は、図2に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース10の底面に、多数の発光装置1を、その外側に発光装置1の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース10の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板9を発光の均一化のために固定してなる。   In addition, as shown in FIG. 2, the surface-emitting illumination device 8 incorporating the light-emitting device 1 has a large amount of light emission on the bottom surface of a rectangular holding case 10 whose inner surface is light-opaque such as a white smooth surface. The device 1 is arranged with a power source and a circuit (not shown) for driving the light emitting device 1 provided outside thereof, and a milky white acrylic plate or the like is provided at a position corresponding to the lid portion of the holding case 10. The diffusion plate 9 is fixed for uniform light emission.

そして、面発光照明装置8を駆動して、発光装置1の励起光源4に電圧を印加することにより波長470nmより短波の光を発光させ、その発光の一部を、蛍光体含有樹脂部5における前記蛍光体が吸収して、より長波長(波長490〜700nm)の可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板9を透過して、図面上方に出射され、保持ケース10の拡散板9面内において均一な明るさの照明光が得られることとなる。   Then, by driving the surface emitting illumination device 8 and applying a voltage to the excitation light source 4 of the light emitting device 1, light having a wavelength shorter than 470 nm is emitted, and part of the emitted light is emitted from the phosphor-containing resin portion 5. The phosphor absorbs and emits visible light having a longer wavelength (wavelength of 490 to 700 nm). On the other hand, light emission with high color rendering properties is obtained by mixing with blue light or the like that is not absorbed by the phosphor. Light passes through the diffusion plate 9 and is emitted upward in the drawing, so that illumination light with uniform brightness can be obtained within the surface of the diffusion plate 9 of the holding case 10.

なお、上記発光装置1における蛍光体含有樹脂部5は、次のような効果を有する。即ち、励起光源からの光や蛍光体からの光は通常四方八方に向いているが、蛍光体粉を樹脂中に分散させると、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを変えることができるため、光の混合が行われ、配光が均一化される傾向にある。従って、効率の良い向きに光をある程度誘導できるので、前記蛍光体の粉を樹脂中へ分散して使用するのが好ましい。また、蛍光体を樹脂中に分散させると、励起光源からの光の蛍光体への全照射面積が大きくなるので、蛍光体からの発光強度を大きくすることができるという利点も有する。   The phosphor-containing resin portion 5 in the light emitting device 1 has the following effects. That is, the light from the excitation light source and the light from the phosphor are usually directed in all directions, but when the phosphor powder is dispersed in the resin, a part of the light is reflected when it goes out of the resin. Since the direction of the light can be changed to some extent, the light is mixed and the light distribution tends to be made uniform. Therefore, since the light can be guided to an efficient direction to some extent, it is preferable to use the phosphor powder dispersed in a resin. Further, when the phosphor is dispersed in the resin, since the total irradiation area of the light from the excitation light source to the phosphor is increased, there is an advantage that the emission intensity from the phosphor can be increased.

この蛍光体含有樹脂部に使用できる樹脂としては、シリコーン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものを1種を単独で又は2種以上を混合して用いることができるが、蛍光体粉の分散性が良い点で好ましくはシリコーン樹脂、エポキシ樹脂である。蛍光体の粉を樹脂中に分散させる場合、当該蛍光体粉と樹脂との合計に対するその蛍光体粉の重量割合は、通常0.1〜20重量%、好ましくは0.3〜15重量%、さらに好ましくは0.5〜10重量%である。この範囲よりも蛍光体が多すぎると蛍光体粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。この樹脂中には、色斑(ムラ)を防止するために、増量剤又は拡散剤を添加してもよい。   As a resin that can be used for the phosphor-containing resin part, various kinds such as silicone resin, epoxy resin, polyvinyl resin, polyethylene resin, polypropylene resin, polyester resin, etc. are used alone or in combination of two or more. In view of good dispersibility of the phosphor powder, silicone resins and epoxy resins are preferable. When the phosphor powder is dispersed in the resin, the weight ratio of the phosphor powder to the total of the phosphor powder and the resin is usually 0.1 to 20% by weight, preferably 0.3 to 15% by weight, More preferably, it is 0.5 to 10% by weight. If there is too much phosphor within this range, the luminous efficiency may decrease due to aggregation of the phosphor powder, and if it is too small, the luminous efficiency may decrease due to light absorption or scattering by the resin. In this resin, an extender or a diffusing agent may be added in order to prevent color spots (unevenness).

