JP4389513B2 - Light emitting device, lighting device, and image display device - Google Patents

Light emitting device, lighting device, and image display device Download PDF

Info

Publication number
JP4389513B2
JP4389513B2 JP2003289871A JP2003289871A JP4389513B2 JP 4389513 B2 JP4389513 B2 JP 4389513B2 JP 2003289871 A JP2003289871 A JP 2003289871A JP 2003289871 A JP2003289871 A JP 2003289871A JP 4389513 B2 JP4389513 B2 JP 4389513B2
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting device
light emitting
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003289871A
Other languages
Japanese (ja)
Other versions
JP2005060468A (en
Inventor
由美子 吉川
孝俊 瀬戸
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003289871A priority Critical patent/JP4389513B2/en
Publication of JP2005060468A publication Critical patent/JP2005060468A/en
Application granted granted Critical
Publication of JP4389513B2 publication Critical patent/JP4389513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Description

本発明は発光装置に関し、詳しくは、電力源により紫外光から可視光領域の光を発光する第1の発光体と、その紫外光から可視光領域にある光を吸収し長波長の可視光を発する母体化合物が発光中心イオンを含有する蛍光体を有する波長変換材料しての第2の発光体とを組み合わせることにより、使用環境によらず色純度が良く、かつ、高強度の発光を発生させることのできる発光装置に関する。   The present invention relates to a light-emitting device, and more specifically, a first light emitter that emits light from ultraviolet light to visible light region by a power source, and absorbs light in the visible light region from the ultraviolet light to generate long-wavelength visible light. By combining with a second phosphor as a wavelength conversion material having a phosphor containing a phosphor containing a luminescent center ion as a base compound that emits light, it emits light with high color purity and high intensity regardless of the use environment. The present invention relates to a light emitting device capable of performing the above.

青、赤、緑の混色により、白色その他の様々な色を、高輝度にかつ色純度良く発生させるために、LEDやLDの発光色を蛍光体で色変換させた発光装置が提案されている。例えば、米国特許第6,294,800号明細書において、LEDからの光に代表される330〜420nm領域の光の照射を受けて白色発光を発生しうる物質として、Ca8Mg
(SiO44Cl2:Eu2+,Mn2+を含む緑色発光体と赤色蛍光体と青色蛍光体を組み
合わせた物質が開示されており、その青色蛍光体として(Sr,Ba,Ca)5(PO43Cl:Eu2+やBaMg2Al1627:Eu2+が挙げられている。
In order to generate white and other various colors with high luminance and high color purity by mixing blue, red, and green, a light emitting device in which the light emission color of an LED or LD is converted with a phosphor has been proposed. . For example, in US Pat. No. 6,294,800, as a substance capable of generating white light emission upon irradiation with light in a 330 to 420 nm region typified by light from an LED, Ca 8 Mg
A substance combining a green phosphor, a red phosphor and a blue phosphor containing (SiO 4 ) 4 Cl 2 : Eu 2+ , Mn 2+ is disclosed, and the blue phosphor (Sr, Ba, Ca) is disclosed. 5 (PO 4 ) 3 Cl: Eu 2+ and BaMg 2 Al 16 O 27 : Eu 2+ are mentioned.

しかしながら、今までのところ、LED等の第1の発光体に対し、LED光の青色可視光への変換材料もしくは第2の発光体として米国特許第6,294,800号明細書や米国特許第6,466,135号明細書に記載されている(Sr,Ba,Ca)5(PO43Cl:Eu2+を組み合わせたような発光装置では発光強度や色純度が充分とは言えず、
ディスプレイやバックライト光源、信号機などの発光源としてさらなる改良が求められている。
However, up to now, as a material for converting LED light into blue visible light or a second light emitter for the first light emitter such as an LED, US Pat. No. 6,294,800 and US Pat. In a light emitting device such as (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu 2+ described in US Pat. No. 6,466,135, light emission intensity and color purity cannot be said to be sufficient. ,
Further improvements are demanded as light sources such as displays, backlight sources, and traffic lights.

また、一般に、A5(PO43Cl(Aはアルカリ土類金属)の結晶の中のAサイトに
Eu2+等の他の2価の発光金属イオンが置換し得て、その置換体が、波長254nmのHg共鳴紫外線で励起され発光することを利用して、蛍光ランプ用蛍光体として使用され得ることは知られている。また、最近、A5(PO43Clが、LEDからの360−42
0nm付近の光の励起によって青く発光することが記載された特許が出願されており、米国特許第6,294,800号明細書においては、(Sr,Ba,Ca)5(PO43
l:Euを使用することが記載されているが、アルカリ土類金属とEuの組成に関する記載はない。また、米国特許第6,466,135号明細書において、一般式(Sr,Ba,Ca)5-xEux(PO43Clにおいて、Srを多く含有するものを使用することが記載されており、具体的には(Sr1-y-zBayCaz5-xEu2+ x(PO43Cl(0.0
1≦x≦0.2、0≦y≦0.1、0≦z≦0.1)で示される組成が記載されているが、このような組成物では、CIE色度座標におけるy値が小さいため、十分な輝度が得られなかった。
米国特許第6,294,800号明細書 米国特許第6,466,135号明細書
In general, other divalent luminescent metal ions such as Eu 2+ can be substituted at the A site in the crystal of A 5 (PO 4 ) 3 Cl (A is an alkaline earth metal). However, it is known that it can be used as a fluorescent lamp phosphor by utilizing the fact that it is excited by Hg resonance ultraviolet light having a wavelength of 254 nm and emits light. Also recently, A 5 (PO 4 ) 3 Cl has been added to the 360-42 LED.
A patent has been filed that states that it emits blue light by excitation of light near 0 nm. In US Pat. No. 6,294,800, (Sr, Ba, Ca) 5 (PO 4 ) 3 C
Although it is described that l: Eu is used, there is no description regarding the composition of alkaline earth metal and Eu. In addition, US Pat. No. 6,466,135 describes the use of a general formula (Sr, Ba, Ca) 5-x Eu x (PO 4 ) 3 Cl containing a large amount of Sr. and, specifically, (Sr 1-yz Ba y Ca z) 5-x Eu 2+ x (PO 4) 3 Cl (0.0
1 ≦ x ≦ 0.2, 0 ≦ y ≦ 0.1, and 0 ≦ z ≦ 0.1). However, in such a composition, the y value in CIE chromaticity coordinates is described. Since it was small, sufficient luminance could not be obtained.
US Pat. No. 6,294,800 US Pat. No. 6,466,135

本発明は、前述の従来技術に鑑み、発光強度が極めて高く色純度の良好な発光装置を開発すべくなされたものであって、従って、本発明は、製造が容易であると共に、発光強度が高く、色純度が高いダブル発光体型発光装置を比較的安価に得ることを提供することを目的とする。   The present invention has been made in view of the above-described prior art to develop a light emitting device having extremely high emission intensity and good color purity. Therefore, the present invention is easy to manufacture and has a high emission intensity. An object of the present invention is to provide a double light emitting device that is high and has high color purity at a relatively low cost.

