JP2007009141A - Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display - Google Patents

Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display Download PDF

Info

Publication number
JP2007009141A
JP2007009141A JP2005195173A JP2005195173A JP2007009141A JP 2007009141 A JP2007009141 A JP 2007009141A JP 2005195173 A JP2005195173 A JP 2005195173A JP 2005195173 A JP2005195173 A JP 2005195173A JP 2007009141 A JP2007009141 A JP 2007009141A
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting
arcsin
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005195173A
Other languages
Japanese (ja)
Inventor
Masahiko Yoshino
正彦 吉野
Masayoshi Mikami
昌義 三上
Muneyuki Shigeiwa
統之 茂岩
Hiroyuki Imura
宏之 伊村
Naoto Kijima
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005195173A priority Critical patent/JP2007009141A/en
Publication of JP2007009141A publication Critical patent/JP2007009141A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient blue phosphor for displays and illumination that highly efficiently emits light in combination with a light source emitting light in the near ultraviolet region, and a light-emitting apparatus using the phosphor. <P>SOLUTION: The blue light-emitting phosphor comprises a europium-activated alkaline earth metal silicate (Ba<SB>a</SB>Ca<SB>b</SB>Sr<SB>c</SB>Mg<SB>d</SB>Eu<SB>x</SB>)SiO<SB>4</SB>, where the coefficient a, b, c, d and x satisfy a+b+c+d+x=2, 0<a<2, 0<b<2, 0≤c<0.5, 0≤d<0.5, and 0<x≤0.5. The manufacturing method of the blue light-emitting phosphor comprises baking a mixture of raw material compounds in the coexistence of carbon. The light-emitting apparatus comprises a first illuminant emitting light having a wavelength of 420 nm or shorter and a second illuminant emitting visible light by irradiation with light from the first illuminant, where the blue light-emitting phosphor is used as the second illuminant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、紫外光または可視光領域にある光を吸収して長波長の可視光を発する、母体化合物が付活元素を含有する青色発光蛍光体およびその製造方法に関する。
本発明はまた、この青色発光蛍光体を第2の発光体として用い、電力源により紫外光から可視光領域の光を発光する第1の発光体と組み合わせることにより、使用環境によらず高強度の発光を発生させることのできる発光装置、並びにこの発光装置を光源とする照明装置、ディスプレイ用バックライトおよびディスプレイに関する。
なお、本発明において、青色蛍光体とは、JISZ8110−1995「色の表示方法ー光源色の色名」における青緑、青、青紫の範囲、特に好ましくは青の範囲の色度座標(x、y)の発光を示す蛍光体をいう。
The present invention relates to a blue light-emitting phosphor that absorbs light in the ultraviolet light or visible light region and emits long-wavelength visible light, in which the base compound contains an activating element, and a method for producing the same.
The present invention also uses this blue light-emitting phosphor as the second light emitter and combines it with the first light emitter that emits light from the ultraviolet light to the visible light region with a power source, so that it has high intensity regardless of the use environment. The present invention relates to a light-emitting device capable of generating the light emission, a lighting device using the light-emitting device as a light source, a display backlight, and a display.
In the present invention, the blue phosphor refers to the chromaticity coordinates (x, x, x, y, and blue) of JISZ8110-1995 "Color display method-color name of light source color", particularly preferably in the blue range. This refers to a phosphor exhibiting y) emission.

水銀の放電による紫外光で青、緑、赤の3色の蛍光体を励起し、白色光を発生することは蛍光ランプにおいて実現された技術である。そして、近年、発光効率の高い、青色発光のGaN系の半導体発光素子が開発され、この青色光によって黄色の発光をする蛍光体を励起し、青と黄色の補色関係を利用して白色光を得る方法が開示された。しかしながら、この方式では白色光に赤色成分が存在せず演色性が劣ることが指摘されている。このため、近紫外発光の半導体発光素子により蛍光ランプと同様の原理で、青、緑、赤3色の蛍光体を励起する方法が提案された。この方法は、蛍光ランプに比べ未だ効率、演色性が劣るが、半導体発光素子並びに蛍光体の改善が進めば、蛍光ランプの性能凌駕は達成可能な目標とされている。   Excitation of phosphors of three colors of blue, green, and red with ultraviolet light generated by mercury discharge to generate white light is a technology realized in a fluorescent lamp. In recent years, blue light-emitting GaN-based semiconductor light-emitting elements with high luminous efficiency have been developed. The blue light is used to excite a phosphor that emits yellow light, and white light is emitted using the complementary color relationship between blue and yellow. A method of obtaining has been disclosed. However, it has been pointed out that in this method, there is no red component in white light and color rendering is inferior. For this reason, a method has been proposed in which phosphors of three colors, blue, green, and red, are excited by a semiconductor light emitting element that emits near ultraviolet light based on the same principle as a fluorescent lamp. Although this method is still inferior in efficiency and color rendering as compared with a fluorescent lamp, if the semiconductor light emitting device and the phosphor are improved, the performance of the fluorescent lamp can be surpassed.

本方式に使用される蛍光体は種々提案されている。この中でもアルカリ土類金属珪酸塩系の蛍光体が有望とされている。   Various phosphors used in this method have been proposed. Among these, alkaline earth metal silicate phosphors are considered promising.

例えば、非特許文献1には、Me(Me=Ca,Sr,Ba)3MgSi8:Eu2+蛍光体が挙げられ、この蛍光体が青色発光を示し、近紫外から460nm付近までの青色光により励起可能であることが示され、天然鉱物merwiniteと同じ斜方晶系に属す旨が記載されている。また、特許文献1には以下の化学式[1]で表される化合物(但しa1,b1,xはそれぞれ0≦a1≦0.3、0≦b1≦0.8、0<x<1の範囲の数である)が開示されている。
(Sr1-a1-b1-xBaa1Cab1Eux2SiO4 [1]
当該特許文献1中の図42には、この式[1]を満足する組成の蛍光体が斜方晶体および単斜晶体であり、発光は波長535nmから580nm付近の黄色発光である旨記載されている。
For example, Non-Patent Document 1 includes a Me (Me = Ca, Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ phosphor, which exhibits blue light emission, from near ultraviolet to around 460 nm. It is shown that it can be excited by blue light, and describes that it belongs to the same orthorhombic system as the natural mineral merwinite. Further, Patent Document 1 discloses a compound represented by the following chemical formula [1] (where a1, b1, and x are in the range of 0 ≦ a1 ≦ 0.3, 0 ≦ b1 ≦ 0.8, and 0 <x <1, respectively. Is the number of
(Sr 1-a1-b1- x Ba a1 Ca b1 Eu x) 2 SiO 4 [1]
FIG. 42 in Patent Document 1 describes that phosphors having a composition satisfying the formula [1] are orthorhombic crystals and monoclinic crystals, and light emission is yellow light emission in the vicinity of a wavelength of 535 nm to 580 nm. Yes.

また、特許文献2では、Eu2+で活性化されたケイ酸アルカリ土類金属塩蛍光体A2DSi27:Eu2+(式中、AはBa、CaおよびSrの1種以上を含み、DはMgおよびZnの1種以上を含む)を挙げ、AおよびDがSr、Mgの場合は波長470nm、Sr、Znの場合は波長470nm、Sr/Ba、Mgの場合は波長440nmの青色発光が見られることが開示されている。しかしながら、この特許文献2の記載からもわかるように、Eu2+の発光波長は組成、結晶構造、付活剤濃度など、母体結晶構造に大きく影響を受け、高効率の青色蛍光体を安定に生産するためには種々の問題点が存在した。 In Patent Document 2, silicate alkaline earth activated with Eu 2+ metal salt phosphor A 2 DSi 2 O 7: Eu 2+ ( wherein, A is Ba, singly of Ca and Sr And D includes one or more of Mg and Zn), and when A and D are Sr and Mg, the wavelength is 470 nm, when Sr and Zn, the wavelength is 470 nm, and when Sr / Ba and Mg, the wavelength is 440 nm. It is disclosed that blue light emission can be seen. However, as can be seen from the description in Patent Document 2, the emission wavelength of Eu 2+ is greatly influenced by the host crystal structure such as the composition, crystal structure, and activator concentration, so that a high-efficiency blue phosphor can be stabilized. There were various problems to produce.

さらに、特許文献3では、次の一般式で表されるEu2+で活性化されたアルカリ土類金属珪酸塩蛍光体が挙げられ青色から緑色の発光が見られることが開示されている。
2(Ba1-X-YEuXY)O・nMgO・SiO2
(但し、MはBe、Ca、Sr、Znから選ばれる少なくとも1種以上を有する。
Xは、0.0001≦X≦0.3
Yは、0<Y≦0.6
nは、0≦n≦3.0である。)
Further, Patent Document 3 discloses an alkaline earth metal silicate phosphor activated by Eu 2+ represented by the following general formula, and discloses that light emission from blue to green is observed.
2 (Ba 1-XY Eu X M Y) O · nMgO · SiO 2
(However, M has at least one selected from Be, Ca, Sr, and Zn.
X is 0.0001 ≦ X ≦ 0.3
Y is 0 <Y ≦ 0.6
n is 0 ≦ n ≦ 3.0. )

さらに、特許文献4では、次の一般式で表されるEu2+で活性化されたアルカリ土類金属珪酸塩蛍光体が青色発光することが開示されている。
(Ae)a-d(Be)Sibc:Eud
(ただし、AeはSr,CaおよびBaから選ばれる少なくとも1種類、BeはMgまたはZnから選ばれる少なくとも1種類であり、上記a,b,cはa=1、b=1、c=4またはa=1、b=2、c=6またはa=2、b=2、c=7またはa=3、b=2、c=8であり、dは0.01≦d≦0.1である)
WO2003/021691号公報 特表2004−501512号公報 特開2004−161981号公報 特開2004−176010号公報 Phosphor Handbook, Phosphor Research Society, CRC Press p414〜415 (1998)
Furthermore, Patent Document 4 discloses that an alkaline earth metal silicate phosphor activated with Eu 2+ represented by the following general formula emits blue light.
(Ae) ad (Be) Si b O c: Eu d
(However, Ae is at least one selected from Sr, Ca and Ba, Be is at least one selected from Mg or Zn, and a, b and c are a = 1, b = 1, c = 4 or a = 1, b = 2, c = 6 or a = 2, b = 2, c = 7 or a = 3, b = 2, c = 8, d is 0.01 ≦ d ≦ 0.1 is there)
WO2003 / 021691 Special table 2004-501512 gazette JP 2004-161981 A JP 2004-176010 A Phosphor Handbook, Phosphor Research Society, CRC Press p414〜415 (1998)

しかしながら、上記の公知文献に開示されている青色蛍光体は発光効率がいまだ十分とはいえず、また、Eu2+の発光波長は組成、結晶構造、付活剤濃度など母体結晶構造に大きく影響を受け、高効率の青色発光体を安定に生産するためには種々の問題点が存在することから、近紫外領域発光の光源と組み合わせて高効率に発光するディスプレイや照明に供するためには、より一層高効率で青色発光する蛍光体を得ることが望まれる。 However, the blue phosphors disclosed in the above-mentioned known literatures still have insufficient luminous efficiency, and the emission wavelength of Eu 2+ has a great influence on the host crystal structure such as composition, crystal structure, and activator concentration. In order to stably produce a high-efficiency blue light emitter, there are various problems. Therefore, in order to provide a display and illumination that emit light with high efficiency in combination with a light source in the near ultraviolet region, It is desired to obtain a phosphor that emits blue light with higher efficiency.

また、青色発光蛍光体としては、青色の発光効率が高いことはもちろん重要であるが、使用する発光装置の目的に応じて発光スペクトルの形状についても適切なものを選択する自由度があることが望ましい。例えば、発光効率よりも演色性を重視する用途では、発光スペクトルの半値幅が広いことが有利である。   In addition, as a blue light emitting phosphor, it is of course important that the blue light emission efficiency is high, but there is a degree of freedom in selecting an appropriate emission spectrum shape according to the purpose of the light emitting device to be used. desirable. For example, in applications in which color rendering is more important than luminous efficiency, it is advantageous that the half-value width of the emission spectrum is wide.

本発明はこの点に鑑み、発光スペクトルの半値幅が広い青色蛍光体およびその製造方法を提供することを目的とする。
本発明はまた、このような青色発光蛍光体を用いて、演色性の高い発光装置と、この発光装置を光源とする照明装置、ディスプレイ用バックライトおよびディスプレイを提供するものである。
In view of this point, an object of the present invention is to provide a blue phosphor having a wide half-value width of an emission spectrum and a method for producing the same.
The present invention also provides a light emitting device having high color rendering properties using such a blue light emitting phosphor, an illumination device using the light emitting device as a light source, a backlight for display, and a display.

本発明(請求項1)の青色発光蛍光体は、組成式:(BaaCabSrMgdEu)SiO4で表されるユーロピウム付活アルカリ土類金属珪酸塩よりなる青色発光蛍光体において、該組成式中、係数a、b、c、dおよびxが
a+b+c+d+x=2
0<a<2
0<b<2
0≦c<0.5
0≦d<0.5
0<x≦0.5
を満足することを特徴とする。
Blue-emitting phosphor of the present invention (claim 1) the composition formula: (Ba a Ca b Sr c Mg d Eu x) consisting of europium activated alkaline earth metal silicate represented by SiO 4 blue-emitting phosphor In the composition formula, the coefficients a, b, c, d and x are a + b + c + d + x = 2
0 <a <2
0 <b <2
0 ≦ c <0.5
0 ≦ d <0.5
0 <x ≦ 0.5
It is characterized by satisfying.