なお、前述の如く、蛍光体は必要に応じて公知の表面処理を行ってから樹脂中に分散することが好ましい。   As described above, the phosphor is preferably dispersed in the resin after performing a known surface treatment if necessary.

本発明においては、面発光型の発光体、特に面発光型GaN系レーザーダイオードを励起光源として使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、波長変換材料としての蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、波長変換材料である蛍光体からより強い発光を得ることができる。   In the present invention, it is particularly preferable to use a surface-emitting type illuminant, particularly a surface-emitting type GaN-based laser diode, as an excitation light source, since it increases the luminous efficiency of the entire light-emitting device. A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is well By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. Compared to the type that emits light from the edge of the light emitting layer by using a surface emitting type, as a result of taking a large emission cross-sectional area per unit light emission amount, when irradiating the phosphor as a wavelength conversion material, Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor as the wavelength conversion material.

このように励起光源として面発光型のものを使用する場合、波長変換材料としての蛍光体を膜状に形成するのが好ましい。面発光型の励起光源からの光は断面積が十分大きいので、蛍光体をその断面の方向に膜状に形成すると、励起光源からの蛍光体単位量あたりの照射断面積が大きくなるので、蛍光体からの発光の強度をより大きくすることができる。   Thus, when using a surface emitting type as an excitation light source, it is preferable to form the phosphor as the wavelength conversion material in a film shape. Since the cross-sectional area of the light from the surface-emitting type excitation light source is sufficiently large, if the phosphor is formed in a film shape in the direction of the cross-section, the irradiation cross-sectional area per unit amount of the phosphor from the excitation light source increases. The intensity of light emitted from the body can be further increased.

また、励起光源として面発光型のものを使用し、蛍光体を膜状に形成したものを用いる場合、励起光源の発光面に、直接膜状の蛍光体を接触させた形状とするのが好ましい。ここでいう接触とは、励起光源と蛍光体とが空気や気体を介さないで密着している状態をつくることを言う。その結果、励起光源からの光が蛍光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。   In addition, when a surface emitting type light source is used as the excitation light source and a phosphor is formed in a film shape, it is preferable to have a shape in which the film-shaped phosphor is directly in contact with the light emission surface of the excitation light source. . Contact here means creating a state in which the excitation light source and the phosphor are in close contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the excitation light source is reflected by the phosphor film surface and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

図3は、このように、励起光源として面発光型のものを用い、蛍光体を膜状に形成したものを適用した発光装置の一例を示す模式的斜視図である。図3中、11は、前記蛍光体を有する膜状の発光体、12は励起光源としての面発光型GaN系LD、13は基板を表す。相互に接触した状態をつくるために、励起光源12のLDと蛍光体含有膜11とそれぞれ別個に作成し、それらの面同士を接着剤やその他の手段によって接触させても良いし、LD12の発光面上に蛍光体11を製膜(成型)させても良い。これらの結果、LD12と蛍光体11とを接触した状態とすることができる。   FIG. 3 is a schematic perspective view showing an example of a light emitting device to which a surface emitting type light source is used as an excitation light source and a phosphor is formed in a film shape. In FIG. 3, 11 is a film-like light emitter having the phosphor, 12 is a surface-emitting GaN-based LD as an excitation light source, and 13 is a substrate. In order to create a state in which they are in contact with each other, the LD of the excitation light source 12 and the phosphor-containing film 11 may be formed separately, and their surfaces may be brought into contact with each other by an adhesive or other means. The phosphor 11 may be formed (molded) on the surface. As a result, the LD 12 and the phosphor 11 can be brought into contact with each other.

本発明の発光装置は、励起光源と、波長変換材料としての前述の本発明の蛍光体を備え、波長変換材料としての本発明の蛍光体が、励起光源の発する470nmより短波長の光を吸収して赤色ないし橙色を表す590nmより長波の波長領域に発光し、使用環境によらず演色性が良く、かつ、高強度の可視光を発生させることのできる発光装置である。   The light-emitting device of the present invention includes an excitation light source and the phosphor of the present invention as the wavelength conversion material, and the phosphor of the present invention as the wavelength conversion material absorbs light having a wavelength shorter than 470 nm emitted from the excitation light source. Thus, the light-emitting device emits light in a wavelength region longer than 590 nm representing red or orange, has good color rendering properties and can generate high-intensity visible light regardless of the use environment.