本発明者は、前記課題を解決すべく鋭意検討した結果、A5(PO43Cl(Aはアル
カリ土類金属)系において特定の組成範囲において、400nm付近の光の励起によって強い発光強度、及びCIE色度座標における適切なy値を示し高色純度となる結果が得られることを見出し、本発明を完成するに至った。即ち、350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、上記第2の発光体として下記特定の化学組成を有する結晶相を含有する蛍光体を用いると、前記蛍光体が350−415nm付近の光の照射を受け、高色純度および高強度で可視光の発光を起こす結果、前記目的を達成できること、具体的には、Ca5(PO43Cl:Eu2+を基本的な組成とする結晶相を使用すること
によって前記目的が達成できることを見い出し本発明に到達した。よって本発明は、350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体が、一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする発光装置をその要旨とする。
As a result of intensive studies to solve the above problems, the present inventor has found that a strong emission intensity by excitation of light in the vicinity of 400 nm in a specific composition range in the A 5 (PO 4 ) 3 Cl (A is alkaline earth metal) system. The present invention has been completed by finding that the result of obtaining an appropriate y value in the CIE chromaticity coordinates and a high color purity is obtained. That is, in the light-emitting device including the first light emitter that generates light of 350 to 415 nm and the second light emitter that generates visible light by irradiation of light from the first light emitter, When a phosphor containing a crystal phase having the following specific chemical composition is used as the illuminant, the phosphor is irradiated with light in the vicinity of 350 to 415 nm, and emits visible light with high color purity and high intensity. The inventors have found that the object can be achieved, specifically, that the object can be achieved by using a crystal phase having a basic composition of Ca 5 (PO 4 ) 3 Cl: Eu 2+ . . Accordingly, the present invention provides a light emitting device including a first light emitter that generates light of 350 to 415 nm and a second light emitter that generates visible light when irradiated with light from the first light emitter. The gist of the present invention is a light emitting device characterized in that the phosphor of 2 contains a phosphor having a crystal phase having a chemical composition of the general formula [1].

(上記一般式[1]において、MはMg、Sr及びBaからなる群から選ばれる少なくとも一種の元素を表し、XはClを表す。また、aは、0.5≦a≦2、bは、(5−a)×0.8≦b≦5−a、cは、2.7≦c≦3.3、dは、0.9≦d≦1.1を満足する数である。) (In the above general formula [1], M represents at least one element selected from the group consisting of M g, Sr and Ba, X represents a C l. Further, a is, 0.5 ≦ a ≦ 2, b is a number that satisfies (5-a) × 0.8 ≦ b ≦ 5-a, c is 2.7 ≦ c ≦ 3.3, and d is a number that satisfies 0.9 ≦ d ≦ 1.1. .)

本発明によれば、発光強度が高く色純度の良好な発光装置を提供することができる。   According to the present invention, it is possible to provide a light emitting device having high emission intensity and good color purity.

本発明は、350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体が、一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする発光装置である。   The present invention provides a light emitting device having a first light emitter that emits light of 350 to 415 nm and a second light emitter that generates visible light by irradiation of light from the first light emitter. The light-emitting device comprises a phosphor having a crystal phase having a chemical composition represented by the general formula [1].

ここで、式[1]中の元素Mは、EuとCa以外の金属元素を表す。元素Mについては、発光強度等の面から、Ba、Mg、Sr、Zn、およびMnの合計の元素Mに占める割合を通常70mol%以上とし、中でもBa、Mg、ZnおよびSrの合計の元素Mに占める割合を70mol%以上とすることが好ましく、Ba、Mg、ZnおよびSrの合計の元素Mに占める割合を90mol%以上とすることが更に好ましく、元素MのすべてをBa、Mg、Sr、Zn、およびMnからなる群から選ばれる少なくとも一種の元素とするのがさらに好ましく、元素MのすべてをBa、Mg、ZnおよびSrからなる群から選ばれる少なくとも一種の元素とするのが最も好ましい。   Here, the element M in the formula [1] represents a metal element other than Eu and Ca. Regarding the element M, from the viewpoint of emission intensity, the ratio of the total of Ba, Mg, Sr, Zn, and Mn to the element M is usually 70 mol% or more, and in particular, the total element M of Ba, Mg, Zn, and Sr Is preferably 70 mol% or more, more preferably 90 mol% or more of the total amount of Ba, Mg, Zn and Sr in the element M, and all of the elements M are Ba, Mg, Sr, It is more preferable to use at least one element selected from the group consisting of Zn and Mn, and it is most preferable that all of the elements M be at least one element selected from the group consisting of Ba, Mg, Zn and Sr.

元素M中の金属元素として上記以外の金属元素を結晶中に含有させる場合、その金属元素に特に制約はないが、Caやこれら5種金属元素と同じ価数、即ち2価の金属元素を含有させると、結晶構造を保持しやすいので、望ましい。2価の金属元素及び発光中心Eu
2+の焼成時の固体内拡散による複合酸化物の結晶化を助ける意味で、1価、3価、5価、又は6価等の金属元素を少量導入しても良い。一つの例を挙げると、Ca5(PO43
l:Eu蛍光体中のCa2+の一部を等モルのLi+とGa3+で電荷補償効果を保持しなが
ら置換することができる。増感剤となりうる金属元素を少量置換してもよい。
When a metal element other than the above is included in the crystal as the metal element in element M, the metal element is not particularly limited, but contains the same valence as Ca and these five metal elements, that is, a divalent metal element. In this case, the crystal structure is easily retained, which is desirable. Divalent metal element and luminescent center Eu
A small amount of a metal element such as monovalent, trivalent, pentavalent, or hexavalent metal may be introduced in order to assist crystallization of the composite oxide by diffusion in the solid during 2+ firing. One example is Ca 5 (PO 4 ) 3 C.
l: A portion of Ca 2+ in the Eu phosphor can be replaced with equimolar amounts of Li + and Ga 3+ while maintaining the charge compensation effect. A small amount of a metal element that can be a sensitizer may be substituted.

前記一般式[1]中のXはPO4以外の一価のアニオン基である。Xについては、発光
強度等の面から、Xのうちの50mol%以上をハロゲン原子とすることが好ましく、70mol%以上、特に90mol%以上とすることがより好ましい。ハロゲン原子としてはCl、F、Br等を挙げることができるが、好ましくはClである。Xとして、その50mol%以上をハロゲン原子とした場合、残余のアニオン基として水酸基等を含んでいてもよい。最も好ましい態様においては、アニオン基Xのうちの50mol%以上、特に70mol%以上、さらには90mol%以上をClとする。この場合、残余の基としては、他のハロゲン原子やOH基を挙げることができる。
X in the general formula [1] is a monovalent anionic group other than PO 4 . With respect to X, from the viewpoint of light emission intensity and the like, 50 mol% or more of X is preferably a halogen atom, more preferably 70 mol% or more, and particularly preferably 90 mol% or more. Examples of the halogen atom include Cl, F, Br and the like, and Cl is preferred. When 50 mol% or more of X is a halogen atom, X may contain a hydroxyl group or the like as the remaining anionic group. In the most preferred embodiment, 50 mol% or more, particularly 70 mol% or more, more preferably 90 mol% or more of the anionic group X is Cl. In this case, examples of the remaining group include other halogen atoms and OH groups.

前記一般式[1]中のEuのモル比aについては、0.1≦≦1.5する。発光強度と色純度のバランスの面から、0.1以上とするのが最も好ましい。発光中心イオンEu2+の含有量が前記範囲未満では、発光強度が小さくなる傾向があるが、あまりにaの値が大きいと、濃度消光と呼ばれる現象により、やはり発光強度が小さくなる傾向があるので2以下が好ましく、1.5以下がより好ましく、発光強度と色純度のバランス等の面から、1以下が最も好ましい。
The molar ratio a of Eu in the general formula [1] is set to 0.1 ≦ a ≦ 1.5 . In view of the balance of light emission intensity and color purity, and most preferably to 0.1 or more. If the content of the emission center ion Eu 2+ is less than the above range, the emission intensity tends to be small, but if the value of a is too large, the emission intensity tends to decrease due to a phenomenon called concentration quenching. preferably 2 or less, more preferably 1.5 or less, in terms of balance and the like of the emission intensity and color purity, 1 hereinafter is most preferred.

前記一般式[1]中のCaのモル比bについては、発光強度と色純度のバランスの観点から、通常は(5−a)×0.5≦b≦5−aとし、好ましくは(5−a)×0.6≦b≦5−a、さらに好ましくは(5−a)×0.7≦b≦5−aとするが、(5−a)×0.8≦b≦5−aとするのが最も好ましい。一般に(Sr,Ba,Ca,Mg)5(PO43Cl:Eu2+を基本的な組成とする結晶相はCaのモル比として広範な値をとりうる
が、本発明においては、上記のような比較的大きめの数値を採用することをによって顕著に高い発光強度を得ることができる。なお、a+bの値を5とし、金属元素Mを含有させないこともできる。
The molar ratio b of Ca in the general formula [1] is usually (5-a) × 0.5 ≦ b ≦ 5-a, preferably (5) from the viewpoint of the balance between emission intensity and color purity. −a) × 0.6 ≦ b ≦ 5-a, more preferably (5-a) × 0.7 ≦ b ≦ 5-a, but (5-a) × 0.8 ≦ b ≦ 5-a Most preferably, a. In general, a crystal phase having a basic composition of (Sr, Ba, Ca, Mg) 5 (PO 4 ) 3 Cl: Eu 2+ can take a wide range of molar ratios of Ca. By adopting a relatively large numerical value such as the above, a significantly high emission intensity can be obtained. Note that the value of a + b may be set to 5 so that the metal element M is not included.

蛍光体の色純度の指標となるCIE色度座標におけるy値は、大きくなりすぎると、青色の色純度が小さくなるため、ディスプレイ用のバックライト光源等にy値の大きい蛍光体を使用すると、ディスプレイの色再現範囲が狭くなるなどの問題がある。一方、y値が小さくなりすぎると、青色の色純度が大きくなるため、ディスプレイの色再現範囲が広くなるものの、視感度が下がるために輝度が低下するなどの問題がある。従って、蛍光体の発光強度と色純度の指標となるy値はバランスが取れていることが重要であり、通常y値の下限は、0.02以上、好ましくは0.035以上であり、上限は0.2以下、好ましくは0.1以下、より好ましくは0.052以下である。   When the y value in the CIE chromaticity coordinates, which is an indicator of the color purity of the phosphor, becomes too large, the blue color purity becomes small. Therefore, when a phosphor having a large y value is used as a backlight light source for a display, There are problems such as a narrow color reproduction range of the display. On the other hand, if the y value is too small, the color purity of blue is increased, so that the color reproduction range of the display is widened, but there is a problem that the luminance is lowered because the visibility is lowered. Therefore, it is important that the y value serving as an indicator of the emission intensity and color purity of the phosphor is balanced, and the lower limit of the y value is usually 0.02 or more, preferably 0.035 or more, and the upper limit. Is 0.2 or less, preferably 0.1 or less, more preferably 0.052 or less.

前記一般式[1]において、cおよびdは、2.7≦c≦3.3、0.9≦d≦1.1を満足するが、cの下限としては、2.8≦cが好ましく、2.9≦cがより好ましく、上限としては、c≦3.2が好ましく、c≦3.1がより好ましい。また、dの下限としては、0.93≦dが好ましく、0.95≦dがより好ましく、上限としては、d≦1.07が好ましく、d≦1.05がより好ましい。   In the general formula [1], c and d satisfy 2.7 ≦ c ≦ 3.3 and 0.9 ≦ d ≦ 1.1, but the lower limit of c is preferably 2.8 ≦ c. 2.9 ≦ c is more preferable, and the upper limit is preferably c ≦ 3.2, and more preferably c ≦ 3.1. The lower limit of d is preferably 0.93 ≦ d, more preferably 0.95 ≦ d, and the upper limit is preferably d ≦ 1.07, more preferably d ≦ 1.05.

前記一般式[1]の基本結晶EuaCab5-a-b(PO4cdにおいては、格子欠損が多少生じていても本目的の蛍光性能に大きな影響がないので、上記a,b,c,dの不等式の範囲で使用することができる。 In the basic crystal Eu a Ca b M 5-ab (PO 4 ) c X d of the general formula [1], even if some lattice defects occur, there is no significant effect on the fluorescence performance of the present purpose. It can be used within the range of inequality of b, c, d.

一般にA5(PO43Cl(Aはアルカリ土類金属)の結晶は、六方晶構造をとり、そ
の空間群はP63/mである。
In general, a crystal of A 5 (PO 4 ) 3 Cl (A is an alkaline earth metal) has a hexagonal crystal structure, and its space group is P6 3 / m.

本発明における蛍光体の結晶構造は、通常上記に示した化学組成式A5(PO43Cl
で表されるアパタイト構造である。Ca5(PO43ClのCaサイトには、Ba、Sr
、Mg、Zn、Mn等の2価金属を広い組成範囲で置換させることができる。また、少量であれば、NaやLa等の価数の異なる金属も置換させうる。そのClサイトには、F、Br、OH等のアニオン種を置換させることができ、その構造が保たれる。本発明においては、これら置換体のうち、通常カチオン種としてCaを用いた置換体を母体とし、更にカチオンサイトにEu2+を付活剤として置換させた結晶相に対応する。
The crystal structure of the phosphor in the present invention is usually represented by the chemical composition formula A 5 (PO 4 ) 3 Cl shown above.
It is an apatite structure represented by. The Ca site of Ca 5 (PO 4 ) 3 Cl contains Ba and Sr.
, Mg, Zn, Mn and the like can be substituted in a wide composition range. Further, if the amount is small, metals having different valences such as Na and La can be substituted. The Cl site can be substituted with anionic species such as F, Br, and OH, and the structure is maintained. In the present invention, among these substituted substances, a substituted substance using Ca as a cation species is usually used as a matrix, and further, it corresponds to a crystal phase in which Eu 2+ is substituted at the cation site as an activator.

本発明で使用する蛍光体は、第1の発光体からの350−415nmの光によって励起され、可視光を発生する。上記蛍光体は、350−415nmの光の励起によって非常に強い発光強度の可視光を発生する。   The phosphor used in the present invention is excited by light of 350 to 415 nm from the first light emitter, and generates visible light. The phosphor generates visible light having a very strong emission intensity by excitation of light of 350 to 415 nm.

本発明で使用する蛍光体は、前記一般式[1]に示されるようなM源、X源、PO4
の化合物、Ca源の化合物、及び、発光中心イオン(Eu)の元素源化合物を、ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機を用いて粉砕した後、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機により混合するか、或いは、混合した後、乾式粉砕機を用いて粉砕する乾式法、又は、水等の媒体中にこれらの化合物を加え、媒体攪拌式粉砕機等の湿式粉砕機を用いて粉砕及び混合するか、或いは、これらの化合物を乾式粉砕機により粉砕した後、水等の媒体中に加え混合することにより調製されたスラリーを、噴霧乾燥等により乾燥させる湿式法により、調製した粉砕混合物を、加熱処理して焼成することにより製造することができる。
The phosphor used in the present invention includes an M source, a X source, a PO 4 source compound, a Ca source compound, and a luminescent center ion (Eu) element source compound as shown in the general formula [1]. After pulverizing using a dry pulverizer such as a hammer mill, roll mill, ball mill, jet mill, etc., mix with a blender such as a ribbon blender, V-type blender or Henschel mixer, or after mixing, use a dry pulverizer. Use dry method to pulverize, or add these compounds in a medium such as water and pulverize and mix them using a wet pulverizer such as a medium agitating pulverizer, or use a dry pulverizer to remove these compounds. After the pulverization, the prepared pulverized mixture is heated and fired by a wet method in which a slurry prepared by adding and mixing in a medium such as water is spray-dried or the like. Ri can be produced.

これらの粉砕混合法の中で、特に、発光中心イオンの元素源化合物においては、少量の化合物を全体に均一に混合、分散させる必要があることから液体媒体を用いるのが好ましく、又、他の元素源化合物において全体に均一な混合が得られる面からも、後者湿式法が好ましく、又、加熱処理法としては、アルミナや石英製の坩堝やトレイ等の耐熱容器中で、通常700〜1500℃、好ましくは900〜1300℃の温度で、大気、酸素、一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単独或いは混合雰囲気下、10分〜24時間、加熱することによりなされる。尚、加熱処理後、必要に応じて、洗浄、乾燥、分級処理等がなされる。   Among these pulverization and mixing methods, in particular, in the element source compound of the luminescent center ion, it is preferable to use a liquid medium because it is necessary to uniformly mix and disperse a small amount of the compound over the whole. The latter wet method is preferable from the viewpoint of obtaining uniform mixing in the element source compound as a whole, and the heat treatment method is usually 700 to 1500 ° C. in a heat-resistant container such as alumina or quartz crucible or tray. The heating is preferably performed at a temperature of 900 to 1300 ° C. for 10 minutes to 24 hours in a single or mixed atmosphere of a gas such as air, oxygen, carbon monoxide, carbon dioxide, nitrogen, hydrogen, and argon. In addition, after heat processing, washing | cleaning, drying, a classification process, etc. are made | formed as needed.

尚、前記加熱雰囲気としては、発光中心イオンの元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明における2価のEu等の場合には、一酸化炭素、窒素、水素、アルゴン等の中性若しくは還元雰囲気下が好ましいが、大気、酸素等の酸化雰囲気下も条件さえ選べば可能である。   As the heating atmosphere, an atmosphere necessary for obtaining an ion state (valence) in which the element of the emission center ion contributes to light emission is selected. In the case of divalent Eu or the like in the present invention, a neutral or reducing atmosphere such as carbon monoxide, nitrogen, hydrogen, and argon is preferable, but it can be selected even under an oxidizing atmosphere such as air and oxygen. .

又、ここで、M源、X源、Ca源、およびEu源の化合物としては、M、X、Ca、およびEuの各酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等が挙げられ、PO4源の化合物としては、元素M、NH4等のリン酸水素塩、リン酸塩、メタリン酸塩、ピロリン酸塩、P25、PX3、PX5、M2PO4X、リン酸、メタリン酸、ピロリン酸等が挙げられ、X源の化合物としては、MX、NH4X、HX、M2PO4X等が挙げられ、これらの中から、化学組成、反応性、及び、焼成時におけるNOx 、SOx等の非発生性等を考慮して選択される。 Here, as the compounds of M source, X source, Ca source, and Eu source, oxides, hydroxides, carbonates, nitrates, sulfates, oxalates of M, X, Ca, and Eu, Examples of the PO 4 source compound include hydrogen phosphates such as element M and NH 4 , phosphates, metaphosphates, pyrophosphates, P 2 O 5 , and PX 3. , PX 5 , M 2 PO 4 X, phosphoric acid, metaphosphoric acid, pyrophosphoric acid, etc., and examples of the X source compound include MX, NH 4 X, HX, M 2 PO 4 X, etc. Among them, the chemical composition, reactivity, and non-generation of NO x , SO x, etc. during firing are selected.

Caに対して好ましいとするCa源化合物を具体的に例示すれば、CaO、Ca(OH)2、CaCO3、Ca(NO32、Ca(OCO)2・H2O、Ca(OCOCH32・0
.5H2O、CaCl2等が挙げられる。
Specific examples of preferred Ca source compounds for Ca include CaO, Ca (OH) 2 , CaCO 3 , Ca (NO 3 ) 2 , Ca (OCO) 2 .H 2 O, Ca (OCOCH 3 2・ 0
. Examples thereof include 5H 2 O and CaCl 2 .

金属元素群M中のBa、Mg、Sr、Zn、またはMnの合成原料用化合物を具体的に例示すれば、Ba源化合物としては、BaO、Ba(OH)2・8H2O、BaCO3、B
a(NO32、BaSO4、Ba(OCO)2・2H2O、Ba(OCOCH32、BaC
2等が、又、Mg源化合物としては、MgO、Mg(OH)2、MgCO3、Mg(OH
2・3MgCO3・3H2O、Mg(NO32・6H2O、Mg(OCO)2・2H2O、Mg(OCOCH32・4H2O、MgCl2等が、又、Sr源化合物としては、SrO、Sr(OH)2、SrCO3、Sr(NO32・4H2O、Sr(OCO)2・H2O、Sr(
OCOCH32・H2O、SrCl2等が、又、Zn源化合物としては、ZnO、Zn(OH)2、ZnCO3、Zn(NO32・6H2O、Zn(OCO)2、Zn(OCOCH32、ZnCl2等が、又、Mn源化合物としては、MnO2、Mn23、Mn34、MnO、Mn(OH)2、MnCO3、Mn(NO32、Mn(OCOCH32・2H2O、Mn(
OCOCH33・nH2O、MnCl2・4H2O等がそれぞれ挙げられる。
Specific examples of Ba, Mg, Sr, Zn, or Mn synthetic raw material compounds in metal element group M include BaO, Ba (OH) 2 .8H 2 O, BaCO 3 , B
a (NO 3 ) 2 , BaSO 4 , Ba (OCO) 2 .2H 2 O, Ba (OCOCH 3 ) 2 , BaC
l 2 etc., and Mg source compounds include MgO, Mg (OH) 2 , MgCO 3 , Mg (OH
2 ) 3MgCO 3 .3H 2 O, Mg (NO 3 ) 2 .6H 2 O, Mg (OCO) 2 .2H 2 O, Mg (OCOCH 3 ) 2 .4H 2 O, MgCl 2, etc. Source compounds include SrO, Sr (OH) 2 , SrCO 3 , Sr (NO 3 ) 2 .4H 2 O, Sr (OCO) 2 .H 2 O, Sr (
OCOCH 3 ) 2 .H 2 O, SrCl 2 and the like, and Zn source compounds include ZnO, Zn (OH) 2 , ZnCO 3 , Zn (NO 3 ) 2 .6H 2 O, Zn (OCO) 2 , Zn (OCOCH 3 ) 2 , ZnCl 2 and the like, and as the Mn source compound, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , MnO, Mn (OH) 2 , MnCO 3 , Mn (NO 3 ) 2 , Mn (OCOCH 3 ) 2 · 2H 2 O, Mn (
OCOCH 3 ) 3 · nH 2 O, MnCl 2 · 4H 2 O and the like.

更に、発光中心イオンの元素として好ましいとする前記Euについて、その元素源化合物を具体的に例示すれば、Eu23、Eu(OCOCH33・4H2O、EuCl3・6H2O、Eu2(OCO)3・6H2O等が挙げられる。 Further, with respect to Eu, which is preferable as the element of the luminescent center ion, specific examples of the element source compound include Eu 2 O 3 , Eu (OCOCH 3 ) 3 .4H 2 O, EuCl 3 .6H 2 O, Eu 2 (OCO) 3 · 6H 2 O and the like.

本発明において、前記蛍光体に光を照射する第1の発光体は、波長350−415nmの光を発生する。好ましくは波長350−415nmの範囲にピーク波長を有する光を発生する発光体を使用する。第1の発光体の具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。消費電力がより少ない点でレーザーダイオードが好ましい。その中で、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系はSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInX
GaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LD
においては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。
In the present invention, the first light emitter that irradiates the phosphor with light generates light having a wavelength of 350 to 415 nm. Preferably, a light emitter that generates light having a peak wavelength in the wavelength range of 350 to 415 nm is used. Specific examples of the first light emitter include a light emitting diode (LED) or a laser diode (LD). Laser diodes are preferred because they consume less power. Of these, GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, the GaN system usually has a light emission intensity 100 times or more that of the SiC system. A GaN-based LED or LD preferably has an Al x Ga Y N light emitting layer, a GaN light emitting layer, or an In x Ga Y N light emitting layer. Among GaN-based LEDs, In X
Those having a Ga Y N light-emitting layer are particularly preferred because the light emission intensity is very strong.
In particular, a multi-quantum well structure composed of an In x Ga y N layer and a GaN layer is particularly preferable because the emission intensity is very high. In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics. A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic components, and the light-emitting layer is composed of n-type and p-type Al x Ga y N layers, GaN layers, or In x. Those having a heterostructure sandwiched by Ga Y N layers or the like have high luminous efficiency, and those having a heterostructure having a quantum well structure have higher luminous efficiency and are more preferable.

本発明においては、面発光型の発光体、特に面発光型GaN系レーザーダイオードを第1の発光体として使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第2の発光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、第2の発光体である蛍光体からより強い発光を得ることができる。   In the present invention, it is particularly preferable to use a surface-emitting type illuminant, particularly a surface-emitting GaN-based laser diode, as the first illuminant because the luminous efficiency of the entire light-emitting device is increased. A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is successfully performed. By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. When the surface emitting type is used, the light emission cross-sectional area per unit light emission amount can be increased compared to the type that emits light from the edge of the light emitting layer. As a result, the phosphor of the second light emitter is irradiated with the light Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor that is the second light emitter.

第1の発光体として面発光型のものを使用する場合、第2の発光体を膜状とするのが好ましい。その結果、面発光型の発光体からの光は断面積が十分大きいので、第2の発光体をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。   When a surface-emitting type is used as the first light emitter, the second light emitter is preferably a film. As a result, the cross-sectional area of the light from the surface-emitting type light emitter is sufficiently large. Therefore, when the second light emitter is formed into a film in the direction of the cross section, the irradiation cross-section area of the phosphor from the first light emitter is irradiated. Becomes larger per unit amount of phosphor, so that the intensity of light emitted from the phosphor can be further increased.

また、第1の発光体として面発光型のものを使用し、第2の発光体として膜状のものを用いる場合、第1の発光体の発光面に、直接膜状の第2の発光体を接触させた形状とするのが好ましい。ここでいう接触とは、第1の発光体と第2の発光体とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、第1の発光体からの光が第2の発光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。
Further, when a surface-emitting type is used as the first light emitter and a film-like one is used as the second light emitter, the second light emitter directly in the form of a film on the light-emitting surface of the first light emitter. It is preferable to have a shape in which is contacted. Contact here refers to creating a state in which the first light emitter and the second light emitter are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

本発明の発光装置の一例における第1の発光体と第2の発光体との位置関係を示す模式的斜視図を図1に示す。図1中の1は、前記蛍光体を有する膜状の第2の発光体、2は第1の発光体としての面発光型GaN系LD、3は基板を表す。相互に接触した状態をつくるために、LD2と第2の発光体1とそれぞれ別個につくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、LD2の発光面上に第2の発光体を製膜(成型)させても良い。これらの結果、LD2と第2の発光体1とを接触した状態とすることができる。 FIG. 1 is a schematic perspective view showing the positional relationship between the first light emitter and the second light emitter in an example of the light emitting device of the present invention. In FIG. 1, 1 is a film-like second light emitter having the phosphor, 2 is a surface-emitting GaN-based LD as the first light emitter, and 3 is a substrate. To create a state of being in contact with each other, may be contacted by the adhesive or other means to each other in their surfaces in advance, respectively Ku separate Nitsu LD2 and the second light emitter 1, the light-emitting surface of the LD2 second light emitter may be a film (molded) is not the above. As a result, the LD 2 and the second light emitter 1 can be brought into contact with each other.

第1の発光体からの光や第2の発光体からの光は通常四方八方に向いているが、第2の発光体の蛍光体の粉を樹脂中に分散させると、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを揃えられる。従って、効率の良い向きに光をある程度誘導できるので、第2の発光体として、前記蛍光体の粉を樹脂中へ分散したものを使用するのが好ましい。また、蛍光体を樹脂中に分散させると、第1の発光体からの光の第2の発光体への全照射面積が大きくなるので、第2の発光体からの発光強度を大きくすることができるという利点も有する。この場合に使用できる樹脂としては、シリコン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものが挙げられるが、蛍光体粉の分散性や安定性が良い点で好ましくはシリコン樹脂、もしくはエポキシ樹脂である。第2の発光体の粉を樹脂中に分散させる場合、当該第2の発光体の粉と樹脂の全体に対するその粉の重量比は、通常10〜95%、好ましくは20〜90%、さらに好ましくは30〜80%である。蛍光体が多すぎると粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。   The light from the first illuminant and the light from the second illuminant are usually directed in all directions. However, when the phosphor powder of the second illuminant is dispersed in the resin, the light is out of the resin. A part of the light is reflected when exiting, so the direction of the light can be adjusted to some extent. Accordingly, since light can be guided to a certain degree in an efficient direction, it is preferable to use a phosphor in which the phosphor powder is dispersed in a resin as the second luminous body. Further, when the phosphor is dispersed in the resin, the total irradiation area of the light from the first light emitter to the second light emitter is increased, so that the light emission intensity from the second light emitter can be increased. It also has the advantage of being able to Examples of resins that can be used in this case include silicon resins, epoxy resins, polyvinyl resins, polyethylene resins, polypropylene resins, polyester resins, and the like, but the dispersibility and stability of the phosphor powder are good. In this respect, silicon resin or epoxy resin is preferable. When the powder of the second luminous body is dispersed in the resin, the weight ratio of the powder of the second luminous body to the whole of the resin is usually 10 to 95%, preferably 20 to 90%, more preferably. Is 30-80%. If the phosphor is too much, the luminous efficiency may be reduced due to aggregation of the powder, and if it is too little, the luminous efficiency may be lowered due to light absorption or scattering by the resin.

本発明の発光装置は、波長変換材料としての前記蛍光体と、350−415nmの光を発生する発光素子とから構成されてなり、前記蛍光体が発光素子の発する350−415nmの光を吸収して、使用環境によらず演色性が良く、かつ、高強度の可視光を発生させることのできる発光装置であり、バックライト光源、信号機などの発光源、又、カラー液晶ディスプレイ等の画像表示装置や面発光等の照明装置等の光源に適している。   The light emitting device of the present invention includes the phosphor as a wavelength conversion material and a light emitting element that emits light of 350 to 415 nm, and the phosphor absorbs light of 350 to 415 nm emitted from the light emitting element. In addition, it is a light emitting device that has good color rendering properties and can generate high-intensity visible light regardless of the use environment, and a light source such as a backlight light source and a traffic light, and an image display device such as a color liquid crystal display. And suitable for light sources such as lighting devices such as surface emitting.

本発明の発光装置を図面に基づいて説明すると、図2は、第1の発光体(350−415nm発光体)と第2の発光体とを有する発光装置の一実施例を示す模式的断面図であり、4は発光装置、5はマウントリード、6はインナーリード、7は第1の発光体(350−415nmの発光体)、8は第2の発光体としての蛍光体含有樹脂部、9は導電性ワイヤー、10はモールド部材である。   The light emitting device of the present invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing an embodiment of a light emitting device having a first light emitter (350-415 nm light emitter) and a second light emitter. 4 is a light emitting device, 5 is a mount lead, 6 is an inner lead, 7 is a first light emitter (350-415 nm light emitter), 8 is a phosphor-containing resin portion as a second light emitter, 9 Is a conductive wire, and 10 is a mold member.

本発明の一例である発光装置は、図2に示されるように、一般的な砲弾型の形態をなし、マウントリード5の上部カップ内には、GaN系発光ダイオード等からなる第1の発光体(350−415nm発光体)7が、その上に、蛍光体をシリコン樹脂、エポキシ樹脂
やアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより第2の発光体として形成された蛍光体含有樹脂部8で被覆されることにより固定されている。一方、第1の発光体7とマウントリード5、及び第1の発光体7とインナーリード6は、それぞれ導電性ワ
イヤー9で導通されており、これら全体がエポキシ樹脂等によるモールド部材10で被覆、保護されてなる。
As shown in FIG. 2, the light emitting device as an example of the present invention has a general bullet shape, and a first light emitter made of a GaN-based light emitting diode or the like is disposed in the upper cup of the mount lead 5. (350-415 nm illuminant) 7 is a phosphor formed as a second illuminant by mixing and dispersing the phosphor in a binder such as silicon resin, epoxy resin or acrylic resin and pouring it into the cup. It is fixed by being covered with the body-containing resin portion 8. On the other hand, the first light emitter 7 and the mount lead 5, and the first light emitter 7 and the inner lead 6 are each electrically connected by a conductive wire 9, and these are entirely covered with a mold member 10 made of epoxy resin or the like, Protected.

又、この発光素子1を組み込んだ面発光照明装置11は、図3に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース12の底面に、多数の発光装置13を、その外側に発光素子13の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース12の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板14を発光の均一化のために固定してなる。   Further, as shown in FIG. 3, the surface emitting illumination device 11 incorporating the light emitting element 1 has a large number of light emission on the bottom surface of a rectangular holding case 12 whose inner surface is light-opaque such as a white smooth surface. The device 13 is arranged with a power source and a circuit (not shown) for driving the light emitting element 13 provided outside thereof, and a milky white acrylic plate or the like is provided at a position corresponding to the lid portion of the holding case 12. The diffusion plate 14 is fixed for uniform light emission.

そして、面発光照明装置11を駆動して、発光素子13の第1の発光体に電圧を印加することにより350−415nmの光を発光させ、その発光の一部を、第2の発光体としての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板14を透過して、図面上方に出射され、保持ケース12の拡散板14面内において均一な明るさの照明光が得られることとなる。   Then, the surface emitting illumination device 11 is driven to apply light to the first light emitter of the light emitting element 13 to emit light of 350 to 415 nm, and a part of the light emission is used as the second light emitter. The phosphor in the phosphor-containing resin part absorbs and emits visible light, while light emission with high color rendering properties is obtained by mixing with blue light or the like that is not absorbed by the phosphor. 14, is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 14 of the holding case 12.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

塩化カルシウム2水和物;0.0141モル、塩化ユーロピウム6水和物;0.00014モルを秤取り20mlの水に溶解させた。この水溶液に85%リン酸をリン酸として0.00854モル添加し、混合溶液を磁性皿に移し全溶液量を30〜40mlにした。この溶液を、攪拌下、加熱、乾燥させた。乾燥後の固体を回収し、メノウ乳鉢で粉砕した。この粉砕品の一部をアルミナ製坩堝に移し、4%の水素を含む窒素ガス流下、1000℃で2時間焼成して蛍光体Ca4.95Eu0.05(PO43Cl(第2の発光体に用いる蛍光体)を製造した。この蛍光体のX線回折パターンは、Ca5(PO43Clのそれと結晶
構造的に一致しており、目的の結晶相が生成していることがわかった。焼成後の固体をメノウ乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
Calcium chloride dihydrate; 0.0141 mol, europium chloride hexahydrate; 0.00014 mol was weighed and dissolved in 20 ml of water. To this aqueous solution, 0.00854 mol of 85% phosphoric acid as phosphoric acid was added, and the mixed solution was transferred to a magnetic dish to make the total solution volume 30-30 ml. This solution was heated and dried with stirring. The dried solid was collected and pulverized in an agate mortar. A portion of this pulverized product was transferred to an alumina crucible and fired at 1000 ° C. for 2 hours under a nitrogen gas flow containing 4% hydrogen to obtain phosphor Ca 4.95 Eu 0.05 (PO 4 ) 3 Cl (second phosphor) Phosphor to be used). The X-ray diffraction pattern of this phosphor was identical in crystal structure with that of Ca 5 (PO 4 ) 3 Cl, and it was found that the target crystal phase was formed. The fired solid was pulverized in an agate mortar, and the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.

塩化カルシウム2水和物;0.01426モル、塩化ユーロピウム6水和物;0.00007モル、85%リン酸をリン酸として0.00863モルとしたこと以外は、実施例1と同様にして表−1に示す化学組成の蛍光体を製造した。この蛍光体のX線回折パターンは、Ca5(PO43Clのそれと結晶構造的に一致しており、目的の結晶相が生成し
ていることがわかった。焼成後の固体をメノウ乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
Calcium chloride dihydrate; 0.01426 mol, europium chloride hexahydrate; 0.00007 mol, 85% phosphoric acid is 0.00863 mol as phosphoric acid. A phosphor having the chemical composition shown in -1 was produced. The X-ray diffraction pattern of this phosphor was identical in crystal structure with that of Ca 5 (PO 4 ) 3 Cl, and it was found that the target crystal phase was formed. The fired solid was pulverized in an agate mortar, and the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.

塩化カルシウム2水和物;0.01436モル、塩化ユーロピウム6水和物;0.00003モル、85%リン酸をリン酸として0.00862モルとしたこと以外は、実施例1と同様にして表−1に示す化学組成の蛍光体を製造した。この蛍光体のX線回折パター
ンは、Ca5(PO43Clのそれと結晶構造的に一致しており、目的の結晶相が生成し
ていることがわかった。焼成後の固体をメノウ乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
Calcium chloride dihydrate; 0.01436 mol, europium chloride hexahydrate; 0.00003 mol, 85% Phosphoric acid is used as phosphoric acid to make 0.00862 mol. A phosphor having the chemical composition shown in -1 was produced. The X-ray diffraction pattern of this phosphor was identical in crystal structure with that of Ca 5 (PO 4 ) 3 Cl, and it was found that the target crystal phase was formed. The fired solid was pulverized in an agate mortar, and the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.

塩化カルシウム2水和物;0.0131モル、塩化マグネシウム2水和物;0.00146モル、塩化ユーロピウム6水和物;0.00007モルを秤取り20mlの水に溶解させた。この水溶液に85%リン酸をリン酸として0.00877モル添加し、混合溶液を磁性皿に移し全溶液量を30〜40mlにした。この溶液を、攪拌下、加熱、乾燥させた。乾燥後の固体を回収し、メノウ乳鉢で粉砕した。この粉砕品の一部をアルミナ製坩堝に移し、4%の水素を含む窒素ガス流下、1000℃で2時間焼成して蛍光体Ca 4.475Mg0.5Eu0.025(PO43Clを製造した。この蛍光体のX線回折パターンは、Ca5
(PO43Clのそれと結晶構造的に一致しており、目的の結晶相が生成していることがわかった。焼成後の固体をメノウ乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
Calcium chloride dihydrate; 0.0131 mol, magnesium chloride dihydrate; 0.00146 mol, europium chloride hexahydrate; 0.00007 mol were weighed and dissolved in 20 ml of water. To this aqueous solution, 0.00877 mol of 85% phosphoric acid as phosphoric acid was added, and the mixed solution was transferred to a magnetic dish to make the total solution amount to 30 to 40 ml. This solution was heated and dried with stirring. The dried solid was collected and pulverized in an agate mortar. A part of the pulverized product was transferred to an alumina crucible and fired at 1000 ° C. for 2 hours under a nitrogen gas flow containing 4% hydrogen to produce phosphor Ca 4.475 Mg 0.5 Eu 0.025 (PO 4 ) 3 Cl. The X-ray diffraction pattern of this phosphor is Ca 5
It was found that the crystal structure was in agreement with that of (PO 4 ) 3 Cl, and the target crystal phase was formed. The fired solid was pulverized in an agate mortar, and the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.

塩化カルシウム2水和物;0.0138モル、塩化ユーロピウム6水和物;0.000283モル、85%リン酸をリン酸として0.00847モルとしたこと以外は、実施例1と同様にして表−1に示す化学組成の蛍光体を製造した。この蛍光体のX線回折パターンは、Ca5(PO43Clのそれと結晶構造的に一致しており、目的の結晶相が生成し
ていることがわかった。焼成後の固体をメノウ乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
Calcium chloride dihydrate: 0.0138 mol, europium chloride hexahydrate; 0.000283 mol, 85% phosphoric acid was changed to 0.00847 mol as phosphoric acid. A phosphor having the chemical composition shown in -1 was produced. The X-ray diffraction pattern of this phosphor was identical in crystal structure with that of Ca 5 (PO 4 ) 3 Cl, and it was found that the target crystal phase was formed. The fired solid was pulverized in an agate mortar, and the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.

塩化カルシウム2水和物;0.01327モル、塩化ユーロピウム6水和物;0.000552モル、85%リン酸をリン酸として0.00828モルとしたこと以外は、実施例1と同様にして表−1に示す化学組成の蛍光体を製造した。この蛍光体のX線回折パターンは、Ca5(PO43Clのそれと結晶構造的に一致しており、目的の結晶相が生成
していることがわかった。焼成後の固体をメノウ乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
Calcium chloride dihydrate; 0.01327 mol, europium chloride hexahydrate; 0.000552 mol, 85% Phosphoric acid was used as phosphoric acid to make 0.00828 mol. A phosphor having the chemical composition shown in -1 was produced. The X-ray diffraction pattern of this phosphor was identical in crystal structure with that of Ca 5 (PO 4 ) 3 Cl, and it was found that the target crystal phase was formed. The fired solid was pulverized in an agate mortar, and the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.

塩化カルシウム2水和物;0.01171モル、塩化ユーロピウム6水和物;0.00130モル、85%リン酸をリン酸として0.00781モルとしたこと以外は、実施例1と同様にして表−1に示す化学組成の蛍光体を製造した。この蛍光体のX線回折パターンは、Ca5(PO43Clのそれと結晶構造的に一致しており、目的の結晶相が生成し
ていることがわかった。焼成後の固体をメノウ乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
Calcium chloride dihydrate; 0.01171 mol, europium chloride hexahydrate; 0.00130 mol, 85% Phosphoric acid was used as phosphoric acid to make 0.00781 mol. A phosphor having the chemical composition shown in -1 was produced. The X-ray diffraction pattern of this phosphor was identical in crystal structure with that of Ca 5 (PO 4 ) 3 Cl, and it was found that the target crystal phase was formed. The fired solid was pulverized in an agate mortar, and the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.

塩化カルシウム2水和物;0.00949モル、硝酸ユーロピウム6水和物;0.00
237モル、85%リン酸をリン酸として0.00713モルとしたこと以外は、実施例1と同様にして表−1に示す化学組成の蛍光体を製造した。この蛍光体のX線回折パターンは、Ca5(PO43Clのそれと結晶構造的に一致しており、目的の結晶相が生成し
ていることがわかった。焼成後の固体をメノウ乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
(比較例1)
BaCO3;0.0103モル、塩基性炭酸マグネシウム(Mgのモル数0.0103
モル)、及びγ−Al23;0.0570モル、並びに発光中心イオンの元素源化合物としてEu23;0.00057モルを純水と共に、アルミナ製容器及びビーズの湿式ボールミル中で粉砕、混合し、乾燥後、ナイロンメッシュを通過させた後、得られた粉砕混合物をアルミナ製坩堝中で、4%の水素を含む窒素ガス流下、1500℃で2時間、加熱することにより焼成した。引き続いて、水洗浄、乾燥、及び分級処理を行うことにより青色発光の蛍光体Ba0.9Eu0.1MgAl1017を製造した。焼成後の固体をメノウ乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
(比較例2)
塩化カルシウム2水和物;0.00077モル、塩化バリウム2水和物;0.0070モル、塩化ユーロピウム6水和物;0.00004モルを秤取り20mlの水に溶解させた。この水溶液に85%リン酸をリン酸として0.00469モル添加し、混合溶液を磁性皿に移し全溶液量を30〜40mlにした。この溶液を、攪拌下、加熱、乾燥させた。乾燥後の固体を回収し、メノウ乳鉢で粉砕した。この粉砕品の一部をアルミナ製坩堝に移し、4%の水素を含む窒素ガス流下、1000℃で2時間焼成して蛍光体Ca0.5Ba4.475Eu0.025(PO43Clを製造した。この蛍光体のX線回折パターンは、(Ba4.99
Eu0.01)(PO43Clのそれと結晶構造的に一致していることがわかった。焼成後の固体をメノウ乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
(比較例3)
硝酸カルシウム4水和物;0.00165モル、硝酸マグネシウム6水和物;0.01495モル、塩化ユーロピウム6水和物;0.00008モルを秤取り20mlの水に溶解させた。この水溶液に85%リン酸をリン酸として0.00994モル添加し、混合溶液を磁性皿に移し全溶液量を30〜40mlにした。この溶液を、攪拌下、加熱、乾燥させる。乾燥後の固体を回収し、メノウ乳鉢で粉砕した。この粉砕品の一部をアルミナ製坩堝に移し、4%の水素を含む窒素ガス流下、1000℃で2時間焼成して蛍光体Ca0.5
Mg4.475Eu0.025(PO43Clを製造した。この蛍光体のX線回折パターンは、Mg3(PO42のそれと結晶構造的に一致していることがわかった。焼成後の固体をメノウ
乳鉢で粉砕し、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起し、発光スペクトルを測定した。表−1にその発光ピークの波長と相対発光強度と発光スペクトルから計算される色度座標値x、yを示す。
Calcium chloride dihydrate; 0.00949 mol, europium nitrate hexahydrate; 0.00
A phosphor having the chemical composition shown in Table 1 was produced in the same manner as in Example 1 except that 237 mol and 85% phosphoric acid was changed to 0.00713 mol as phosphoric acid. The X-ray diffraction pattern of this phosphor was identical in crystal structure with that of Ca 5 (PO 4 ) 3 Cl, and it was found that the target crystal phase was formed. The fired solid was pulverized in an agate mortar, and the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.
(Comparative Example 1)
BaCO 3 ; 0.0103 mol, basic magnesium carbonate (Mg mole number 0.0103
Mol), and γ-Al 2 O 3 ; 0.0570 mol, and Eu 2 O 3 ; 0.00057 mol as an element source compound of the luminescent center ion together with pure water in an alumina container and a wet ball mill of beads. After mixing, drying and passing through a nylon mesh, the obtained pulverized mixture was calcined in an alumina crucible by heating at 1500 ° C. for 2 hours under a nitrogen gas flow containing 4% hydrogen. Subsequently, a blue-emitting phosphor Ba 0.9 Eu 0.1 MgAl 10 O 17 was produced by washing with water, drying, and classification. The fired solid was pulverized in an agate mortar, and the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.
(Comparative Example 2)
Calcium chloride dihydrate; 0.00077 mol, barium chloride dihydrate; 0.0070 mol, europium chloride hexahydrate; 0.00004 mol were weighed and dissolved in 20 ml of water. To this aqueous solution, 0.00469 mol of 85% phosphoric acid as phosphoric acid was added, and the mixed solution was transferred to a magnetic dish to make the total solution volume 30-30 ml. This solution was heated and dried with stirring. The dried solid was collected and pulverized in an agate mortar. A part of the pulverized product was transferred to an alumina crucible and fired at 1000 ° C. for 2 hours under a nitrogen gas flow containing 4% hydrogen to produce phosphor Ca 0.5 Ba 4.475 Eu 0.025 (PO 4 ) 3 Cl. The X-ray diffraction pattern of this phosphor is (Ba 4.99
It was found that the crystal structure coincided with that of Eu 0.01 ) (PO 4 ) 3 Cl. The fired solid was pulverized with an agate mortar, the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of the GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.
(Comparative Example 3)
Calcium nitrate tetrahydrate; 0.00165 mol, magnesium nitrate hexahydrate; 0.01495 mol, europium chloride hexahydrate; 0.00008 mol were weighed and dissolved in 20 ml of water. To this aqueous solution, 0.00994 mol of 85% phosphoric acid as phosphoric acid was added, and the mixed solution was transferred to a magnetic dish to make the total solution amount to 30 to 40 ml. This solution is heated and dried with stirring. The dried solid was collected and pulverized in an agate mortar. A portion of this pulverized product was transferred to an alumina crucible and fired at 1000 ° C. for 2 hours under a nitrogen gas flow containing 4% hydrogen to obtain phosphor Ca 0.5.
Mg 4.475 Eu 0.025 (PO 4 ) 3 Cl was produced. It was found that the X-ray diffraction pattern of this phosphor was identical in crystal structure with that of Mg 3 (PO 4 ) 2 . The fired solid was pulverized with an agate mortar, the phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of the GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the chromaticity coordinate values x and y calculated from the wavelength of the emission peak, the relative emission intensity, and the emission spectrum.

面発光型GaN系ダイオードに膜状蛍光体を接触させた発光装置の一例を示す模式的斜視図。The typical perspective view which shows an example of the light-emitting device which made the film-like fluorescent substance contact the surface emitting type GaN-type diode. 本発明の発光装置の一実施例を示す模式的断面図である。It is typical sectional drawing which shows one Example of the light-emitting device of this invention. 本発明の面発光照明装置の一例を示す模式的断面図。The typical sectional view showing an example of the surface emitting illumination device of the present invention.

符号の説明Explanation of symbols

1;第2の発光体
2;面発光型GaN系LD
3;基板
4;発光装置
5;マウントリード
6;インナーリード
7;第1の発光体(350〜415nmの発光体)
8;本発明中の蛍光体を含有させた樹脂部
9;導電性ワイヤー
10;モールド部材
11;発光素子を組み込んだ面発光照明装置
12;保持ケース
13;発光装置
14;拡散板

1; second light emitter 2; surface-emitting GaN-based LD
3; Substrate 4; Light emitting device 5; Mount lead 6; Inner lead 7; First light emitter (light emitter of 350 to 415 nm)
8; Resin part containing phosphor in the present invention 9; Conductive wire 10; Mold member 11; Surface-emitting illumination device 12 incorporating a light-emitting element; Holding case 13; Light-emitting device 14;

Claims (11)

350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体が、一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする発光装置。
(上記一般式[1]において、MはMg、Sr及びBaからなる群から選ばれる少なくとも一種の元素を表し、XはClを表す。また、aは、0.5≦a≦2、bは、(5−a)×0.8≦b≦5−a、cは、2.7≦c≦3.3、dは、0.9≦d≦1.1を満足する数である。)
In a light-emitting device including a first light-emitting body that generates light of 350 to 415 nm and a second light-emitting body that generates visible light when irradiated with light from the first light-emitting body, the second light-emitting body includes: A light-emitting device comprising a phosphor having a crystal phase having a chemical composition represented by the general formula [1].
(In the above general formula [1], M represents at least one element selected from the group consisting of M g, Sr and Ba, X represents a C l. Further, a is, 0.5 ≦ a ≦ 2, b is a number that satisfies (5-a) × 0.8 ≦ b ≦ 5-a, c is 2.7 ≦ c ≦ 3.3, and d is a number that satisfies 0.9 ≦ d ≦ 1.1. .)
aが、0.5≦a≦1.5を満足することを特徴とする請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein a satisfies 0.5 ≦ a ≦ 1.5. 元素Mが、MgまたはBaからなることを特徴とする請求項1または2に記載の発光装置。 Element M, the light-emitting device according to claim 1 or 2, characterized in that it consists of Mg or Ba. 第1の発光体がレーザーダイオード又は発光ダイオードであることを特徴とする請求項1ないし3のいずれか1つに記載の発光装置。 4. The light emitting device according to claim 1, wherein the first light emitter is a laser diode or a light emitting diode. 第1の発光体がGaN系化合物半導体を使用してなることを特徴とする請求項1ないし4のいずれか1つに記載の発光装置。 The light-emitting device according to claim 1, wherein the first light-emitting body is formed using a GaN-based compound semiconductor. 第1の発光体が面発光型GaN系レーザーダイオードであることを特徴とする請求項1ないし5のいずれか1つに記載の発光装置。 6. The light-emitting device according to claim 1, wherein the first light emitter is a surface-emitting GaN-based laser diode. 第2の発光体が膜状であることを特徴とする請求項1ないし6のいずれか1つに記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein the second light emitter has a film shape. 第1の発光体の発光面に、直接第2の発光体の膜面を接触させてなることを特徴とする請
求項7に記載の発光装置。
The light emitting device according to claim 7, wherein a film surface of the second light emitter is brought into direct contact with a light emitting surface of the first light emitter.
第2の発光体が、蛍光体の粉を樹脂に分散させてなることを特徴とする請求項1ないし8のいずれか1つに記載の発光装置。 9. The light emitting device according to claim 1, wherein the second light emitter is obtained by dispersing phosphor powder in a resin. 請求項1ないし9のいずれか1つに記載の発光装置を有する照明装置。 A lighting device comprising the light emitting device according to claim 1. 請求項1ないし9のいずれか1つに記載の発光装置を有する画像表示装置。 An image display device comprising the light emitting device according to claim 1.
JP2003289871A 2003-08-08 2003-08-08 Light emitting device, lighting device, and image display device Expired - Fee Related JP4389513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289871A JP4389513B2 (en) 2003-08-08 2003-08-08 Light emitting device, lighting device, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289871A JP4389513B2 (en) 2003-08-08 2003-08-08 Light emitting device, lighting device, and image display device

Publications (2)

Publication Number Publication Date
JP2005060468A JP2005060468A (en) 2005-03-10
JP4389513B2 true JP4389513B2 (en) 2009-12-24

Family

ID=34368067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289871A Expired - Fee Related JP4389513B2 (en) 2003-08-08 2003-08-08 Light emitting device, lighting device, and image display device

Country Status (1)

Country Link
JP (1) JP4389513B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4048954B2 (en) 2001-04-20 2008-02-20 日亜化学工業株式会社 Light emitting device
US7091656B2 (en) 2001-04-20 2006-08-15 Nichia Corporation Light emitting device
JP4890017B2 (en) * 2005-01-26 2012-03-07 株式会社小糸製作所 Blue light emitting phosphor and light emitting module using the same
KR100726973B1 (en) * 2006-02-27 2007-06-14 한밭대학교 산학협력단 Blue light-emitting phosphor and a preparation method thereof
WO2011111368A1 (en) * 2010-03-12 2011-09-15 株式会社 東芝 White light illumination device
JP5872828B2 (en) 2011-09-28 2016-03-01 株式会社小糸製作所 Light emitting module and phosphor
JP6600575B2 (en) * 2015-02-04 2019-10-30 株式会社住田光学ガラス Halophosphate phosphor exhibiting red emission and method for producing the same
JP6781463B2 (en) * 2016-03-01 2020-11-04 株式会社住田光学ガラス Halophosphate phosphor and its manufacturing method

Also Published As

Publication number Publication date
JP2005060468A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
EP1942531B1 (en) Light emitting device and illuminator using the same
JP2005298805A (en) Light emitting device and illumination device
JP4617890B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4168776B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4706358B2 (en) Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display
JP4389513B2 (en) Light emitting device, lighting device, and image display device
JP4165255B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4972904B2 (en) Phosphor, method for manufacturing the phosphor, light-emitting device using the phosphor, image display device, and illumination device
JP4411841B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP5326986B2 (en) Phosphor used in light emitting device
JP2004253747A (en) Light emitting device and lighting device using same
JP2007009141A (en) Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display
JP4561064B2 (en) Light emitting device, lighting device, and image display device
JP2004235546A (en) Light emitting device and lighting device and display using it
JP4617889B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4337465B2 (en) Light emitting device, lighting device, and image display device
JP4617888B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2010059429A (en) Phosphor, luminescent device using the same, image display and illuminating device
JP4363194B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4380118B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4246502B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4337468B2 (en) Light emitting device, lighting device, and image display device
JP4433847B2 (en) Phosphor, light emitting device using the same, image display device, and illumination device
JP4604516B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP2005064189A (en) Light emitting device, lighting device and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees