JP4380118B2 - LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME - Google Patents

LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME Download PDF

Info

Publication number
JP4380118B2
JP4380118B2 JP2002214992A JP2002214992A JP4380118B2 JP 4380118 B2 JP4380118 B2 JP 4380118B2 JP 2002214992 A JP2002214992 A JP 2002214992A JP 2002214992 A JP2002214992 A JP 2002214992A JP 4380118 B2 JP4380118 B2 JP 4380118B2
Authority
JP
Japan
Prior art keywords
light
emitting device
phosphor
light emitting
light emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002214992A
Other languages
Japanese (ja)
Other versions
JP2004056045A (en
JP2004056045A5 (en
Inventor
孝俊 瀬戸
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002214992A priority Critical patent/JP4380118B2/en
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to EP08002195A priority patent/EP1942531B1/en
Priority to EP03706938A priority patent/EP1484803B1/en
Priority to DE60332676T priority patent/DE60332676D1/en
Priority to DE60327926T priority patent/DE60327926D1/en
Priority to EP10003292A priority patent/EP2204858A3/en
Priority to AU2003211509A priority patent/AU2003211509A1/en
Priority to EP10003293A priority patent/EP2204859A3/en
Priority to CNB03808323XA priority patent/CN100468789C/en
Priority to PCT/JP2003/001506 priority patent/WO2003069686A1/en
Priority to CN2008101687701A priority patent/CN101420004B/en
Publication of JP2004056045A publication Critical patent/JP2004056045A/en
Priority to US10/918,339 priority patent/US7357882B2/en
Publication of JP2004056045A5 publication Critical patent/JP2004056045A5/ja
Application granted granted Critical
Publication of JP4380118B2 publication Critical patent/JP4380118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は発光装置に関し、詳しくは、電力源により紫外光から可視光領域の光を発光する第1の発光体と、その紫外光から可視光領域にある光を吸収し長波長の可視光を発する母体化合物が発光中心イオンを含有する蛍光体を有する波長変換材料としての第2の発光体とを組み合わせることにより、使用環境によらず演色性が良く、かつ、高強度の発光を発生させることのできる発光装置に関する。
【0002】
【従来の技術】
青、赤、緑の混色により白色その他の様々な色を発生させるために、LEDやLDの発光色を蛍光体で色変換させた発光装置が提案されている。
例えば、特公昭49−1221号公報では、300nm〜530nmの波長の放射ビームを発するレーザーのビームを燐光体(Y3-x-yCexGdy5-zGaz12(YはY、Lu、またはLa、MはAl、Al−In、またはAl−Scを表し、xは0.001〜0.15、yは2.999以下、zは3.0以下である。))に照射させ、これを発光させてディスプレーを形成する方法が示されている。また、近年では、青色発光の半導体発光素子として注目されている発光効率の高い窒化ガリウム(GaN)系LEDやLDと、波長変換材料としての蛍光体とを組み合わせて構成される白色発光の発光装置が、消費電力が小さく長寿命であるという特徴を活かして画像表示装置や照明装置の発光源として提案されている。実際に、特開平10−242513号公報において、この窒化物系半導体のLED又はLDチップを使用し、蛍光体としてセリウム付活イットリウム・アルミニウム・ガーネット系を使用することを特徴とする発光装置が示されている。
【0003】
しかしながら、LEDやレーザーの第1の発光体に対し、特公昭49−1221号公報や特開平10−242513号公報に示されるようなセリウム付活イットリウム・アルミニウム・ガーネット系蛍光体を第2の発光体として組み合わせたような発光装置では高い発光強度と演色性の両方を満足するものではなく、ディスプレイやバックライト光源、信号機などの発光源としては、さらなる改良が求められる。
【0004】
この演色性とは、太陽光で照らされた物体の色の見え方に対し、蛍光体からの白色光で照らされた物体の色の見え方がどの程度近いかを表す尺度を表す。
例えば、特開平10−242513号公報に示されるようなセリウム付活イットリウム・アルミニウム・ガーネット系蛍光体と青色LED又は青色レーザーとの組み合わせにおいては、青色光と蛍光体から発生する黄色光の混色で白色を発生させることができるが、青色と黄色の発光ピークトップ(450nm付近と550nm付近)の中間領域(470nm〜540nm)と、黄色ピークの長波長側領域(580nm〜700nm)の発光強度が極めて小さく、その領域の発光に谷間を生じてしまうため、その領域に谷間のない太陽光スペクトルと一致させることができない。そのため、演色性が極めて低いものとなる。
【0005】
これに対し、青色、緑色、赤色の蛍光体を混合して白色光とする場合は、従来の青・黄混色系のような2つのピークの重なりでなく、3つのピークの重なりとなるので、発光ピークの間の谷間が小さくなり、演色性がより向上することになる。しかし、この青・緑・赤混色系においても発光ピーク間の谷間の存在により、演色性が低くなる問題は存在する。
【0006】
【発明が解決しようとする課題】
青色、緑色、赤色の蛍光体を混合して白色光とする場合、各色の蛍光体において、発光強度と演色性の高さが求められる。
本発明は、前述の従来技術に鑑み、発光強度が高いのみならず、演色性が高くなる発光装置を開発すべくなされたものであり、製造が容易であると共に、演色性と発光強度の両方が高い発光装置、特に青色蛍光体として好適な発光装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、前記課題を解決すべく鋭意検討した結果、蛍光体に350nm〜415nmの光を照射し、青、緑、赤色に発光させて、青・緑・赤の混色による白色発光をさせる方法において、高い演色性を得るための手段として、波長−強度の分布幅が非常に大きな発光ピークを持つ蛍光体、中でも青色蛍光体において、発光スペクトル上、青色と緑色の中間領域(470nm〜500nm)にも充分強度を持つような、即ち、半値幅が大きな青色発光ピークを発生する青色蛍光体を用い、470nm〜500nm領域の発光強度の谷間を軽減することができ、演色性を高めることができる、Ca又はCa−Mgのオルトリン酸塩を使用することによって前記目的が達成できることを見い出し本発明に到達した。
【0008】
即ち、本発明は、400nm〜415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、上記第2の発光体として下記特定の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする発光装置をその要旨とする。
【0009】
【化2】
Euab(PO4c(BO32-cd・・・・・[1]
(上記一般式[1]において、Mは、Caを含有し、かつ、CaとMgからなる群から選ばれた少なくとも一種の元素が80mol%以上を占める金属元素を表し、ZはPO4 3-、BO3 3-以外のアニオンを表す。aは、0.15≦a≦2.1、bは、2.7≦(a+b)≦3.3、cは、1.2≦c≦2、dは、0≦d≦0.1を満足する数である。)
【0010】
即ち、本発明の特徴は、オルトリン酸塩A3(PO42(但し、Aはアルカリ土類金属)を結晶母体とするEu2+で付活された物質は、通常の254nm励起蛍光体としては知られていたが、これまで検討されていなかった、400nm付近の光の励起によって発生する発光強度と、その発光ピークの半値幅が、A3(PO42のアルカリ土類金属Aの種類によって大きく異なること、このA3(PO42:Eu2+のうち、Ca又はCa−Mg複合系カチオンをAとした物質が、350nm〜415nm励起光の照射を受けて、非常に強く青色に発光すること、及びその演色性を大きく高める発光波長−発光強度の分布が広い、即ち半値幅が大きく、上記蛍光体が高い演色性を与えることを知得したことに基づくものである。
【発明の実施の形態】
【0011】
以下、本発明につき、詳細に説明する。
本発明は、400nm〜415nmの光を発生する第1の発光体と蛍光体である第2の発光体を組み合わせた発光装置であり、その第2の発光体が、下記一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする。
【0012】
【化3】
Euab(PO4c(BO32-cd・・・・・[1]
(上記一般式[1]において、Mは、Caを含有し、かつ、CaとMgからなる群から選ばれた少なくとも一種の元素が80mol%以上を占める金属元素を表し、ZはPO4 3-、BO3 3-以外のアニオンを表す。aは、0.15≦a≦2.1、bは、2.7≦(a+b)≦3.3、cは、1.2≦c≦2、dは、0≦d≦0.1を満足する数である。)
【0013】
ここで、前記一般式[1]中のEu2+のモル比aは、演色性と発光強度等の面から、好ましくは0.15以上であり、上限としては、2.1以下、好ましくは1以下である。発光中心イオンであるEu2+の含有量が少なすぎると、発光強度が小さくなる傾向があり、一方、多すぎると、濃度消光と呼ばれる現象により、やはり発光強度が減少する傾向がある。
【0014】
式[1]中の元素Mは、Eu、P、Bと異なる一価以上の元素を表す。元素Mについては、演色性と発光強度等の面から、MがCaを含有し、かつ、CaとMgの合計の元素Mに占める割合を80mol%以上とすることが好ましく、CaとMgの合計に対するCaの割合が40mol%以上とすることがより好ましく、MがCaとMgからなる群から選ばれた少なくとも一種の元素であり、かつCaを40mol%以上含むことがさらに好ましい。
【0015】
M中の金属元素としてCa,Mg以外の金属元素を結晶中に含有させる場合、その金属元素に特に制約はないが、Ca、Mgと同じ価数、即ち2価の金属元素、例えばSr、Zn、Ba、Pb、Sn、好ましくはSr、Zn、Baを含有させると、結晶構造を保持しやすいので、望ましい。これら2価の金属元素及び発光中心Eu2+の焼成時の固体内拡散による複合酸化物の結晶化を助ける意味で、M中の金属元素として1価、3価、4価、5価、又は6価等の金属元素を少量導入しても良い。一つの例を挙げると、Eu0.15Ca2.85(PO42蛍光体中のCa2+の一部を等モルのLi+とGa3+で電荷補償効果を保持しながら置換することができる。発光波長や発光強度を調節する意味で、Mn等の増感剤となりうる金属元素を少量置換してもよい。
【0016】
前記一般式[1]の基本結晶Euab(PO4c(BO32-cdにおいては、Zを不純物として無視した場合の基本的なカチオンの量論モル比(a+b)が3であるが、カチオン欠損やアニオン欠損が多少生じていても本目的の蛍光性能に大きな影響がないので、2.7≦(a+b)≦3.3の範囲で使用することができる。