このような本発明の発光装置は、バックライト光源、信号機などの発光源、また、カラー液晶ディスプレイ等の画像表示装置や面発光等の照明装置等の光源に適している。画像表示装置としては、例えば、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)等が挙げられる。また、本発明の発光装置は、画像表示装置用のバックライトにも使用することができる。   Such a light emitting device of the present invention is suitable for a light source such as a backlight source, a light source such as a traffic light, an image display device such as a color liquid crystal display, and a lighting device such as a surface emitting device. Examples of the image display device include a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), a cathode ray tube (CRT), and the like. Further, the light emitting device of the present invention can also be used for a backlight for an image display device.

以下に、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

なお、以下において、製造された蛍光体のEu−L3吸収端のX線吸収端近傍微細構造(X−ray absorption near−edge fine structure:XANES)スペクトルは、財団法人高輝度光科学研究センター 大型放射光施設(SPring−8)のビームラインBL19B2第一ハッチに設置されているXAFS測定装置において、Si(111)2結晶分光器と高次光除去ミラーを用いて測定した。X線のエネルギー較正は、金属銅箔のCu−K吸収端XANESスペクトルにおいて8980.3eVに現れるプリエッジピークにおける分光器の角度を12.7185度として行い、さらにサンプル測定前後に酸化ユーロピウムのEu−L3吸収端XANES測定を実施して経時に伴う分光器の微小なずれを補正した。   In the following, the X-ray absorption near-edge fine structure (XANES) spectrum of the Eu-L3 absorption edge of the manufactured phosphor is a high-intensity optical science research center large emission In the XAFS measurement apparatus installed in the beam hatch BL19B2 first hatch of the light facility (SPring-8), measurement was performed using a Si (111) 2 crystal spectrometer and a high-order light removal mirror. The X-ray energy calibration was performed by setting the angle of the spectroscope at the pre-edge peak appearing at 8980.3 eV in the Cu-K absorption edge XANES spectrum of the metal copper foil to 12.7185 degrees, and further, before and after the sample measurement, the europium oxide Eu- An L3 absorption edge XANES measurement was performed to correct a minute shift of the spectroscope with time.

発光スペクトルの測定は、励起光源としてGaN系発光ダイオード(主波長400nm)を用いて行った。測定に際しては、励起光源の影響を取り除くため、波長420nm以下の光をカットした。実施例及び比較例で得られた蛍光体のピーク発光波長及びピーク発光強度を後述の表1に示す。ここで、ピーク発光強度は、実施例3で得られた蛍光体の強度を100%(標準値)とし、標準値に対する相対強度で示した。   The emission spectrum was measured using a GaN-based light emitting diode (main wavelength: 400 nm) as an excitation light source. In the measurement, in order to remove the influence of the excitation light source, light having a wavelength of 420 nm or less was cut. The peak emission wavelength and peak emission intensity of the phosphors obtained in the examples and comparative examples are shown in Table 1 described later. Here, the peak emission intensity was expressed as a relative intensity with respect to the standard value, with the intensity of the phosphor obtained in Example 3 being 100% (standard value).

XANESスペクトルの測定は、Eu−L3吸収端(6970eV付近)近傍で約0.4eV(分光器の角度にして0.00094度)間隔、各点2秒の積算時間で、透過法により行った。すなわち、窒素ガスを充填した電極長17cm及び31cmの電離箱をそれぞれ入射X線及びサンプルを透過したX線の検出器として用い、Lambert−Beerの式に従ってX線吸収係数をμt=ln(I/I)(ここで、Iは入射X線強度、Iは透過X線強度を示す。)として定義した。
測定のための試料には、焼成後に篩を通した蛍光体粉末を70mg程度の窒化ホウ素とメノウ乳鉢で均一になるまで混合し、150kg重/cmの圧力下で直径10mmの錠剤に成形したものを用いた。
The measurement of the XANES spectrum was performed by the transmission method at an interval of about 0.4 eV (0.00094 degrees as a spectroscope angle) in the vicinity of the Eu-L3 absorption edge (near 6970 eV) and an integration time of 2 seconds at each point. In other words, ionization chambers with electrode lengths of 17 cm and 31 cm filled with nitrogen gas are used as detectors for incident X-rays and X-rays transmitted through the sample, respectively, and the X-ray absorption coefficient is expressed as μt = ln (I 0) according to the Lambert-Beer equation. / I) where I 0 is the incident X-ray intensity and I is the transmitted X-ray intensity.
As a sample for measurement, phosphor powder that passed through a sieve after firing was mixed with about 70 mg of boron nitride until uniform in an agate mortar, and formed into a tablet with a diameter of 10 mm under a pressure of 150 kg weight / cm 2 . A thing was used.