請求項2の青色発光蛍光体は、請求項1に記載の蛍光体において、CuKαのX線源を用いたX線回折測定において、下記(1)および(2)の条件を満足する特定の結晶相を含むことを特徴とする。
(1)回折角(2θ)21.30〜22.50゜の範囲(R0)に回折ピークが観測され、この回折ピークを基準回折ピーク(P0)とし、P0のブラッグ角(θ0)より導かれる5つの回折角の角度範囲を下記のR1、R2、R3、R4、R5としたとき、これらの範囲内の各々に回折ピークが少なくとも1本存在する。
(2)基準回折ピークP0と、R1〜R5の範囲に各々存在するピークとの合計6本の回折ピークのうちの最強回折ピークに対し、P0は回折ピーク高さ比で20%以上の強度を有し、その他の回折ピークは回折ピーク高さ比で9%以上である。
ただし、上記(1),(2)のいずれにおいても、一つの角度範囲に回折ピークが2本以上存在するときは強度の大きいピークを採用する。
1:2×arcsin{sin(θ0)/(0.720×1.015)}
〜2×arcsin{sin(θ0)/(0.720×0.985)}
2:2×arcsin{sin(θ0)/(0.698×1.015)}
〜2×arcsin{sin(θ0)/(0.698×0.985)}
3:2×arcsin{sin(θ0)/(0.592×1.015)}
〜2×arcsin{sin(θ0)/(0.592×0.985)}
4:2×arcsin{sin(θ0)/(0.572×1.015)}
〜2×arcsin{sin(θ0)/(0.572×0.985)}
5:2×arcsin{sin(θ0)/(0.500×1.015)}
〜2×arcsin{sin(θ0)/(0.500×0.985)}
The blue light-emitting phosphor according to claim 2 is a specific crystal satisfying the following conditions (1) and (2) in the phosphor according to claim 1 in an X-ray diffraction measurement using a CuKα X-ray source. It is characterized by including a phase.
(1) A diffraction peak is observed in a diffraction angle (2θ) range of 21.30 to 22.50 ° (R 0 ). This diffraction peak is defined as a reference diffraction peak (P 0 ), and a Bragg angle (θ 0 ) of P 0 is used. ) When the following ranges of the five diffraction angles are R 1 , R 2 , R 3 , R 4 , and R 5 , at least one diffraction peak exists in each of these ranges.
(2) P 0 is a diffraction peak height ratio of 20% with respect to the strongest diffraction peak among a total of six diffraction peaks of the reference diffraction peak P 0 and the peaks existing in the range of R 1 to R 5. The other diffraction peaks have the above intensity, and the diffraction peak height ratio is 9% or more.
However, in any of the above (1) and (2), when two or more diffraction peaks exist in one angle range, a peak having a high intensity is adopted.
R 1 : 2 × arcsin {sin (θ 0 ) / (0.720 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.720 × 0.985)}
R 2 : 2 × arcsin {sin (θ 0 ) / (0.698 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.698 × 0.985)}
R 3 : 2 × arcsin {sin (θ 0 ) / (0.592 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.592 × 0.985)}
R 4 : 2 × arcsin {sin (θ 0 ) / (0.572 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.572 × 0.985)}
R 5 : 2 × arcsin {sin (θ 0 ) / (0.500 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.500 × 0.985)}

請求項3の青色蛍光体は、請求項1または2に記載の蛍光体において、係数aおよびbが1≦(a/b)≦10を満たすことを特徴とする。   The blue phosphor according to claim 3 is characterized in that, in the phosphor according to claim 1 or 2, the coefficients a and b satisfy 1 ≦ (a / b) ≦ 10.

本発明(請求項4)の青色発光蛍光体の製造方法は、請求項1ないし3のいずれか1項に記載の蛍光体の製造方法であって、Ba、Ca、EuおよびSiの元素源化合物と必要に応じて用いられるSrおよび/またはMgの元素源化合物の混合物を炭素共存下で焼成することを特徴とする。   The method for producing a blue-emitting phosphor according to the present invention (invention 4) is the method for producing a phosphor according to any one of claims 1 to 3, wherein element source compounds of Ba, Ca, Eu and Si are used. And a mixture of Sr and / or Mg element source compounds used as necessary, is characterized by firing in the presence of carbon.

本発明(請求項5)の発光装置は、波長420nm以下の光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、該第2の発光体が請求項1ないし3のいずれか1項に記載の蛍光体、或いは請求項4に記載の製造方法により得られた蛍光体を含むことを特徴とする。   The light-emitting device of the present invention (Claim 5) includes a first light-emitting body that generates light having a wavelength of 420 nm or less, and a second light-emitting body that generates visible light when irradiated with light from the first light-emitting body. A light emitting device comprising: the second light emitter includes the phosphor according to any one of claims 1 to 3 or the phosphor obtained by the manufacturing method according to claim 4. To do.

本発明(請求項6)の照明装置は、請求項5に記載の発光装置を用いたことを特徴とする。   The illumination device of the present invention (Claim 6) is characterized by using the light-emitting device according to Claim 5.

本発明(請求項7)のディスプレイ用バックライトは、請求項5に記載の発光装置を用いたことを特徴とする。   The display backlight according to the present invention (invention 7) is characterized in that the light emitting device according to claim 5 is used.

本発明(請求項8)のディスプレイは、請求項5に記載の発光装置を用いたことを特徴とする。   The display of the present invention (invention 8) is characterized by using the light emitting device according to claim 5.

本発明によれば、発光スペクトルの半値幅が広い、高輝度で高効率発光の青色蛍光体が得られ、この青色発光蛍光体を用いて、演色性の高い発光装置と、この発光装置を用いて高性能の照明装置、ディスプレイ用バックライトおよびディスプレイが提供される。   According to the present invention, a high-luminance and high-efficiency blue phosphor having a broad half-value width of an emission spectrum is obtained. Using this blue-emitting phosphor, a light-emitting device with high color rendering properties and this light-emitting device are used. And high performance lighting devices, display backlights and displays are provided.

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.

[1]青色発光蛍光体
本発明の青色発光蛍光体は、ユーロピウム付活アルカリ土類金属珪酸塩(BaaCabSrMgdEu)SiO4よりなる青色発光蛍光体において、係数a、b、c、dおよびxが
a+b+c+d+x=2
0<a<2
0<b<2
0≦c<0.5
0≦d<0.5
0<x≦0.5
を満足することを特徴とし、好ましくは、後述の特定の結晶相を有する。
[1] blue-emitting phosphor of the blue-emitting phosphor present invention is a blue-emitting phosphor consisting of europium-activated alkaline earth metal silicate (Ba a Ca b Sr c Mg d Eu x) SiO 4, coefficients a, b, c, d and x are a + b + c + d + x = 2
0 <a <2
0 <b <2
0 ≦ c <0.5
0 ≦ d <0.5
0 <x ≦ 0.5
And preferably has a specific crystal phase described later.

すなわち、本発明では、Ba、Sr、Ca、Mgからなる群から選ばれる少なくとも1種の元素を含むEu付活のアルカリ土類珪酸塩よりなり、好ましくは特定の結晶相を有することにより、発光強度の高い青色発光蛍光体を実現する。   That is, in the present invention, it is made of Eu-activated alkaline earth silicate containing at least one element selected from the group consisting of Ba, Sr, Ca, and Mg, and preferably emits light by having a specific crystal phase. A high-intensity blue-emitting phosphor is realized.

[従来の蛍光体と本発明の青色発光蛍光体との差異]
本発明の青色発光蛍光体について詳細に説明するに先立ち、まず、本発明の青色発光蛍光体と前述の従来の蛍光体との差異を説明する。
[Difference between the conventional phosphor and the blue light-emitting phosphor of the present invention]
Prior to describing the blue light-emitting phosphor of the present invention in detail, first, the difference between the blue light-emitting phosphor of the present invention and the above-described conventional phosphor will be described.

非特許文献1に記載のMe(Me=Ca,Sr,Ba)3MgSi28:Eu2+蛍光体は、天然鉱物merwinite自体およびCa、BaまたはSrで置換した母体結晶にEuを付活した蛍光体であって、本発明と同様の表記法を用いれば(Me1.5-xEuxMg0.5)SiO4となる組成のみが開示されているが、本発明ではこの組成を含まない。 The Me (Me = Ca, Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ phosphor described in Non-Patent Document 1 activates Eu to a natural mineral merwinite itself and a base crystal substituted with Ca, Ba, or Sr. Although only a composition that becomes (Me 1.5-x Eu x Mg 0.5 ) SiO 4 is disclosed using the same notation method as in the present invention, the present invention does not include this composition.

特許文献1は、GaN系の半導体発光素子による青色光によって黄色の発光をする蛍光体を励起し、半導体発光素子の青色と黄色の補色関係を利用し白色光を得る方法に用いる黄色系の発光を示す蛍光体であり、本発明の近紫外光励起による青色発光蛍光体とは異なる蛍光体である。   Japanese Patent Application Laid-Open No. H10-260707 excites a phosphor that emits yellow light by blue light from a GaN-based semiconductor light-emitting element, and uses yellow-based light emission for a method of obtaining white light by utilizing the complementary color relationship between blue and yellow of the semiconductor light-emitting element. This phosphor is different from the blue light-emitting phosphor excited by near-ultraviolet light of the present invention.

特許文献2に記載の蛍光体は、母体結晶の組成がA2DSi27(式中、AはBa、CaおよびSrの1種以上を含み、DはMgおよびZnの1種以上を含む)であり、本発明は基本的にM2SiO4型であり組成が異なる。 The phosphor described in Patent Document 2 has a matrix crystal composition of A 2 DSi 2 O 7 (wherein A includes one or more of Ba, Ca and Sr, and D includes one or more of Mg and Zn). The present invention is basically M 2 SiO 4 type and has a different composition.

また、特許文献3で示される組成2(Ba1-X-YEuXY)O・nMgO・SiO2(但し、MはBe、Ca、Sr、Znから選ばれる少なくとも1種以上を有する。Xは、0.0001≦X≦0.3。Yは、0<Y≦0.6。nは、0≦n≦3.0である。)は、本発明と同じ表記法に従えば
(Ba2-2X-2YEu2X2YMgn)SiO4+n
となり、n=0の場合を除き本発明とは異なる組成である。n=0の場合は特許文献3の実施例では色度座標(x、y)がx=0.156〜0.366、y=0.499〜0.548の範囲であり緑色発光を示すものである。これに対して、本発明の青色発光蛍光体は、x=0.160〜0.187、y=0.172〜0.263の範囲の発光色の青色発光蛍光体である。すなわち、発光色が異なることは異なる蛍光体を意味する。このような明確な差異が生じる事実は、本発明における焼成時の特殊な還元雰囲気がEuイオンの還元状態を青色発光させる状態に至らしめたことによるものと考えられる。
The composition represented by Patent Literature 3 2 (Ba 1-XY Eu X M Y) O · nMgO · SiO 2 ( where, M is Be, Ca, Sr, .X having at least one or more selected from Zn is 0.0001 ≦ X ≦ 0.3, Y is 0 <Y ≦ 0.6, and n is 0 ≦ n ≦ 3.0) according to the same notation as the present invention (Ba 2 -2X-2Y Eu 2X M 2Y Mg n ) SiO 4 + n
Thus, except for the case of n = 0, the composition is different from that of the present invention. In the case of n = 0, in the example of Patent Document 3, the chromaticity coordinates (x, y) are in the range of x = 0.156 to 0.366, y = 0.499 to 0.548, and exhibit green light emission. It is. On the other hand, the blue light emitting phosphor of the present invention is a blue light emitting phosphor having an emission color in the range of x = 0.160 to 0.187 and y = 0.172 to 0.263. That is, different emission colors mean different phosphors. The fact that such a clear difference occurs is considered to be due to the fact that the special reducing atmosphere at the time of firing in the present invention has brought the reduced state of Eu ions into a state of emitting blue light.

さらに、特許文献4には、(Ae)a-d(Be)Sibc:Eud(ただし、AeはSr,CaおよびBaから選ばれる少なくとも1種類、BeはMgまたはZnから選ばれる少なくとも1種類であり、上記a,b,cはa=1、b=1、c=4またはa=1、b=2、c=6またはa=2、b=2、c=7またはa=3、b=2、c=8であり、dは0.01≦d≦0.1である)なる、プラズマディスプレイパネルを主な用途とした青色発光蛍光体が開示されている。この中でa=1、b=1、c=4の場合は、本発明と一般式が同一となるが、特許文献4では、Aeで表されるSr,CaおよびBaから選ばれる少なくとも1種類のアルカリ土類金属イオンとMgイオンのモル数が等しいのに対し、本発明ではMgのモル数がSr,CaおよびBaから選ばれる少なくとも1種類のアルカリ土類金属イオンのモル数より少ない範囲において近紫外光励起により極めて高い発光効率が得られることを見出したものである。 Furthermore, Patent Document 4, (Ae) ad (Be ) Si b O c: Eu d ( provided that at least one Ae is at least one selected from Sr, Ca and Ba, Be is selected from Mg or Zn Where a = 1, b = 1, c = 4 or a = 1, b = 2, c = 6 or a = 2, b = 2, c = 7 or a = 3, b = 2, c = 8, and d is 0.01 ≦ d ≦ 0.1). A blue light-emitting phosphor mainly used for a plasma display panel is disclosed. Among them, when a = 1, b = 1, and c = 4, the general formula is the same as that of the present invention, but in Patent Document 4, at least one selected from Sr, Ca, and Ba represented by Ae In the present invention, the number of moles of Mg is less than the number of moles of at least one alkaline earth metal ion selected from Sr, Ca and Ba. It has been found that extremely high luminous efficiency can be obtained by near-ultraviolet light excitation.