【0017】
前記一般式[1]中においては、主アニオンであるPO4基とBO3基の合計モル比を2と表現している。演色性と発光強度等の面から、合計モル比2のうちでPO4基のモル比が少なくとも1.2以上であることが好ましく、1.6以上2以下であることが好ましい。BO3基の存在は演色性と発光強度等に大きな悪影響を与えるものではない。前記一般式[1]中のPO4基とBO3基以外のアニオンZは、出来るだけ少量が好ましいが、本目的の蛍光性能には影響が少ない量であれば含まれていてもよく、モル比0.1以下であれば問題なく、モル比0.05以下の量が好ましい。
また、アニオンZとしては、水酸化物イオン(OH-)、金属酸化物アニオン、ハロゲン化物イオン等が挙げられ、金属酸化物アニオンとしては、SiO4 4-、SiO3 2-、TiO3 2-、ZrO3 2-等、ハロゲン化物イオンとしては、F-、Cl-、Br-、I-等を挙げることができるが、これらに限定されるものではない。
【0018】
本発明で使用する前記一般式[1]に示される化学組成を有する結晶相を有する蛍光体は、M源、PO4源、BO3源の化合物、及び、発光中心イオン(Eu2+)の元素源化合物から製造されるが、M源およびEu源の化合物としては、MおよびEuのリン酸水素塩、リン酸塩、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等が挙げられ、中でもMおよびEuのリン酸水素塩、リン酸塩、酸化物、炭酸塩が好ましい。
PO4源の化合物としては、元素M、Eu、NH4等のリン酸水素塩、リン酸塩、メタリン酸塩、ピロリン酸塩等や、P25、リン酸、メタリン酸、ピロリン酸等が挙げられ、中でも元素M、Eu、NH4等のリン酸水素塩、リン酸塩や、リン酸が好ましい。
BO3源の化合物としては、元素M、Eu、NH4等のホウ酸塩、ホウ酸水素塩、四ホウ酸塩、八ホウ酸塩、二ホウ酸塩、五ホウ酸塩等や、ホウ酸、酸化ホウ素等が挙げられ、中でも元素M、Eu、NH4等のホウ酸塩、ホウ酸水素塩や、ホウ酸、酸化ホウ素が好ましい。
これらの中から、化学組成、反応性、及び、焼成時におけるNOx、SOx等の非発生性等を考慮して選択される。
【0019】
金属元素群Mに対して好ましいとする前記Ca、Mg、Sr、Zn、及びBaについて、それらのM源化合物を具体的に例示すれば、Ca源化合物としては、CaHPO4、Ca3(PO42、CaO、Ca(OH)2、CaCO3、Ca(NO32・4H2O、CaSO4・2H2O、Ca(OCO)2・H2O、Ca(OCOCH32・H2O、CaCl2等が挙げられ、中でもCaHPO4、Ca3(PO42、CaO、CaCO3が好ましい。
Mg源化合物としては、MgHPO4、Mg3(PO42、MgO、Mg(OH)2、MgCO3、Mg(OH)2・3MgCO3・3H2O、Mg(NO32・6H2O、MgSO4、Mg(OCO)2・2H2O、Mg(OCOCH32・4H2O、MgCl2等が挙げられ、中でもMgHPO4、Mg3(PO42、MgO、MgCO3が好ましい。
Sr源化合物としては、SrHPO4、Sr3(PO42、SrO、Sr(OH)2・8H2O、SrCO3、Sr(NO32、SrSO4、Sr(OCO)2・H2O、Sr(OCOCH32・0.5H2O、SrCl2等が挙げられ、中でもSrHPO4、Sr3(PO42、SrO、SrCO3が好ましい。
Zn源化合物としては、ZnHPO4、Zn3(PO42、ZnO、Zn(OH)2、ZnCO3、Zn(NO32、Zn(OCO)2、Zn(OCOCH32、ZnCl2等が挙げられ、中でもZnHPO4、Zn3(PO42、ZnO、ZnCO3が好ましい。
Ba源化合物としては、BaHPO4、Ba3(PO42、BaO、Ba(OH)2・8H2O、BaCO3、Ba(NO32、BaSO4、Ba(OCO)2・2H2O、Ba(OCOCH32、BaCl2等が挙げられ、中でもBaHPO4、Ba3(PO42、BaO、BaCO3が好ましい。
【0020】
更に、発光中心イオンの元素として好ましいとする前記Euについて、その元素源化合物を具体的に例示すれば、Eu23、Eu2(SO43、Eu2(OCO)6、EuCl2、EuCl3、EuPO4、Eu(NO33・6H2O等が挙げられる。
【0021】
本発明で使用する蛍光体は、上述のM源、PO4源、BO3源の化合物、及び、発光中心イオン(Eu2+)の元素源化合物を、ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機を用いて粉砕した後、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機により混合するか、或いは、混合した後、乾式粉砕機を用いて粉砕する乾式法、又は、水等の媒体中にこれらの化合物を加え、媒体攪拌式粉砕機等の湿式粉砕機を用いて粉砕及び混合するか、或いは、これらの化合物を乾式粉砕機により粉砕した後、水等の媒体中に加え混合することにより調製されたスラリーを、噴霧乾燥等により乾燥させる湿式法により、調製した粉砕混合物を、加熱処理して焼成することにより製造することができる。
【0022】
これらの粉砕混合法の中で、特に、発光中心イオンの元素源化合物においては、少量の化合物を全体に均一に混合、分散させる必要があることから液体媒体を用いるのが好ましく、又、他の元素源化合物において全体に均一な混合が得られる面からも、後者湿式法が好ましく、又、加熱処理法としては、アルミナや石英製の坩堝やトレイ等の耐熱容器中で、通常800〜1500℃、好ましくは1000〜1300℃の温度で、大気、酸素、一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単独或いは混合雰囲気下、10分以上24時間以下、好ましくは10時間以下、加熱することによりなされる。尚、加熱処理後、必要に応じて、洗浄、乾燥、分級処理等がなされる。
【0023】
尚、前記加熱雰囲気としては、発光中心イオンの元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明における2価のEu等の場合には、一酸化炭素、窒素、水素、アルゴン等の中性若しくは還元雰囲気下が好ましいが、大気、酸素等の酸化雰囲気下も条件さえ選べば可能である。
【0024】
本発明で使用する蛍光体は、結晶構造として上記に示したA3(PO4)2構造を有するものである。A3(PO4)2構造の中には、空間群の異なる結晶構造が複数種存在する。(Ca,Mg)3(PO4)2の空間群は、α型Ca3(PO4)2がP21/a、Ca7Mg2(PO4)6がR3c、Ca2.86Mg0.14(PO4)2がR3c、Mg3(PO4)2がP21/nとなる。図1にCa3Mg3(PO4)4のX線回折パターンを示す(粉末X線回折データベースより)。A3(PO42結晶のA2+サイトに、Ba2+、Sr2+、Ca2+、又はMg2+、及び付活剤であるEu2+等の二価金属元素を置換させることができる。本発明においては、A3(PO4)2:Euのうち、AがCa、又は、Ca-Mg混合系であるものが対象となる。
【0025】
本発明で使用する蛍光体は、第1の発光体からの350nm〜415nmの光によって励起され、可視光を発生する。上記蛍光体は、350nm〜415nmの光の励起によって演色性がよく、かつ、強い発光強度の可視光を発生し、特にGaN系半導体から発せられる400nm付近の励起光により演色性が高く、かつ輝度が高い蛍光を発する。
【0026】
本発明において、前記蛍光体に光を照射する第1の発光体は、波長350nm〜415nmの光を発生する。好ましくは波長350nm〜415nmの範囲にピーク波長を有する光を発生する発光体を使用する。第1の発光体の具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。消費電力が良く少ない点でより好ましくはレーザーダイオードである。その中で、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系はSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInXGaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。
【0027】
本発明においては、面発光型の発光体、特に面発光型GaN系レーザーダイオードを第1の発光体として使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第2の発光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、第2の発光体である蛍光体からより強い発光を得ることができる。
【0028】
第2の発光体を膜状にすると、第1の発光体から発生した光を、受光する面積が増加するため好ましい。特に、面発光型の発光体からの光は断面積が十分大きいので、第2の発光体をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。また、第1の発光体と第2の発光体の位置関係は、第1の発光体から発生した光を、第2の発光体が受光出来る位置であればよく、特に制限は無いが、第1の発光体から発生する光の強度が高い位置に、第2の発光体があることが好ましい。
【0029】
さらに、第1の発光体と第2の発光体との間に、空気層、光透過層、光の波長を制御する層、発生した熱を制御する層等があってもよいが、第1の発光体と第2の発光体が直接接触していてもよい。
例えば、第1の発光体として面発光型のものを使用し、第2の発光体として膜状のものを用いる場合、第1の発光体の発光面に、直接膜状の第2の発光体を接触させた形状とするのが好ましい。ここでいう接触とは、第1の発光体と第2の発光体とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、第1の発光体からの光が第2の発光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。
【0030】
本発明の発光装置の一例における第1の発光体と第2の発光体との位置関係を示す模式的斜視図を図2に示す。図2中の1は、前記蛍光体を有する膜状の第2の発光体、2は第1の発光体としての面発光型GaN系LD、3は基板を表す。相互に接触した状態をつくるために、LD2と第2の発光体1とそれぞれ別個にをつくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、LD2の発光面上に第2の発光体を製膜(成型)させても良い。これらの結果、LD2と第2の発光体1とを接触した状態とすることができる。
【0031】
第1の発光体からの光や第2の発光体からの光は通常四方八方に向いているが、第2の発光体を、上記一般式[1]の化学組成を有する結晶相を含有する粉体物、つまり粉状の蛍光体を、樹脂に分散させたものとすることにより、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを揃えられ、従って、効率の良い向きに光をある程度誘導できるので好ましい。また、蛍光体を樹脂中に分散させると、第1の発光体からの光の第2の発光体への全照射面積が大きくなるので、第2の発光体からの発光強度を大きくすることができるという利点も有する。この場合に使用できる樹脂としては、特に制限はないが、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものが挙げられるが、蛍光体粉の分散性が良い点でエポキシ樹脂が好ましい。なお、樹脂中に分散させる蛍光体は、上記一般式[1]の化学組成を有する結晶相を含有する蛍光体粉だけでなく、他の蛍光体、例えば、赤色や緑色の蛍光体の粉も分散させることが出来る。粉状の蛍光体を樹脂中に分散させて第2の発光体を得る場合、樹脂中に分散させる全ての蛍光体粉と樹脂の、全体に対するその粉の重量比は、通常10%以上、好ましくは20%以上、より好ましくは30%以上であり、上限は95%以下、好ましくは90%以下、さらに好ましくは80%以下である。蛍光体が多すぎると粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。
【0032】
本発明の発光装置は、波長変換材料としての前記蛍光体と、350nm〜415nmの光を発生する発光とから構成されてなり、前記蛍光体が発光体の発する350nm〜415nmの光を吸収して、使用環境によらず演色性が良く、かつ、高強度の可視光を発生させることのできる発光装置であり、バックライト光源、信号機などの発光源、又、カラー液晶ディスプレイ等の画像表示装置や面発光等の照明装置等の光源に適している。
【0033】