このようにして得られたEu−L3吸収端XANESスペクトルを、バックグラウンドの影響を取り除くため一階微分すると、Eu2+及びEu3+に由来するスペクトルパターンがそれぞれ6965−6976eV付近、6976−6990eV付近に出現した。そこで、それぞれのエネルギー範囲内における微分スペクトルの極大値と極小値の差を求め、これをEu2+、Eu3+標準試料のEu−L3XANES微分スペクトルの極大値と極小値の差で割って規格化したものをEu2+、Euピークの強度p,qとして定義し、Eu全体に占めるEu2+の割合rをr=p/(p+q)として定義した。 When the Eu-L3 absorption edge XANES spectrum obtained in this way is subjected to first-order differentiation to remove the influence of the background, the spectrum patterns derived from Eu 2+ and Eu 3+ are in the vicinity of 6965-6976 eV and 6976-6990 eV, respectively. Appeared. Therefore, the difference between the maximum value and the minimum value of the differential spectrum within each energy range was obtained, and this was normalized by dividing by the difference between the maximum value and the minimum value of the Eu 2+ and Eu 3+ standard samples of the Eu-L3XANES differential spectrum. Those were defined as Eu 2+ and Eu 3 peak intensities p and q, and the ratio r of Eu 2+ in the total Eu was defined as r = p / (p + q).

実施例1
原料化合物としてBaCO,CaCO,Eu,MnCO、SiOを、Ba,Ca,Eu,Mn,Siのモル比が1.444:0.481:0.025:0.05:1となるように計量し、フラックスとしてNHClを加えてボールミルで1時間混合した。小型の蓋付きアルミナ坩堝に原料を秤取り、軽く蓋をし、大型アルミナ坩堝の底部に設置した。大型坩堝と小型坩堝の間隙に活性炭を充填した。この状態で4%の水素を含む窒素ガス流下1200℃で4時間加熱することにより蛍光体Ba1.444Ca0.481Eu0.025Mn0.05SiOを製造した。
得られた蛍光体について求めたEu2+/Eu比とピーク発光波長及びピーク発光強度を表1に示す。また、XANESスペクトルを図4に示す。
Example 1
BaCO 3 , CaCO 3 , Eu 2 O 3 , MnCO 3 and SiO 2 are used as raw material compounds, and the molar ratio of Ba, Ca, Eu, Mn and Si is 1.444: 0.481: 0.025: 0.05: Weighed to 1 and added NH 4 Cl as flux and mixed for 1 hour in a ball mill. The raw material was weighed in a small alumina crucible with a lid, lightly covered, and placed on the bottom of a large alumina crucible. Activated carbon was filled in the gap between the large crucible and the small crucible. Was prepared phosphor Ba 1.444 Ca 0.481 Eu 0.025 Mn 0.05 SiO 4 by heating for 4 hours under a stream of nitrogen gas 1200 ° C. containing 4% hydrogen in this state.
Table 1 shows the Eu 2+ / Eu ratio, peak emission wavelength, and peak emission intensity obtained for the obtained phosphor. The XANES spectrum is shown in FIG.

実施例2
原料化合物としてBaCO,CaCO,Eu,MnCO、SiOを、Ba,Ca,Eu,Mn,Siのモル比が1.35:0.45:0.15:0.05:1となるように計量した以外は実施例1と同様に処理して蛍光体Ba1.35Ca0.45Eu0.15Mn0.05SiOを製造した。
得られた蛍光体について求めたEu2+/Eu比とピーク発光波長及びピーク発光強度を表1に示す。また、XANESスペクトルを図4に示す。
Example 2
BaCO 3 , CaCO 3 , Eu 2 O 3 , MnCO 3 , and SiO 2 are used as raw material compounds, and the molar ratio of Ba, Ca, Eu, Mn, and Si is 1.35: 0.45: 0.15: 0.05: A phosphor Ba 1.35 Ca 0.45 Eu 0.15 Mn 0.05 SiO 4 was produced in the same manner as in Example 1 except that the weight was adjusted to 1.
Table 1 shows the Eu 2+ / Eu ratio, peak emission wavelength, and peak emission intensity obtained for the obtained phosphor. The XANES spectrum is shown in FIG.

実施例3
原料化合物としてBaCO,CaCO,Eu,MnCO、SiOを、Ba,Ca,Eu,Mn,Siのモル比が1.237:0.413:0.3:0.05:1となるように計量した以外は実施例1と同様に処理して蛍光体Ba1.237Ca0.413Eu0.3Mn0.05SiOを製造した。
得られた蛍光体について求めたEu2+/Eu比とピーク発光波長及びピーク発光強度を表1に示す。また、XANESスペクトルを図4に示す。
Example 3
BaCO 3 , CaCO 3 , Eu 2 O 3 , MnCO 3 , and SiO 2 are used as raw material compounds, and the molar ratio of Ba, Ca, Eu, Mn, and Si is 1.237: 0.413: 0.3: 0.05: A phosphor Ba 1.237 Ca 0.413 Eu 0.3 Mn 0.05 SiO 4 was produced in the same manner as in Example 1 except that the weight was adjusted to 1.
Table 1 shows the Eu 2+ / Eu ratio, peak emission wavelength, and peak emission intensity obtained for the obtained phosphor. The XANES spectrum is shown in FIG.

比較例1
原料化合物としてBaCO,CaCO,Eu,MnCO、SiOを、Ba,Ca,Eu,Mn,Siのモル比が1.012:0.338:0.6:0.05:1となるように計量した以外は実施例1と同様に処理して蛍光体Ba1.012Ca0.338Eu0.6Mn0.05SiOを製造した。
得られた蛍光体について求めたEu2+/Eu比とピーク発光波長及びピーク発光強度を表1に示す。また、XANESスペクトルを図4に示す。
Comparative Example 1
BaCO 3 , CaCO 3 , Eu 2 O 3 , MnCO 3 , and SiO 2 as raw material compounds have a molar ratio of Ba, Ca, Eu, Mn, and Si of 1.012: 0.338: 0.6: 0.05: A phosphor Ba 1.012 Ca 0.338 Eu 0.6 Mn 0.05 SiO 4 was produced in the same manner as in Example 1 except that the weight was adjusted to 1.
Table 1 shows the Eu 2+ / Eu ratio, peak emission wavelength, and peak emission intensity obtained for the obtained phosphor. The XANES spectrum is shown in FIG.

比較例2
原料化合物としてBaCO,CaCO,Eu,MnCO、SiOを、Ba,Ca,Eu,Mn,Siのモル比が1.35:0.45:0.15:0.05:1となるように計量し、4%の水素を含む窒素ガス流下ではなく、空気雰囲気下で加熱した以外は実施例1と同様に処理して蛍光体Ba1.35Ca0.45Eu0.15Mn0.05SiOを製造した。
得られた蛍光体について求めたEu2+/Eu比とピーク発光波長及びピーク発光強度を表1に示す。また、XANESスペクトルを図4に示す。
Comparative Example 2
BaCO 3 , CaCO 3 , Eu 2 O 3 , MnCO 3 , and SiO 2 are used as raw material compounds, and the molar ratio of Ba, Ca, Eu, Mn, and Si is 1.35: 0.45: 0.15: 0.05: The phosphor Ba 1.35 Ca 0.45 Eu 0. was treated in the same manner as in Example 1 except that the sample was weighed to 1 and heated in an air atmosphere instead of under a nitrogen gas flow containing 4% hydrogen . 15 Mn 0.05 SiO 4 was produced.
Table 1 shows the Eu 2+ / Eu ratio, peak emission wavelength, and peak emission intensity obtained for the obtained phosphor. The XANES spectrum is shown in FIG.

Figure 0004661419
Figure 0004661419

表1より、特定組成のユーロピウム・マンガン共付活アルカリ土類金属珪酸塩よりなり、Eu2+/Euが50%以上の本発明の蛍光体は、高発光効率の赤色ないし橙色発光蛍光体であることが分かる。 According to Table 1, the phosphor of the present invention composed of europium / manganese co-activated alkaline earth metal silicate having a specific composition and having a Eu 2+ / Eu of 50% or more is a red or orange light emitting phosphor with high luminous efficiency. I understand that there is.

本発明の発光装置の実施の形態を示す模式的断面図である。It is typical sectional drawing which shows embodiment of the light-emitting device of this invention. 本発明の発光装置を用いた面発光照明装置の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the surface emitting illumination apparatus using the light-emitting device of this invention. 本発明の発光装置の他の実施の形態を示す模式的な斜視図である。It is a typical perspective view which shows other embodiment of the light-emitting device of this invention. 実施例1〜3及び比較例1,2で得られた蛍光体のXANESスペクトルを示す図である。It is a figure which shows the XANES spectrum of the fluorescent substance obtained in Examples 1-3 and Comparative Examples 1,2.

符号の説明Explanation of symbols

1;発光装置
2;マウントリード
3;インナーリード
4;励起光源
5;蛍光体含有樹脂部
6;導電性ワイヤー
7;モールド部材
8;面発光照明装置
9;拡散板
10;保持ケース
DESCRIPTION OF SYMBOLS 1; Light-emitting device 2; Mount lead 3; Inner lead 4; Excitation light source 5; Phosphor containing resin part 6; Conductive wire 7; Mold member 8;

Claims (7)

組成式:(BaCaSrMgEuMn)SiOで表されるユーロピウム・マンガン共付活アルカリ土類金属珪酸塩よりなる蛍光体において、
該組成式中、係数a、b、c、d、x及びyが
a+b+c+d+x+y=2
0<a<2
0<b<2
0≦c<0.5
0≦d<0.5
0<x≦0.5
0<y≦0.5
を満足し、かつ全Euイオンの50%以上がEu2+イオンであることを特徴とする蛍光体。
Composition formula: In (Ba a Ca b Sr c Mg d Eu x Mn y) consisting of europium-manganese activated alkaline earth with both metal silicate represented by SiO 4 phosphor,
In the composition formula, coefficients a, b, c, d, x and y are a + b + c + d + x + y = 2.
0 <a <2
0 <b <2
0 ≦ c <0.5
0 ≦ d <0.5
0 <x ≦ 0.5
0 <y ≦ 0.5
And 50% or more of the total Eu ions are Eu 2+ ions.
赤色ないし橙色に発光することを特徴とする請求項1に記載の蛍光体。   The phosphor according to claim 1, which emits red or orange light. 請求項1又は2に記載の蛍光体の製造方法であって、Ba、Ca、Eu、Mn及びSiの元素源化合物と、必要に応じて用いられるSr及び/又はMgの元素源化合物との混合物を炭素共存下の非酸化性ガス雰囲気中で焼成することを特徴とする蛍光体の製造方法。   It is a manufacturing method of the fluorescent substance of Claim 1 or 2, Comprising: The mixture of the element source compound of Ba, Ca, Eu, Mn, and Si, and the element source compound of Sr and / or Mg used as needed Is fired in a non-oxidizing gas atmosphere in the presence of carbon. 非酸化性ガスが還元性を有するガス及び/又は不活性ガスであることを特徴とする請求項3に記載の蛍光体の製造方法。   The method for producing a phosphor according to claim 3, wherein the non-oxidizing gas is a reducing gas and / or an inert gas. 励起光源と、該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有する発光装置において、該蛍光体が請求項1又は2に記載の蛍光体或いは請求項3又は4に記載の製造方法により得られた蛍光体を含むことを特徴とする発光装置。   In the light-emitting device which has an excitation light source and the fluorescent substance which wavelength-converts at least one part of the light from this excitation light source, this fluorescent substance of Claim 1 or 2 or Claim 3 or 4 A light-emitting device comprising a phosphor obtained by a manufacturing method. 請求項5に記載の発光装置を含むことを特徴とする照明装置。   An illumination device comprising the light-emitting device according to claim 5. 請求項5に記載の発光装置を含むことを特徴とする画像表示装置。   An image display device comprising the light-emitting device according to claim 5.
JP2005205827A 2005-07-14 2005-07-14 Phosphor and light emitting device using the same Expired - Fee Related JP4661419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205827A JP4661419B2 (en) 2005-07-14 2005-07-14 Phosphor and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205827A JP4661419B2 (en) 2005-07-14 2005-07-14 Phosphor and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2007023128A JP2007023128A (en) 2007-02-01
JP4661419B2 true JP4661419B2 (en) 2011-03-30