また、ここに例示したすべての公知文献の蛍光体に対して、本発明においては、本発明の青色発光蛍光体の結晶相をX線回折により特定し、明確に差別化される。   Further, in the present invention, the crystal phases of the blue light emitting phosphor of the present invention are specified by X-ray diffraction and clearly differentiated from the phosphors of all known documents exemplified here.

[組成]
本発明の青色発光蛍光体のユーロピウム付活アルカリ土類金属珪酸塩の組成式(BaaCabSrMgdEu)SiO4において、アルカリ土類金属Ba、Ca、Sr、Mgと付活元素Euの合計モル数についてはa+b+c+d+x=2が成立する。但し、元素源化合物の純度、実験誤差等によって、a+b+c+d+xの値は±1%程度ずれることもあるため、この±1%程度ずれた場合も本発明の範囲に含まれる。
BaとCaの割合(モル比a/b)は、通常1≦(a/b)≦10であるが、演色性と発光ピーク強度の点から、好ましくは1.5≦(a/b)≦8、より好ましくは2≦(a/b)≦4である。
[composition]
In the blue-emitting phosphor of the composition formula of the europium-activated alkaline earth metal silicate (Ba a Ca b Sr c Mg d Eu x) SiO 4 of the present invention, the alkaline earth metals Ba, Ca, Sr, Mg and activated For the total number of moles of the element Eu, a + b + c + d + x = 2 holds. However, since the value of a + b + c + d + x may deviate by about ± 1% depending on the purity of the element source compound, experimental error, etc., the case of deviation of about ± 1% is also included in the scope of the present invention.
The ratio of Ba to Ca (molar ratio a / b) is usually 1 ≦ (a / b) ≦ 10, but preferably 1.5 ≦ (a / b) ≦ from the viewpoint of color rendering properties and emission peak intensity. 8, more preferably 2 ≦ (a / b) ≦ 4.

青色の発光強度等の面から、BaとCaの合計がアルカリ土類金属中に占める割合が70mol%以上であることが好ましく、90mol%以上であることがより好ましく、100mol%であることが更に好ましい。   From the viewpoint of blue emission intensity, the ratio of the total of Ba and Ca in the alkaline earth metal is preferably 70 mol% or more, more preferably 90 mol% or more, and further preferably 100 mol%. preferable.

Siは、Geまたは他の4価の元素によって一部置換されうる。Si,Ge以外の4価の元素としては、Zn,Ti,Hf等が挙げられる。青色の発光強度等の性能を損なわない範囲でこれらを含んでいてもよいが、Siと他の4価の元素を含み合計中に、SiおよびGeを合計で90mol%以上含むことが好ましく、青色の発光強度等の面から、Siを80mol%以上含むことが好ましく、全てがSiからなることがより好ましい。   Si can be partially substituted by Ge or other tetravalent elements. Examples of tetravalent elements other than Si and Ge include Zn, Ti, and Hf. These may be included as long as the performance such as blue emission intensity is not impaired. However, it is preferable that Si and Ge are included in total in a total including Si and other tetravalent elements. From the viewpoint of the light emission intensity, etc., it is preferable that Si is contained in an amount of 80 mol% or more, and it is more preferable that all be made of Si.

Srモル比のcについては、0≦c<0.5であるが、演色性の点からc≦0.2であることが好ましい。   The Sr molar ratio c is 0 ≦ c <0.5, but preferably c ≦ 0.2 from the viewpoint of color rendering.

Mgモル比のdについては、0≦d<0.5であるが、演色性の点からd≦0.2であることが好ましい。   The Mg molar ratio d is 0 ≦ d <0.5, but d ≦ 0.2 is preferable from the viewpoint of color rendering.

Euモル比xについては、Eu2+はアルカリ土類金属元素を置換するので(BaaCabSrMgdEu)SiO4と表記することができ、式中、xは0<x≦0.5を満足する数であるが、発光中心イオンEu2+のモル比xが小さすぎると、発光強度が小さくなる傾向があり、一方、大きすぎると発光ピークが長波側にシフトし青色発光を示さなくなる。Euモル比xの下限としては、0.001≦xが好ましく、0.005≦xがより好ましく、上限としては、x≦0.1がより好ましい。 For Eu molar ratio x, Eu 2+ can be represented because replacing an alkaline earth metal element and (Ba a Ca b Sr c Mg d Eu x) SiO 4, wherein, x is 0 <x ≦ Although the number satisfies 0.5, if the molar ratio x of the emission center ion Eu 2+ is too small, the emission intensity tends to decrease, whereas if it is too large, the emission peak shifts to the long wave side and blue light emission occurs. No longer shows. The lower limit of the Eu molar ratio x is preferably 0.001 ≦ x, more preferably 0.005 ≦ x, and the upper limit is more preferably x ≦ 0.1.

[結晶相]
本発明者らは、上記組成範囲に加えて特定の結晶構造を有する蛍光体が、とりわけ発光強度が高いことを見出した。
[Crystal phase]
The present inventors have found that a phosphor having a specific crystal structure in addition to the above composition range has particularly high emission intensity.

結晶構造の定義には結晶系や空間群などを用いて行うことが一般的であるが、本発明における結晶相は組成の変化に伴う結晶構造の歪み(微妙な構造変化)により結晶系、空間群の変化が生じるため一義的な構造定義を行うことができない。
そこで、発光に寄与する結晶相を特定するのに必要なX線回折パターンを開示する。
通常、X線回折パターンにより二つの化合物の結晶構造が同じであることを特定するには、その結晶構造に基づく最強回折ピークを含め6本程度の回折ピークの角度(2θ)が一致すればよい。しかしながら、本発明の化合物のように構成元素比が異なる場合には、結晶構造が同一でも回折ピークの角度がシフトするため、具体的な回折ピークの角度を数値として定義することができない。
そこで、本発明者らはブラッグの式を用いて算出される回折ピークの面間隔に着目し、以下の表示方法で回折ピークの角度範囲を特定した。
ブラッグの式
d=λ/{2×sin(θ)}・・・(式1)
θ=arcsin{λ/(2×d)}・・・(式2)*式2は式1を変形したもの
ただし、
d:面間隔(Å)
θ:ブラッグ角(°)
λ:CuKαのX線波長=1.54184Å
である。
The crystal structure is generally defined using a crystal system, a space group, etc., but the crystal phase in the present invention is a crystal system, a space due to a crystal structure distortion (subtle structural change) accompanying a change in composition. Since the change of the group occurs, it is not possible to define a unique structure.
Therefore, an X-ray diffraction pattern necessary for specifying a crystal phase contributing to light emission is disclosed.
Usually, in order to specify that the crystal structures of two compounds are the same based on the X-ray diffraction pattern, the angles (2θ) of about six diffraction peaks including the strongest diffraction peak based on the crystal structure should coincide. . However, when the constituent element ratios are different as in the compound of the present invention, the angle of the diffraction peak shifts even if the crystal structure is the same. Therefore, the specific angle of the diffraction peak cannot be defined as a numerical value.
Therefore, the inventors focused on the diffraction peak plane distance calculated using the Bragg equation, and specified the diffraction peak angle range by the following display method.
Bragg's equation d = λ / {2 × sin (θ)} (Equation 1)
θ = arcsin {λ / (2 × d)} (Expression 2) * Expression 2 is a modification of Expression 1, where
d: Surface spacing (Å)
θ: Bragg angle (°)
λ: CuKα X-ray wavelength = 1.54184
It is.

基準回折ピークの面間隔範囲を4.17Å〜3.95Åと規定すると、式2より回折角(2θ)の範囲(R0)は21.30゜〜22.50゜となる。 If the interplanar spacing range of the reference diffraction peak is defined as 4.17 ° to 3.95 °, the range (R 0 ) of the diffraction angle (2θ) is 21.30 ° to 22.50 ° from Equation 2.

観測された基準回折ピークの角度(θ0)より、基準回折ピークP0の面間隔(d0)は式1より下式3となる。
0=λ/{2×sin(θ0)}・・・(式3)
From the observed angle (θ 0 ) of the reference diffraction peak, the interplanar spacing (d 0 ) of the reference diffraction peak P 0 is expressed by Equation 3 below from Equation 1.
d 0 = λ / {2 × sin (θ 0 )} (Equation 3)

基準回折ピーク以外の5本のピークを低角度側からP1、P2、P3、P4、P5とし、それぞれのピークが出現する角度範囲を順にR1、R2、R3、R4、R5とする。 Five peaks other than the reference diffraction peak are designated as P 1 , P 2 , P 3 , P 4 , and P 5 from the low angle side, and the angle ranges where each peak appears are R 1 , R 2 , R 3 , R in order. 4 and R 5 .

1が出現する角度範囲R1は、次のように定まる。
基準回折ピーク由来の面間隔(d0)の0.720倍の面間隔を有する回折面とし、構造のひずみに伴う面間隔の偏位を1.5%とすると、角度範囲R1の開始角度(R1s)および終了角度(R1e)は式1より次のように導かれる。
1s:2×arcsin{λ/(2×d0×0.720×1.015)}
1e:2×arcsin{λ/(2×d0×0.720×0.985)}
それぞれに式3を代入すると、
1s:2×arcsin{sin(θ0)/(0.720×1.015)}
1e:2×arcsin{sin(θ0)/(0.720×0.985)}
となる。
The angle range R 1 in which P 1 appears is determined as follows.
When the diffraction plane has a plane spacing of 0.720 times the plane spacing (d 0 ) derived from the reference diffraction peak, and the deviation of the plane spacing due to structural distortion is 1.5%, the starting angle of the angle range R 1 (R 1s ) and end angle (R 1e ) are derived from Equation 1 as follows.
R 1s : 2 × arcsin {λ / (2 × d 0 × 0.720 × 1.015)}
R 1e : 2 × arcsin {λ / (2 × d 0 × 0.720 × 0.985)}
Substituting Equation 3 for each,
R 1s : 2 × arcsin {sin (θ 0 ) / (0.720 × 1.015)}
R 1e : 2 × arcsin {sin (θ 0 ) / (0.720 × 0.985)}
It becomes.

以下同様にP2、P3、P4、P5が出現する角度範囲を基準回折ピーク由来の面間隔に対して0.698倍、0.592倍、0.572倍、0.500倍と定義し、構造のひずみに伴う面間隔の偏位は一律1.5%とすると、角度範囲R2の開始角度(R2s)および終了角度(R2e)、角度範囲R3の開始角度(R3s)および終了角度(R3e)、角度範囲R4の開始角度(R4s)および終了角度(R4e)、角度範囲R5の開始角度(R5s)および終了角度(R5e)は、下記の通りとなる。
2s:2×arcsin{sin(θ0)/(0.698×1.015)}
2e:2×arcsin{sin(θ0)/(0.698×0.985)}
3s:2×arcsin{sin(θ0)/(0.592×1.015)}
3e:2×arcsin{sin(θ0)/(0.592×0.985)}
4s:2×arcsin{sin(θ0)/(0.572×1.015)}
4e:2×arcsin{sin(θ0)/(0.572×0.985)}
5s:2×arcsin{sin(θ0)/(0.500×1.015)}
5e:2×arcsin{sin(θ0)/(0.500×0.985)}
Similarly, the angle range in which P 2 , P 3 , P 4 , and P 5 appear is 0.698 times, 0.592 times, 0.572 times, and 0.500 times with respect to the plane distance derived from the reference diffraction peak. defined, the deviation of the interplanar spacing accompanying distortion of the structure is 1.5% uniformly, the start angle of the angle range R 2 (R 2s) and ending angle (R 2e), the start angle of the angle range R 3 (R 3s) and ending angle (R 3e), the start angle of the angle range R 4 (R 4s) and ending angle (R 4e), start angle (R 5s) and end angle of the angle range R 5 (R 5e) is represented by the following It becomes as follows.
R 2s : 2 × arcsin {sin (θ 0 ) / (0.698 × 1.015)}
R 2e : 2 × arcsin {sin (θ 0 ) / (0.698 × 0.985)}
R 3s : 2 × arcsin {sin (θ 0 ) / (0.592 × 1.015)}
R 3e : 2 × arcsin {sin (θ 0 ) / (0.592 × 0.985)}
R 4s : 2 × arcsin {sin (θ 0 ) / (0.572 × 1.015)}
R 4e : 2 × arcsin {sin (θ 0 ) / (0.572 × 0.985)}
R 5s : 2 × arcsin {sin (θ 0 ) / (0.500 × 1.015)}
R 5e : 2 × arcsin {sin (θ 0 ) / (0.500 × 0.985)}

すなわち、得られたX線回折測定結果について基準ピークP0からP5までの各ピークが各々下記の角度範囲に出現することを確認することによって、本発明に係る特定の結晶構造が存在することが確認できる。
1:2×arcsin{sin(θ0)/(0.720×1.015)}
〜2×arcsin{sin(θ0)/(0.720×0.985)}
2:2×arcsin{sin(θ0)/(0.698×1.015)}
〜2×arcsin{sin(θ0)/(0.698×0.985)}
3:2×arcsin{sin(θ0)/(0.592×1.015)}
〜2×arcsin{sin(θ0)/(0.592×0.985)}
4:2×arcsin{sin(θ0)/(0.572×1.015)}
〜2×arcsin{sin(θ0)/(0.572×0.985)}
5:2×arcsin{sin(θ0)/(0.500×1.015)}
〜2×arcsin{sin(θ0)/(0.500×0.985)}
この結晶相はmerwiniteと異なる結晶相である。
That is, by confirming that each peak from the reference peaks P 0 to P 5 appears in the following angle range in the obtained X-ray diffraction measurement result, the specific crystal structure according to the present invention exists. Can be confirmed.
R 1 : 2 × arcsin {sin (θ 0 ) / (0.720 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.720 × 0.985)}
R 2 : 2 × arcsin {sin (θ 0 ) / (0.698 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.698 × 0.985)}
R 3 : 2 × arcsin {sin (θ 0 ) / (0.592 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.592 × 0.985)}
R 4 : 2 × arcsin {sin (θ 0 ) / (0.572 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.572 × 0.985)}
R 5 : 2 × arcsin {sin (θ 0 ) / (0.500 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.500 × 0.985)}
This crystal phase is a crystal phase different from merwinite.

上記角度範囲R1〜R5は、より好ましくは、構造のひずみに伴う面間隔の偏位を一律1.0%とすると、下記の通りである。
1:2×arcsin{sin(θ0)/(0.720×1.010)}
〜2×arcsin{sin(θ0)/(0.720×0.990)}
2:2×arcsin{sin(θ0)/(0.698×1.010)}
〜2×arcsin{sin(θ0)/(0.698×0.990)}
3:2×arcsin{sin(θ0)/(0.592×1.010)}
〜2×arcsin{sin(θ0)/(0.592×0.990)}
4:2×arcsin{sin(θ0)/(0.572×1.010)}
〜2×arcsin{sin(θ0)/(0.572×0.990)}
5:2×arcsin{sin(θ0)/(0.500×1.010)}
〜2×arcsin{sin(θ0)/(0.500×0.990)}
More preferably, the angular ranges R 1 to R 5 are as follows, assuming that the deviation of the interplanar spacing due to the strain of the structure is uniformly 1.0%.
R 1 : 2 × arcsin {sin (θ 0 ) / (0.720 × 1.010)}
˜2 × arcsin {sin (θ 0 ) / (0.720 × 0.990)}
R 2 : 2 × arcsin {sin (θ 0 ) / (0.698 × 1.010)}
˜2 × arcsin {sin (θ 0 ) / (0.698 × 0.990)}
R 3 : 2 × arcsin {sin (θ 0 ) / (0.592 × 1.010)}
˜2 × arcsin {sin (θ 0 ) / (0.592 × 0.990)}
R 4 : 2 × arcsin {sin (θ 0 ) / (0.572 × 1.010)}
˜2 × arcsin {sin (θ 0 ) / (0.572 × 0.990)}
R 5 : 2 × arcsin {sin (θ 0 ) / (0.500 × 1.010)}
˜2 × arcsin {sin (θ 0 ) / (0.500 × 0.990)}

本発明の青色発光蛍光体の結晶相は、上記R1、R2、R3、R4、R5の角度範囲に、各々少なくとも1本の回折ピークを有し、P0と、R1〜R5に各々存在するピークとの合計6本の回折ピークのうちの最強回折ピークに対し、P0は回折ピーク高さ比で20%以上の強度を有する。このP0の回折ピーク高さ比が20%未満であるものは本発明に係る特定の結晶構造とは言えない。この高さ比は、好ましくは20%以上100%以下である。その他の回折ピークは回折ピーク高さ比で9%以上である。この高さ比が9%未満のものは、本発明に係る特定の結晶構造とは言えない。好ましくは、この高さ比は9%以上100%以下である。
ただし、一つの角度範囲に回折ピークが2本以上存在するときは強度の大きいピークを採用する。
The crystal phase of the blue light-emitting phosphor of the present invention has at least one diffraction peak in each of the angle ranges of R 1 , R 2 , R 3 , R 4 , and R 5 , and P 0 and R 1 to P 0 has a diffraction peak height ratio of 20% or more with respect to the strongest diffraction peak out of a total of six diffraction peaks with each peak present in R 5 . Those having a P 0 diffraction peak height ratio of less than 20% cannot be said to be a specific crystal structure according to the present invention. This height ratio is preferably 20% or more and 100% or less. The other diffraction peaks have a diffraction peak height ratio of 9% or more. Those having a height ratio of less than 9% cannot be said to be a specific crystal structure according to the present invention. Preferably, the height ratio is 9% or more and 100% or less.
However, when there are two or more diffraction peaks in one angle range, a peak having a high intensity is adopted.

[2]青色発光蛍光体の製造方法
本発明の青色発光蛍光体は、前記に示されるような組成となるようにアルカリ土類金属源、Si源、および、付活元素であるEuの元素源化合物を、下記の(A)または(B)の混合法により混合した混合物(以下「原料混合物」と称す。)を加熱焼成することにより製造することができる。
(A)ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、または、乳鉢と乳棒等を用いる粉砕と、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、または、乳鉢と乳棒を用いる混合とを合わせた乾式混合法。
(B)水等を加えてスラリー状態または溶液状態で、粉砕機、乳鉢と乳棒、または蒸発皿と撹拌棒等により混合し、噴霧乾燥、加熱乾燥、または自然乾燥等により乾燥させる湿式混合法。
[2] Method for producing blue-emitting phosphor The blue-emitting phosphor of the present invention has an alkaline earth metal source, an Si source, and an element source of Eu as an activator so as to have the composition as described above. It can be produced by heating and firing a mixture obtained by mixing the compounds by the following mixing method (A) or (B) (hereinafter referred to as “raw material mixture”).
(A) Dry pulverizer such as hammer mill, roll mill, ball mill, jet mill, etc., pulverization using mortar and pestle, etc., and mixer such as ribbon blender, V-type blender, Henschel mixer, or mortar and pestle Dry mixing method combined with mixing.
(B) A wet mixing method in which water or the like is added and mixed in a slurry state or a solution state by a pulverizer, a mortar and pestle, or an evaporating dish and a stirring bar, and then dried by spray drying, heat drying, natural drying or the like.

原料混合物の調製に用いるアルカリ土類金属源、珪素源、および、付活元素のEu源化合物としては、それぞれの酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等が挙げられ、これらの中から、複合酸化物への反応性、および、焼成時におけるNOx、SOx等の非発生性等を考慮して選択される。   As the alkaline earth metal source, silicon source, and Eu source compound of the activating element used for preparing the raw material mixture, the respective oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, carboxylates Among them, the halide is selected in consideration of the reactivity to the composite oxide and the non-generation of NOx, SOx, etc. during firing.

アルカリ土類金属として挙げられている前記Ba、Ca、Sr、Mg源化合物について、具体的に例示すれば、Ba源化合物としては、BaO、Ba(OH)2・8H2O、BaCO3、Ba(NO32、BaSO4、Ba(OCO)2・2H2O、Ba(OCOCH32、BaCl2等が、また、Ca源化合物としては、CaO、Ca(OH)2、CaCO3、Ca(NO32・4H2O、CaSO4・2H2O、Ca(OCO)2・H2O、Ca(OCOCH32・H2O、CaCl2等が、また、Sr源化合物としては、SrO、Sr(OH)2・8H2O、SrCO3、Sr(NO32、SrSO4、Sr(OCO)2・H2O、Sr(OCOCH32・0.5H2O、SrCl2等がそれぞれ挙げられる。Mg源化合物としては、MgO、Mg(OH)2、MgCO3、Mg(OH)2・3MgCO3・3H2O、Mg(NO32・6H2O、MgSO4、Mg(OCO)2・2H2O、Mg(OCOCH32・4H2O、MgCl2等が挙げられる。 Specific examples of the Ba, Ca, Sr, and Mg source compounds mentioned as alkaline earth metals include BaO, Ba (OH) 2 .8H 2 O, BaCO 3 , Ba. (NO 3 ) 2 , BaSO 4 , Ba (OCO) 2 .2H 2 O, Ba (OCOCH 3 ) 2 , BaCl 2, etc., and Ca source compounds include CaO, Ca (OH) 2 , CaCO 3 , Ca (NO 3 ) 2 .4H 2 O, CaSO 4 .2H 2 O, Ca (OCO) 2 .H 2 O, Ca (OCOCH 3 ) 2 .H 2 O, CaCl 2 and the like are also used as Sr source compounds. Are SrO, Sr (OH) 2 .8H 2 O, SrCO 3 , Sr (NO 3 ) 2 , SrSO 4 , Sr (OCO) 2 .H 2 O, Sr (OCOCH 3 ) 2 .0.5H 2 O, Examples thereof include SrCl 2 . The Mg source compound, MgO, Mg (OH) 2 , MgCO 3, Mg (OH) 2 · 3MgCO 3 · 3H 2 O, Mg (NO 3) 2 · 6H 2 O, MgSO 4, Mg (OCO) 2 · 2H 2 O, Mg (OCOCH 3 ) 2 .4H 2 O, MgCl 2 and the like.

前記Si、Geについて、原料となる化合物を具体的に例示すれば、Si源化合物としては、SiO2、H4SiO4、Si(OCOCH34等が、また、Ge源化合物としは、GeO2、Ge(OH)4、Ge(OCOCH34、GeCl4等がそれぞれ挙げられる。 Specific examples of compounds that are raw materials for Si and Ge include SiO 2 , H 4 SiO 4 , Si (OCOCH 3 ) 4 and the like as the Si source compound, and GeO as the Ge source compound. 2 , Ge (OH) 4 , Ge (OCOCH 3 ) 4 , GeCl 4 and the like.

更に、付活元素として挙げられている前記Euについて、その元素源化合物を具体的に例示すれば、Eu23、Eu2(SO43、Eu2(OCO)6、EuCl2、EuCl3、Eu(NO33・6H2O等が挙げられる。 Further, with respect to Eu mentioned as an activator element, specific examples of the element source compound include Eu 2 O 3 , Eu 2 (SO 4 ) 3 , Eu 2 (OCO) 6 , EuCl 2 , EuCl. 3 , Eu (NO 3 ) 3 · 6H 2 O, and the like.

これらの原料化合物は、各々、1種を単独で用いても良く、2種以上を混合して用いても良い。   One of these raw material compounds may be used alone, or two or more thereof may be mixed and used.

原料混合物の焼成雰囲気としては、付活元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明における青色発光をもたらす発光中心元素のEuは2価イオンである必要があるが、Eu源化合物としては、通常、Eu23などのEuが3価である原料が用いられる。従って、Eu2+の青色発光をもたらす蛍光体を得るためには、焼成中に3価のEuを2価のEuに還元する必要がある。このために、従来は、一酸化炭素、窒素/水素、水素などの何らかの還元雰囲気下で焼成されるのが一般的であった。 As a firing atmosphere of the raw material mixture, an atmosphere necessary for obtaining an ion state (valence) in which the activating element contributes to light emission is selected. In the present invention, Eu as the luminescent center element that causes blue light emission needs to be a divalent ion. However, as the Eu source compound, a raw material in which Eu is trivalent such as Eu 2 O 3 is usually used. Therefore, in order to obtain a phosphor that emits blue light of Eu 2+ , it is necessary to reduce trivalent Eu to divalent Eu during firing. For this reason, conventionally, firing is generally performed in some kind of reducing atmosphere such as carbon monoxide, nitrogen / hydrogen, or hydrogen.

これに対して、本発明者等は、原料混合物を焼成して、3価のEuイオンを2価イオンに還元すると同時に母体結晶中に導入するに際し、炭素(固体のカーボン)を共存させるという特殊な還元条件のもとに焼成を行うと、490nmより短波長で輝度の高い発光をもたらし、同時に発光スペクトル幅が広い青色発光蛍光体を実現し得ることを見出した。
また、この条件で焼成した蛍光体の結晶構造は、請求項2に記載のX線回折結果をもたらし、特別な構造であることを見出した。
On the other hand, the present inventors specialize that carbon (solid carbon) coexists when the raw material mixture is calcined and trivalent Eu ions are reduced to divalent ions and simultaneously introduced into the host crystal. It has been found that when calcination is performed under various reducing conditions, a blue-emitting phosphor having a wavelength shorter than 490 nm and high luminance and simultaneously having a broad emission spectrum width can be realized.
Further, it has been found that the crystal structure of the phosphor fired under these conditions brings about the X-ray diffraction result of claim 2 and is a special structure.

ここで固体のカーボンとしては種々の形態の材料が使用できる。例えば、カーボンブラック、活性炭、ピッチ、コークス、黒鉛等の1種又は2種以上を使用することができる。   Here, various types of materials can be used as the solid carbon. For example, 1 type (s) or 2 or more types, such as carbon black, activated carbon, pitch, coke, graphite, can be used.

ここでカーボン共存下の焼成とは、同一焼成容器内にカーボンが存在すればよいのであって、原料混合物とカーボンを混合して焼成する必要はない。一般的に蛍光体製品中にカーボンが混入すると黒色であるカーボンが光を吸収するため効率が落ちる。共存の一例を挙げれば、焼成容器として黒鉛の坩堝を使用する方法が挙げられる。また、黒鉛以外の坩堝、例えばアルミナ坩堝を使用する場合には、黒鉛のビーズ、粒状物、ブロックなどを次のようにして共存させる方法が挙げられる。すなわち、同一の坩堝内において、蓋のない別容器にカーボンを入れたものを用い、この容器を、充填された原料の上部に設置する、原料粉体中に埋め込む、または反対に別の蓋なし容器に原料混合物を充填し、周囲にカーボンを配置するなどの方法が挙げられる。いずれの場合も、共存するカーボンと原料混合物とが同一雰囲気中に存在し、また、カーボンが得られる蛍光体中に混入しないように工夫することが重要である。   Here, the firing in the presence of carbon is sufficient if carbon is present in the same firing container, and it is not necessary to mix the raw material mixture and carbon for firing. In general, when carbon is mixed in a phosphor product, the black carbon absorbs light and the efficiency is lowered. As an example of coexistence, there is a method of using a graphite crucible as a firing container. In addition, when using a crucible other than graphite, for example, an alumina crucible, a method of coexisting graphite beads, granules, blocks and the like as follows can be mentioned. In other words, in the same crucible, use a container filled with carbon in a container without a lid, and place this container on the top of the filled raw material, embed it in the raw material powder, or conversely without another lid Examples thereof include a method of filling a container with a raw material mixture and arranging carbon around the container. In any case, it is important to devise so that the coexisting carbon and the raw material mixture are present in the same atmosphere and that carbon is not mixed into the phosphor from which the carbon is obtained.

なお、焼成は、原料混合物と反応性の低い材料を使用した坩堝やトレイ等の耐熱容器中で、通常750〜1400℃、好ましくは900〜1300℃の温度で、大気、一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単独或いは混合雰囲気下、上述のようにカーボンと共存する条件で10分〜24時間、加熱することにより行われる。
このような加熱処理後は、必要に応じて、洗浄、乾燥、分級処理等がなされる。
The firing is performed in a heat-resistant container such as a crucible or a tray using a material having low reactivity with the raw material mixture, usually at a temperature of 750 to 1400 ° C., preferably 900 to 1300 ° C., in the atmosphere, carbon monoxide, carbon dioxide. It is performed by heating for 10 minutes to 24 hours under the condition of coexisting with carbon as described above, alone or in a mixed atmosphere of a gas such as nitrogen, hydrogen, and argon.
After such heat treatment, washing, drying, classification, etc. are performed as necessary.

なお、得られた蛍光体を用いて、後述の方法で発光装置を製造する際には、必要に応じて公知の表面処理、例えば燐酸カルシウム処理を行ってから樹脂中に分散することが好ましい。   In addition, when manufacturing a light-emitting device by the below-mentioned method using the obtained fluorescent substance, it is preferable to disperse | distribute in resin after performing well-known surface treatment, for example, a calcium phosphate process.

[3]発光装置
本発明の発光装置は、波長420nm以下の光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有し、該第2の発光体として、上述の本発明の青色発光蛍光体を用いたものである。
[3] Light-emitting device The light-emitting device of the present invention includes a first light-emitting body that generates light having a wavelength of 420 nm or less, and a second light-emitting body that generates visible light by irradiation of light from the first light-emitting body. The blue light-emitting phosphor of the present invention described above is used as the second light emitter.

本発明において、第2の蛍光体に光を照射する第1の発光体は、波長420nm以下の短波の光を発生する。第1の発光体の具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。消費電力が良く少ない点でより好ましくはレーザーダイオードである。その中で、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、本発明の青色発光蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系はSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInXGaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。 In the present invention, the first light emitter that irradiates the second phosphor with light generates short-wave light having a wavelength of 420 nm or less. Specific examples of the first light emitter include a light emitting diode (LED) or a laser diode (LD). A laser diode is more preferable because it consumes less power. Of these, GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs have much higher light output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely low power when combined with the blue light-emitting phosphor of the present invention. This is because very bright light emission can be obtained. For example, for a current load of 20 mA, the GaN system usually has a light emission intensity 100 times or more that of the SiC system. GaN-based LEDs and LDs preferably have an Al x Ga Y N light emitting layer, a GaN light emitting layer, or an In x Ga Y N light emitting layer. Among GaN-based LEDs, those having an In X Ga Y N light-emitting layer are particularly preferable because the emission intensity is very strong, and in GaN-based LDs, the multiple quantum of the In X Ga Y N layer and the GaN layer is preferred. A well structure is particularly preferable because the emission intensity is very strong. In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics. A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic constituent elements. The light-emitting layer is made of n-type and p-type Al x Ga y N layers, GaN layers, or In x. Those having a heterostructure sandwiched between Ga Y N layers and the like have high luminous efficiency, and those having a heterostructure having a quantum well structure have higher luminous efficiency and are more preferable.

本発明の発光装置において、本発明の蛍光体を単独で使用する方法の他に、他の発光特性を持つ蛍光体と併用することによって、所望の色を発する発光装置を構成することができる。この一例として、330〜420nmの紫外LED発光素子とこの波長で励起され600nm以上660nm以下の波長に発光ピークを持つ赤色蛍光体と、500nm以上550nm以下の波長に発光ピークを持つ緑色蛍光体と本発明の蛍光体の組み合わせがある。ここで用いる赤色蛍光体としては、(Y、La、Gd、Lu)22S:Euで表されるユーロピウム付活希土類オキシカルコゲナイト系蛍光体、CaAlSiN3:Euで表されるユーロピウム付活ナイトライド系蛍光体、BaCaSi:Eu,Mnで表されるユーロピウム、マンガン付活アルカリ土類金属珪酸塩系蛍光体を挙げることができる。緑色蛍光体としてはBaMgAl1017:Eu,Mnで表されるユーロピウム付活アルミン酸塩蛍光体、(Mg、Ca、Sr、Ba)Si222:Euで表されるユーロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、BaSiO:Euで表されるユーロピウム付活アルカリ土類金属珪酸塩系蛍光体を挙げることができる。この構成では、LEDが発する紫外線が蛍光体に照射されると、赤、緑、青の3色の光が発せられ、これらの蛍光の混合により白色の光を発光する発光装置となる。 In the light emitting device of the present invention, in addition to the method of using the phosphor of the present invention alone, a light emitting device that emits a desired color can be configured by using in combination with a phosphor having other light emission characteristics. As an example of this, an ultraviolet LED light emitting device of 330 to 420 nm, a red phosphor excited at this wavelength and having an emission peak at a wavelength of 600 to 660 nm, a green phosphor having an emission peak at a wavelength of 500 to 550 nm, There are phosphor combinations of the invention. The red phosphor used here is a europium-activated rare earth oxychalcogenite-based phosphor represented by (Y, La, Gd, Lu) 2 O 2 S: Eu, with europium represented by CaAlSiN 3 : Eu. Examples thereof include active nitride phosphors, europium represented by Ba 3 CaSi 2 O 8 : Eu, Mn, and manganese-activated alkaline earth metal silicate phosphors. As the green phosphor, europium activated aluminate phosphor represented by BaMgAl 10 O 17 : Eu, Mn, europium activated by (Mg, Ca, Sr, Ba) Si 2 O 2 N 2 : Eu Examples include alkaline earth silicon oxynitride phosphors, europium activated alkaline earth metal silicate phosphors represented by Ba 2 SiO 4 : Eu. In this configuration, when ultraviolet light emitted from the LED is irradiated onto the phosphor, light of three colors of red, green, and blue is emitted, and a light emitting device that emits white light by mixing these fluorescences is obtained.

以下に、このような第1の発光体および第2の発光体を備える本発明の発光装置について、図面を参照して詳細に説明する。   Hereinafter, a light emitting device of the present invention including such a first light emitter and a second light emitter will be described in detail with reference to the drawings.

図1は、第1の発光体(波長420nm以下の短波長の光を発生する発光体)と第2の発光体とを有する本発明の発光装置の一実施例を示す模式的断面図であり、図2は、図1に示す発光装置を組み込んだ面発光照明装置の一実施例を示す模式的断面図である。図1および図2において、1は発光装置、2はマウントリード、3はインナーリード、4は第1の発光体、5は第2の発光体としての蛍光体含有樹脂部、6は導電性ワイヤー、7はモールド部材、8は面発光照明装置、9は拡散板、10は保持ケースである。   FIG. 1 is a schematic cross-sectional view showing an embodiment of a light emitting device of the present invention having a first light emitter (light emitter that generates light having a short wavelength of 420 nm or less) and a second light emitter. FIG. 2 is a schematic cross-sectional view showing an embodiment of a surface-emitting illumination device incorporating the light-emitting device shown in FIG. 1 and 2, 1 is a light emitting device, 2 is a mount lead, 3 is an inner lead, 4 is a first light emitter, 5 is a phosphor-containing resin portion as a second light emitter, and 6 is a conductive wire. , 7 is a mold member, 8 is a surface emitting illumination device, 9 is a diffusion plate, and 10 is a holding case.

この発光装置1は、図1に示されるように、一般的な砲弾型の形態をなし、マウントリード2の上部カップ内には、GaN系発光ダイオード等からなる第1の発光体(350〜430nm発光体)4が、その上に、蛍光体をシリコン樹脂、エポキシ樹脂やアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより第2の発光体として形成された蛍光体含有樹脂部5で被覆されることにより固定されている。一方、第1の発光体4とマウントリード2、および第1の発光体4とインナーリード3は、それぞれ導電性ワイヤー6で導通されており、これら全体がエポキシ樹脂等によるモールド部材7で被覆、保護されてなる。   As shown in FIG. 1, the light emitting device 1 has a general shell shape, and a first light emitter (350 to 430 nm) made of a GaN-based light emitting diode or the like is placed in the upper cup of the mount lead 2. The phosphor-containing resin portion formed as a second phosphor by mixing and dispersing the phosphor in a binder such as a silicon resin, an epoxy resin, or an acrylic resin and pouring the phosphor into the cup. It is fixed by being covered with 5. On the other hand, the first light emitter 4 and the mount lead 2, and the first light emitter 4 and the inner lead 3 are electrically connected by a conductive wire 6, respectively, which are entirely covered with a mold member 7 made of epoxy resin or the like, Protected.

また、この発光装置1を組み込んだ面発光照明装置8は、図2に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース10の底面に、多数の発光装置1を、その外側に発光装置1の駆動のための電源および回路等(図示せず。)を設けて配置し、保持ケース10の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板9を発光の均一化のために固定してなる。   In addition, as shown in FIG. 2, the surface-emitting illumination device 8 incorporating the light-emitting device 1 has a large amount of light emission on the bottom surface of a rectangular holding case 10 whose inner surface is light-opaque such as a white smooth surface. The device 1 is arranged with a power supply and a circuit (not shown) for driving the light emitting device 1 provided outside thereof, and a milky white acrylic plate or the like is provided at a position corresponding to the lid portion of the holding case 10. The diffusion plate 9 is fixed for uniform light emission.

そして、面発光照明装置8を駆動して、発光装置1の第1の発光体4に電圧を印加することにより420nmより短波の光を発光させ、その発光の一部を、第2の発光体としての蛍光体含有樹脂部5における前記蛍光体が吸収して、より長波長(420nmを超える)の可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板9を透過して、図面上方に出射され、保持ケース10の拡散板9面内において均一な明るさの照明光が得られることとなる。   Then, by driving the surface emitting illumination device 8 and applying a voltage to the first light emitter 4 of the light emitting device 1, light having a wavelength shorter than 420 nm is emitted, and a part of the light emission is converted into the second light emitter. The phosphor in the phosphor-containing resin part 5 absorbs and emits visible light having a longer wavelength (exceeding 420 nm), while color rendering is achieved by color mixing with blue light or the like that is not absorbed by the phosphor. High light emission is obtained, and this light is transmitted through the diffusion plate 9 and emitted upward in the drawing, and illumination light with uniform brightness can be obtained within the surface of the diffusion plate 9 of the holding case 10.

なお、上記発光装置1における蛍光体含有樹脂部5は、次のような効果を有する。即ち、第1の発光体からの光や第2の発光体の蛍光体からの光は通常四方八方に向いているが、第2の発光体の蛍光体粉を樹脂中に分散させると、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを揃えられる。従って、効率の良い向きに光をある程度誘導できるので、第2の発光体として、前記蛍光体の粉を樹脂中へ分散したものを使用するのが好ましい。また、蛍光体を樹脂中に分散させると、第1の発光体からの光の第2の発光体への全照射面積が大きくなるので、第2の発光体からの発光強度を大きくすることができるという利点も有する。   The phosphor-containing resin portion 5 in the light emitting device 1 has the following effects. That is, the light from the first light emitter and the light from the second light emitter are usually directed in all directions, but when the phosphor powder of the second light emitter is dispersed in the resin, Since part of the light is reflected when it goes out of the resin, the direction of light can be aligned to some extent. Accordingly, since light can be guided to a certain degree in an efficient direction, it is preferable to use a phosphor in which the phosphor powder is dispersed in a resin as the second luminous body. Further, when the phosphor is dispersed in the resin, the total irradiation area of the light from the first light emitter to the second light emitter is increased, so that the light emission intensity from the second light emitter can be increased. It also has the advantage of being able to.

この蛍光体含有樹脂部に使用できる樹脂としては、シリコン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものを1種を単独で又は2種以上を混合して用いることができるが、蛍光体粉の分散性が良い点で好ましくはシリコン樹脂、エポキシ樹脂である。蛍光体の粉を樹脂中に分散させる場合、当該蛍光体粉と樹脂との合計に対するその蛍光体粉の重量割合は、通常0.1〜20重量%、好ましくは0.3〜15重量%、さらに好ましくは0.5〜10重量%である。この範囲よりも蛍光体が多すぎると蛍光体粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。この樹脂中には、色斑(ムラ)を防止するため増量剤を添加してもよい。
なお、前述の如く、蛍光体は必要に応じて公知の表面処理を行ってから樹脂中に分散することが好ましい。
As a resin that can be used for the phosphor-containing resin part, various kinds such as silicon resin, epoxy resin, polyvinyl resin, polyethylene resin, polypropylene resin, and polyester resin can be used alone or in combination of two or more. In view of the good dispersibility of the phosphor powder, silicon resin and epoxy resin are preferable. When the phosphor powder is dispersed in the resin, the weight ratio of the phosphor powder to the total of the phosphor powder and the resin is usually 0.1 to 20% by weight, preferably 0.3 to 15% by weight, More preferably, it is 0.5 to 10% by weight. If there is too much phosphor within this range, the luminous efficiency may decrease due to aggregation of the phosphor powder, and if it is too small, the luminous efficiency may decrease due to light absorption or scattering by the resin. In this resin, a bulking agent may be added in order to prevent color spots (unevenness).
As described above, the phosphor is preferably dispersed in the resin after performing a known surface treatment if necessary.

本発明においては、面発光型の発光体、特に面発光型GaN系レーザーダイオードを第1の発光体として使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第2の発光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、第2の発光体である蛍光体からより強い発光を得ることができる。   In the present invention, it is particularly preferable to use a surface-emitting type illuminant, particularly a surface-emitting GaN-based laser diode, as the first illuminant because the luminous efficiency of the entire light-emitting device is increased. A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is successfully performed. By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. When the surface emitting type is used, the light emission cross-sectional area per unit light emission amount can be increased compared to the type that emits light from the edge of the light emitting layer. As a result, the phosphor of the second light emitter is irradiated with the light Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor that is the second light emitter.

このように第1の発光体として面発光型のものを使用する場合、第2の発光体を膜状とするのが好ましい。面発光型の第1の発光体からの光は断面積が十分大きいので、第2の発光体をその断面の方向に膜状とすると、第1の発光体からの蛍光体単位量あたりの照射断面積が大きくなるので、蛍光体からの発光の強度をより大きくすることができる。   As described above, when a surface-emitting type is used as the first light emitter, the second light emitter is preferably a film. Since the light from the surface-emitting type first light emitter has a sufficiently large cross-sectional area, if the second light emitter is formed into a film shape in the direction of the cross section, irradiation per unit amount of phosphor from the first light emitter Since the cross-sectional area is increased, the intensity of light emitted from the phosphor can be further increased.

また、第1の発光体として面発光型のものを使用し、第2の発光体として膜状のものを用いる場合、第1の発光体の発光面に、直接膜状の第2の発光体を接触させた形状とするのが好ましい。ここでいう接触とは、第1の発光体と第2の発光体とが空気や気体を介さないで密着している状態をつくることを言う。その結果、第1の発光体からの光が第2の発光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。   Further, when a surface-emitting type is used as the first light emitter and a film-like one is used as the second light emitter, the second light emitter directly in the form of a film on the light-emitting surface of the first light emitter. It is preferable to have a shape in which is contacted. Contact here means to create a state in which the first light emitter and the second light emitter are in close contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

図3は、このように、第1の発光体として面発光型のものを用い、第2の発光体として膜状のものをてきようした発光装置の一例を示す模式的斜視図である。図3中、11は、前記蛍光体を有する膜状の第2の発光体、12は第1の発光体としての面発光型GaN系LD、13は基板を表す。相互に接触した状態をつくるために、第1の発光体12のLDと第2の発光体11とそれぞれ別個に作成し、それらの面同士を接着剤やその他の手段によって接触させても良いし、LD12の発光面上に第2の発光体11を製膜(成型)させても良い。これらの結果、LD12と第2の発光体11とを接触した状態とすることができる。   FIG. 3 is a schematic perspective view showing an example of a light emitting device in which a surface light emitting type is used as the first light emitter and a film-like one is used as the second light emitter. In FIG. 3, 11 is a film-like second light emitter having the phosphor, 12 is a surface-emitting GaN-based LD as the first light emitter, and 13 is a substrate. In order to create a state where they are in contact with each other, the LD of the first light emitter 12 and the second light emitter 11 may be separately formed, and the surfaces may be brought into contact with each other by an adhesive or other means. The second light emitter 11 may be formed (molded) on the light emitting surface of the LD 12. As a result, the LD 12 and the second light emitter 11 can be brought into contact with each other.

本発明の発光装置は、前述の本発明の青色発光蛍光体を含む波長変換材料としての第2の発光体と、420nm以下の短波長の光を発生する第1の発光体とを備え、第2の発光体中の本発明の青色発光蛍光体が、第1の発光体の発する420nm以下の短波長の光を吸収して、使用環境によらず演色性が良く、かつ、高強度の可視光を発生させることのできる発光装置である。このような発光装置において、前述の特定の結晶相及び組成を有する本発明の青色発光蛍光体は、420nm以下の短波長の光を発生する第1の発光体からの光の照射により、青色を表す500nmより短波の波長領域、好ましくは450〜490nmの領域で発光する。
このような本発明の発光装置は、バックライト光源、信号機などの発光源、また、カラー液晶ディスプレイ等の画像表示装置や面発光等の照明装置等の光源に適している。
A light emitting device of the present invention includes a second light emitter as a wavelength conversion material including the above-described blue light emitting phosphor of the present invention, and a first light emitter that generates light having a short wavelength of 420 nm or less. The blue light-emitting phosphor of the present invention in the light-emitting body 2 absorbs light having a short wavelength of 420 nm or less emitted from the first light-emitting body, has good color rendering properties regardless of the use environment, and has high-intensity visible light. It is a light emitting device capable of generating light. In such a light emitting device, the blue light emitting phosphor of the present invention having the specific crystal phase and composition described above emits blue light when irradiated with light from the first light emitter that generates light having a short wavelength of 420 nm or less. It emits light in a wavelength region of a wavelength shorter than 500 nm, preferably 450 to 490 nm.
Such a light emitting device of the present invention is suitable for a light source such as a backlight source, a light source such as a traffic light, an image display device such as a color liquid crystal display, and a lighting device such as a surface emitting device.

以下に、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

〈実施例1〉
原料化合物としてBaCO3,CaCO3,Eu23,SiO2を、Ba,Ca,Eu,Siのモル比が1.49:0.5:0.01:1となるように計量し、フラックスとしてNH4Clを加えてボールミルで1時間混合した。小型の蓋付きアルミナ坩堝に原料混合物を秤取り、軽く蓋をし、大型アルミナ坩堝の底部に設置した。大型坩堝と小型坩堝の間隙に活性炭を充填した。なお、蓋は小型坩堝内への活性炭の混入を防ぐためのものであり、蓋と小型坩堝本体との間には若干の隙間があるため、カーボン共存条件を満たす。
この状態で、4%の水素を含む窒素ガス流下、1200℃で4時間加熱することにより、蛍光体Ba1.49Ca0.5Eu0.01SiO4を製造した。この蛍光体のX線回折測定は以下の条件で行った。
走査範囲内の回折角誤差がΔ2θ=0.05°以下に光学調整されたCuKαのX線源からなるブラッグーブレンターノ型の粉末X線回折装置を用い、かつ試料偏心に伴う回折角の誤差が標準シリコンの111ピークを用いて、Δ2θ=0.05°以下の角度再現性が保証される条件で粉末X線回折測定を実施した。また、測定時にX線の照射幅が試料の幅を超えないように、発散スリットの発散角を調整し、回折ピーク位置(ピークトップ)および回折強度(高さ)は固定スリットモードでの測定結果の値を読み取った。
図4及び表1にX線回折測定結果を示す。
<Example 1>
BaCO 3 , CaCO 3 , Eu 2 O 3 , SiO 2 as raw material compounds are weighed so that the molar ratio of Ba, Ca, Eu, Si is 1.49: 0.5: 0.01: 1, and flux NH 4 Cl was added and mixed with a ball mill for 1 hour. The raw material mixture was weighed in a small alumina crucible with a lid, lightly capped, and placed on the bottom of a large alumina crucible. Activated carbon was filled in the gap between the large crucible and the small crucible. The lid is for preventing the activated carbon from being mixed into the small crucible. Since there is a slight gap between the lid and the small crucible body, the carbon coexistence condition is satisfied.
In this state, phosphor Ba 1.49 Ca 0.5 Eu 0.01 SiO 4 was produced by heating at 1200 ° C. for 4 hours under a nitrogen gas flow containing 4% hydrogen. X-ray diffraction measurement of this phosphor was performed under the following conditions.
Using a Bragg-Brentano type powder X-ray diffractometer comprising a CuKα X-ray source optically adjusted so that the diffraction angle error within the scanning range is Δ2θ = 0.05 ° or less, and the diffraction angle error due to sample eccentricity is Using the 111 peak of standard silicon, powder X-ray diffraction measurement was performed under conditions where an angle reproducibility of Δ2θ = 0.05 ° or less was guaranteed. In addition, the divergence angle of the divergence slit is adjusted so that the X-ray irradiation width does not exceed the width of the sample during measurement, and the diffraction peak position (peak top) and diffraction intensity (height) are measured in the fixed slit mode. The value of was read.
FIG. 4 and Table 1 show the X-ray diffraction measurement results.

Figure 2007009141
Figure 2007009141

これらの結果から、得られた蛍光体は請求項2に記述した条件を満足しており、前述した特定の結晶相を含むことが確認された。   From these results, it was confirmed that the obtained phosphor satisfied the conditions described in claim 2 and contained the specific crystal phase described above.

図5に、GaN系発光ダイオードの近紫外領域の主波長である400nmで、この蛍光体を励起したときの発光スペクトルを示した。ここでは、発光スペクトル上で励起光源の影響を取り除くため、波長420nm以下の光をカットしている。   FIG. 5 shows an emission spectrum when this phosphor is excited at 400 nm, which is the dominant wavelength in the near ultraviolet region of a GaN-based light emitting diode. Here, in order to remove the influence of the excitation light source on the emission spectrum, light having a wavelength of 420 nm or less is cut.

また、本蛍光体の発光特性:ピーク強度、ピーク波長、半値幅、色度座標(x、y)を表2に示した。ピーク強度は後述の比較例1の輝度を100とした値である。   In addition, Table 2 shows the emission characteristics of the present phosphor: peak intensity, peak wavelength, half width, and chromaticity coordinates (x, y). The peak intensity is a value with the luminance of Comparative Example 1 described later as 100.

〈実施例2〉
原料化合物としてBaCO3,CaCO3,Eu23,SiO2を、Ba,Ca,Eu,Siのモル比が1.46:0.49:0.05:1となるように計量し、フラックスとしてNH4Clを加えてボールミルで1時間混合した。小型の蓋付きアルミナ坩堝に原料混合物を秤取り、軽く蓋をし、大型アルミナ坩堝の底部に設置した。大型坩堝と小型坩堝の間隙に活性炭を充填した。この状態で、4%の水素を含む窒素ガス流下、1300℃で2時間加熱することにより、蛍光体Ba1.46Ca0.49Eu0.05SiO4を製造した。
この蛍光体のX線回折測定は実施例1と同様の条件で行った。
図6にこの蛍光体のX線回折測定結果を、図7に発光スペクトルをそれぞれ示し、表2にその特性をまとめた。
<Example 2>
BaCO 3 , CaCO 3 , Eu 2 O 3 , and SiO 2 as raw material compounds are weighed so that the molar ratio of Ba, Ca, Eu, and Si is 1.46: 0.49: 0.05: 1, and flux NH 4 Cl was added and mixed with a ball mill for 1 hour. The raw material mixture was weighed in a small alumina crucible with a lid, lightly capped, and placed on the bottom of a large alumina crucible. Activated carbon was filled in the gap between the large crucible and the small crucible. In this state, phosphor Ba 1.46 Ca 0.49 Eu 0.05 SiO 4 was produced by heating at 1300 ° C. for 2 hours under a nitrogen gas flow containing 4% hydrogen.
The X-ray diffraction measurement of this phosphor was performed under the same conditions as in Example 1.
FIG. 6 shows the result of X-ray diffraction measurement of this phosphor, FIG. 7 shows the emission spectrum, and Table 2 summarizes the characteristics.

〈実施例3〉
原料化合物としてBaCO3,CaCO3,Eu23,SiO2を、Ba,Ca,Eu,Siのモル比が1.46:0.49:0.05:1となるように計量し、フラックスとしてNH4Clを加えてボールミルで1時間混合した。小型の蓋付きアルミナ坩堝に原料混合物を秤取り、軽く蓋をし、大型アルミナ坩堝の底部に設置した。大型坩堝と小型坩堝の間隙に活性炭を充填した。この状態で、窒素ガス流下、1200℃で4時間加熱することにより、蛍光体Ba1.46Ca0.49Eu0.05SiO4を製造した。
この蛍光体のX線回折測定は実施例1と同様の条件で行った。X線回折測定結果は実施例2と差が認められなかった。
図7にこの蛍光体の発光スペクトルを示し、表2にその特性をまとめた。
<Example 3>
BaCO 3 , CaCO 3 , Eu 2 O 3 , and SiO 2 as raw material compounds are weighed so that the molar ratio of Ba, Ca, Eu, and Si is 1.46: 0.49: 0.05: 1, and flux NH 4 Cl was added and mixed with a ball mill for 1 hour. The raw material mixture was weighed in a small alumina crucible with a lid, lightly capped, and placed on the bottom of a large alumina crucible. Activated carbon was filled in the gap between the large crucible and the small crucible. In this state, phosphor Ba 1.46 Ca 0.49 Eu 0.05 SiO 4 was produced by heating at 1200 ° C. for 4 hours under a nitrogen gas flow.
The X-ray diffraction measurement of this phosphor was performed under the same conditions as in Example 1. The X-ray diffraction measurement result was not different from Example 2.
FIG. 7 shows the emission spectrum of this phosphor, and Table 2 summarizes its characteristics.

〈実施例4〉
原料化合物としてBaCO3,CaCO3,MgCO3,Eu23,SiO2を、Ba,Ca,Mg,Eu,Siのモル比が1.37:0.5:0.1:0.03:1となるように計量し、フラックスとしてNH4Clを加えてボールミルで1時間混合した。小型の蓋付きアルミナ坩堝に原料混合物を秤取り、軽く蓋をし、大型アルミナ坩堝の底部に設置した。大型坩堝と小型坩堝の間隙に活性炭を充填した。この状態で、4%の水素を含む窒素ガス流下、1100℃で4時間加熱することにより、蛍光体Ba1.37Ca0.5Mg0.1EuSiO4を製造した。
この蛍光体のX線回折測定は実施例1と同様の条件で行った。X線回折測定結果は実施例2と差が認められなかった。
図7にこの蛍光体の発光スペクトルを示し、表2にその特性をまとめた。
<Example 4>
BaCO 3 , CaCO 3 , MgCO 3 , Eu 2 O 3 , and SiO 2 are used as raw material compounds, and the molar ratio of Ba, Ca, Mg, Eu, and Si is 1.37: 0.5: 0.1: 0.03: Weighed to 1 and added NH 4 Cl as flux and mixed for 1 hour in a ball mill. The raw material mixture was weighed in a small alumina crucible with a lid, lightly capped, and placed on the bottom of a large alumina crucible. Activated carbon was filled in the gap between the large crucible and the small crucible. In this state, phosphor Ba 1.37 Ca 0.5 Mg 0.1 EuSiO 4 was produced by heating at 1100 ° C. for 4 hours under a nitrogen gas flow containing 4% hydrogen.
The X-ray diffraction measurement of this phosphor was performed under the same conditions as in Example 1. The X-ray diffraction measurement result was not different from Example 2.
FIG. 7 shows the emission spectrum of this phosphor, and Table 2 summarizes its characteristics.

〈実施例5〉
原料化合物としてBaCO3,CaCO3,SrCO3,Eu23,SiO2を、Ba,Ca,Sr,Eu,Siのモル比が1.39:0.5:0.1:0.01:1となるように計量した以外は実施例3と同様にして、蛍光体Ba1.39Ca0.5Sr0.1Eu0.01SiO4を得た。
この蛍光体のX線回折測定は実施例1と同様の条件で行った。X線回折測定結果は実施例2と差が認められなかった。
図7にこの蛍光体の発光スペクトルを示し、表2にその特性をまとめた。
<Example 5>
BaCO 3 , CaCO 3 , SrCO 3 , Eu 2 O 3 , and SiO 2 are used as raw material compounds, and the molar ratio of Ba, Ca, Sr, Eu, and Si is 1.39: 0.5: 0.1: 0.01: A phosphor Ba 1.39 Ca 0.5 Sr 0.1 Eu 0.01 SiO 4 was obtained in the same manner as in Example 3 except that the weight was adjusted to 1.
The X-ray diffraction measurement of this phosphor was performed under the same conditions as in Example 1. The X-ray diffraction measurement result was not different from Example 2.
FIG. 7 shows the emission spectrum of this phosphor, and Table 2 summarizes its characteristics.

〈実施例6〉
原料化合物としてBaCO3,CaCO3,Eu23,SiO2を、Ba,Ca,Eu,Siのモル比が1.593:0.4:0.007:1となるように計量した以外は実施例1同様にして、蛍光体Ba1.593Ca0.4Eu0.007SiO4を得た。
この蛍光体のX線回折測定は実施例1と同様の条件で行った。X線回折測定結果は実施例2と差が認められなかった。
図7にこの蛍光体の発光スペクトルを示し、表2にその特性をまとめた。
<Example 6>
Except that BaCO 3 , CaCO 3 , Eu 2 O 3 and SiO 2 were measured as raw material compounds so that the molar ratio of Ba, Ca, Eu and Si was 1.593: 0.4: 0.007: 1. In the same manner as in Example 1, a phosphor Ba 1.593 Ca 0.4 Eu 0.007 SiO 4 was obtained.
The X-ray diffraction measurement of this phosphor was performed under the same conditions as in Example 1. The X-ray diffraction measurement result was not different from Example 2.
FIG. 7 shows the emission spectrum of this phosphor, and Table 2 summarizes its characteristics.

〈比較例1〉
原料化合物としてBaCO3,MgCO3,Eu23,SiO2を、Ba,Mg,Eu,Siのモル比が1.49:0.5:0.01:1となるように計量し、フラックスとしてNH4Clを加えてボールミルで1時間混合した。小型の蓋付きアルミナ坩堝に原料混合物を秤取り、軽く蓋をし、大型アルミナ坩堝の底部に設置した。大型坩堝と小型坩堝の間隙には活性炭を充填しなかった。この状態で、4%の水素を含む窒素ガス流下、1200℃で4時間加熱することにより、蛍光体Ba1.49Mg0.5Eu0.01SiO4を製造した。
この蛍光体のX線回折測定は実施例1と同様の条件で行った。
図8にこの蛍光体のX線回折測定結果を、図9に発光スペクトルをそれぞれ示し、表2にその特性をまとめた。
<Comparative example 1>
BaCO 3 , MgCO 3 , Eu 2 O 3 , SiO 2 as raw material compounds are weighed so that the molar ratio of Ba, Mg, Eu, Si is 1.49: 0.5: 0.01: 1, and flux NH 4 Cl was added and mixed with a ball mill for 1 hour. The raw material mixture was weighed in a small alumina crucible with a lid, lightly capped, and placed on the bottom of a large alumina crucible. The gap between the large crucible and the small crucible was not filled with activated carbon. In this state, phosphor Ba 1.49 Mg 0.5 Eu 0.01 SiO 4 was produced by heating at 1200 ° C. for 4 hours under a nitrogen gas flow containing 4% hydrogen.
The X-ray diffraction measurement of this phosphor was performed under the same conditions as in Example 1.
FIG. 8 shows the X-ray diffraction measurement results of this phosphor, FIG. 9 shows the emission spectrum, and Table 2 summarizes the characteristics.

〈比較例2〉
原料化合物としてBaCO3,CaCO3,Eu23,SiO2を、Ba,Ca,Eu,Siのモル比が1.75:0.2:0.005:1となるように計量した以外は実施例1同様にして、蛍光体Ba1.75Ca0.2Eu0.005SiO4を製造した。
この蛍光体のX線回折測定は実施例1と同様の条件で行った。
図10にこの蛍光体のX線回折測定結果を、図11に発光スペクトルをそれぞれ示し、表2にその特性をまとめた。
<Comparative example 2>
Except that BaCO 3 , CaCO 3 , Eu 2 O 3 , SiO 2 were measured as raw material compounds so that the molar ratio of Ba, Ca, Eu, Si was 1.75: 0.2: 0.005: 1. A phosphor Ba 1.75 Ca 0.2 Eu 0.005 SiO 4 was produced in the same manner as in Example 1.
The X-ray diffraction measurement of this phosphor was performed under the same conditions as in Example 1.
FIG. 10 shows the X-ray diffraction measurement results of this phosphor, FIG. 11 shows the emission spectrum, and Table 2 summarizes the characteristics.

〈比較例3〉
原料化合物としてBaCO3,CaCO3,Eu23,SiO2を、Ba,Ca,Eu,Siのモル比が1.0:0.95:0.005:1となるように計量した以外は実施例1同様にして、蛍光体Ba1.00Ca0.95Eu0.005SiO4を得た。
この蛍光体のX線回折測定は実施例1と同様の条件で行った。
図12にこの蛍光体のX線回折測定結果を、図11に発光スペクトルをそれぞれ示し、表2にその特性をまとめた。
<Comparative Example 3>
Except that BaCO 3 , CaCO 3 , Eu 2 O 3 , SiO 2 were measured as raw material compounds so that the molar ratio of Ba, Ca, Eu, Si was 1.0: 0.95: 0.005: 1. In the same manner as in Example 1, a phosphor Ba 1.00 Ca 0.95 Eu 0.005 SiO 4 was obtained.
The X-ray diffraction measurement of this phosphor was performed under the same conditions as in Example 1.
FIG. 12 shows the X-ray diffraction measurement results of this phosphor, FIG. 11 shows the emission spectrum, and Table 2 summarizes the characteristics.

〈比較例4〉
原料化合物としてBaCO3,CaCO3,Eu23,SiO2を、Ba,Ca,Eu,Siのモル比が1.46:0.49:0.05:1となるように計量し、フラックスとしてNH4Clを加えてボールミルで1時間混合した。小型の蓋付きアルミナ坩堝に原料混合物を秤取り、軽く蓋をし、大型アルミナ坩堝の底部に設置した。大型坩堝と小型坩堝の間隙には活性炭を充填しなかった。この状態で、窒素ガス流下、1200℃で4時間加熱することにより、蛍光体Ba1.46Ca0.49Eu0.05SiO4を製造した。
この蛍光体のX線回折測定は実施例1と同様の条件で行った。X線回折測定結果は実施例2と差が認められなかった。
本蛍光体はほとんど発光が認められなかった。表2にこの蛍光体の特性をまとめた。
<Comparative example 4>
BaCO 3 , CaCO 3 , Eu 2 O 3 , and SiO 2 as raw material compounds are weighed so that the molar ratio of Ba, Ca, Eu, and Si is 1.46: 0.49: 0.05: 1, and flux NH 4 Cl was added and mixed with a ball mill for 1 hour. The raw material mixture was weighed in a small alumina crucible with a lid, lightly capped, and placed on the bottom of a large alumina crucible. The gap between the large crucible and the small crucible was not filled with activated carbon. In this state, phosphor Ba 1.46 Ca 0.49 Eu 0.05 SiO 4 was produced by heating at 1200 ° C. for 4 hours under a nitrogen gas flow.
The X-ray diffraction measurement of this phosphor was performed under the same conditions as in Example 1. The X-ray diffraction measurement result was not different from Example 2.
The phosphor hardly emits light. Table 2 summarizes the characteristics of this phosphor.

〈比較例5〉
原料化合物としてBaCO3,CaCO3,Eu23,SiO2を、Ba,Ca,Eu,Siのモル比が1.35:0.45:0.2:1となるよう計量した以外は実施例1と同様にして、蛍光体Ba1.35Ca0.45Eu0.2SiO4を製造した。
この蛍光体のX線回折測定は実施例1と同様の条件で行った。X線回折測定結果は実施例2と差が認められなかった。
図11にこの蛍光体の発光スペクトルを示し、表2にその特性をまとめた。
<Comparative Example 5>
Implementation was performed except that BaCO 3 , CaCO 3 , Eu 2 O 3 , and SiO 2 were measured as raw material compounds so that the molar ratio of Ba, Ca, Eu, and Si was 1.35: 0.45: 0.2: 1. In the same manner as in Example 1, a phosphor Ba 1.35 Ca 0.45 Eu 0.2 SiO 4 was produced.
The X-ray diffraction measurement of this phosphor was performed under the same conditions as in Example 1. The X-ray diffraction measurement result was not different from Example 2.
FIG. 11 shows the emission spectrum of this phosphor, and Table 2 summarizes its characteristics.

Figure 2007009141
Figure 2007009141

以上の結果から次のことが明らかである。
実施例1〜6では、請求項1の組成範囲の原料混合物をすべてカーボン共存状態にて焼成することにより、蛍光体を製造した。このようにして得られた蛍光体はいずれもX線回折の結果から請求項2に規定した条件を満たす結晶相であることが示された。
From the above results, the following is clear.
In Examples 1 to 6, phosphors were produced by firing all of the raw material mixture having the composition range of claim 1 in a coexisting state of carbon. The phosphors thus obtained were all shown to be a crystal phase satisfying the conditions defined in claim 2 from the results of X-ray diffraction.

これに対して、比較例1はmerwiniteの組成で焼成したものでありmerwiniteの結晶構造を示した。比較例2および3は組成が本発明の範囲外であるため、カーボン共存下の焼成を行ったにもかかわらず、実施例1〜6と同じ結晶構造が得られなかった。   On the other hand, Comparative Example 1 was fired with a merwinite composition and showed a merwinite crystal structure. Since the compositions of Comparative Examples 2 and 3 were outside the scope of the present invention, the same crystal structure as that of Examples 1 to 6 could not be obtained despite firing in the presence of carbon.

発光特性について考察するに、実施例1〜6の発光ピーク波長は445nm〜471nmの範囲であり、同半値幅が69nm〜113nmである。これに対して比較例1は発光ピーク波長が440nmで狭い半値幅33nmを示した。比較例2および3の発光ピークの半値幅はそれぞれ80nm、110nmであったがピーク波長はそれぞれ530nmおよび509nmであった。比較例4は実施例3と同組成であるがカーボン共存下の焼成でないため殆ど発光しなかった。比較例5はEu濃度が高いため、発光ピーク波長が490nm以上の長波長となった。   Considering the emission characteristics, the emission peak wavelengths of Examples 1 to 6 are in the range of 445 nm to 471 nm, and the half width is 69 nm to 113 nm. On the other hand, Comparative Example 1 showed an emission peak wavelength of 440 nm and a narrow half-value width of 33 nm. The half widths of the emission peaks of Comparative Examples 2 and 3 were 80 nm and 110 nm, respectively, but the peak wavelengths were 530 nm and 509 nm, respectively. Comparative Example 4 had the same composition as Example 3, but did not emit light because it was not fired in the presence of carbon. In Comparative Example 5, since the Eu concentration was high, the emission peak wavelength was a long wavelength of 490 nm or more.

本発明の発光装置の実施の形態を示す模式的断面図である。It is typical sectional drawing which shows embodiment of the light-emitting device of this invention. 本発明の発光装置を用いた面発光照明装置の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the surface emitting illumination apparatus using the light-emitting device of this invention. 本発明の発光装置の他の実施の形態を示す模式的な斜視図である。It is a typical perspective view which shows other embodiment of the light-emitting device of this invention. 実施例1の蛍光体のX線回折パターン(X線源:CuKα)図である。2 is an X-ray diffraction pattern (X-ray source: CuKα) diagram of the phosphor of Example 1. FIG. 実施例1の蛍光体の発光スペクトル(励起光:400nm)図である。FIG. 3 is an emission spectrum (excitation light: 400 nm) diagram of the phosphor of Example 1. 実施例2の蛍光体のX線回折パターン(X線源:CuKα)図である。6 is an X-ray diffraction pattern (X-ray source: CuKα) diagram of the phosphor of Example 2. FIG. 実施例2〜6の蛍光体の発光スペクトル(励起光:400nm)図である。It is an emission spectrum (excitation light: 400 nm) figure of the fluorescent substance of Examples 2-6. 比較例1の蛍光体のX線回折パターン(X線源:CuKα)図である。4 is an X-ray diffraction pattern (X-ray source: CuKα) diagram of the phosphor of Comparative Example 1. FIG. 比較例1の蛍光体の発光スペクトル(励起光:400nm)図である。FIG. 3 is an emission spectrum (excitation light: 400 nm) of the phosphor of Comparative Example 1. 比較例2の蛍光体のX線回折パターン(X線源:CuKα)図である。6 is an X-ray diffraction pattern (X-ray source: CuKα) diagram of a phosphor of Comparative Example 2. FIG. 比較例2、3および5の蛍光体の発光スペクトル(励起光:400nm)図である。It is an emission spectrum (excitation light: 400 nm) figure of the fluorescent substance of the comparative examples 2, 3, and 5. 比較例3の蛍光体のX線回折パターン(X線源:CuKα)図である。It is an X-ray diffraction pattern (X-ray source: CuKα) diagram of the phosphor of Comparative Example 3.

1;発光装置
2;マウントリード
3;インナーリード
4;第1の発光体
5;蛍光体含有樹脂部(第2の発光体)
6;導電性ワイヤー
7;モールド部材
8;面発光照明装置
9;拡散板
10;保持ケース
11;第2の発光体
12;第1の発光体
13;基板
DESCRIPTION OF SYMBOLS 1; Light-emitting device 2; Mount lead 3; Inner lead 4; 1st light-emitting body 5; Phosphor containing resin part (2nd light-emitting body)
6; Conductive wire 7; Mold member 8; Surface-emitting illuminating device 9; Diffuser 10; Holding case 11; Second light emitter 12; First light emitter 13;

Claims (8)

組成式:(BaaCabSrMgdEu)SiO4で表されるユーロピウム付活アルカリ土類金属珪酸塩よりなる青色発光蛍光体において、
該組成式中、係数a、b、c、dおよびxが
a+b+c+d+x=2
0<a<2
0<b<2
0≦c<0.5
0≦d<0.5
0<x≦0.5
を満足することを特徴とする青色発光蛍光体。
Composition formula: In (Ba a Ca b Sr c Mg d Eu x) blue-emitting phosphor consisting of europium-activated alkaline earth metal silicate represented by SiO 4,
In the composition formula, coefficients a, b, c, d, and x are a + b + c + d + x = 2.
0 <a <2
0 <b <2
0 ≦ c <0.5
0 ≦ d <0.5
0 <x ≦ 0.5
A blue-emitting phosphor characterized by satisfying
請求項1に記載の蛍光体において、CuKαのX線源を用いたX線回折測定において、下記(1)および(2)の条件を満足する特定の結晶相を含むことを特徴とする青色発光蛍光体。
(1)回折角(2θ)21.30〜22.50゜の範囲(R0)に回折ピークが観測され、この回折ピークを基準回折ピーク(P0)とし、P0のブラッグ角(θ0)より導かれる5つの回折角の角度範囲を下記のR1、R2、R3、R4、R5としたとき、これらの範囲内の各々に回折ピークが少なくとも1本存在する。
(2)基準回折ピークP0と、R1〜R5の範囲に各々存在するピークとの合計6本の回折ピークのうちの最強回折ピークに対し、P0は回折ピーク高さ比で20%以上の強度を有し、その他の回折ピークは回折ピーク高さ比で9%以上である。
ただし、上記(1),(2)のいずれにおいても、一つの角度範囲に回折ピークが2本以上存在するときは強度の大きいピークを採用する。
1:2×arcsin{sin(θ0)/(0.720×1.015)}
〜2×arcsin{sin(θ0)/(0.720×0.985)}
2:2×arcsin{sin(θ0)/(0.698×1.015)}
〜2×arcsin{sin(θ0)/(0.698×0.985)}
3:2×arcsin{sin(θ0)/(0.592×1.015)}
〜2×arcsin{sin(θ0)/(0.592×0.985)}
4:2×arcsin{sin(θ0)/(0.572×1.015)}
〜2×arcsin{sin(θ0)/(0.572×0.985)}
5:2×arcsin{sin(θ0)/(0.500×1.015)}
〜2×arcsin{sin(θ0)/(0.500×0.985)}
2. The phosphor according to claim 1, comprising a specific crystal phase satisfying the following conditions (1) and (2) in an X-ray diffraction measurement using a CuKα X-ray source: Phosphor.
(1) A diffraction peak is observed in a diffraction angle (2θ) range of 21.30 to 22.50 ° (R 0 ). This diffraction peak is defined as a reference diffraction peak (P 0 ), and a Bragg angle (θ 0 ) of P 0 is used. ) When the following ranges of the five diffraction angles are R 1 , R 2 , R 3 , R 4 , and R 5 , at least one diffraction peak exists in each of these ranges.
(2) P 0 is a diffraction peak height ratio of 20% with respect to the strongest diffraction peak among a total of six diffraction peaks of the reference diffraction peak P 0 and the peaks existing in the range of R 1 to R 5. The other diffraction peaks have the above intensity, and the diffraction peak height ratio is 9% or more.
However, in any of the above (1) and (2), when two or more diffraction peaks exist in one angle range, a peak having a high intensity is adopted.
R 1 : 2 × arcsin {sin (θ 0 ) / (0.720 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.720 × 0.985)}
R 2 : 2 × arcsin {sin (θ 0 ) / (0.698 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.698 × 0.985)}
R 3 : 2 × arcsin {sin (θ 0 ) / (0.592 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.592 × 0.985)}
R 4 : 2 × arcsin {sin (θ 0 ) / (0.572 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.572 × 0.985)}
R 5 : 2 × arcsin {sin (θ 0 ) / (0.500 × 1.015)}
˜2 × arcsin {sin (θ 0 ) / (0.500 × 0.985)}
請求項1または2に記載の蛍光体において、係数aおよびbが1≦(a/b)≦10を満たすことを特徴とする青色蛍光体。   3. The blue phosphor according to claim 1, wherein the coefficients a and b satisfy 1 ≦ (a / b) ≦ 10. 4. 請求項1ないし3のいずれか1項に記載の蛍光体の製造方法であって、Ba、Ca、EuおよびSiの元素源化合物と必要に応じて用いられるSrおよび/またはMgの元素源化合物の混合物を炭素共存下で焼成することを特徴とする青色発光蛍光体の製造方法。   The method for producing a phosphor according to any one of claims 1 to 3, wherein an element source compound of Ba, Ca, Eu and Si and an element source compound of Sr and / or Mg used as necessary A method for producing a blue-emitting phosphor, comprising firing the mixture in the presence of carbon. 波長420nm以下の光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、該第2の発光体が請求項1ないし3のいずれか1項に記載の蛍光体、或いは請求項4に記載の製造方法により得られた蛍光体を含むことを特徴とする発光装置。   In a light emitting device including a first light emitter that generates light having a wavelength of 420 nm or less and a second light emitter that generates visible light by irradiation of light from the first light emitter, the second light emitter A light emitting device comprising the phosphor according to any one of claims 1 to 3 or the phosphor obtained by the manufacturing method according to claim 4. 請求項5に記載の発光装置を用いたことを特徴とする照明装置。   An illumination device using the light emitting device according to claim 5. 請求項5に記載の発光装置を用いたことを特徴とするディスプレイ用バックライト。   A display backlight comprising the light-emitting device according to claim 5. 請求項5に記載の発光装置を用いたことを特徴とするディスプレイ。   A display using the light-emitting device according to claim 5.
JP2005195173A 2005-07-04 2005-07-04 Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display Withdrawn JP2007009141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195173A JP2007009141A (en) 2005-07-04 2005-07-04 Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195173A JP2007009141A (en) 2005-07-04 2005-07-04 Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display

Publications (1)

Publication Number Publication Date
JP2007009141A true JP2007009141A (en) 2007-01-18

Family

ID=37748043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195173A Withdrawn JP2007009141A (en) 2005-07-04 2005-07-04 Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display

Country Status (1)

Country Link
JP (1) JP2007009141A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096545A1 (en) * 2007-02-09 2008-08-14 Kabushiki Kaisha Toshiba White light-emitting lamp and illuminating device using the same
JP2008222988A (en) * 2007-03-16 2008-09-25 Nagoya Institute Of Technology Broadband light emitting phosphor, method for producing the same and method for selecting parent material
JP2008255356A (en) * 2007-03-30 2008-10-23 Samsung Electro Mech Co Ltd Ba-Sr-Ca CONTAINING COMPOUND AND WHITE LIGHT EMITTING DEVICE CONTAINING THIS
WO2011129331A1 (en) * 2010-04-13 2011-10-20 国立大学法人 新潟大学 Silicate-based fluorescent material and process for producing silicate-based fluorescent material
CN107129802A (en) * 2017-04-19 2017-09-05 南昌大学 Europium doping alkaline earth orthosilicate base Green phosphor and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352936A (en) * 2003-05-30 2004-12-16 Sumitomo Chem Co Ltd Preparation method of silicate phosphor
JP2005064272A (en) * 2003-08-13 2005-03-10 Mitsubishi Chemicals Corp Light emitting device, illumination device, and image display apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004352936A (en) * 2003-05-30 2004-12-16 Sumitomo Chem Co Ltd Preparation method of silicate phosphor
JP2005064272A (en) * 2003-08-13 2005-03-10 Mitsubishi Chemicals Corp Light emitting device, illumination device, and image display apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096545A1 (en) * 2007-02-09 2008-08-14 Kabushiki Kaisha Toshiba White light-emitting lamp and illuminating device using the same
US7961762B2 (en) 2007-02-09 2011-06-14 Kabushiki Kaisha Toshiba White light-emitting lamp and illuminating device using the same
KR101079460B1 (en) 2007-02-09 2011-11-03 도시바 마테리알 가부시키가이샤 White light-emitting lamp and illuminating device using the same
JP5121736B2 (en) * 2007-02-09 2013-01-16 株式会社東芝 White light emitting lamp and lighting device using the same
JP2008222988A (en) * 2007-03-16 2008-09-25 Nagoya Institute Of Technology Broadband light emitting phosphor, method for producing the same and method for selecting parent material
JP2008255356A (en) * 2007-03-30 2008-10-23 Samsung Electro Mech Co Ltd Ba-Sr-Ca CONTAINING COMPOUND AND WHITE LIGHT EMITTING DEVICE CONTAINING THIS
WO2011129331A1 (en) * 2010-04-13 2011-10-20 国立大学法人 新潟大学 Silicate-based fluorescent material and process for producing silicate-based fluorescent material
JP4849498B2 (en) * 2010-04-13 2012-01-11 国立大学法人 新潟大学 Silicate phosphor and method for producing silicate phosphor
US8734680B2 (en) 2010-04-13 2014-05-27 Lead Chemical Company, Limited Silicate-based phosphor and manufacturing method of silicate-based phosphor
CN107129802A (en) * 2017-04-19 2017-09-05 南昌大学 Europium doping alkaline earth orthosilicate base Green phosphor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5632961B2 (en) Oxycarbonitride phosphor and light emitting device using the same
JP4843990B2 (en) Phosphor and light emitting device using the same
JP2005298805A (en) Light emitting device and illumination device
JP4706358B2 (en) Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display
JP4617890B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4168776B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4951888B2 (en) Phosphor and light emitting device using the same
JP2007009141A (en) Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display
JP4165255B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4411841B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4972904B2 (en) Phosphor, method for manufacturing the phosphor, light-emitting device using the phosphor, image display device, and illumination device
JP4661419B2 (en) Phosphor and light emitting device using the same
JP4389513B2 (en) Light emitting device, lighting device, and image display device
JP4617889B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP5326986B2 (en) Phosphor used in light emitting device
JP4617888B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2004235546A (en) Light emitting device and lighting device and display using it
JP4561064B2 (en) Light emitting device, lighting device, and image display device
JP2010059429A (en) Phosphor, luminescent device using the same, image display and illuminating device
JP4363194B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4337468B2 (en) Light emitting device, lighting device, and image display device
JP4604516B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4246502B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4337465B2 (en) Light emitting device, lighting device, and image display device
JP2005064189A (en) Light emitting device, lighting device and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110121