本発明の発光装置を図面に基づいて説明すると、図3は、第1の発光体(350nm〜415nmの光を発生する発光体)と第2の発光体とを有する発光装置の一実施例を示す模式的断面図であり、4は発光装置、5はマウントリード、6はインナーリード、7は第1の発光体(350nm〜415nmの光を発生する発光体)、8は第2の発光体としての蛍光体含有樹脂部、9は導電性ワイヤー、10はモールド部材である。
【0034】
本発明の一例である発光装置は、図3に示されるように、一般的な砲弾型の形態をなし、マウントリード5の上部カップ内には、GaN系発光ダイオード等からなる第1の発光体(350nm〜415nmの光を発生する発光体)7が、その上に、蛍光体をエポキシ樹脂やアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより第2の発光体として形成された蛍光体含有樹脂部8で被覆されることにより固定されている。一方、第1の発光体7とインナーリード6は、導電性ワイヤー9で導通されており、かつ、第1の発光体7とマウントリード5は接しており、これら全体がエポキシ樹脂等によるモールド部材10で被覆、保護されてなる。
【0035】
又、この発光装置を組み込んだ面発光照明装置11は、図4に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース12の底面に、多数の発光装置13を、その外側に発光装置13の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース12の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板14を発光の均一化のために固定してなる。
【0036】
そして、面発光照明装置11を駆動して、発光装置13の第1の発光体に電圧を印加することにより350nm〜415nmの光を発光させ、その発光の一部を、第2の発光体としての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板14を透過して、図面上方に出射され、保持ケース12の拡散板14面内において均一な明るさの照明光が得られることとなる。
【0037】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
【0038】
実施例1
CaHPO4;0.06モル、CaCO3;0.0255モル、MgHPO4;0.06モル、MgCO3;0.0255モル、およびEu23;0.0045モルを純水と共に、アルミナ製容器及びビーズの湿式ボールミル中で粉砕、混合し、乾燥後、ナイロンメッシュを通過させた後、得られた粉砕混合物をアルミナ製坩堝中で、4%の水素を含む窒素ガス流下、1100℃で2時間、加熱することにより焼成し、引き続いて、水洗浄、乾燥、及び分級処理を行うことにより青色発光の蛍光体Eu0.15Ca1.425Mg1.425(PO4)2を製造した。図5にこの蛍光体のX線回折パターンを示す。図5のピークパターンは図1のCa3Mg3(PO4)4のそれと結晶構造的にほぼ一致していることがわかる。図6に、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを示した。表−1に、その発光ピークの波長、相対積分強度、及び半値幅を示した。
【0039】
実施例2
仕込み原料を、CaHPO4;0.06モル、CaCO3;0.0282モル、MgHPO4;0.06モル、MgCO3;0.0282モル、およびEu23;0.0018モルと変えた以外は、実施例1と同様にして蛍光体Eu0.06Ca1.47Mg1.47(PO4)2を製造した。図7にこの蛍光体のX線回折パターンを示す。図7のピークパターンは図1のCa3Mg3(PO4)4のそれと結晶構造的にほぼ一致していることがわかる。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対積分強度、及び半値幅を示した。
【0040】
実施例3
仕込み原料を、CaHPO4;0.06モル、CaCO3;0.0291モル、MgHPO4;0.06モル、MgCO3;0.0291モル、およびEu23;0.0009モルと変えた以外は、実施例1と同様にして蛍光体Eu0.03Ca1.485Mg1.485(PO4)2を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対積分強度、及び半値幅を示した。
【0041】
実施例4
仕込み原料を、CaHPO4;0.06モル、CaCO3;0.02955モル、MgHPO4;0.06モル、MgCO3;0.02955モル、およびEu23;0.00045モルと変えた以外は、実施例1と同様にして蛍光体Eu0.015Ca1.4925Mg1.4925(PO4)2を製造した。図8にこの蛍光体のX線回折パターンを示す。図8のピークパターンは図1のCa3Mg3(PO4)4のそれと結晶構造的にほぼ一致していることがわかる。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対積分強度、及び半値幅を示した。
【0042】
実施例5
仕込み原料を、CaHPO4;0.06モル、CaCO3;0.02991モル、MgHPO4;0.06モル、MgCO3;0.02991モル、およびEu23;0.00009モルと変えた以外は、実施例1と同様にして蛍光体Eu0.003Ca1.4985Mg1.4985(PO4)2を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対積分強度、及び半値幅を示した。
【0043】
実施例6
仕込み原料を、CaHPO4;0.0802モル、CaCO3;0.0389モル、MgHPO4;0.0398モル、MgCO3;0.0193モル、およびEu23;0.0009モルと変えた以外は、実施例1と同様にして蛍光体Eu0.03Ca1.985Mg0.985(PO4)2を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対積分強度、及び半値幅を示した。
【0044】
実施例7
仕込み原料を、CaHPO4;0.12モル、CaCO3;0.0582モル、およびEu23;0.0009モルと変えた以外は、実施例1と同様にして蛍光体Eu0.03Ca2.97(PO4)2を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対積分強度、及び半値幅を示した。
【0045】
実施例8
仕込み原料を、CaHPO4;0.0398モル、CaCO3;0.0193モル、MgHPO4;0.0802モル、MgCO3;0.0389モル、およびEu23;0.0009モルと変えた以外は、実施例1と同様にして蛍光体Eu0.03Ca0.985Mg1.985(PO4)2を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対積分強度、及び半値幅を示した。
【0046】
比較例1
仕込み原料を、MgHPO4;0.12モル、MgCO3;0.0594モル、およびEu23;0.0003モルと変えた以外は、実施例1と同様にして蛍光体Eu0.01Mg2.99(PO4)2を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対積分強度、及び半値幅を示した。Caを含有していない組成の蛍光体は、Caを含有している組成の蛍光体に比べて、発光強度が低く、さらに発光ピークの半値幅も小さいため演色性に劣る。
【0047】
【表1】

Figure 0004380118
【0048】
【発明の効果】
本発明によれば、演色性が高く、かつ発光強度の高い発光装置を提供することができる。
【図面の簡単な説明】
【図1】 Ca3Mg3(PO4)4のX線回折パターン(X線源Cu Kαに換算したもの)。
【図2】 面発光型GaN系ダイオードに膜状の第2の発光体を接触又は成型させた発光装置の一例を示す図。
【図3】 本発明中の、第1の発光体(350nm〜415nmの光を発生する発光体)と第2の発光体とから構成される発光装置の一実施例を示す模式的断面図である。
【図4】 本発明の照明装置の一例を示す模式的断面図。
【図5】 実施例1の蛍光体のX線回折パターン(X線源:Cu Kα)
【図6】 発光波長400nmのGaN系発光ダイオードにより照射を受けた実施例1、および比較例1のそれぞれの蛍光体の発光スペクトルを重ね合わせたスペクトル。
【図7】 実施例2の蛍光体のX線回折パターン(X線源:Cu Kα)
【図8】 実施例4の蛍光体のX線回折パターン(X線源:Cu Kα)
【符号の説明】
1;第2の発光体
2;面発光型GaN系LED
3;基板
4;発光装置
5;マウントリード
6;インナーリード
7;第1の発光体(350nm〜415nmの光を発生する発光体)
8;蛍光体含有樹脂部
9;導電性ワイヤー
10;モールド部材
11;発光装置を組み込んだ面発光照明装置
12;保持ケース
13;発光装置
14;拡散板[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a light-emitting device, and more specifically, a first light emitter that emits light from ultraviolet light to visible light region by a power source, and absorbs light in the visible light region from the ultraviolet light to generate long-wavelength visible light. By combining with a second phosphor as a wavelength conversion material having a phosphor containing a phosphor containing a luminescent center ion as a base compound that emits light, color rendering is good regardless of the usage environment and high intensity light emission is generated. The present invention relates to a light-emitting device that can be used.
[0002]
[Prior art]
  In order to generate white and other various colors by mixing blue, red, and green, a light emitting device in which the light emission color of an LED or LD is color-converted with a phosphor has been proposed.
  For example, in Japanese Examined Patent Publication No. 49-1221, 300nm ~A laser beam emitting a radiation beam with a wavelength of 530 nm is converted into a phosphor (Y3-xyCexGdyM5-zGazO12(Y represents Y, Lu, or La, M represents Al, Al—In, or Al—Sc, x is 0.001 to 0.15, y is 2.999 or less, and z is 3.0 or less. ))) And illuminating it to form a display. Further, in recent years, a white light emitting device configured by combining a gallium nitride (GaN) LED or LD with high luminous efficiency, which has been attracting attention as a blue light emitting semiconductor light emitting element, and a phosphor as a wavelength conversion material. However, it has been proposed as a light-emitting source for an image display device and a lighting device, taking advantage of the feature of low power consumption and long life. Actually, Japanese Patent Laid-Open No. 10-242513 discloses a light emitting device using the nitride semiconductor LED or LD chip and using a cerium-activated yttrium / aluminum / garnet system as a phosphor. Has been.