Family

ID=37784335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205827A Expired - Fee Related JP4661419B2 (en) 2005-07-14 2005-07-14 Phosphor and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4661419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108659825A (en) * 2018-06-21 2018-10-16 东台市天源光电科技有限公司 A kind of white light LEDs silicate single-substrate white emitting fluorescent powder and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053478B1 (en) * 2008-12-01 2011-08-04 루시미아 주식회사 Full color phosphor and its manufacturing method
CN104694118A (en) * 2013-12-06 2015-06-10 厦门百嘉祥微晶材料科技股份有限公司 Spherical white light phosphor and preparation method thereof
CN115322772A (en) * 2022-09-06 2022-11-11 兰州大学 Red fluorescent powder for mini-LED display screen and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352936A (en) * 2003-05-30 2004-12-16 Sumitomo Chem Co Ltd Preparation method of silicate phosphor
JP2005064272A (en) * 2003-08-13 2005-03-10 Mitsubishi Chemicals Corp Light emitting device, illumination device, and image display apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544482A (en) * 1968-03-15 1970-12-01 Sylvania Electric Prod Europium and manganese activated alkaline earth silicate phosphors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352936A (en) * 2003-05-30 2004-12-16 Sumitomo Chem Co Ltd Preparation method of silicate phosphor
JP2005064272A (en) * 2003-08-13 2005-03-10 Mitsubishi Chemicals Corp Light emitting device, illumination device, and image display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108659825A (en) * 2018-06-21 2018-10-16 东台市天源光电科技有限公司 A kind of white light LEDs silicate single-substrate white emitting fluorescent powder and preparation method thereof

Also Published As

Publication number Publication date
JP2007023128A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
EP1942531B1 (en) Light emitting device and illuminator using the same
WO2011105571A1 (en) Halophosphate phosphor and white light emitting device
US20060049414A1 (en) Novel oxynitride phosphors
US20110309399A1 (en) Fluorescent substance, method of manufacturing the fluorescent substance, and light emitting device using the fluorescent substance
WO2008057225A2 (en) High cri led lamps utilizing single phosphor
KR101802996B1 (en) Means for improving stability to the resulting radiation load and resistance to the influence of atmospheric humidity in the case of strontium oxyorthosilicate phosphors
JP4951888B2 (en) Phosphor and light emitting device using the same
US11407942B2 (en) Garnet silicate, garnet silicate phosphor, and wavelength converter and light emitting device which use the garnet silicate phosphor
JP2009535441A (en) Illumination system comprising a radiation source and a luminescent material
JP2005298805A (en) Light emitting device and illumination device
JP4706358B2 (en) Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display
JP2014221890A (en) Phosphor, phosphor-containing composition, light-emitting device, image display device, and lighting device
KR100802873B1 (en) Orange-emitting phosphor
JP4661419B2 (en) Phosphor and light emitting device using the same
WO2016076380A1 (en) Phosphor, light-emitting device, illumination device, and image display device
JP4972904B2 (en) Phosphor, method for manufacturing the phosphor, light-emitting device using the phosphor, image display device, and illumination device
JP4904694B2 (en) Oxide phosphor, and light emitting element, image display device, and illumination device using the same
JP2007137946A (en) Phosphor, light emitting device using the same, image display device and illumination device
JP2006045526A (en) Fluorescent substance, light-emitting element using the same, image display device, and illuminating device
JP2019065112A (en) Aluminate phosphor, light-emitting device and method for producing aluminate phosphor
JP2010196049A (en) Phosphor and method for producing the same, phosphor-containing composition, and light-emitting device, image display device and lighting device using the phosphor
JP2007009141A (en) Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display
JP6460141B2 (en) Aluminate phosphor, light emitting device, and method for producing aluminate phosphor
JP5326986B2 (en) Phosphor used in light emitting device
JP2004253747A (en) Light emitting device and lighting device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees