JP2005298805A - Light emitting device and illumination device - Google Patents

Light emitting device and illumination device Download PDF

Info

Publication number
JP2005298805A
JP2005298805A JP2005039187A JP2005039187A JP2005298805A JP 2005298805 A JP2005298805 A JP 2005298805A JP 2005039187 A JP2005039187 A JP 2005039187A JP 2005039187 A JP2005039187 A JP 2005039187A JP 2005298805 A JP2005298805 A JP 2005298805A
Authority
JP
Japan
Prior art keywords
light
phosphor
light emitting
emitting device
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005039187A
Other languages
Japanese (ja)
Inventor
Kouichirou Kuwabara
孔一朗 桑原
Takatoshi Seto
孝俊 瀬戸
Naoto Kijima
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005039187A priority Critical patent/JP2005298805A/en
Publication of JP2005298805A publication Critical patent/JP2005298805A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device comprising a combination of a stimulation source for generating light of 400 to 600 nm and a phosphor which is excellent in temperature characteristics and heat stability. <P>SOLUTION: The light emitting device has the first light emitting body which generates light of 400 to 600 nm and the second light emitting body which generates visible light by irradiation of the light from this first light emitting body, wherein this second light emitting body comprises a phosphor having a crystalline phase having a chemical composition of general formula 1: Eu<SB>a</SB>Ca<SB>b</SB>Sr<SB>c</SB>M<SB>d</SB>S<SB>e</SB>as a wavelength conversion material. (In the formula, M represents at least a kind of element chosen from Ba, Mg, and Zn, suffixes a, b, and d are numbers to satisfy the relations of 0.0002≤a≤0.02, 0.3≤b≤0.9998, and 0≤d≤0.1 respectively, and suffixes a, b, c, and d satisfy (a+b+c+d)=1, and e is a number to satisfy 0.9≤e≤1.1). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、照明装置等に用いられる発光装置に関するものである。詳しくは、電力源により紫外光から可視光領域の光を発光する第1の発光体と、第1の発光体からの紫外光から可視光領域にある光を吸収し長波長の可視光を発する波長変換材料として、母体化合物が発光中心イオンを有する特定組成の蛍光体を含有する第2の発光体とを組み合わせた、使用環境によらず高強度の光を発生させることができ、耐熱性にも優れた発光装置、該発光装置を備えた画像表示装置や照明装置に関するものである。   The present invention relates to a light emitting device used for a lighting device or the like. Specifically, the first light emitter that emits light in the visible light region from ultraviolet light by the power source, and the light in the visible light region is absorbed from the ultraviolet light from the first light emitter to emit long wavelength visible light. As a wavelength conversion material, the base compound can be combined with a second light emitter containing a phosphor having a specific composition having an emission center ion, and can generate high-intensity light regardless of the use environment, and is heat resistant. The present invention also relates to an excellent light-emitting device, an image display device including the light-emitting device, and an illumination device.

近年に開発された低電圧で発光強度の高い半導体発光素子である窒化ガリウム(GaN)系の発光ダイオード(LED)やレーザーダイオード(LD)等の光源と、この光源に対する波長変換材料としての蛍光体との組み合わせからなる白色発光の発光装置が、消費電力が小さく長寿命であるという特徴を活かして画像表示装置や照明装置の発光源として提案されている。例えば、特開平10−242513号公報においては、光源としてこの窒化物系半導体のLED又はLDチップを使用し、これに蛍光体としてイットリウム・アルミニウム・ガーネット系の蛍光体を組み合わせた発光装置が示されているが、この装置では、半導体の青色光源と蛍光体の黄色発光を組み合わせて白色光を発光させ、それに適した蛍光体も提案されている。しかし、この[青色+黄色]の混色による白色光発光法は、高い演色性が決して得られないという原理的な欠点を抱えている。  Light sources such as gallium nitride (GaN) light-emitting diodes (LEDs) and laser diodes (LDs), which are semiconductor light-emitting devices with low voltage and high emission intensity developed in recent years, and phosphors as wavelength conversion materials for these light sources A white light-emitting device composed of a combination with the above has been proposed as a light-emitting source of an image display device or a lighting device, taking advantage of the feature of low power consumption and long life. For example, Japanese Patent Application Laid-Open No. 10-242513 discloses a light emitting device that uses a nitride semiconductor LED or LD chip as a light source and combines a phosphor of yttrium, aluminum, and garnet as a phosphor. However, this apparatus has also been proposed a phosphor suitable for emitting white light by combining a semiconductor blue light source and yellow light emission of the phosphor. However, this white light emission method using a mixed color of [blue + yellow] has the principle drawback that high color rendering is never obtained.

そのため、近年では、これらの半導体のLEDやLDからの近紫外光を受け、青色、赤色、緑色にそれぞれ発光する蛍光体を組み合わせたり、或いは青色LEDからの青色光を受け、緑色、赤色にそれぞれ発光する蛍光体を組み合わせたりすることにより、演色性の高い白色光を発光させるのに適した蛍光体の提案がなされている。例えば、特開2003−243715号公報においては、主構成元素が(Ca,Sr,Eu)Sからなる赤色蛍光体を示し、実施例では組成が(Ca,Sr)0.95S:Eu0.05の蛍光体を作製しており、またEu濃度は0.1以下の範囲で有効であるが、特に0.005〜0.01の範囲を最適なEu濃度とすることも記載されている。 For this reason, in recent years, these semiconductor LEDs and LDs receive near-ultraviolet light and combine phosphors that emit blue, red, and green light, respectively, or receive blue light from blue LEDs and receive green and red light respectively. There has been proposed a phosphor suitable for emitting white light having high color rendering properties by combining phosphors that emit light. For example, Japanese Patent Laid-Open No. 2003-243715 shows a red phosphor whose main constituent element is (Ca, Sr, Eu) S, and in the examples, the composition is (Ca, Sr) 0.95 S: Eu 0. The phosphor of No. 05 is manufactured, and the Eu concentration is effective in the range of 0.1 or less, but it is also described that the optimum Eu concentration is particularly in the range of 0.005 to 0.01.

更に、特開2002−60747号公報において、EuをドーパントとするCaS又はSrSを赤色蛍光体として用いることができ、1つの実施形態においては、ホスト格子内にあるドーパントの量は約0.1モル%から約8モル%であることや、SrS内のドーパント濃度は、約0.3モル%から約0.8モル%が好ましい旨の記載がなされている。
ところで、LEDやLDの発光時、LEDやLDの表面温度は120℃前後の高温になっており、その近傍に位置する蛍光体も67℃前後の高温に置かれることになるが、熱安定性を考慮に入れた蛍光体の開発は進んでいないのが現状である。
特開平10−242513号公報 特開2003−243715号公報 特開2002−60747号公報
Furthermore, in JP 2002-60747, CaS or SrS with Eu as a dopant can be used as a red phosphor, and in one embodiment, the amount of dopant in the host lattice is about 0.1 mol. % To about 8 mol%, and the dopant concentration in SrS is preferably about 0.3 mol% to about 0.8 mol%.
By the way, when the LED or LD emits light, the surface temperature of the LED or LD is as high as about 120 ° C., and the phosphor located in the vicinity thereof is also placed at a high temperature of around 67 ° C. At present, the development of phosphors taking into account the above has not progressed.
Japanese Patent Laid-Open No. 10-242513 JP 2003-243715 A JP 2002-60747 A

本発明は、このような状況に鑑み、温度の面から、熱安定性が実用上優れ、実際の使用に適した発光装置の開発を目的とし、製造が容易であると共に、高い演色性を与え、かつ、発光強度が高いダブル発光体型発光装置を提供することにある。   In view of such circumstances, the present invention aims to develop a light emitting device that is practically excellent in thermal stability and suitable for actual use in terms of temperature, is easy to manufacture, and provides high color rendering. And it is providing the double light-emitting type light-emitting device with high luminous intensity.

本発明者らは、前記課題を解決すべく鋭意検討した結果、単に発光強度に優れているのみならず、熱安定性及び温度特性に優れた赤色蛍光体を見出すことができれば、例えば、[青色]+[緑色]+[赤色]、あるいは、[青色]+[黄色]+[赤色]の混色で非常に演色性が高く、熱安定性にも優れた白色光の発光装置が得られるという考えに到達した。即ち、GaN系青色LEDを光源とする例では、LEDの420nm以上480nm以下の発光源に対し、[緑色]+[赤色]の蛍光体の組み合わせ、または、[黄色]+[赤色]の蛍光体の組み合わせによる方法、更には、GaN系近紫外光源の場合を例にすると、350nm以上420nm未満の発光源に対し、[青色]+[緑色]+[赤色]の蛍光体の組み合わせ、または、[青色]+[黄色]+[赤色]の蛍光体の組み合わせによる方法等が考えられた。   As a result of intensive studies to solve the above problems, the present inventors can find a red phosphor that not only has excellent emission intensity but also has excellent thermal stability and temperature characteristics. ] + [Green] + [Red] or [Blue] + [Yellow] + [Red] is a mixed color of white light emitting device with very high color rendering and excellent thermal stability Reached. That is, in an example using a GaN-based blue LED as a light source, a combination of [green] + [red] phosphors or [yellow] + [red] phosphors with respect to a light emission source of 420 nm to 480 nm of LEDs. For example, in the case of a GaN-based near-ultraviolet light source, a combination of [blue] + [green] + [red] phosphors with respect to an emission source of 350 nm to less than 420 nm, or [ A method using a combination of phosphors of [blue] + [yellow] + [red] was considered.

本発明者らは、更に鋭意検討の結果、400−600nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体における波長変換材料として特定の化学組成を有する結晶相を含有する蛍光体を用いると、該蛍光体が第1の発光体からの400−600nm付近の光の照射を受け、高い強度で赤色の発光を生起することができ、前記目的を達成できることを見出した。即ち、第2の発光体として特定の化学組成を有する結晶相を含有するEuで付活された(Ca,Sr)S系蛍光体を使用することにより、波長領域600−680nmの極めて高強度の赤色発光を生起し、しかも、該蛍光体が温度特性及び熱安定性に優れていることから、装置全体として、温度特性及び熱安定性に優れ、演色性が高く、かつ、強度の高い白色光を発生させることができ、前記目的が達成できることを知得し本発明に到達した。   As a result of further intensive studies, the inventors of the present invention have a first light emitter that generates light of 400 to 600 nm, and a second light emitter that generates visible light when irradiated with light from the first light emitter. When a phosphor containing a crystal phase having a specific chemical composition is used as the wavelength conversion material in the second phosphor, the phosphor emits light in the vicinity of 400 to 600 nm from the first phosphor. It was found that the above-mentioned purpose can be achieved by emitting red light with high intensity. That is, by using a (Ca, Sr) S-based phosphor activated with Eu containing a crystal phase having a specific chemical composition as the second luminous body, an extremely high intensity in the wavelength region 600-680 nm. Red light is emitted, and since the phosphor is excellent in temperature characteristics and thermal stability, the entire device has excellent temperature characteristics and thermal stability, high color rendering properties, and high intensity white light. It has been found that the above object can be achieved, and the present invention has been achieved.

本発明は、かかる知見に基づいてなされたものであり、その要旨は、400−600nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体が、下記一般式[1]の化学組成で示される結晶相を有する蛍光体を含有してなることを特徴とする発光装置及び該発光装置を備えた画像表示装置或いは照明装置に存する。   The present invention has been made on the basis of such knowledge, and the gist thereof is that a first light-emitting body that generates light of 400 to 600 nm and generation of visible light by irradiation of light from the first light-emitting body. The second light emitter includes a phosphor having a crystal phase represented by a chemical composition represented by the following general formula [1]. And an image display device or a lighting device including the light emitting device.

EuCaSr ・・・・・・[1]
[式中、MはBa、Mg及びZnから選ばれる少なくとも一種の元素を表し、a、b及びdはそれぞれ0.0002≦a≦0.02、0.3≦b≦0.9998、及び0≦d≦0.1を満足する数であり、且つ、a、b、c及びdは、(a+b+c+d)=1を満たし、eは0.9≦e≦1.1を満足する数である。]
Eu a Ca b Sr c M d S e ······ [1]
[Wherein, M represents at least one element selected from Ba, Mg, and Zn, and a, b, and d are 0.0002 ≦ a ≦ 0.02, 0.3 ≦ b ≦ 0.9998, and 0, respectively. ≦ d ≦ 0.1 is satisfied, a, b, c, and d satisfy (a + b + c + d) = 1, and e is a number that satisfies 0.9 ≦ e ≦ 1.1. ]

本発明によれば、照明装置や画像表示装置に有用な、熱安定性に優れ、高い演色性を与え、かつ、発光強度の高い発光装置を提供することができる。   According to the present invention, it is possible to provide a light emitting device that is useful for a lighting device or an image display device and has excellent thermal stability, high color rendering properties, and high light emission intensity.

以下、本発明を詳細に説明する。
本発明の発光装置は、400−600nmの光を発生する第1の発光体と、この第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置であって、該第2の発光体における波長変換材料として下記一般式[1]の化学組成で示される結晶相を含有する蛍光体を使用するものである。
Hereinafter, the present invention will be described in detail.
The light-emitting device of the present invention is a light-emitting device having a first light-emitting body that generates light of 400 to 600 nm and a second light-emitting body that generates visible light when irradiated with light from the first light-emitting body. Then, a phosphor containing a crystal phase represented by the chemical composition of the following general formula [1] is used as the wavelength conversion material in the second luminous body.

EuCaSr ・・・・・・[1]
[式[1]中、MはBa、Mg及びZnから選ばれる少なくとも一種の元素を表し、a、b及びdはそれぞれ0.0002≦a≦0.02、0.3≦b≦0.9998、及び0≦d≦0.1を満足する数であり、且つ、a、b、c及びdは、(a+b+c+d)=1を満たし、eは0.9≦e≦1.1を満足する数である。]
Eu a Ca b Sr c M d S e ······ [1]
[In the formula [1], M represents at least one element selected from Ba, Mg and Zn, and a, b and d are 0.0002 ≦ a ≦ 0.02 and 0.3 ≦ b ≦ 0.9998, respectively. , And 0 ≦ d ≦ 0.1, a, b, c, and d satisfy (a + b + c + d) = 1, and e satisfies 0.9 ≦ e ≦ 1.1. It is. ]

本発明における上記一般式[1]で表される化学組成の結晶相を含有するEuで付活された(Ca,Sr)S系蛍光体は、波長400−600nmの光照射により高強度で波長600−680nmの赤色発光すると共に、温度特性及び熱安定性に優れているので、装置全体としての温度特性及び熱安定性も改善することができる。
一般式[1]中において、Euの化学式量aは、熱安定性の観点から、0.0002≦a≦0.02の範囲が好ましいが、0.0004≦a≦0.02の範囲がより好ましく、0.0004≦a≦0.008の範囲がさらに好ましい。
The (Ca, Sr) S-based phosphor activated by Eu containing the crystal phase having the chemical composition represented by the above general formula [1] in the present invention has a high intensity and wavelength when irradiated with light having a wavelength of 400 to 600 nm. Since it emits red light of 600-680 nm and is excellent in temperature characteristics and thermal stability, the temperature characteristics and thermal stability of the entire apparatus can also be improved.
In the general formula [1], the chemical formula amount a of Eu is preferably in the range of 0.0002 ≦ a ≦ 0.02 from the viewpoint of thermal stability, but more in the range of 0.0004 ≦ a ≦ 0.02. The range of 0.0004 ≦ a ≦ 0.008 is more preferable.

また、温度特性の観点からは、一般式[1]中のEuの化学式量aは、0.0004≦a≦0.01の範囲が好ましく、0.0004≦a≦0.007の範囲がより好ましく、0.0004≦a≦0.005の範囲がさらに好ましく、0.0004≦a<0.0045の範囲が特に好ましく、0.0004≦a≦0.004の範囲が最も好ましい。   From the viewpoint of temperature characteristics, the chemical formula amount a of Eu in the general formula [1] is preferably in the range of 0.0004 ≦ a ≦ 0.01, and more preferably in the range of 0.0004 ≦ a ≦ 0.007. Preferably, a range of 0.0004 ≦ a ≦ 0.005 is more preferable, a range of 0.0004 ≦ a <0.0045 is particularly preferable, and a range of 0.0004 ≦ a ≦ 0.004 is most preferable.

発光強度の観点からは、一般式[1]中のEuの化学式量aは、0.0004≦a≦0.02の範囲が好ましく、0.001≦a≦0.008の範囲がより好ましい。発光中心イオンEu2+の含有量がこの範囲未満では、発光強度が小さくなる傾向があり、他方、この範囲を越えて多すぎても、濃度消光と呼ばれる現象によりやはり発光強度が減少する傾向がある。
熱安定性、温度特性、発光強度の全てを兼ね備えるには、一般式[1]中のEuの化学式量aは、0.0004≦a<0.0045の範囲が好ましく、0.0004≦a≦0.004の範囲がより好ましく、0.001≦a≦0.004の範囲がさらに好ましい。
From the viewpoint of emission intensity, the chemical formula amount a of Eu in the general formula [1] is preferably in the range of 0.0004 ≦ a ≦ 0.02, and more preferably in the range of 0.001 ≦ a ≦ 0.008. If the content of the luminescent center ion Eu 2+ is less than this range, the emission intensity tends to be small. On the other hand, if the content exceeds this range, the emission intensity tends to decrease due to a phenomenon called concentration quenching. .
In order to combine all of thermal stability, temperature characteristics, and emission intensity, the chemical formula amount a of Eu in the general formula [1] is preferably in the range of 0.0004 ≦ a <0.0045, and 0.0004 ≦ a ≦ The range of 0.004 is more preferable, and the range of 0.001 ≦ a ≦ 0.004 is more preferable.

一般式[1]で示される化学組成の結晶相を有する蛍光体は、主として(Ca、Sr)S:Euであるが、その組成中のSrを多くすると発光ピーク波長が短波長側にシフトする。即ち、Srが少ない程長波長となり、深い赤色発光となる。そのため、Srの量を適宜調節することにより、所望の赤色発光となる蛍光体を得ることができる。一方、後述の白色発光の装置に用いる場合には、白色光の鮮やかさの点から、その白色光を構成する赤色成分は、あまり短波長側にシフトしない方が好ましいので、一般式[1]中のSrの化学式量cは、Srを含まない、即ちc=0が好ましい。   The phosphor having the crystal phase of the chemical composition represented by the general formula [1] is mainly (Ca, Sr) S: Eu, but when the Sr in the composition is increased, the emission peak wavelength is shifted to the short wavelength side. . That is, the smaller the Sr, the longer the wavelength and the deep red light emission. Therefore, a phosphor that emits desired red light can be obtained by appropriately adjusting the amount of Sr. On the other hand, when used in a white light emitting device to be described later, it is preferable that the red component constituting the white light is not shifted to the short wavelength side from the viewpoint of vividness of the white light. It is preferable that the chemical formula amount c of Sr does not contain Sr, that is, c = 0.

本発明で使用する蛍光体が含有する結晶相は、一般式[1]で示される化学組成であり、この基本結晶EuCaSrにおいては、Eu、Ca、Sr又はMが占めるカチオンサイトとSが占めるアニオンサイトのモル比が、通常1対1である。しかしながら、カチオン欠損やアニオン欠損が多少生じていても目的とする蛍光性能に大きな影響を及ぼさないので、一般式[1]中におけるSの化学式量e、即ちSが占めるアニオンサイトのモル比eが、0.9≦e≦1.1の範囲の蛍光体を本発明では使用することができる。 Crystalline phase containing the phosphor used in the present invention is a chemical composition represented by the general formula [1], in the basic crystal Eu a Ca b Sr c M d S e is Eu, Ca, Sr or M The molar ratio of the cation site occupied by and the anion site occupied by S is usually 1: 1. However, even if some cation deficiency or anion deficiency occurs, the target fluorescence performance is not greatly affected. Therefore, the chemical formula amount e of S in the general formula [1], that is, the molar ratio e of anion sites occupied by S is In the present invention, phosphors in the range of 0.9 ≦ e ≦ 1.1 can be used.

一般式[1]の化学組成において、Mで表されるBa、Mg、Znから選ばれる少なくとも一種の元素は、必ずしも必須の元素ではないが、これらの元素をMの化学式量dが0≦d≦0.1の範囲(モル比)内において含んでいる蛍光体も、本発明の目的を達成することができる。
また、本発明の蛍光体は、Eu、Ca、Sr、Ba、Mg、Zn、S以外の元素を、原料中の不純物由来などで、結晶相中に1重量%以下の量で含んでいても、これらの元素が蛍光性能に影響を与えない限り、特に使用上の問題はない。
In the chemical composition of the general formula [1], at least one element selected from Ba, Mg, and Zn represented by M is not necessarily an essential element, but the chemical formula amount d of M is 0 ≦ d. The phosphor contained in the range (molar ratio) of ≦ 0.1 can also achieve the object of the present invention.
Further, the phosphor of the present invention may contain elements other than Eu, Ca, Sr, Ba, Mg, Zn, and S in an amount of 1% by weight or less in the crystal phase due to impurities in the raw material. As long as these elements do not affect the fluorescence performance, there is no particular problem in use.

本発明で使用する前記一般式[1]で示される化学組成の結晶相を有する蛍光体の調製は、通常行われている方法で行うことが出来る。例えば、前記一般式[1]における構成元素の由来となるCa源、Sr源、Ba源、Mg源、Zn源、S源の化合物、及び発光中心イオン(Eu)の元素源化合物を、ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、若しくは乳鉢と乳棒等を用いる粉砕と、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機とを適宜組合わせる乾式混合法により十分混合し、調製した混合物を加熱処理して焼成することにより製造することができる。
又、上記元素源化合物が硫化物でない場合には、粉砕機又は乳鉢と乳棒等を用い、更に水等の液体媒体を加えてスラリー状態又は溶液状態で湿式混合し、次いで調製した混合物を、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥する湿式混合法により得られた混合物を加熱処理して焼成することによっても製造することができる。
The phosphor having a crystal phase having the chemical composition represented by the general formula [1] used in the present invention can be prepared by a conventional method. For example, a Ca source, a Sr source, a Ba source, a Mg source, a Zn source, a compound of an S source, and an element source compound of a luminescent center ion (Eu) from which the constituent element in the general formula [1] is derived Prepared by dry mixing such as roll mill, ball mill, jet mill, etc. or dry blending method combining pulverization using a mortar and pestle with a blender such as ribbon blender, V-type blender, Henschel mixer, etc. It can manufacture by heat-processing the fired mixture and baking.
If the element source compound is not sulfide, use a pulverizer or mortar and pestle, etc., add a liquid medium such as water and wet mix in a slurry state or solution state, then spray the prepared mixture It can also be produced by heat-treating and baking a mixture obtained by a wet mixing method in which drying, heat drying, natural drying, or the like is performed.

これらの乾式混合法或いは湿式混合法で得た混合物の加熱処理法としては、アルミナや石英製の坩堝やトレイ等の耐熱容器中で、通常600〜1400℃、好ましくは700〜1300℃、更に好ましくは900〜1100℃の温度で、特定の雰囲気下10分〜24時間、加熱することによりなされる。
特定の加熱雰囲気としては、硫化水素、大気、酸素、一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単独或いは混合雰囲気から、発光中心イオンの元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明の蛍光体における2価のEu等の場合には、硫化水素、一酸化炭素、窒素、水素、アルゴン等の中性若しくは還元雰囲気下が好ましいが、大気、酸素等の酸化雰囲気下も条件さえ選べば可能である。
尚、加熱処理後、必要に応じて、洗浄、乾燥、分級処理等がなされる。
The heat treatment method of the mixture obtained by these dry mixing methods or wet mixing methods is usually 600 to 1400 ° C., preferably 700 to 1300 ° C., more preferably in a heat-resistant container such as a crucible or tray made of alumina or quartz. Is performed by heating at a temperature of 900 to 1100 ° C. for 10 minutes to 24 hours in a specific atmosphere.
The specific heating atmosphere includes an ionic state (valence) in which the element of the emission center ion contributes to light emission from a single or mixed atmosphere of gases such as hydrogen sulfide, air, oxygen, carbon monoxide, carbon dioxide, nitrogen, hydrogen, and argon. The atmosphere required to obtain a number) is selected. In the case of the divalent Eu or the like in the phosphor of the present invention, a neutral or reducing atmosphere such as hydrogen sulfide, carbon monoxide, nitrogen, hydrogen, and argon is preferable. Even if you choose.
In addition, after heat processing, washing | cleaning, drying, a classification process, etc. are made | formed as needed.

本発明の蛍光体における上記の構成元素Ca、Sr、Ba、Mg、Zn、Euの各元素源化合物となる原料化合物としては、Ca、Sr、Ba、Mg、ZnおよびEuの各硫化物、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等が挙げられ、S源の化合物としては、Ca、Sr、Ba、Mg、ZnおよびEu等の各元素の硫化物、オキシ硫化物、硫化水素、NHSH、CS、S、(CHNCSNa等が挙げられる。これらの原料化合物の中から、化学組成、反応性、及び、焼成時におけるNO、SO等の非発生性等を考慮して選択されるが、構成元素の硫化物、硫酸塩、炭酸塩、酸化物等が好適である。 Examples of the raw material compound that becomes each element source compound of the constituent elements Ca, Sr, Ba, Mg, Zn, and Eu in the phosphor of the present invention include Ca, Sr, Ba, Mg, Zn, and Eu sulfides, oxidation Compounds, hydroxides, carbonates, nitrates, sulfates, oxalates, carboxylates, halides, etc., and compounds of S source include elements such as Ca, Sr, Ba, Mg, Zn and Eu Sulfides, oxysulfides, hydrogen sulfide, NH 4 SH, CS 2 , S, (CH 3 ) 2 NCS 2 Na, and the like. These raw material compounds are selected in consideration of chemical composition, reactivity, non-generation of NO x , SO x, etc. during firing, etc., but the constituent elements sulfide, sulfate, carbonate An oxide or the like is preferable.

Sr及びCaの原料化合物を具体的に例示すれば、Sr源化合物としては、SrS、SrO、Sr(OH)・8HO、SrCO、Sr(NO、SrSO、Sr(OCO)・HO、Sr(OCOCH・0.5HO、SrCl等があげられ、中でもSrSが好ましい。又、Ca源化合物としては、CaS、CaO、Ca(OH)、CaCO、Ca(NO・4HO、CaSO・2HO、Ca(OCO)・HO、Ca(OCOCH・HO、CaCl等が挙げられ中でもCaSが好ましい。 Specific examples of Sr and Ca raw material compounds include SrS, SrO, Sr (OH) 2 .8H 2 O, SrCO 3 , Sr (NO 3 ) 2 , SrSO 4 , Sr (OCO). ) 2 · H 2 O, Sr (OCOCH 3 ) 2 · 0.5H 2 O, SrCl 2 and the like, among which SrS is preferable. As Ca source compounds, CaS, CaO, Ca (OH) 2 , CaCO 3 , Ca (NO 3 ) 2 .4H 2 O, CaSO 4 .2H 2 O, Ca (OCO) 2 .H 2 O, Ca (OCOCH 3 ) 2 .H 2 O, CaCl 2 and the like are mentioned, among which CaS is preferable.

又、Mg及びZnについて具体的に例示すれば、Mg源化合物としては、MgS、MgO、Mg(OH)、MgCO、Mg(OH)・3MgCO・3HO、Mg(NO・6HO、MgSO、Mg(OCO)・2HO、Mg(OCOCH・4HO、MgCl等が、又、Zn源化合物としては、ZnS、ZnOS、ZnO、Zn(OH)、ZnCO、Zn(NO、Zn(OCO)、Zn(OCOCH、ZnCl等がそれぞれ挙げられる。其の中でもMgCO、ZnCOが好ましい。 Also, if specifically illustrated for Mg and Zn, as a Mg source compound, MgS, MgO, Mg (OH ) 2, MgCO 3, Mg (OH) 2 · 3MgCO 3 · 3H 2 O, Mg (NO 3) 2 · 6H 2 O, MgSO 4 , Mg (OCO) 2 · 2H 2 O, Mg (OCOCH 3 ) 2 · 4H 2 O, MgCl 2 and the like, and Zn source compounds include ZnS, Zn 2 OS, and ZnO. Zn (OH) 2 , ZnCO 3 , Zn (NO 3 ) 2 , Zn (OCO) 2 , Zn (OCOCH 3 ) 2 , ZnCl 2 and the like. MgCO 3 Among its, ZnCO 3 is preferable.

更に、発光中心イオンの元素であるEuについての元素源化合物を具体的に例示すれば、Eu、EuF、EuCl、EuCl、Eu、Eu(SO、Eu(OCO)、Eu(CO等が挙げられ、EuFが好ましい。 Furthermore, specific examples of the element source compound for Eu, which is the element of the emission center ion, are Eu 2 S 3 , EuF 3 , EuCl 2 , EuCl 3 , Eu 2 O 3 , Eu 2 (SO 4 ) 3 , Eu 2 (OCO) 6 , Eu 2 (CO 3 ) 3 and the like can be mentioned, and EuF 3 is preferable.

本発明の発光装置において、第1の発光体の発光源と第2の発光体の蛍光体を組み合わせる方法としては、第2の発光体が蛍光体として、本発明の上記一般式[1]の化学組成を有する結晶相を含有する赤色蛍光体のみを含有し、赤色発光の装置として照明又は表示に使用する方法、又は、第2の発光体の蛍光体として[青色]蛍光体+[緑色]蛍光体+本発明の[赤色]蛍光体の組み合わせ、或いは、青色LEDなどの第1の発光体からの光と第2の発光体の[緑色]蛍光体+本発明の[赤色]蛍光体の組み合わせにより、白色発光の装置として照明又は表示に使用する方法等が挙げられる。   In the light-emitting device of the present invention, as a method of combining the light-emitting source of the first light-emitting body and the phosphor of the second light-emitting body, the second light-emitting body is a phosphor and the general formula [1] of the present invention is used. A method of containing only a red phosphor containing a crystal phase having a chemical composition and used for illumination or display as a red light emitting device, or [blue] phosphor + [green] as a phosphor of a second light emitter Combination of phosphor + [red] phosphor of the present invention, or light from the first light emitter such as blue LED and [green] phosphor of the second light emitter + [red] phosphor of the present invention Depending on the combination, a method of using as a white light emitting device for illumination or display can be mentioned.

本発明の[赤色]蛍光体に組み合わせる[青色]蛍光体としては、BaMgAl1017:Eu、BaMgSi:Eu、Euにより付活されたアパタイト等が挙げられ、又組み合わせる[緑色]蛍光体としては、BaMgAl1017:Eu,Mn、ZnS:Cu,Al、SrAl:Eu等が挙げられるが、これらに限定されるものではない。 Examples of the [blue] phosphor to be combined with the [red] phosphor of the present invention include apatite activated by BaMgAl 10 O 17 : Eu, Ba 3 MgSi 2 O 8 : Eu, Eu, and the like [green] Examples of the phosphor include, but are not limited to, BaMgAl 10 O 17 : Eu, Mn, ZnS: Cu, Al, and SrAl 2 O 4 : Eu.

本発明の発光装置において、第2の発光体が含有する前記蛍光体に光を照射する第1の発光体としては、波長400−600nmの範囲にピーク波長を有する光を発生する発光体を使用する。第1の発光体がGaN系発光体の場合、波長430−570nmの範囲にピーク波長を有する光を発生する発光体が好ましく、波長440−520nmの範囲にピーク波長を有する光を発生する発光体が更に好ましい。   In the light emitting device of the present invention, a light emitter that emits light having a peak wavelength in a wavelength range of 400 to 600 nm is used as the first light emitter for irradiating the phosphor contained in the second light emitter. To do. When the first illuminant is a GaN-based illuminant, an illuminant that generates light having a peak wavelength in the wavelength range of 430 to 570 nm is preferable, and an illuminant that generates light having a peak wavelength in the range of wavelength 440 to 520 nm Is more preferable.

第1の発光体の具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができるが、その中でも、GaN系化合物半導体を使用したGaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系はSiC系の100倍以上の発光強度を有する。   Specific examples of the first light emitter include a light emitting diode (LED) or a laser diode (LD). Among them, a GaN LED or LD using a GaN compound semiconductor is preferable. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, the GaN system usually has a light emission intensity 100 times or more that of the SiC system.

GaN系LEDやLDにおいては、AlGaN発光層、GaN発光層、またはInGaN発光層を有しているものが好ましい。これらの中、GaN系LEDにおいては、特にInGaN発光層を有するものが発光強度が非常に強いので好ましく、また、GaN系LDにおいては、InGaN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。
GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlGaN層、GaN層、またはInGaN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものは発光効率がさらに高く、より好ましい。
GaN-based LEDs and LDs preferably have an Al X Ga Y N light emitting layer, a GaN light emitting layer, or an In X Ga Y N light emitting layer. Among these, a GaN-based LED having an In X Ga Y N light-emitting layer is particularly preferable because the light emission intensity is very strong. In a GaN-based LD, multiple layers of In X Ga Y N and GaN layers are preferable. The quantum well structure is particularly preferable because the emission intensity is very strong. In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics.
A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic components, and the light-emitting layer is made of n-type and p-type Al X Ga Y N layers, GaN layers, or In X Those having a hetero structure sandwiched between Ga Y N layers and the like have high luminous efficiency, and those having a hetero structure having a quantum well structure have higher luminous efficiency and are more preferable.

本発明においては、第1の発光体として面発光型の発光体、特に面発光型GaN系レーザーダイオード(LD)を使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第2の発光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、第2の発光体に含まれる蛍光体からより強い発光を得ることができる。   In the present invention, it is particularly preferable to use a surface-emitting type light emitter, particularly a surface-emitting GaN-based laser diode (LD), as the first light-emitting body, because it increases the light emission efficiency of the entire light-emitting device. . A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is successfully performed. By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. When the surface emitting type is used, the light emission cross-sectional area per unit light emission amount can be increased compared to the type that emits light from the edge of the light emitting layer. As a result, the phosphor of the second light emitter is irradiated with the light. Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor included in the second light emitter.

第1の発光体として面発光型のものを使用する場合、第2の発光体を膜状とするのが好ましい。その結果、面発光型の発光体からの光は断面積が十分大きいので、第2の発光体をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。   When a surface-emitting type is used as the first light emitter, the second light emitter is preferably a film. As a result, the cross-sectional area of the light from the surface-emitting type light emitter is sufficiently large. Therefore, when the second light emitter is formed into a film in the direction of the cross section, the irradiation cross-section area of the phosphor from the first light emitter is irradiated. Becomes larger per unit amount of phosphor, so that the intensity of light emitted from the phosphor can be further increased.

また、第1の発光体として面発光型のものを使用し、第2の発光体として膜状のものを用いる場合、第1の発光体の発光面に、直接膜状の第2の発光体を接触させた形状とするのが好ましい。ここでいう接触とは、第1の発光体と第2の発光体とが互いに接する面の間に空気や気体などの間隙層を存することなくぴたりと接している状態をつくることを言う。その結果、第1の発光体からの光が第2の発光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。   Further, when a surface-emitting type is used as the first light emitter and a film-like one is used as the second light emitter, the second light emitter directly in the form of a film on the light-emitting surface of the first light emitter. It is preferable to have a shape in which is contacted. Contact here means creating a state where the first light emitter and the second light emitter are in close contact with each other without a gap layer of air or gas between the surfaces in contact with each other. As a result, it is possible to avoid a light amount loss in which light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

本発明の発光装置の一例における第1の発光体と第2の発光体との位置関係を示す模式的斜視図を図1に示す。図1中の1は、前記蛍光体を有する膜状の第2の発光体、2は第1の発光体としての面発光型GaN系LD、3は基板を表す。相互に接触した状態をつくるために、LD2と第2の発光体1とそれぞれ別個につくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、LD2の発光面上に第2の発光体を製膜(成型)させても良い。これらの結果、LD2と第2の発光体1とを接触した状態とすることができる。   FIG. 1 is a schematic perspective view showing the positional relationship between the first light emitter and the second light emitter in an example of the light emitting device of the present invention. In FIG. 1, 1 is a film-like second light emitter having the phosphor, 2 is a surface-emitting GaN-based LD as the first light emitter, and 3 is a substrate. In order to create a state in which they are in contact with each other, the LD 2 and the second light emitter 1 may be formed separately, and their surfaces may be brought into contact with each other by an adhesive or other means. Alternatively, the second light emitter may be formed (molded). As a result, the LD 2 and the second light emitter 1 can be brought into contact with each other.

第1の発光体からの光や第2の発光体からの光は通常四方八方に向いているが、第2の発光体の蛍光体の粉を樹脂中に分散させると、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを揃えられる。従って、光を効率の良い向きにある程度誘導できるので、第2の発光体として、前記蛍光体の粉を樹脂中へ分散したものを使用するのが好ましい。また、蛍光体を樹脂中に分散させると、第1の発光体からの光の第2の発光体への全照射面積が大きくなるので、第2の発光体からの発光強度を大きくすることができるという利点も有する。   The light from the first illuminant and the light from the second illuminant are usually directed in all directions. However, when the phosphor powder of the second illuminant is dispersed in the resin, the light is out of the resin. A part of the light is reflected when exiting, so the direction of the light can be adjusted to some extent. Therefore, since light can be guided to an efficient direction to some extent, it is preferable to use a phosphor in which the phosphor powder is dispersed in a resin as the second light emitter. Further, when the phosphor is dispersed in the resin, the total irradiation area of the light from the first light emitter to the second light emitter is increased, so that the light emission intensity from the second light emitter can be increased. It also has the advantage of being able to.

第2の発光体に用いる蛍光体を分散させるのに使用できる樹脂としては、シリコン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものが挙げられるが、蛍光体粉の分散性や安定性が良い点で好ましくはシリコン樹脂やエポキシ樹脂である。第2の発光体の蛍光体粉を樹脂中に分散させる場合、蛍光体粉の割合は、蛍光体と樹脂との全重量に対し、通常3〜95%、好ましくは3〜54%、さらに好ましくは3〜12%である。蛍光体が多すぎると粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。   Examples of the resin that can be used to disperse the phosphor used in the second luminous body include various resins such as silicon resin, epoxy resin, polyvinyl resin, polyethylene resin, polypropylene resin, and polyester resin. In view of good dispersibility and stability of the phosphor powder, silicon resin and epoxy resin are preferable. When the phosphor powder of the second phosphor is dispersed in the resin, the proportion of the phosphor powder is usually 3 to 95%, preferably 3 to 54%, more preferably based on the total weight of the phosphor and the resin. Is 3-12%. If the phosphor is too much, the luminous efficiency may be reduced due to aggregation of the powder, and if it is too little, the luminous efficiency may be lowered due to light absorption or scattering by the resin.

本発明の発光装置は、波長変換材料としての前記蛍光体を含有する第2の発光体と、400−600nmの光を発生する発光素子(第1の発光体)とから構成されてなり、前記蛍光体が発光素子の発する400−600nmの光を吸収して、使用環境によらず演色性が良く、かつ、高強度の可視光を発生させることのできる発光装置であり、バックライト光源、信号機などの発光源、又、カラー液晶ディスプレイ等の画像表示装置や面発光等の照明装置等の光源に適している。   The light-emitting device of the present invention is composed of a second light-emitting body containing the phosphor as a wavelength conversion material, and a light-emitting element (first light-emitting body) that generates light of 400 to 600 nm. A phosphor is a light-emitting device that absorbs light of 400 to 600 nm emitted from a light-emitting element, has good color rendering regardless of the use environment, and can generate high-intensity visible light. And a light source such as an image display device such as a color liquid crystal display or a lighting device such as a surface light emission.

本発明の発光装置を図面に基づいて説明すると、図2は、第1の発光体(400−600nm発光体)と第2の発光体とを有する発光装置の一実施例を示す模式的断面図であり、4は発光装置、5はマウントリード、6はインナーリード、7は第1の発光体(400−600nmの発光体)、8は第2の発光体としての蛍光体含有樹脂部、9は導電性ワイヤー、10はモールド部材である。   The light-emitting device of the present invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing an embodiment of a light-emitting device having a first light emitter (400-600 nm light emitter) and a second light emitter. 4 is a light emitting device, 5 is a mount lead, 6 is an inner lead, 7 is a first light emitter (400-600 nm light emitter), 8 is a phosphor-containing resin portion as a second light emitter, 9 Is a conductive wire, and 10 is a mold member.

本発明の一例である発光装置は、図2に示されるように、一般的な砲弾型の形態をなし、マウントリード5の上部カップ内には、GaN系発光ダイオード等からなる第1の発光体(400−600nm発光体)7が、その上に、蛍光体をシリコン樹脂、エポキシ樹脂、又はアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより第2の発光体として形成された蛍光体含有樹脂部8で被覆されることにより固定されている。一方、第1の発光体7とマウントリード5、及び第1の発光体7とインナーリード6は、それぞれ導電性ワイヤー9で導通されており、これら全体がエポキシ樹脂等によるモールド部材10で被覆、保護されてなる。   As shown in FIG. 2, the light emitting device as an example of the present invention has a general bullet shape, and a first light emitter made of a GaN-based light emitting diode or the like is disposed in the upper cup of the mount lead 5. (400-600 nm illuminant) 7 was formed as a second illuminant by mixing and dispersing the phosphor in a binder such as silicon resin, epoxy resin, or acrylic resin, and pouring it into the cup. It is fixed by being covered with the phosphor-containing resin portion 8. On the other hand, the first light emitter 7 and the mount lead 5, and the first light emitter 7 and the inner lead 6 are each electrically connected by a conductive wire 9, and these are entirely covered with a mold member 10 made of epoxy resin or the like, Protected.

又、この図2に示す発光装置を組み込んだ面発光照明装置11は、図3に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース12の底面に、多数の発光装置13を、その外側に発光装置13の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース12の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板14を発光の均一化のために固定してなる。   Further, as shown in FIG. 3, the surface emitting illumination device 11 incorporating the light emitting device shown in FIG. 2 is formed on the bottom surface of a rectangular holding case 12 whose inner surface is light-impermeable such as a white smooth surface. A large number of light emitting devices 13 are arranged on the outer side by providing a power source and a circuit (not shown) for driving the light emitting device 13, and milky white acrylic is provided at a position corresponding to the lid portion of the holding case 12. A diffusion plate 14 such as a plate is fixed for uniform light emission.

そして、面発光照明装置11を駆動して、発光素子13の第1の発光体に電圧を印加することにより400−600nmの光を発光させ、その発光の一部を、第2の発光体としての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板14を透過して、図面上方に出射され、保持ケース12の拡散板14面内において均一な明るさの照明光が得られることとなる。   Then, by driving the surface emitting illumination device 11 and applying a voltage to the first light emitter of the light emitting element 13, light of 400 to 600 nm is emitted, and a part of the light emission is used as the second light emitter. The phosphor in the phosphor-containing resin part absorbs and emits visible light, while light emission with high color rendering properties is obtained by mixing with blue light or the like that is not absorbed by the phosphor. 14, is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 14 of the holding case 12.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1
CaS;1.9981g及びEuF;0.0024gをメノウ乳鉢上で粉砕、混合して得られた混合物をアルミナ製坩堝中で窒素水素混合ガス流下1000℃で2時間加熱することにより焼成した。引き続いて、焼成物を粉砕し、分級処理(粉砕による粒径制御)を施すことにより赤色発光の蛍光体Eu0.004Ca0.9996S(Eu:0.04mol%)を製造した。
Example 1
A mixture obtained by pulverizing and mixing CaS; 1.9981 g and EuF 3 ; 0.0024 g in an agate mortar was calcined in an alumina crucible by heating at 1000 ° C. for 2 hours in a nitrogen-hydrogen mixed gas stream. Subsequently, the fired product was pulverized and subjected to classification treatment (particle size control by pulverization) to produce a red-emitting phosphor Eu 0.004 Ca 0.9996 S (Eu: 0.04 mol%).

実施例2
仕込み原料を、CaS;3.9824g及びEuF;0.0108gと変えた以外は、実施例1と同様にして蛍光体Eu0.001Ca0.999S(Eu:0.1mol%)を製造した。
実施例3
仕込み原料を、CaS;3.9594g及びEuF;0.0482gと変えた以外は、実施例1と同様にして蛍光体Eu0.004Ca0.996S(Eu:0.4mol%)を製造した。
Example 2
A phosphor Eu 0.001 Ca 0.999 S (Eu: 0.1 mol%) was produced in the same manner as in Example 1 except that the charged materials were changed to CaS; 3.9824 g and EuF 3 ; 0.0108 g. did.
Example 3
A phosphor Eu 0.004 Ca 0.996 S (Eu: 0.4 mol%) was produced in the same manner as in Example 1 except that the charged raw materials were changed to CaS; 3.9594 g and EuF 3 ; 0.0482 g. did.

実施例4
仕込み原料を、CaS;3.8908g及びEuF;0.0913gと変えた以外は、実施例1と同様にして蛍光体Eu0.008Ca0.992S(Eu:0.8mol%)を製造した。
実施例5
仕込み原料を、CaS;3.8936g及びEuF;0.1152gと変えた以外は、実施例1と同様にして蛍光体Eu0.01Ca0.99S(Eu:1mol%)を製造した。
Example 4
A phosphor Eu 0.008 Ca 0.992 S (Eu: 0.8 mol%) was produced in the same manner as in Example 1 except that the charged raw materials were changed to CaS; 3.8908 g and EuF 3 ; 0.0913 g. did.
Example 5
A phosphor Eu 0.01 Ca 0.99 S (Eu: 1 mol%) was produced in the same manner as in Example 1 except that the charged raw materials were changed to CaS; 3.8936 g and EuF 3 ; 0.1152 g.

実施例6
仕込み原料を、CaS;3.7881g及びEuF;0.2257gと変えた以外は、実施例1と同様にして蛍光体Eu0.02Ca0.98S(Eu:2mol%)を製造した。
Example 6
A phosphor Eu 0.02 Ca 0.98 S (Eu: 2 mol%) was produced in the same manner as in Example 1 except that the charged raw materials were changed to CaS; 3.77881 g and EuF 3 ; 0.2257 g.

比較例1
仕込み原料を、CaS;1.9936g及びEuF;0.0006gと変えた以外は、実施例1と同様にして蛍光体Eu0.0001Ca0.9999S(Eu:0.01mol%)を製造した。
比較例2
仕込み原料を、CaS;1.7534g及びEuF;0.2700gと変えた以外は、実施例1と同様にして蛍光体Eu0.05Ca0.95S(Eu:5mol%)を製造した。
Comparative Example 1
A phosphor Eu 0.0001 Ca 0.9999 S (Eu: 0.01 mol%) was produced in the same manner as in Example 1 except that the charged raw materials were changed to CaS; 1.9936 g and EuF 3 ; 0.0006 g. did.
Comparative Example 2
A phosphor Eu 0.05 Ca 0.95 S (Eu: 5 mol%) was produced in the same manner as in Example 1 except that the charged raw materials were changed to CaS; 1.7534 g and EuF 3 ; 0.2700 g.

比較例3
仕込み原料を、CaS;1.5668g及びEuF;0.5031gと変えた以外は、実施例1と同様にして蛍光体Eu0.1Ca0.9S(Eu:10mol%)を製造した。
比較例4
仕込み原料を、CaS;1.3779g及びEuF;0.7106gと変えた以外は、実施例1と同様にして蛍光体Eu0.18Ca0.82S(Eu:18mol%)を製造した。
Comparative Example 3
A phosphor Eu 0.1 Ca 0.9 S (Eu: 10 mol%) was produced in the same manner as in Example 1 except that the charged raw materials were changed to CaS; 1.5668 g and EuF 3 ; 0.5031 g.
Comparative Example 4
A phosphor Eu 0.18 Ca 0.82 S (Eu: 18 mol%) was produced in the same manner as in Example 1 except that the charged raw materials were changed to CaS; 1.3779 g and EuF 3 ; 0.7106 g.

比較例5
仕込み原料を、CaS;1.2272g及びEuF;0.8907gと変えた以外は、実施例1と同様にして蛍光体Eu0.25Ca0.75S(Eu:25mol%)を製造した。
Comparative Example 5
A phosphor Eu 0.25 Ca 0.75 S (Eu: 25 mol%) was produced in the same manner as in Example 1 except that the charged raw materials were changed to CaS; 1.2272 g and EuF 3 ; 0.8907 g.

GaN系青色発光ダイオードの主波長である465nmで実施例1〜6及び比較例1〜5で製造した蛍光体を励起させ、日本分光社製のマルチスペクトロフォトメータにてそれぞれ発光スペクトルを測定した。表−1に、それらの発光ピークの波長及びその波長における発光強度(相対強度)を示した。   The phosphors produced in Examples 1 to 6 and Comparative Examples 1 to 5 were excited at 465 nm, which is the main wavelength of the GaN-based blue light-emitting diode, and the emission spectra were measured with a multispectrophotometer manufactured by JASCO Corporation. Table 1 shows the wavelength of the emission peak and the emission intensity (relative intensity) at that wavelength.

<温度特性・熱安定性の測定>
実施例1〜6及び比較例1〜5で製造した蛍光体の温度特性及びを熱安定性を測定した。GaN系青色発光ダイオードの主波長である465nmで実施例及び比較例で製造した蛍光体を励起させ、窒素雰囲気下、加熱前の24℃、67℃加熱直後、67℃で11分間加熱後冷却した24℃での温度条件で、トプコン社製輝度計BM−5Aを用いて輝度を測定した。
表−1に、温度特性(A)を表す値として、加熱前の24℃での輝度に対する67℃加熱直後の輝度の比を記した。また、熱安定性(B)を表す値として、加熱前の24℃での輝度に対する67℃で11分間加熱後24℃に冷却した蛍光体の輝度の比を記した。但し、測定温度が67℃から外れた輝度は、前後の温度における輝度を補正して、67℃における輝度とした。
<Measurement of temperature characteristics and thermal stability>
The temperature characteristics and thermal stability of the phosphors produced in Examples 1 to 6 and Comparative Examples 1 to 5 were measured. The phosphors produced in Examples and Comparative Examples were excited at 465 nm, which is the dominant wavelength of a GaN-based blue light-emitting diode, and heated in a nitrogen atmosphere immediately after heating at 24 ° C. and 67 ° C. before heating and at 67 ° C. for 11 minutes and then cooled The luminance was measured using a luminance meter BM-5A manufactured by Topcon Corporation under the temperature condition at 24 ° C.
Table 1 shows the ratio of the luminance immediately after heating at 67 ° C. to the luminance at 24 ° C. before heating as a value representing the temperature characteristic (A). Further, as a value representing the thermal stability (B), the ratio of the luminance of the phosphor heated at 67 ° C. for 11 minutes and cooled to 24 ° C. with respect to the luminance at 24 ° C. before heating was described. However, the luminance at which the measured temperature deviated from 67 ° C. was corrected to the luminance at the previous and subsequent temperatures, and the luminance at 67 ° C. was obtained.

Figure 2005298805
Figure 2005298805

実施例7
仕込み原料を、CaS;0.2633g、SrS;1.7258g及びEuF;0.0152gと変えた以外は、実施例と同様にして蛍光体Ca0.1992Sr0.7968Eu0.004Sを製造した。
実施例8
仕込み原料を、CaS;0.5671g、SrS;1.4168g及びEuF;0.0171gと変えた以外は、実施例7と同様にして蛍光体Ca0.3984Sr0.5976Eu0.004Sを製造した。
Example 7
Phosphor Ca 0.1992 Sr 0.7968 Eu 0.004 S was obtained in the same manner as in Example except that the raw materials were changed to CaS; 0.2633 g, SrS; 1.7258 g and EuF 3 ; 0.0152 g. Manufactured.
Example 8
Phosphor Ca 0.3984 Sr 0.5976 Eu 0.004 S in the same manner as in Example 7, except that the charged materials were changed to CaS; 0.5671 g, SrS; 1.4168 g and EuF 3 ; 0.0171 g. Manufactured.

実施例9
仕込み原料を、CaS;0.9454g、SrS;1.0427g及びEuF;0.0181gと変えた以外は、実施例7と同様にして蛍光体Ca0.5976Sr0.3984Eu0.004Sを製造した。
実施例10
仕込み原料を、CaS;1.3990g、SrS;0.5833g及びEuF;0.0204gと変えた以外は、実施例7と同様にして蛍光体Ca0.7968Sr0.1992Eu0.004Sを製造した。
Example 9
Phosphor Ca 0.5976 Sr 0.3984 Eu 0.004 S in the same manner as in Example 7, except that the charged raw materials were changed to CaS; 0.9454 g, SrS; 1.0427 g and EuF 3 ; 0.0181 g. Manufactured.
Example 10
Phosphor Ca 0.7968 Sr 0.1992 Eu 0.004 S in the same manner as in Example 7 except that the raw materials were changed to CaS; 1.3990 g, SrS; 0.5833 g and EuF 3 ; 0.0204 g. Manufactured.

GaN系青色発光ダイオードの主波長である465nmで実施例3及び7〜10で製造した蛍光体を励起させ、日本分光社製のマルチスペクトロフォトメータにてそれぞれ発光スペクトルを測定した。表−2に、それらの発光ピークの波長及びその波長における発光強度(相対強度)を示した。   The phosphors produced in Examples 3 and 7 to 10 were excited at 465 nm, which was the dominant wavelength of the GaN blue light emitting diode, and the emission spectra were measured with a multispectrophotometer manufactured by JASCO Corporation. Table 2 shows the wavelengths of these emission peaks and the emission intensity (relative intensity) at those wavelengths.

Figure 2005298805
Figure 2005298805

面発光型GaN系ダイオードに膜状蛍光体を接触又は成型させた発光装置の一例を示す図。The figure which shows an example of the light-emitting device which made the film-like fluorescent substance contact or shape | mold to the surface emitting type GaN-type diode. 本発明の蛍光体を含む第2の発光体と、第1の発光体(400−600nm発光体)とから構成される発光装置の一実施例を示す模式的断面図。The typical sectional view showing one example of the light emitting device constituted from the 2nd luminous body containing the fluorescent substance of the present invention, and the 1st luminous body (400-600 nm luminous body). 本発明の発光装置(発光素子)を用いた面発光照明装置の一例を示す模式的断面図。1 is a schematic cross-sectional view illustrating an example of a surface-emitting illumination device using a light-emitting device (light-emitting element) according to the present invention.

符号の説明Explanation of symbols

1 ;第2の発光体
2 ;面発光型GaN系LED
3 ;基板
4 ;発光装置
5 ;マウントリード
6 ;インナーリード
7 ;第1の発光体(400〜600nmの発光体)
8 ;本発明の蛍光体を含有させた樹脂部
9 ;導電性ワイヤー
10;モールド部材
11;発光素子を組み込んだ面発光照明装置
12;保持ケース
13;発光装置
14;拡散板
DESCRIPTION OF SYMBOLS 1; 2nd light-emitting body 2; Surface emitting type GaN-type LED
3; Substrate 4; Light emitting device 5; Mount lead 6; Inner lead 7; First light emitter (light emitter of 400 to 600 nm)
8; Resin part containing phosphor of the present invention 9; Conductive wire 10; Mold member 11; Surface emitting illumination device 12 incorporating a light emitting element 12; Holding case 13; Light emitting device 14;

Claims (6)

400−600nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体が、下記一般式[1]の化学組成で示される結晶相を有する蛍光体を含有してなることを特徴とする発光装置。
EuCaSr ・・・・・・[1]
[式中、MはBa、Mg及びZnから選ばれる少なくとも一種の元素を表し、a、b及びdはそれぞれ0.0002≦a≦0.02、0.3≦b≦0.9998、及び0≦d≦0.1を満足する数であり、且つ、a、b、c及びdは、(a+b+c+d)=1を満たし、eは0.9≦e≦1.1を満足する数である。]
In a light emitting device including a first light emitter that generates light of 400 to 600 nm and a second light emitter that generates visible light by irradiation of light from the first light emitter, the second light emitter includes: A light emitting device comprising a phosphor having a crystal phase represented by a chemical composition represented by the following general formula [1].
Eu a Ca b Sr c M d S e ······ [1]
[Wherein, M represents at least one element selected from Ba, Mg, and Zn, and a, b, and d are 0.0002 ≦ a ≦ 0.02, 0.3 ≦ b ≦ 0.9998, and 0, respectively. ≦ d ≦ 0.1 is satisfied, a, b, c, and d satisfy (a + b + c + d) = 1, and e is a number that satisfies 0.9 ≦ e ≦ 1.1. ]
一般式[1]において、dは、d=0であることを特徴とする請求項1に記載の発光装置。   2. The light emitting device according to claim 1, wherein d in the general formula [1] is d = 0. 一般式[1]において、aは0.001≦a≦0.004を満足し、cはc=0であり、且つ、eはe=1であることを特徴とする請求項1又は2に記載の発光装置。   3. In the general formula [1], a satisfies 0.001 ≦ a ≦ 0.004, c is c = 0, and e is e = 1. The light-emitting device of description. 第1の発光体がレーザーダイオード又は発光ダイオードであることを特徴とする請求項1乃至3のいずれか一項に記載の発光装置。   The light emitting device according to any one of claims 1 to 3, wherein the first light emitter is a laser diode or a light emitting diode. 請求項1乃至4のいずれか一つの発光装置を有する画像表示装置。   An image display device comprising the light emitting device according to claim 1. 請求項1乃至4のいずれか一つの発光装置を有する照明装置。   An illuminating device comprising the light emitting device according to claim 1.
JP2005039187A 2004-03-16 2005-02-16 Light emitting device and illumination device Pending JP2005298805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039187A JP2005298805A (en) 2004-03-16 2005-02-16 Light emitting device and illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004075068 2004-03-16
JP2005039187A JP2005298805A (en) 2004-03-16 2005-02-16 Light emitting device and illumination device

Publications (1)

Publication Number Publication Date
JP2005298805A true JP2005298805A (en) 2005-10-27

Family

ID=35330731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039187A Pending JP2005298805A (en) 2004-03-16 2005-02-16 Light emitting device and illumination device

Country Status (1)

Country Link
JP (1) JP2005298805A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158296A (en) * 2005-12-01 2007-06-21 Samsung Electronics Co Ltd White light emitting diode
JP2007158298A (en) * 2005-11-08 2007-06-21 Sharp Corp Light-emitting device
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US9624427B2 (en) 2006-11-24 2017-04-18 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
KR20190035491A (en) * 2017-09-25 2019-04-03 엘지이노텍 주식회사 Lighting module and lighting apparatus having thereof
KR20200112611A (en) * 2019-03-22 2020-10-05 엘지이노텍 주식회사 Lighting module and lighting apparatus having thereof
KR20220139275A (en) * 2019-03-22 2022-10-14 엘지이노텍 주식회사 Vehicle lighting module and lighting apparatus having thereof
US11757068B2 (en) 2017-09-25 2023-09-12 Lg Innotek Co., Ltd. Lighting module and lighting apparatus having thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218475A (en) * 1986-03-20 1987-09-25 Hitachi Ltd Electroluminescent element
JP2002060747A (en) * 1999-09-27 2002-02-26 Lumileds Lighting Us Llc Tri-color white light led lamp
JP2003243715A (en) * 2002-02-15 2003-08-29 Hitachi Ltd White light source and image display device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218475A (en) * 1986-03-20 1987-09-25 Hitachi Ltd Electroluminescent element
JP2002060747A (en) * 1999-09-27 2002-02-26 Lumileds Lighting Us Llc Tri-color white light led lamp
JP2003243715A (en) * 2002-02-15 2003-08-29 Hitachi Ltd White light source and image display device using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008644B2 (en) 2005-05-30 2018-06-26 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US9722149B2 (en) 2005-05-30 2017-08-01 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US9281456B2 (en) 2005-05-30 2016-03-08 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
JP2007158298A (en) * 2005-11-08 2007-06-21 Sharp Corp Light-emitting device
JP2007158296A (en) * 2005-12-01 2007-06-21 Samsung Electronics Co Ltd White light emitting diode
US9624427B2 (en) 2006-11-24 2017-04-18 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US10259997B2 (en) 2006-11-24 2019-04-16 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US9884990B2 (en) 2006-11-24 2018-02-06 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
KR20190035491A (en) * 2017-09-25 2019-04-03 엘지이노텍 주식회사 Lighting module and lighting apparatus having thereof
KR102469363B1 (en) * 2017-09-25 2022-11-23 엘지이노텍 주식회사 Lighting module and lighting apparatus having thereof
US11757068B2 (en) 2017-09-25 2023-09-12 Lg Innotek Co., Ltd. Lighting module and lighting apparatus having thereof
KR20200112611A (en) * 2019-03-22 2020-10-05 엘지이노텍 주식회사 Lighting module and lighting apparatus having thereof
KR102452424B1 (en) * 2019-03-22 2022-10-11 엘지이노텍 주식회사 Vehicle lighting module and lighting apparatus having thereof
KR20220139275A (en) * 2019-03-22 2022-10-14 엘지이노텍 주식회사 Vehicle lighting module and lighting apparatus having thereof
KR102610893B1 (en) * 2019-03-22 2023-12-07 엘지이노텍 주식회사 Vehicle lighting module and lighting apparatus having thereof

Similar Documents

Publication Publication Date Title
JP2005298805A (en) Light emitting device and illumination device
JP4168776B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4617890B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4916651B2 (en) Light emitting device and phosphor
JP4706358B2 (en) Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display
JP4411841B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4165255B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4972904B2 (en) Phosphor, method for manufacturing the phosphor, light-emitting device using the phosphor, image display device, and illumination device
JP4389513B2 (en) Light emitting device, lighting device, and image display device
JP2007009141A (en) Blue light-emitting phosphor and its manufacturing method, light-emitting apparatus, illumination apparatus, back light for display, and display
JP2004235546A (en) Light emitting device and lighting device and display using it
JP4561064B2 (en) Light emitting device, lighting device, and image display device
JP5326986B2 (en) Phosphor used in light emitting device
JP4656109B2 (en) Phosphor
JP4617889B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4617888B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2010059429A (en) Phosphor, luminescent device using the same, image display and illuminating device
JP4363194B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4246502B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4604516B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4337468B2 (en) Light emitting device, lighting device, and image display device
JP2005064189A (en) Light emitting device, lighting device and image display device
JP4337465B2 (en) Light emitting device, lighting device, and image display device
JP4433847B2 (en) Phosphor, light emitting device using the same, image display device, and illumination device
JP4380118B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102