[0003]
  However, cerium-activated yttrium / aluminum / garnet phosphors such as those disclosed in Japanese Patent Publication No. 49-1221 and Japanese Patent Application Laid-Open No. 10-242513 are used as the second light emission for the first light emitters of LEDs and lasers. A light-emitting device combined as a body does not satisfy both high light emission intensity and color rendering properties, and further improvements are required as light-emitting sources such as displays, backlight light sources, and traffic lights.
[0004]
  The color rendering property represents a scale representing how close the color appearance of an object illuminated with sunlight is to the color appearance of an object illuminated with white light from a phosphor.
  For example, in the combination of a cerium activated yttrium / aluminum / garnet phosphor and a blue LED or a blue laser as disclosed in JP-A-10-242513, a mixture of blue light and yellow light generated from the phosphor is used. A white color can be generated, but an intermediate region (470) between the blue and yellow emission peak tops (near 450 nm and near 550 nm).nm ~540 nm) and the long wavelength side region of the yellow peak (580nm ~700 nm) is extremely small, and a valley is generated in the light emission in the region, so that it cannot be matched with the sunlight spectrum without a valley in the region. Therefore, the color rendering properties are extremely low.
[0005]
  On the other hand, when the blue, green, and red phosphors are mixed to obtain white light, the two peaks overlap instead of the conventional blue / yellow mixed color system. The valley between the emission peaks is reduced, and the color rendering properties are further improved. However, even in this blue / green / red mixed color system, there is a problem that the color rendering is lowered due to the existence of a valley between emission peaks.
[0006]
[Problems to be solved by the invention]
  When blue, green, and red phosphors are mixed to produce white light, each color phosphor is required to have high emission intensity and high color rendering.
  The present invention has been made in view of the above-described prior art, and is intended to develop a light emitting device that not only has high light emission intensity but also high color rendering properties, and is easy to manufacture and has both color rendering properties and light emission intensity. An object of the present invention is to provide a light-emitting device having a high brightness, particularly a light-emitting device suitable as a blue phosphor.
[0007]
[Means for Solving the Problems]
  As a result of intensive studies to solve the above-mentioned problems, the present inventors irradiate phosphors with light of 350 nm to 415 nm to emit blue, green, and red, and to emit white light by mixing blue, green, and red. In the method, as a means for obtaining high color rendering properties, a phosphor having a light emission peak with a very large wavelength-intensity distribution width, particularly a blue phosphor, has an intermediate region (470 between blue and green in the emission spectrum).nm ~500 nm) using a blue phosphor that has sufficient intensity, that is, generates a blue emission peak with a large half-value width.nm ~The inventors have found that the object can be achieved by using an orthophosphate of Ca or Ca-Mg, which can reduce the valley of the emission intensity in the 500 nm region and can improve the color rendering properties, and has reached the present invention.
[0008]
  That is, the present invention400In the light emitting device having a first light emitter that generates light of nm to 415 nm and a second light emitter that generates visible light by irradiation of light from the first light emitter, the second light emitter The gist of the present invention is a light emitting device comprising a phosphor having a crystal phase having the following specific chemical composition.
[0009]
[Chemical formula 2]
          EuaMb(POFour)c(BOThree)2-cZd[1]
(In the above general formula [1], M represents a metal element containing Ca and at least one element selected from the group consisting of Ca and Mg occupying 80 mol% or more, and Z represents PO.Four 3-, BOThree 3-Represents an anion other than a is0.15≦ a ≦ 2.1, b is 2.7 ≦ (a + b) ≦ 3.3, c is a number satisfying 1.2 ≦ c ≦ 2, and d is a number satisfying 0 ≦ d ≦ 0.1. )
[0010]
  That is, the feature of the present invention is orthophosphate AThree(POFour)2Eu (where A is an alkaline earth metal)2+The material activated by the above is known as a normal 254 nm excitation phosphor, but the emission intensity generated by excitation of light in the vicinity of 400 nm and the half width of the emission peak, which have not been studied so far, are , AThree(POFour)2Depending on the type of alkaline earth metal AThatThis AThree(POFour)2: Eu2+Of these, a substance having Ca or Ca—Mg composite cation as A is 350nm ~When irradiated with 415 nm excitation light, it emits very intense blue light, and the emission wavelength-emission intensity distribution that greatly enhances the color rendering properties is wide, that is, the half width is large, and the phosphor gives high color rendering properties. It is based on knowing that.
DETAILED DESCRIPTION OF THE INVENTION
[0011]
  Hereinafter, the present invention will be described in detail.
  The present invention400A light-emitting device in which a first light-emitting body that generates light of nm to 415 nm and a second light-emitting body that is a phosphor are combined, and the second light-emitting body has a chemical composition represented by the following general formula [1] It contains a phosphor having a crystal phase.
[0012]
[Chemical 3]
          EuaMb(POFour)c(BOThree)2-cZd[1]
(In the above general formula [1], M represents a metal element containing Ca and at least one element selected from the group consisting of Ca and Mg occupying 80 mol% or more, and Z represents PO.Four 3-, BOThree 3-Represents an anion other than a is0.15≦ a ≦ 2.1, b is 2.7 ≦ (a + b) ≦ 3.3, c is a number satisfying 1.2 ≦ c ≦ 2, and d is a number satisfying 0 ≦ d ≦ 0.1. )
[0013]
  Here, Eu in the general formula [1]2+The molar ratio a is from the viewpoint of color rendering properties and emission intensity.GoodPreferably0.15The upper limit is 2.1 or less, preferably 1 or less. Eu, the luminescent center ion2+If the content of is too small, the emission intensity tends to be low, while if too high, the emission intensity tends to decrease due to a phenomenon called concentration quenching.
[0014]
  The element M in the formula [1] represents a monovalent or higher element different from Eu, P, and B. As for the element M, it is preferable that M contains Ca and the ratio of the total of Ca and Mg to the element M is 80 mol% or more from the viewpoint of color rendering properties and light emission intensity. More preferably, the ratio of Ca to 40 mol% or more is more preferable, M is at least one element selected from the group consisting of Ca and Mg, and it is more preferable that Ca is contained in an amount of 40 mol% or more.
[0015]
  When a metal element other than Ca and Mg is contained in the crystal as a metal element in M, the metal element is not particularly limited, but the same valence as Ca and Mg, that is, a divalent metal element such as Sr and Zn. , Ba, Pb, Sn, preferably Sr, Zn, Ba, is desirable because the crystal structure is easily retained. These divalent metal elements and the emission center Eu2+Even if a small amount of a metal element such as monovalent, trivalent, tetravalent, pentavalent, or hexavalent is introduced as a metal element in M in order to help crystallization of the composite oxide by diffusion in the solid during firing of good. For example, Eu0.15Ca2.85(POFour)2Ca in the phosphor2+A portion of the equimolar Li+And Ga3+Thus, the replacement can be performed while maintaining the charge compensation effect. In order to adjust the emission wavelength and emission intensity, a small amount of a metal element that can be a sensitizer such as Mn may be substituted.
[0016]
  Basic crystal Eu of the general formula [1]aMb(POFour)c(BOThree)2-cZd, The basic cation stoichiometric molar ratio (a + b) when Z is ignored as an impurity is 3. However, even if some cation deficiency or anion deficiency occurs, there is no significant effect on the fluorescence performance for this purpose. Therefore, it can be used in the range of 2.7 ≦ (a + b) ≦ 3.3.
[0017]
  In the general formula [1], the main anion is PO.FourGroup and BOThreeThe total molar ratio of groups is expressed as 2. In terms of color rendering properties and light emission intensity, PO in a total molar ratio of 2FourThe molar ratio of groups is preferably at least 1.2 or more, and preferably 1.6 or more and 2 or less. BOThreeThe presence of the group does not have a great adverse effect on the color rendering properties and emission intensity. PO in the general formula [1]FourGroup and BOThreeThe anion Z other than the group is preferably as small as possible, but may be contained as long as the amount of the anion Z has little influence on the fluorescence performance for this purpose. An amount of .05 or less is preferred.
  The anion Z includes hydroxide ions (OH-), Metal oxide anions, halide ions, etc., and examples of metal oxide anions include SiOFour Four-, SiOThree 2-TiOThree 2-, ZrOThree 2-As halide ions, F-, Cl-, Br-, I-However, it is not limited to these.
[0018]
  Used in the present inventionIt has a crystal phase having a chemical composition represented by the general formula [1]The phosphor is M source, POFourSource, BOThreeSource compound and luminescent center ion (Eu2+M and Eu source compounds include hydrogen phosphates, phosphates, oxides, hydroxides, carbonates, nitrates, sulfates, oxalic acids of M and Eu. Examples thereof include salts, carboxylates, halides, etc. Among them, hydrogen phosphates, phosphates, oxides and carbonates of M and Eu are preferable.
  POFourSource compounds include elements M, Eu, NHFourSuch as hydrogen phosphate, phosphate, metaphosphate, pyrophosphate, etc.2OFive, Phosphoric acid, metaphosphoric acid, pyrophosphoric acid, etc., among which elements M, Eu, NHFourPreferred are hydrogen phosphate, phosphate, and phosphoric acid.
  BOThreeSource compounds include elements M, Eu, NHFourBorate, hydrogen borate, tetraborate, octaborate, diborate, pentaborate, etc., boric acid, boron oxide, etc., among others, elements M, Eu, NHFourAnd borate, hydrogen borate, boric acid, and boron oxide are preferable.
  Among these, chemical composition, reactivity, and NO during firingx, SOxIs selected in consideration of non-occurrence of
[0019]
  Regarding the Ca, Mg, Sr, Zn, and Ba that are preferable for the metal element group M, specific examples of their M source compounds include CaHPO as the Ca source compound.Four, CaThree(POFour)2, CaO, Ca (OH)2, CaCOThree, Ca (NOThree)2・ 4H2O, CaSOFour・ 2H2O, Ca (OCO)2・ H2O, Ca (OCOCHThree)2・ H2O, CaCl2Etc., among others, CaHPOFour, CaThree(POFour)2, CaO, CaCOThreeIs preferred.
  As the Mg source compound, MgHPOFour, MgThree(POFour)2, MgO, Mg (OH)2, MgCOThree, Mg (OH)2・ 3MgCOThree・ 3H2O, Mg (NOThree)2・ 6H2O, MgSOFour, Mg (OCO)2・ 2H2O, Mg (OCOCHThree)2・ 4H2O, MgCl2Among others, MgHPOFour, MgThree(POFour)2, MgO, MgCOThreeIs preferred.
  As the Sr source compound, SrHPOFour, SrThree(POFour)2, SrO, Sr (OH)2・ 8H2O, SrCOThree, Sr (NOThree)2, SrSOFour, Sr (OCO)2・ H2O, Sr (OCOCHThree)2・ 0.5H2O, SrCl2Among others, SrHPOFour, SrThree(POFour)2, SrO, SrCOThreeIs preferred.
  As a Zn source compound, ZnHPOFour, ZnThree(POFour)2, ZnO, Zn (OH)2, ZnCOThree, Zn (NOThree)2Zn (OCO)2, Zn (OCOCHThree)2ZnCl2Among others, ZnHPOFour, ZnThree(POFour)2, ZnO, ZnCOThreeIs preferred.
  As a Ba source compound, BaHPOFour, BaThree(POFour)2, BaO, Ba (OH)2・ 8H2O, BaCOThree, Ba (NOThree)2, BaSOFour, Ba (OCO)2・ 2H2O, Ba (OCOCHThree)2, BaCl2Such as BaHPOFour, BaThree(POFour)2, BaO, BaCOThreeIs preferred.
[0020]
  Further, with respect to Eu, which is preferable as the element of the luminescent center ion, if the element source compound is specifically illustrated, Eu2OThree, Eu2(SOFour)Three, Eu2(OCO)6, EuCl2, EuClThree, EuPOFour, Eu (NOThree)Three・ 6H2O etc. are mentioned.
[0021]
  The phosphor used in the present invention includes the above-mentioned M source, PO.FourSource, BOThreeSource compound and luminescent center ion (Eu2+) After being pulverized using a dry pulverizer such as a hammer mill, roll mill, ball mill, jet mill or the like, and then mixed by a mixer such as a ribbon blender, a V-type blender or a Henschel mixer, or mixed. Then, these compounds are added into a medium such as water, and then pulverized and mixed using a wet pulverizer such as a medium agitating pulverizer. After the compound is pulverized by a dry pulverizer, the prepared pulverized mixture is heated and fired by a wet method in which a slurry prepared by adding and mixing in a medium such as water is spray-dried or the like. Can be manufactured.
[0022]
  Among these pulverization and mixing methods, in particular, in the element source compound of the luminescent center ion, it is preferable to use a liquid medium because it is necessary to uniformly mix and disperse a small amount of the compound over the whole. The latter wet method is preferable from the viewpoint of obtaining uniform mixing in the element source compound as a whole, and the heat treatment method is usually 800 ° C. in a heat-resistant container such as a crucible or tray made of alumina or quartz.~ 1500 ° C, preferably 1000By heating at a temperature of ˜1300 ° C. for 10 minutes to 24 hours, preferably 10 hours or less in a single or mixed atmosphere of gas such as air, oxygen, carbon monoxide, carbon dioxide, nitrogen, hydrogen, and argon Made. In addition, after heat processing, washing | cleaning, drying, a classification process, etc. are made | formed as needed.
[0023]
  As the heating atmosphere, an atmosphere necessary for obtaining an ion state (valence) in which the element of the emission center ion contributes to light emission is selected. In the case of divalent Eu or the like in the present invention, a neutral or reducing atmosphere such as carbon monoxide, nitrogen, hydrogen, and argon is preferable, but it can be selected even under an oxidizing atmosphere such as air and oxygen. .
[0024]
  The present inventionThe phosphor used inCrystal structureageA as shown aboveThree(POFour)2ConstructionHavingIt is. AThree(POFour)2There are several types of crystal structures with different space groups in the structure. (Ca, Mg)Three(POFour)2The space group of α-type CaThree(POFour)2P21/ a, Ca7Mg2(POFour)6R3c, Ca2.86Mg0.14(POFour)2R3c, MgThree(POFour)2P21/ n. Fig. 1 shows CaThreeMgThree(POFour)FourX-ray diffraction pattern is shown (from powder X-ray diffraction database). AThree(POFour)2Crystal A2+On the site, Ba2+, Sr2+, Ca2+Or Mg2+, And Eu as an activator2+A divalent metal element such as can be substituted. In the present invention, AThree(POFour)2: Among Eu, those in which A is Ca or a Ca—Mg mixed system are targeted.
[0025]
  The phosphor used in the present invention is 350 from the first light emitter.nm ~Excited by 415 nm light to generate visible light. The phosphor is 350nm ~Excitation of light at 415 nm generates visible light having good color rendering properties and strong emission intensity, and emits fluorescence with high color rendering properties and high luminance particularly by excitation light around 400 nm emitted from a GaN-based semiconductor.
[0026]
  In the present invention, the first light emitter that irradiates the phosphor with light has a wavelength of 350.nm ~Generates 415 nm light. Preferably wavelength 350nm ~A light emitter that generates light having a peak wavelength in the range of 415 nm is used. Specific examples of the first light emitter include a light emitting diode (LED) or a laser diode (LD). A laser diode is more preferable because it consumes less power. Of these, GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, the GaN system usually has a light emission intensity 100 times or more that of the SiC system. In GaN LED and LD, AlXGaYN light emitting layer, GaN light emitting layer, or InXGaYThose having an N light emitting layer are preferred. Among GaN-based LEDs, InXGaYThose having an N light emitting layer are particularly preferred because the light emission intensity is very strong.XGaYA multi-quantum well structure of an N layer and a GaN layer is particularly preferable because the emission intensity is very strong. In the above, the value of X + Y is usually in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics. GaN-based LEDs have these light-emitting layers, p-layers, n-layers, electrodes, and substrates as basic components, and the light-emitting layers are made of n-type and p-type Al.XGaYN layer, GaN layer, or InXGaYThose having a heterostructure sandwiched between N layers and the like have high luminous efficiency, and those having a heterostructure having a quantum well structure further have high luminous efficiency, and are more preferable.
[0027]
  In the present invention, it is particularly preferable to use a surface-emitting type illuminant, particularly a surface-emitting GaN-based laser diode, as the first illuminant because the luminous efficiency of the entire light-emitting device is increased. A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is successfully performed. By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. When the surface emitting type is used, the light emission cross-sectional area per unit light emission amount can be increased compared to the type that emits light from the edge of the light emitting layer. As a result, the phosphor of the second light emitter is irradiated with the light Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor that is the second light emitter.
[0028]
  It is preferable to form the second light emitter in the form of a film because an area for receiving light generated from the first light emitter is increased. In particular, since the cross-sectional area of the light from the surface-emitting type light emitter is sufficiently large, if the second light emitter is formed in a film shape in the direction of the cross section, the irradiation cross-section area of the phosphor from the first light emitter is increased. Since it becomes large per fluorescent substance unit amount, the intensity | strength of light emission from fluorescent substance can be made larger. The positional relationship between the first light emitter and the second light emitter is not particularly limited as long as the light emitted from the first light emitter can be received by the second light emitter. It is preferable that the second light emitter is located at a position where the intensity of light generated from the first light emitter is high.
[0029]
  Furthermore, there may be an air layer, a light transmission layer, a layer for controlling the wavelength of light, a layer for controlling the generated heat, etc. between the first light emitter and the second light emitter. The light emitter and the second light emitter may be in direct contact with each other.
  For example, when a surface-emitting type is used as the first light emitter and a film-like one is used as the second light emitter, the film-shaped second light emitter is directly formed on the light-emitting surface of the first light emitter. It is preferable to have a shape in which is contacted. Contact here refers to creating a state in which the first light emitter and the second light emitter are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved.
[0030]
  FIG. 2 is a schematic perspective view showing the positional relationship between the first light emitter and the second light emitter in an example of the light emitting device of the present invention. In FIG. 2, 1 denotes a film-like second light emitter having the phosphor, 2 denotes a surface-emitting GaN-based LD as the first light emitter, and 3 denotes a substrate. In order to create a state in which they are in contact with each other, the LD 2 and the second light emitter 1 may be formed separately and the surfaces may be brought into contact with each other by an adhesive or other means, or the light emitting surface of the LD 2 Second light emitter onMadeA film (molded) may be used. As a result, the LD 2 and the second light emitter 1 can be brought into contact with each other.
[0031]
  The light from the first light emitter and the light from the second light emitter are usually directed in all directions, but the second light emitter contains a crystal phase having the chemical composition of the general formula [1]. By making the powdered material, that is, the powdery phosphor, dispersed in the resin, a part of the light is reflected when the light goes out of the resin, so that the direction of the light can be aligned to some extent. This is preferable because light can be guided to an efficient direction to some extent. Further, when the phosphor is dispersed in the resin, the total irradiation area of the light from the first light emitter to the second light emitter is increased, so that the light emission intensity from the second light emitter can be increased. It also has the advantage of being able to The resin that can be used in this case is not particularly limited, and various resins such as an epoxy resin, a polyvinyl resin, a polyethylene resin, a polypropylene resin, and a polyester resin can be used, but the dispersibility of the phosphor powder is good. An epoxy resin is preferable at this point. The phosphor dispersed in the resin is not only a phosphor powder containing a crystal phase having the chemical composition of the general formula [1], but also other phosphors such as red and green phosphor powders. Can be dispersed. When the second phosphor is obtained by dispersing the powdered phosphor in the resin, the weight ratio of all the phosphor powders and the resin to be dispersed in the resin to the powder is usually 10% or more, preferably Is 20% or more, more preferably 30% or more, and the upper limit is 95% or less, preferably 90% or less, and more preferably 80% or less. If the phosphor is too much, the luminous efficiency may be reduced due to aggregation of the powder, and if it is too little, the luminous efficiency may be lowered due to light absorption or scattering by the resin.
[0032]
  The light emitting device of the present invention includes the phosphor as a wavelength conversion material, 350nm ~Light emission that generates 415nm lightbodyAnd the phosphor is emitted by a light emitter.nm ~It is a light-emitting device that absorbs light of 415 nm, has good color rendering properties regardless of the usage environment, and can generate high-intensity visible light. It is a light source such as a backlight light source, a traffic light, and a color liquid crystal. It is suitable for light sources such as image display devices such as displays and lighting devices such as surface emitting devices.
[0033]
  The light-emitting device of the present invention will be described with reference to the drawings. FIG. 3 shows a first light-emitting body (350nm ~415nmGenerating light1 is a schematic cross-sectional view showing an embodiment of a light-emitting device having a light-emitting body and a second light-emitting body. 4 is a light-emitting device, 5 is a mount lead, 6 is an inner lead, and 7 is a first light-emitting body ( 350nm ~415nmGenerate light(Luminous body), 8 is a phosphor-containing resin portion as a second luminous body, 9 is a conductive wire, and 10 is a mold member.
[0034]
  As shown in FIG. 3, the light emitting device as an example of the present invention has a general bullet shape, and a first light emitter made of a GaN-based light emitting diode or the like is disposed in the upper cup of the mount lead 5. (350nm ~415nmGenerating lightThe phosphor is coated with a phosphor-containing resin portion 8 formed as a second phosphor by mixing and dispersing the phosphor in a binder such as an epoxy resin or an acrylic resin and pouring the mixture into the cup. Is fixed. On the other hand, the first light emitter 7 and the inner lead 6 are electrically connected by a conductive wire 9, and the first light emitter 7 and the mount lead 5 are in contact with each other, and the whole is a mold member made of epoxy resin or the like. 10 is covered and protected.
[0035]
  This light emissionapparatusAs shown in FIG. 4, the surface-emitting illumination device 11 incorporating a large number of light-emitting devices 13 is arranged on the bottom surface of a rectangular holding case 12 whose inner surface is light-opaque such as a white smooth surface. Are provided with a power supply and a circuit (not shown) for driving the light emitting device 13, and a milky white diffusing plate 14 such as an acrylic plate is emitted at a position corresponding to the lid portion of the holding case 12. Fixed for homogenization.
[0036]
  Then, the surface emitting illumination device 11 is driven to emit light.apparatus350 by applying a voltage to the 13 first light emitters.nm ~Blue light that emits light of 415 nm, part of the light emission is absorbed by the phosphor in the phosphor-containing resin portion as the second light emitter, emits visible light, and is not absorbed by the phosphor. Light emission with high color rendering properties is obtained by color mixing with light, etc., and this light is transmitted through the diffusion plate 14 and emitted upward in the drawing, and illumination light with uniform brightness is emitted within the surface of the diffusion plate 14 of the holding case 12. Will be obtained.
[0037]
【Example】
  EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[0038]
Example 1
  CaHPOFour; 0.06 mol, CaCOThree; 0.0255 mol, MgHPOFour0.06 mol, MgCOThree0.0255 mol, and Eu2OThree0.0045 mol was pulverized and mixed with pure water in an alumina container and a wet ball mill of beads, dried, passed through a nylon mesh, and the resulting pulverized mixture was 4% in an alumina crucible. It is fired by heating at 1100 ° C. for 2 hours under a nitrogen gas stream containing hydrogen, followed by washing with water, drying, and classification treatment to obtain a blue-emitting phosphor Eu.0.15Ca1.425Mg1.425(POFour)2Manufactured. FIG. 5 shows the X-ray diffraction pattern of this phosphor. The peak pattern of FIG. 5 is the Ca of FIG.ThreeMgThree(POFour)FourIt can be seen that the crystal structure almost coincides with that of. FIG. 6 shows an emission spectrum when the phosphor is excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. Table 1 shows the wavelength of the emission peak, the relative integrated intensity, and the half width.
[0039]
Example 2
  The raw material used is CaHPOFour; 0.06 mol, CaCOThree0.0282 mol, MgHPOFour0.06 mol, MgCOThree0.0282 mol, and Eu2OThree; Phosphor Eu in the same manner as in Example 1 except that the amount was changed to 0.0018 mol.0.06Ca1.47Mg1.47(POFour)2Manufactured. FIG. 7 shows the X-ray diffraction pattern of this phosphor. The peak pattern of FIG. 7 is the Ca of FIG.ThreeMgThree(POFour)FourIt can be seen that the crystal structure almost coincides with that of. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative integrated intensity, and the half width.
[0040]
Example 3
  The raw material used is CaHPOFour; 0.06 mol, CaCOThree0.0291 mol, MgHPOFour0.06 mol, MgCOThree0.0291 mol, and Eu2OThree; Phosphor Eu in the same manner as in Example 1 except that the amount was changed to 0.0009 mol.0.03Ca1.485Mg1.485(POFour)2Manufactured. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative integrated intensity, and the half width.
[0041]
Example 4
  The raw material used is CaHPOFour; 0.06 mol, CaCOThree0.02955 mol, MgHPOFour0.06 mol, MgCOThree0.02955 mol, and Eu2OThree; Phosphor Eu in the same manner as in Example 1 except that 0.00045 mol was changed.0.015Ca1.4925Mg1.4925(POFour)2Manufactured. FIG. 8 shows the X-ray diffraction pattern of this phosphor. The peak pattern of FIG. 8 is the Ca of FIG.ThreeMgThree(POFour)FourIt can be seen that the crystal structure almost coincides with that of. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative integrated intensity, and the half width.
[0042]
Example 5
  The raw material used is CaHPOFour; 0.06 mol, CaCOThree0.02991 mol, MgHPOFour0.06 mol, MgCOThree0.02991 mol, and Eu2OThree; Phosphor Eu in the same manner as in Example 1 except that the amount was changed to 0.00009 mol.0.003Ca1.4985Mg1.4985(POFour)2Manufactured. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative integrated intensity, and the half width.
[0043]
Example 6
  The raw material used is CaHPOFour0.0802 mol, CaCOThree0.0389 mol, MgHPOFour0.0398 mol, MgCOThree0.0193 mol, and Eu2OThree; Phosphor Eu in the same manner as in Example 1 except that the amount was changed to 0.0009 mol.0.03Ca1.985Mg0.985(POFour)2Manufactured. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative integrated intensity, and the half width.
[0044]
Example 7
  The raw material used is CaHPOFour; 0.12 mol, CaCOThree0.0582 moles, and Eu2OThree; Phosphor Eu in the same manner as in Example 1 except that the amount was changed to 0.0009 mol.0.03Ca2.97(POFour)2Manufactured. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative integrated intensity, and the half width.
[0045]
Example 8
  The raw material used is CaHPOFour0.0398 mol, CaCOThree0.0193 mol, MgHPOFour0.0802 mol, MgCOThree0.0389 mol, and Eu2OThree; Phosphor Eu in the same manner as in Example 1 except that the amount was changed to 0.0009 mol.0.03Ca0.985Mg1.985(POFour)2Manufactured. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative integrated intensity, and the half width.
[0046]
Comparative Example 1
  The raw material used is MgHPOFour0.12 mol, MgCO3; 0.0594 mol, and Eu2OThree; Phosphor Eu in the same manner as in Example 1 except that the amount was changed to 0.0003 mol.0.01Mg2.99(POFour)2Manufactured. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative integrated intensity, and the half width. A phosphor having a composition that does not contain Ca has a lower emission intensity and a smaller half-value width of the emission peak than a phosphor having a composition that contains Ca.
[0047]
[Table 1]
Figure 0004380118
[0048]
【The invention's effect】
  According to the present invention, it is possible to provide a light emitting device having high color rendering properties and high emission intensity.
[Brief description of the drawings]
[Figure 1] CaThreeMgThree(POFour)FourX-ray diffraction pattern (converted to X-ray source Cu Kα).
FIG. 2 is a diagram showing an example of a light-emitting device in which a surface-emitting GaN-based diode is contacted or molded with a film-like second light emitter.
FIG. 3 shows a first light emitter (350 in the present invention).nm ~415nmGenerating lightIt is typical sectional drawing which shows one Example of the light-emitting device comprised from a light-emitting body and a 2nd light-emitting body.
FIG. 4 is a schematic cross-sectional view showing an example of a lighting device of the present invention.
5 is an X-ray diffraction pattern (X-ray source: Cu Kα) of the phosphor of Example 1. FIG.
FIG. 6 is a spectrum obtained by superposing the emission spectra of the phosphors of Example 1 and Comparative Example 1 irradiated with a GaN-based light emitting diode having an emission wavelength of 400 nm.
7 is an X-ray diffraction pattern (X-ray source: Cu Kα) of the phosphor of Example 2. FIG.
8 is an X-ray diffraction pattern (X-ray source: Cu Kα) of the phosphor of Example 4. FIG.
[Explanation of symbols]
1: Second light emitter
2: Surface-emitting GaN LED
3; Substrate
4: Light emitting device
5: Mount lead
6; Inner lead
7; first luminous body (350nm~ 415nmGenerate lightLuminous body)
8; FluorescenceBody-containing treeFat part
9; Conductive wire
10: Mold member
11: Surface emitting illumination device incorporating a light emitting device
12; Holding case
13: Light emitting device
14: Diffuser

Claims (13)

400nm〜415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、前記第2の発光体が、一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする発光装置。
Euab(PO4c(BO32-cd・・・・・[1]
(上記一般式[1]において、Mは、Caを含有し、かつ、CaとMgからなる群から選ばれた少なくとも一種の元素が80mol%以上を占める金属元素を表し、ZはPO4 3-、BO3 3-以外のアニオンを表す。aは、0.15≦a≦2.1、bは、2.7≦(a+b)≦3.3、cは、1.2≦c≦2、dは、0≦d≦0.1を満足する数である。)
In the light emitting device including the first light emitter that generates light of 400 nm to 415 nm and the second light emitter that generates visible light by irradiation of light from the first light emitter, the second light emission A light emitting device characterized in that the body contains a phosphor having a crystal phase having a chemical composition of the general formula [1].
Eu a M b (PO 4 ) c (BO 3 ) 2-c Z d ... [1]
(In the above general formula [1], M represents a metal element containing Ca and at least one element selected from the group consisting of Ca and Mg occupying 80 mol% or more, and Z represents PO 4 3- Represents an anion other than BO 3 3- , a is 0.15 ≦ a ≦ 2.1, b is 2.7 ≦ (a + b) ≦ 3.3, c is 1.2 ≦ c ≦ 2, d is a number satisfying 0 ≦ d ≦ 0.1.)
第1の発光体がレーザーダイオード又は発光ダイオードである請求項1に記載の発光装置。The light emitting device according to claim 1, wherein the first light emitter is a laser diode or a light emitting diode. 第1の発光体がレーザーダイオードである請求項1または2に記載の発光装置。The light emitting device according to claim 1 or 2, the first light emitter is a laser diode. 元素Mの中で、CaとMgの合計に対するCaの割合が40mol%以上であることを特徴とする請求項1ないしのいずれか一つに記載の発光装置。The light emitting device according to any one of claims 1 to 3 , wherein, in the element M, a ratio of Ca to a total of Ca and Mg is 40 mol% or more. cが、1.6≦c≦2であることを特徴とする請求項1ないしのいずれか一つに記載の発光装置。c is the light-emitting device according to any one of claims 1 to 4, characterized in that a 1.6 ≦ c ≦ 2. 元素Mが、CaとMgからなる群から選ばれた少なくとも一種の元素からなり、かつ、Caを40mol%以上含むことを特徴とする請求項1ないしのいずれか一つに記載の発光装置。The light emitting device according to any one of claims 1 to 5 , wherein the element M is made of at least one element selected from the group consisting of Ca and Mg, and contains 40 mol% or more of Ca. 前記一般式[1]が、Euab(PO42dであることを特徴とする請求項1ないしのいずれか一つに記載の発光装置。Formula [1], Eu a M b (PO 4 ) light-emitting device according to any one of claims 1 to 6, characterized in that a 2 Z d. 第1の発光体がGaN系化合物半導体であることを特徴とする請求項1ないしのいずれか一つに記載の発光装置。First light emitter emitting device according to any one claims 1, wherein 7 to be a GaN-based compound semiconductor. 第1の発光体が面発光型GaN系レーザーダイオードであることを特徴とする請求項1ないしのいずれか一つに記載の発光装置。First light emitter emitting device according to any one of claims 1 to 8, characterized in that a surface-emitting type GaN-based laser diode. 第2の発光体が膜状であることを特徴とする請求項1ないしのいずれか一つに記載の発光装置。The light emitting device according to any one of claims 1 to 9 second light emitter is characterized in that it is a film. 400nm−415nmの光を発生する第1の発光体の発光面に、直接、第2の発光体を含む膜を接触させることを特徴とする請求項10に記載の発光装置。The light emitting device according to claim 10 , wherein a film containing the second light emitter is directly brought into contact with a light emitting surface of the first light emitter that generates light of 400 nm to 415 nm. 第2の発光体が、上記一般式[1]の化学組成を有する結晶相を有する蛍光体を含有する粉体物を、樹脂に分散させたものであることを特徴とする請求項1ないし11のいずれか一つに記載の発光装置。The second luminous body, a powder containing a phosphor having a crystal phase having a chemical composition represented by the general formula [1], claims 1, characterized in that it is obtained by dispersing the resin 11 The light emitting device according to any one of the above. 請求項1ないし12のいずれか一つの発光装置を有する照明装置。Lighting device having any one of the light emitting device of claims 1 to 12.
JP2002214992A 2002-02-15 2002-07-24 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME Expired - Fee Related JP4380118B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2002214992A JP4380118B2 (en) 2002-07-24 2002-07-24 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
CN2008101687701A CN101420004B (en) 2002-02-15 2003-02-13 Light emitting device and illuminator using the same
DE60332676T DE60332676D1 (en) 2002-02-15 2003-02-13 Light-emitting element and associated lighting device
DE60327926T DE60327926D1 (en) 2002-02-15 2003-02-13 LIGHT-EMITTING COMPONENT AND ASSOCIATED LIGHTING DEVICE
EP10003292A EP2204858A3 (en) 2002-02-15 2003-02-13 Light emitting device and illuminator using the same
AU2003211509A AU2003211509A1 (en) 2002-02-15 2003-02-13 Light emitting device and illuminating device using it
EP08002195A EP1942531B1 (en) 2002-02-15 2003-02-13 Light emitting device and illuminator using the same
CNB03808323XA CN100468789C (en) 2002-02-15 2003-02-13 Light emitting device and illuminating device using it
PCT/JP2003/001506 WO2003069686A1 (en) 2002-02-15 2003-02-13 Light emitting device and illuminating device using it
EP03706938A EP1484803B1 (en) 2002-02-15 2003-02-13 Light emitting device and illuminating device using it
EP10003293A EP2204859A3 (en) 2002-02-15 2003-02-13 Light emitting device and illuminator using the same
US10/918,339 US7357882B2 (en) 2002-02-15 2004-08-16 Light emitting device and illuminator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002214992A JP4380118B2 (en) 2002-07-24 2002-07-24 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Publications (3)

Publication Number Publication Date
JP2004056045A JP2004056045A (en) 2004-02-19
JP2004056045A5 JP2004056045A5 (en) 2005-12-15
JP4380118B2 true JP4380118B2 (en) 2009-12-09

Family

ID=31937132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002214992A Expired - Fee Related JP4380118B2 (en) 2002-02-15 2002-07-24 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP4380118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999676A (en) * 2021-11-25 2022-02-01 济南鲁新新型建材股份有限公司 Boron-doped calcium phosphate cerium fluorescent powder and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6808847A (en) * 1968-06-22 1969-12-24
JPS60141782A (en) * 1983-12-29 1985-07-26 Fuji Photo Film Co Ltd Conversion of radiation image
JPH10321943A (en) * 1997-05-15 1998-12-04 Tokyo Inst Of Technol Thin color display using vertical cavity surface emitter laser device having monochromatic emission spectrum
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
US6429583B1 (en) * 1998-11-30 2002-08-06 General Electric Company Light emitting device with ba2mgsi2o7:eu2+, ba2sio4:eu2+, or (srxcay ba1-x-y)(a1zga1-z)2sr:eu2+phosphors
JP2000082849A (en) * 1999-09-27 2000-03-21 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof

Also Published As

Publication number Publication date
JP2004056045A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
EP1942531B1 (en) Light emitting device and illuminator using the same
JP2005298805A (en) Light emitting device and illumination device
JP4168776B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4617890B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4916651B2 (en) Light emitting device and phosphor
JP4706358B2 (en) Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display
JP4165255B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4389513B2 (en) Light emitting device, lighting device, and image display device
JP4972904B2 (en) Phosphor, method for manufacturing the phosphor, light-emitting device using the phosphor, image display device, and illumination device
JP4411841B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP5326986B2 (en) Phosphor used in light emitting device
JP4561064B2 (en) Light emitting device, lighting device, and image display device
JP2004253747A (en) Light emitting device and lighting device using same
JP2004235546A (en) Light emitting device and lighting device and display using it
JP4380118B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4337465B2 (en) Light emitting device, lighting device, and image display device
JP4617889B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4363194B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2010059429A (en) Phosphor, luminescent device using the same, image display and illuminating device
JP4246502B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4604516B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4337468B2 (en) Light emitting device, lighting device, and image display device
JP2005064189A (en) Light emitting device, lighting device and image display device
JP4513287B2 (en) Light emitting device, lighting device, and image display device
JP2005063836A (en) Light emitting device, illumination device, and image display device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees