JP4513287B2 - Light emitting device, lighting device, and image display device - Google Patents

Light emitting device, lighting device, and image display device Download PDF

Info

Publication number
JP4513287B2
JP4513287B2 JP2003289872A JP2003289872A JP4513287B2 JP 4513287 B2 JP4513287 B2 JP 4513287B2 JP 2003289872 A JP2003289872 A JP 2003289872A JP 2003289872 A JP2003289872 A JP 2003289872A JP 4513287 B2 JP4513287 B2 JP 4513287B2
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting device
emitting
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003289872A
Other languages
Japanese (ja)
Other versions
JP2005063727A (en
Inventor
孝俊 瀬戸
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003289872A priority Critical patent/JP4513287B2/en
Publication of JP2005063727A publication Critical patent/JP2005063727A/en
Application granted granted Critical
Publication of JP4513287B2 publication Critical patent/JP4513287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Description

本発明は発光装置に関し、詳しくは、電力源により紫外光から可視光領域の光を発光する第1の発光体と、その紫外光から可視光領域にある光を吸収し長波長の可視光を発する母体化合物が発光中心イオンを含有する蛍光体を有する波長変換材料としての第2の発光体とを組み合わせることにより、使用環境によらず演色性が良く、かつ、高強度の発光を発生させることのできる発光装置に関する。   The present invention relates to a light-emitting device, and more specifically, a first light emitter that emits light from ultraviolet light to visible light region by a power source, and absorbs light in the visible light region from the ultraviolet light to generate long-wavelength visible light. By combining with a second phosphor as a wavelength conversion material having a phosphor containing a phosphor containing a luminescent center ion as a base compound that emits light, color rendering is good regardless of the usage environment and high intensity light emission is generated. The present invention relates to a light-emitting device that can be used.

青、赤、緑の混色により、白色その他の様々な色を、むらなくかつ演色性良く発生させるために、LEDやLDの発光色を蛍光体で色変換させた発光装置が提案されている。例えば、特公昭49−1221号公報では、300−530nmの波長の放射ビームを発するレーザーのビームを燐光体(Y3-x-yCexGdy5-zGaz12(YはY、Lu,また
はLa、MはAl、Al−In、またはAl−Scを表す。))に照射させ、これを発光させてディスプレーを形成する方法が示されている。また、近年では、青色発光の半導体発光素子として注目されている発光効率の高い窒化ガリウム(GaN)系LEDやLDと、波長変換材料としての蛍光体とを組み合わせて構成される白色発光の発光装置が、消費電力が小さく長寿命であるという特徴を活かして画像表示装置や照明装置の発光源として提案されている。実際に、特開平10−242513号公報において、この窒化物系半導体のLED又はLDチップを使用し、蛍光体としてイットリウム・アルミニウム・ガーネット系を使用することを特徴とする発光装置が示されている。米国特許第6,278,135号明細書においては、蛍光体がLEDからの紫外光を受けて可視光を発する発光装置において、その蛍光体としてBaMg2Al1627:Eu2+等が示されている。また、W
O00/033389号公報においては、蛍光体が青色LEDからの光を受けて可視光を発する発光装置において、540nm近辺の緑色に発光する蛍光体として(Sr,Ca,Ba)(Al,Ga)24:Eu2+等が示されている。
In order to generate white and other various colors uniformly and with good color rendering by mixing blue, red, and green, a light emitting device in which the light emission color of an LED or LD is converted with a phosphor has been proposed. For example, in JP-B-49-1221, phosphor a beam of laser emitting a radiation beam having a wavelength of 300-530nm (Y 3-xy Ce x Gd y M 5-z Ga z O 12 (Y is Y, Lu , Or La, M represents Al, Al—In, or Al—Sc))), and this is emitted to form a display. Further, in recent years, a white light emitting device configured by combining a gallium nitride (GaN) LED or LD with high luminous efficiency, which has been attracting attention as a blue light emitting semiconductor light emitting element, and a phosphor as a wavelength conversion material. However, it has been proposed as a light-emitting source for an image display device and a lighting device, taking advantage of the feature of low power consumption and long life. Actually, Japanese Patent Application Laid-Open No. 10-242513 discloses a light emitting device using this nitride semiconductor LED or LD chip and using yttrium, aluminum, garnet as a phosphor. . In U.S. Patent No. 6,278,135, the light-emitting device that emits visible light by receiving ultraviolet light of the phosphor from the LED, BaMg 2 Al 16 O 27 as its phosphor: Eu 2+ Hitoshiga示Has been. W
In O00 / 033389, in a light emitting device in which a phosphor receives light from a blue LED and emits visible light, (Sr, Ca, Ba) (Al, Ga) 2 is used as a phosphor emitting green light around 540 nm. S 4 : Eu 2+ and the like are shown.

しかしながら、今までのところ、LED等の第1の発光体に対し、特開平10−242513号公報に示されるようなイットリウム・アルミニウム・ガーネット系蛍光体を第2の発光体として組み合わせたような発光装置では発光強度と演色性を両方満足するものではなく、ディスプレイやバックライト光源、信号機などの発光源としてさらなる改良が求められる。また、米国特許第6,278,135号広報に示されるようなLED光の青色可視光や緑色可視光への変換材料として記載されているBaMg2Al1627:Eu2+
(Sr,Ca,Ba)(Al,Ga)24:Eu2+についても同様であり、演色性と発光強度の両方をより向上させることが求められる。なお、演色性は、青、緑、赤色の蛍光体を混合して白色光を発生させる場合に問題とする因子の一つであって、太陽光で照らされた物体の色の見え方に対し、蛍光体が発する光で照らされた物体の色の見え方がどの程度近いかを表す尺度のことである。通常、青色、緑色、赤色の蛍光体を混合して白色光とするが、白色光を得るのに使用しうる前述の既知の青色蛍光体と緑色蛍光体では、それぞれ450nm付近と540nm付近にピークトップを持つ青色と緑色の発光ピークの間に大きな谷間があるために、青、緑、赤色の合成による白色光のスペクトルは、460−520nm領域が谷間となってしまい、その領域に谷間のない太陽光スペクトルと一致させることができず、このことが、青、緑、赤色混合系蛍光体の白色光の演色性が低い原因の一つとなっている。
特公昭49−1221号公報 特開平10−242513号公報 米国特許第6,278,135号明細書 WO00/033389号公報
However, so far, the first illuminant such as an LED or the like emits light such as a combination of an yttrium / aluminum / garnet phosphor as disclosed in JP-A-10-242513 as the second illuminant. The apparatus does not satisfy both the light emission intensity and the color rendering properties, and further improvement is required as a light source such as a display, a backlight light source, and a traffic light. Further, BaMg 2 Al 16 O 27 : Eu 2+ or (Sr, which is described as a material for converting LED light into blue visible light or green visible light as disclosed in US Pat. No. 6,278,135. The same applies to Ca, Ba) (Al, Ga) 2 S 4 : Eu 2+ , and it is required to further improve both the color rendering properties and the emission intensity. Note that color rendering is one of the factors that are problematic when white light is generated by mixing blue, green, and red phosphors. This is a scale that indicates how close the color of an object illuminated with light emitted from a phosphor is. Normally, blue, green, and red phosphors are mixed to produce white light, but the known blue phosphor and green phosphor that can be used to obtain white light have peaks around 450 nm and 540 nm, respectively. Since there is a large valley between the blue and green emission peaks with the top, the spectrum of white light by the combination of blue, green and red becomes a valley in the 460-520 nm region, and there is no valley in that region. This cannot be matched with the sunlight spectrum, and this is one of the causes of low color rendering of white light of the blue, green and red mixed phosphors.
Japanese Patent Publication No.49-1221 Japanese Patent Laid-Open No. 10-242513 US Pat. No. 6,278,135 WO00 / 033389

本発明は、前述の従来技術に鑑み、演色性が高く、かつ、発光強度が高い発光装置を開発すべくなされたものであって、従って、本発明は、製造が容易であると共に、演色性と発光強度の両方が高いダブル発光体型発光装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned prior art, and has been made to develop a light emitting device having high color rendering properties and high emission intensity. Therefore, the present invention is easy to manufacture and has color rendering properties. An object of the present invention is to provide a double light-emitting type light emitting device having high emission intensity.

本発明者等は、上記課題を解決すべく鋭意検討した結果、白色光の演色性を改善するためには、青色と緑色の中間色を発する蛍光体を使用し、青色と緑色の発光ピークの谷間を補うことが重要であり、[青色蛍光体]+[緑色蛍光体]+[赤色蛍光体]+[青緑色に強く発光する蛍光体]を組み合わせた系、[青色と緑色領域にさしかかって青緑色領域に強く発光する蛍光体]+[赤色蛍光体]を組み合わせた系、[青色蛍光体]+[緑色領域にさしかかって青緑色領域に強く発光する蛍光体]+[赤色蛍光体]を組み合わせた系、[青色領域にさしかかって青緑色領域に強く発光する蛍光体]+[緑色蛍光体]+[赤色蛍光体]を組み合わせた系等が演色性の高い白色光を与えることを見出した。そして、350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体として下記特定の化学組成を有する結晶相を含有する蛍光体を用いると青緑色に強く発光し、前記蛍光体が350−415nm付近の光の照射を受け、演色性良く、かつ高い強度で可視光の発光を起こす結果前記目的を達成した。具体的には、Eu2+により付活された1価金属と2価金属のハロゲン化物からなるペロブスカイト又はペロブスカイト類似結晶を使用することによって、400nm付近の光の励起により460−520nm領域に強い発光を示し、演色性向上に寄与するとともに、その発光強度は、400nm付近の励起によって発光する公知の青色蛍光体BaMgAl1017:Eu2+や緑色蛍光体(Sr,Ca,Ba)(Al,Ga)24:Eu2+と同等もしくはそれ以上に強いものであり、その強い発光ピークの半値幅が非常に大きいため、青色または緑色蛍光体としても良好となり、演色性と輝度の両方が良好な発光装置を提供できることを見出し、本発明に到達した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a phosphor that emits an intermediate color between blue and green in order to improve the color rendering of white light. It is important to compensate for this, and a system that combines [blue phosphor] + [green phosphor] + [red phosphor] + [phosphor that emits strong blue-green light], [blue and green areas approaching blue Combination of [phosphor that emits strongly in the green region] + [red phosphor], combination of [blue phosphor] + [phosphor that emits strongly in the blue-green region by reaching the green region] + [red phosphor] It has been found that a system combining [phosphor that emits strong light in the blue-green region by approaching the blue region] + [green phosphor] + [red phosphor] gives white light with high color rendering properties. In the light emitting device including the first light emitter that generates light of 350 to 415 nm and the second light emitter that generates visible light by irradiation with light from the first light emitter, the second light emission is performed. When a phosphor containing a crystal phase having the following specific chemical composition is used as the body, the phosphor emits strong blue-green light, and the phosphor is irradiated with light in the vicinity of 350 to 415 nm, and is visible with good color rendering and high intensity. As a result of light emission, the above object was achieved. Specifically, by using a perovskite or a perovskite-like crystal composed of a monovalent metal and a divalent metal halide activated by Eu 2+ , strong light emission in the 460-520 nm region by excitation of light near 400 nm. The emission intensity of the light-emitting element is known blue phosphor BaMgAl 10 O 17 : Eu 2+ or green phosphor (Sr, Ca, Ba) (Al, which emits light by excitation near 400 nm. Ga) 2 S 4 : It is equivalent to or stronger than Eu 2+ and its half-width of its strong emission peak is very large, so it is good as a blue or green phosphor, and both color rendering properties and luminance are good. The inventors have found that a good light emitting device can be provided, and have reached the present invention.

即ち、本発明は、下記一般式[1]の化学組成を有する結晶相を有する蛍光体をその要旨とする。
That is, the present invention is directed to a phosphor having a crystal phase having a chemical composition represented by the following general formula [1] and its gist.

Figure 0004513287
Figure 0004513287

(上記一般式[1]において、AはCsであり、MはMg,Ca,Srから選ばれる2価の金属元素を表し、Xはハロゲン元素を表すが、70mol%以上がFであり、aは、0.01≦a≦0.25を満足する数である。)
他の要旨は、350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、前記第2の発光体が、前記蛍光体を含有してなることを特徴とする発光装置をその要旨とする。
(In the above general formula [1], A is Cs, M is Mg, Ca, a divalent metal element selected from Sr, X table but a halogen element, or 70 mol% is F, a is a number satisfying 0.01 ≦ a ≦ 0.25 .)
Another gist is a light emitting device having a first light emitter that generates light of 350 to 415 nm and a second light emitter that generates visible light by irradiation of light from the first light emitter. The gist of the light-emitting device is characterized in that the second light-emitting body contains the phosphor.

本発明によれば、演色性が高く、かつ発光強度の高い発光装置を提供することができる。   According to the present invention, it is possible to provide a light emitting device having high color rendering properties and high emission intensity.

本発明は、350−415nmの光を発生する第1の発光体と蛍光体である第2の発光
体を組み合わせた発光装置であり、その第2の発光体が、下記一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする。
The present invention is a light-emitting device in which a first light-emitting body that emits light of 350 to 415 nm and a second light-emitting body that is a phosphor are combined, and the second light-emitting body is represented by the following general formula [1]. It contains a phosphor having a crystal phase having a chemical composition.

Figure 0004513287
Figure 0004513287

(上記一般式[1]において、Aは1価の金属元素を表し、MはEu以外の2価の金属元素を表し、Xはハロゲン元素を表し、Zは1価、2価、3価、4価、5価、6価、−1価、−2価、及び−3価の元素からなる群から選ばれた少なくとも一種以上の元素を表す。aは、0.0001≦a≦1、bは、0≦b≦0.1を満足する数である。)
式[1]中の金属元素Aは1価の金属元素であり、アルカリ金属元素や、Au、Ag、Cu等が挙げられるが、演色性と発光強度等の面から、Aの中でアルカリ金属元素が70mol%以上を占めることが好ましく、Cs,Rb,及びKの合計が70mol%以上を占めることがより好ましく、Csが50mol%以上を占めることが更に好ましく、AがCsからなることが特に好ましい。
(In the above general formula [1], A represents a monovalent metal element, M represents a divalent metal element other than Eu, X represents a halogen element, Z represents a monovalent, divalent, trivalent, It represents at least one element selected from the group consisting of tetravalent, pentavalent, hexavalent, −1 valent, −2 valent, and −3 valent elements, where a is 0.0001 ≦ a ≦ 1, b. Is a number satisfying 0 ≦ b ≦ 0.1.)
The metal element A in the formula [1] is a monovalent metal element, and examples thereof include alkali metal elements, Au, Ag, Cu, etc., and alkali metals among A from the viewpoint of color rendering properties and light emission intensity. The element preferably occupies 70 mol% or more, more preferably the sum of Cs, Rb, and K occupies 70 mol% or more, more preferably Cs occupies 50 mol% or more, and A particularly comprises Cs. preferable.

式[1]中の金属元素Mは、Eu以外の2価の金属元素であり、Mg,Ca,Sr,Ba,Zn,Mn,Pb,Cd,Sn等が挙げられるが、演色性と発光強度等の面から、Mの中でMg,Ca,Sr,Ba,Zn,及びMnの合計が70mol%以上を占めることが好ましく、MがMg,Ca,Sr,Ba,Zn,及びMnからなる群から選ばれた少なくとも一種の元素からなり、かつ、MにおけるMgの割合が50mol%以上であることがより好ましい。   The metal element M in the formula [1] is a divalent metal element other than Eu, and examples thereof include Mg, Ca, Sr, Ba, Zn, Mn, Pb, Cd, and Sn. In view of the above, it is preferable that the total of Mg, Ca, Sr, Ba, Zn, and Mn occupies 70 mol% or more in M, and M is a group consisting of Mg, Ca, Sr, Ba, Zn, and Mn. More preferably, it is composed of at least one element selected from the above, and the ratio of Mg in M is 50 mol% or more.

前記一般式[1]中のEuのモル比aは、0.0001≦a≦1であるが、演色性と発光強度等の面から、その下限について言えば、0.01以上であることが好ましく、0.015以上であることがより好ましく、その上限について言えば、0.6以下であることが好ましく、0.25以下であることがより好ましい。発光中心イオンEu2+の含有量が前記範囲未満では、発光強度が小さくなる傾向があり、一方、前記範囲超過でも、濃度消光と呼ばれる現象によりやはり発光強度が減少する傾向がある。 The Eu molar ratio a in the general formula [1] is 0.0001 ≦ a ≦ 1, but in terms of color rendering properties and light emission intensity, the lower limit is 0.01 or more. Preferably, it is 0.015 or more, and speaking about the upper limit, it is preferably 0.6 or less, and more preferably 0.25 or less. If the content of the luminescent center ion Eu 2+ is less than the above range, the emission intensity tends to be small. On the other hand, if the content exceeds the above range, the emission intensity also tends to decrease due to a phenomenon called concentration quenching.

式[1]中のXはハロゲン元素であることが好ましく、演色性と発光強度等の面から、Xの中でFが70mol%以上を占めることがより好ましく、XがFからなることが更に好ましい。   X in the formula [1] is preferably a halogen element. From the viewpoints of color rendering properties and emission intensity, it is more preferable that F occupies 70 mol% or more in X, and X further comprises F. preferable.

式[1]中のZは、不純物もしくは過剰分のM、A、又はXを表し、Aの価数であるところの1価の元素、Mの価数であるところの2価の元素、ならびにXの価数であるところの−1価の元素以外に、3価、4価、5価、6価、−2価及び−3価の元素であっても良いが、それは、これら異価元素が主要元素の固体内拡散を促進し、ペロブスカイト様結晶の結晶化を助ける場合があるということと、異価元素によりカチオン欠損やアニオン欠損が多少生じても本目的の蛍光性能に大きな影響がないということの理由による。具体例として、Li,Na,K,Rb,Cs,Sc,Y,Zr,B,Al,Sc,Y,Ti,V,Cr,Zr,Nb,Hf,Ta,Bi,Sr,Ba,Ca,Mg,Mn,Zn,Sm,Pb,Sn,Cl,F,Br,I,P,Sb,Tm,Ce,O,H,Si、N等の元素が挙げられるが、これらに限定されるものではない。Zのモル比は、蛍光性能への影響が少なければ含まれていてもよく、不純物レベルの対全元素比2%に相当するモル比以下であればよく、b≦0.1であればよい。蛍光体の性能の点から、b≦0.01であることが好ましく、b=0がより好ましい。   Z in the formula [1] represents an impurity or excess M, A, or X, a monovalent element that is the valence of A, a divalent element that is the valence of M, and In addition to the -1 valent element that is the valence of X, a trivalent, tetravalent, pentavalent, hexavalent, -2 valent, and -3 valent element may be used. May promote the diffusion of the main elements in the solid and may help to crystallize the perovskite-like crystals, and even if some cation deficiency or anion deficiency occurs due to the heterovalent element, there is no significant effect on the fluorescence performance for this purpose. Because of that. As specific examples, Li, Na, K, Rb, Cs, Sc, Y, Zr, B, Al, Sc, Y, Ti, V, Cr, Zr, Nb, Hf, Ta, Bi, Sr, Ba, Ca, Examples of elements include Mg, Mn, Zn, Sm, Pb, Sn, Cl, F, Br, I, P, Sb, Tm, Ce, O, H, Si, and N. Absent. The molar ratio of Z may be included as long as there is little influence on the fluorescence performance, and it may be equal to or less than the molar ratio corresponding to the impurity level to total element ratio of 2% and b ≦ 0.1. . From the viewpoint of the performance of the phosphor, b ≦ 0.01 is preferable, and b = 0 is more preferable.

例えば、Cs1.01Ca0.3Mg0.5Eu0.23(OH)0.01の場合、Aが金属元素Csであり、MがCaとMgからなる金属元素群であり、OHは不純物であるから、AM0.8
0.230.03と表され、a,bが上記不等式を満たすから、Cs1.01Ca0.3Mg0.5Eu0.23(OH)0.01は前記[1]式の範疇に入る。
For example, in the case of Cs 1.01 Ca 0.3 Mg 0.5 Eu 0.2 F 3 (OH) 0.01, A is a metal element Cs, M is a metal element group consisting of Ca and Mg, because OH is an impurity, AM 0.8 E
Since it is expressed as u 0.2 F 3 Z 0.03 and a and b satisfy the above inequality, Cs 1.01 Ca 0.3 Mg 0.5 Eu 0.2 F 3 (OH) 0.01 falls within the category of the above-mentioned formula [1].

本発明で使用する蛍光体は、第1の発光体からの350−415nmの光によって励起され、可視光を発生する。上記蛍光体は、350−415nmの光の励起によって演色性がよく、かつ、強い発光強度の可視光を発生し、GaN系半導体から発せられる400nm励起光により演色性が高く、かつ輝度が高い蛍光を発することを見出したものである。   The phosphor used in the present invention is excited by light of 350 to 415 nm from the first light emitter, and generates visible light. The phosphor has a good color rendering property upon excitation of light of 350 to 415 nm, generates visible light having a strong emission intensity, has a high color rendering property and a high luminance by 400 nm excitation light emitted from a GaN-based semiconductor. It is found that emits.

本発明における蛍光体の結晶構造はMI +II 2+I - 3で表されるペロブスカイト構
造及びそれが歪んだ構造(但し、MIは1価の元素、MIIは2価の元素、XIは主にハロゲン)である。これらペロブスカイト結晶又はペロブスカイト類似結晶においては、立方晶の他に正方晶、斜方晶、三方晶等の晶系をとりうる。これらはMIサイトやMIIサイトに
種々の大きさの異なる元素を導入することにより得られる。立方晶ペロブスカイト構造,三方晶ペロブスカイト類似構造の例として、図1,図2にそれぞれCsCaF3,Cs2NaCrF6のX線回折パターンを示す(粉末X線回折データベースより)。本発明におい
ては、CsCaF3を少量のEuで付活したものは立方晶ペロブスカイトになるが、この
Csサイト又はCaサイトにカチオン半径の大きさの異なる他の1価元素又は2価元素を置換すると、更に輝度が高くなる傾向にある。この時の晶系は三方晶等の立方晶以外の晶系に変化する傾向にある。従って、本発明においては、結晶系は立方晶からの逸脱のために、MIサイト又はMIIサイトがカチオン半径の異なる複数の元素からなるか、又は
IIサイトを構成する金属元素と付活剤Euのカチオン半径が異なる場合、Euの置換モル比を充分高めることがより好ましい。
The crystal structure of the phosphor in the present invention is M I + M II 2+ X I - perovskite structure and it distorted structure represented by 3 (where, M I is a monovalent element, M II is a divalent element X I is mainly halogen). In these perovskite crystals or perovskite-like crystals, crystal systems such as tetragonal crystals, orthorhombic crystals, and trigonal crystals can be taken in addition to cubic crystals. These can be obtained by introducing various sizes of elements into the M I and M II sites. As examples of a cubic perovskite structure and a trigonal perovskite-like structure, FIGS. 1 and 2 show X-ray diffraction patterns of CsCaF 3 and Cs 2 NaCrF 6 , respectively (from the powder X-ray diffraction database). In the present invention, CsCaF 3 activated with a small amount of Eu becomes a cubic perovskite. When this Cs site or Ca site is substituted with another monovalent element or divalent element having a different cation radius, Further, the brightness tends to be higher. The crystal system at this time tends to change to a crystal system other than cubic such as trigonal. Therefore, in the present invention, the crystal system has an M I site or M II site composed of a plurality of elements having different cation radii or activated with a metal element constituting the M II site due to deviation from the cubic crystal. When the cation radius of the agent Eu is different, it is more preferable to sufficiently increase the substitution molar ratio of Eu.

本発明で使用する蛍光体は、前記一般式[1]に示されるようなA源、M源、X源、Z源の化合物、及び、発光中心イオン(Eu)の元素源化合物を下記の(A)又は(B)の混合法により調製した混合物を加熱処理して焼成することにより製造することができる。(A)ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、又は、乳鉢と乳棒等を用いる粉砕と、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、又は、乳鉢と乳棒等を用いる混合とを合わせた乾式混合法。
(B)粉砕機、又は、乳鉢と乳棒等を用いて、水等を加えてスラリー状態又は溶液状態で、粉砕機、乳鉢と乳棒、又は蒸発皿と撹拌棒等により混合し、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる湿式混合法。
The phosphor used in the present invention includes compounds of A source, M source, X source, Z source and element source compound of luminescent center ion (Eu) as shown in the general formula [1] below ( The mixture prepared by the mixing method of A) or (B) can be produced by heat treatment and baking. (A) A dry pulverizer such as a hammer mill, a roll mill, a ball mill or a jet mill, or a pulverizer using a mortar and pestle, a mixer such as a ribbon blender, V-type blender or Henschel mixer, or a mortar and pestle. Dry mixing method combined with the mixture used.
(B) Using a pulverizer or a mortar and pestle, etc., add water etc. and mix in a slurry or solution state with a pulverizer, mortar and pestle, or evaporating dish and stirrer, spray drying, heating Wet mixing method that is dried by drying or natural drying.

これらの混合法の中で、特に、発光中心イオンの元素源化合物においては、少量の化合物を全体に均一に混合、分散させる必要があることから液体媒体を用いるのが好ましく、又、他の元素源化合物において全体に均一な混合が得られる面からも、後者湿式法が好ましく、又、加熱処理法としては、アルミナや石英製の坩堝やトレイ等の耐熱容器中で、通常500〜1500℃、好ましくは600〜1300℃の温度で、大気、酸素、一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単独或いは混合雰囲気下、10分〜50時間、加熱することによりなされる。尚、加熱処理後、必要に応じて、洗浄、乾燥、分級処理等がなされる。   Among these mixing methods, in particular, in the element source compound of the luminescent center ion, it is preferable to use a liquid medium because a small amount of compound needs to be mixed and dispersed uniformly throughout, and other elements are also used. The latter wet method is also preferred from the viewpoint of obtaining uniform mixing throughout the source compound, and the heat treatment method is usually 500 to 1500 ° C. in a heat-resistant container such as a crucible or tray made of alumina or quartz, The heating is preferably performed at a temperature of 600 to 1300 ° C. for 10 minutes to 50 hours in a single or mixed atmosphere of a gas such as air, oxygen, carbon monoxide, carbon dioxide, nitrogen, hydrogen, and argon. In addition, after heat processing, washing | cleaning, drying, a classification process, etc. are made | formed as needed.

尚、前記加熱雰囲気としては、発光中心イオンの元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明における2価のEu等の場合には、一酸化炭素、窒素、水素、アルゴン等の中性若しくは還元雰囲気下が好ましいが、大気、酸素等の酸化雰囲気下も条件さえ選べば可能である。   As the heating atmosphere, an atmosphere necessary for obtaining an ion state (valence) in which the element of the emission center ion contributes to light emission is selected. In the case of divalent Eu or the like in the present invention, a neutral or reducing atmosphere such as carbon monoxide, nitrogen, hydrogen, and argon is preferable, but it can be selected even under an oxidizing atmosphere such as air and oxygen. .

ここで、A源、M源、およびEu源の化合物としては、主にA,M、およびEuのハロ
ゲン化物が好ましい。X源の化合物としてNH4XやHX等を使用する場合、A、M、お
よびEuの各酸化物、水酸化物、炭酸塩、硝酸塩、蓚酸塩、カルボン酸塩等を使用するのが望ましく、NH4XやHX等を使用しない場合でもこれらを一部使用することが合成上
可能である。X源の化合物としては、AX、MX2、EuX3、NH4X、HX等が挙げら
れる。これらの中から、化学組成、反応性、及び、焼成時におけるNOx 、SOx等の非
発生性等を考慮して選択される。
Here, as the compounds of the A source, M source, and Eu source, halides of A, M, and Eu are mainly preferred. When using NH 4 X, HX, etc. as the X source compound, it is desirable to use oxides, hydroxides, carbonates, nitrates, oxalates, carboxylates, etc. of A, M, and Eu, Even when NH 4 X, HX, or the like is not used, it is possible to use a part of them for synthesis. Examples of the X source compound include AX, MX 2 , EuX 3 , NH 4 X, and HX. Of these, the chemical composition, reactivity, and non-generation of NO x , SO x, etc. during firing are selected.

金属元素Aとして好ましい元素Cs、Rb、またはKの合成原料用化合物を具体的に例示する。Cs源化合物としては、主にCsX、即ちCsF,CsCl,CsBr等が挙げられるが、他のハロゲン化物との組み合わせにおいてCsOH、Cs2CO3、CsNO3
、CsOCOCH3等が挙げられる。
Specific examples of the compound Cs, Rb, or K as a raw material for synthesis that are preferable as the metal element A are given. The Cs source compound mainly includes CsX, that is, CsF, CsCl, CsBr, etc., but in combination with other halides, CsOH, Cs 2 CO 3 , CsNO 3
, CsOCOCH 3 and the like.

Rb源化合物としては、主にRbX、即ちRbF,RbCl,RbBr等が挙げられるが、他のハロゲン化物との組み合わせにおいてRbOH・nH2O、Rb2CO3、RbN
3、RbOCOCH3等が挙げられる。
Rb source compounds mainly include RbX, that is, RbF, RbCl, RbBr, etc., but in combination with other halides, RbOH.nH 2 O, Rb 2 CO 3 , RbN
Examples include O 3 and RbOCOCH 3 .

K源化合物としては、主にKX、即ちKF,KCl,KBr等が挙げられるが、他のハロゲン化物との組み合わせにおいてKOH、K2CO3、KNO3、KOCOCH3等が挙げられる。 Examples of the K source compound mainly include KX, that is, KF, KCl, KBr, and the like, and in combination with other halides, KOH, K 2 CO 3 , KNO 3 , KOCOCH 3 and the like can be mentioned.

金属元素Mとして好ましい元素Ba、Mg、Ca、Zn、Mn、またはSrの合成原料用化合物を具体的に例示すれば、Ba源化合物としては、主にBaX2、即ちBaF2,BaCl2,BaBr2・2H2O等が挙げられるが、他のハロゲン化物との組み合わせにお
いてBaO、Ba(OH)2・8H2O、BaCO3、Ba(NO32、Ba(OCOCH32等が挙げられる。
Specific examples of a compound for a raw material of synthesis of the element Ba, Mg, Ca, Zn, Mn, or Sr that are preferable as the metal element M are mainly BaX 2 , that is, BaF 2 , BaCl 2 , BaBr. 2 · 2H 2 O and the like, and in combination with other halides, BaO, Ba (OH) 2 · 8H 2 O, BaCO 3 , Ba (NO 3 ) 2 , Ba (OCOCH 3 ) 2 and the like are mentioned. It is done.

Mg源化合物としては、主にMgX2、即ちMgF2,MgCl2,MgBr2・6H2
等が挙げられるが、他のハロゲン化物との組み合わせにおいてMgO、Mg(OH)2
MgCO3、Mg(OH)2・3MgCO3・3H2O、Mg(NO32・6H2O、Mg(
OCOCH32・4H2O等が挙げられる。
Mg source compounds are mainly MgX 2 , that is, MgF 2 , MgCl 2 , MgBr 2 .6H 2 O.
In combination with other halides, MgO, Mg (OH) 2 ,
MgCO 3 , Mg (OH) 2 .3MgCO 3 .3H 2 O, Mg (NO 3 ) 2 .6H 2 O, Mg (
OCOCH 3) 2 · 4H 2 O, and the like.

Ca源化合物としては、主にCaX2即ちCaF2,CaCl2,CaBr2・2H2O等
が挙げられるが、他のハロゲン化物との組み合わせにおいてCaO、Ca(OH)2、C
aCO3、Ca(NO32・4H2O、Ca(OCOCH32・H2O等が挙げられる。
The Ca source compound, primarily CaX 2 That CaF 2, CaCl 2, CaBr 2 · 2H 2 but O, and the like, CaO in combination with other halides, Ca (OH) 2, C
Examples include aCO 3 , Ca (NO 3 ) 2 .4H 2 O, Ca (OCOCH 3 ) 2 .H 2 O, and the like.

Zn源化合物としては、主にZnX2、即ちZnF2・4H2O,ZnCl2,ZnBr2
等が挙げられるが、他のハロゲン化物との組み合わせにおいてZnO、Zn(OH)2
ZnCO3、Zn(NO32・6H2O、Zn(OCOCH32、ZnCl2等が挙げられ
る。
The Zn source compound is mainly ZnX 2 , that is, ZnF 2 .4H 2 O, ZnCl 2 , ZnBr 2.
ZnO, Zn (OH) 2 in combination with other halides, etc.
ZnCO 3 , Zn (NO 3 ) 2 .6H 2 O, Zn (OCOCH 3 ) 2 , ZnCl 2 and the like can be mentioned.

Mn源化合物としては、主にMnX2、即ちMnF2,MnCl2・4H2O,MnBr2
・4H2O等が挙げられるが、他のハロゲン化物との組み合わせにおいてMnO2、Mn2
3、Mn34、MnO、Mn(OH)2、MnCO3、Mn(NO32、Mn(OCOC
32・2H2O、Mn(OCOCH33・nH2O、MnCl2・4H2O等が挙げられる。
As the Mn source compound, mainly MnX 2 , that is, MnF 2 , MnCl 2 .4H 2 O, MnBr 2
· 4H 2 but O, and the like, MnO 2, Mn 2 in combination with other halides
O 3 , Mn 3 O 4 , MnO, Mn (OH) 2 , MnCO 3 , Mn (NO 3 ) 2 , Mn (OCOC)
H 3 ) 2 · 2H 2 O, Mn (OCOCH 3 ) 3 · nH 2 O, MnCl 2 · 4H 2 O and the like.

Sr源化合物としては、主にSrX2、即ちSrF2,SrCl2,SrBr2・6H2
等が挙げられるが、他のハロゲン化物との組み合わせにおいてSrO、Sr(OH)2
8H2O、SrCO3、Sr(NO32、Sr(OCOCH32・0.5H2O等が挙げら
れる。
Sr source compounds are mainly SrX 2 , that is, SrF 2 , SrCl 2 , SrBr 2 .6H 2 O.
In combination with other halides, SrO, Sr (OH) 2.
Examples thereof include 8H 2 O, SrCO 3 , Sr (NO 3 ) 2 , Sr (OCOCH 3 ) 2 .0.5H 2 O, and the like.

更に、発光中心イオンの元素であるEuについて、その元素源化合物を具体的に例示する。主にEuF3、EuCl3・6H2O、EuBr3等が挙げられるが、他のハロゲン化物との組み合わせにおいてEu23、Eu(NO33・6H2O、Eu(OCOCH33
4H2O等が挙げられる。
Furthermore, the element source compound is specifically illustrated about Eu which is an element of a luminescent center ion. EuF 3 , EuCl 3 .6H 2 O, EuBr 3 and the like are mainly mentioned, but in combination with other halides, Eu 2 O 3 , Eu (NO 3 ) 3 .6H 2 O, Eu (OCOCH 3 ) 3
4H 2 O and the like can be mentioned.

本発明において、前記蛍光体に光を照射する第1の発光体は、波長350−415nmの光を発生する。好ましくは波長350−415nmの範囲にピーク波長を有する光を発生する発光体を使用する。第1の発光体の具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。消費電力がより少ない点でレーザーダイオードが好ましい。その中で、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系はSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInX
GaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LD
においては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。
In the present invention, the first light emitter that irradiates the phosphor with light generates light having a wavelength of 350 to 415 nm. Preferably, a light emitter that generates light having a peak wavelength in the wavelength range of 350 to 415 nm is used. Specific examples of the first light emitter include a light emitting diode (LED) or a laser diode (LD). Laser diodes are preferred because they consume less power. Of these, GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, the GaN system usually has a light emission intensity 100 times or more that of the SiC system. GaN-based LEDs and LDs preferably have an Al x Ga Y N light emitting layer, a GaN light emitting layer, or an In x Ga Y N light emitting layer. Among GaN-based LEDs, In X
Those having a Ga Y N light-emitting layer are particularly preferred because the light emission intensity is very strong.
In particular, a multi-quantum well structure composed of an In x Ga y N layer and a GaN layer is particularly preferable because the emission intensity is very high. In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics. A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic constituent elements. The light-emitting layer is made of n-type and p-type Al x Ga y N layers, GaN layers, or In x. Ga Y N layer high emission efficiency which has a hetero structure in which a sandwich like, preferably, there is further higher emission efficiency which was further heterostructure quantum well structure is more preferable.

本発明においては、面発光型の発光体、特に面発光型GaN系レーザーダイオードを第1の発光体として使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第2の発光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、第2の発光体である蛍光体からより強い発光を得ることができる。   In the present invention, it is particularly preferable to use a surface-emitting type illuminant, particularly a surface-emitting GaN-based laser diode, as the first illuminant because the luminous efficiency of the entire light-emitting device is increased. A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is successfully performed. By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. When the surface emitting type is used, the light emission cross-sectional area per unit light emission amount can be increased compared to the type that emits light from the edge of the light emitting layer. As a result, the phosphor of the second light emitter is irradiated with the light. Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor that is the second light emitter.

第1の発光体として面発光型のものを使用する場合、第2の発光体を膜状とするのが好ましい。その結果、面発光型の発光体からの光は断面積が十分大きいので、第2の発光体をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。   When a surface-emitting type is used as the first light emitter, the second light emitter is preferably a film. As a result, the cross-sectional area of the light from the surface-emitting light emitter is sufficiently large. Therefore, when the second light emitter is formed into a film in the direction of the cross section, the irradiation cross-section area of the phosphor from the first light emitter is irradiated. Becomes larger per unit amount of phosphor, so that the intensity of light emitted from the phosphor can be further increased.

また、第1の発光体として面発光型のものを使用し、第2の発光体として膜状のものを用いる場合、第1の発光体の発光面に、直接膜状の第2の発光体を接触させるた形状とするのが好ましい。ここでいう接触とは、第1の発光体とと第2の発光体とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、第1の発光体からの光が第2の発光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。   Further, when a surface-emitting type is used as the first light emitter and a film-like one is used as the second light emitter, the second light emitter directly in the form of a film on the light-emitting surface of the first light emitter. It is preferable that the shape is made to contact. Contact here means to create a state in which the first light emitter and the second light emitter are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

本発明の発光装置の一例における第1の発光体と第2の発光体との位置関係を示す模式
的斜視図を図3に示す。図3中の1は、前記蛍光体を有する膜状の第2の発光体、2は第1の発光体としての面発光型GaN系LD、3は基板を表す。相互に接触した状態をつくるために、LD2と第2の発光体1とそれぞれ別個にをつくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、LD2の発光面上に第2の発光体をを製膜(成型)させても良い。これらの結果、LD2と第2の発光体1とを接触した状態とすることができる。
FIG. 3 is a schematic perspective view showing the positional relationship between the first light emitter and the second light emitter in an example of the light emitting device of the present invention. In FIG. 3, 1 is a film-like second light emitter having the phosphor, 2 is a surface-emitting GaN-based LD as a first light emitter, and 3 is a substrate. In order to create a state in which they are in contact with each other, the LD 2 and the second light emitter 1 may be formed separately and the surfaces may be brought into contact with each other by an adhesive or other means, or the light emitting surface of the LD 2 A second light-emitting body may be formed (molded) on the top. As a result, the LD 2 and the second light emitter 1 can be brought into contact with each other.

第1の発光体からの光や第2の発光体からの光は通常四方八方に向いているが、第2の発光体の蛍光体の粉を樹脂中に分散させると、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを揃えられる。従って、効率の良い向きに光をある程度誘導できるので、第2の発光体として、前記蛍光体の粉を樹脂中へ分散したものを使用するのが好ましい。また、蛍光体を樹脂中に分散させると、第1の発光体からの光の第2の発光体への全照射面積が大きくなるので、第2の発光体からの発光強度を大きくすることができるという利点も有する。この場合に使用できる樹脂としては、シリコン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものが挙げられるが、蛍光体粉の分散性や安定性が良い点で好ましくはシリコン樹脂、もしくはエポキシ樹脂である。第2の発光体の粉を樹脂中に分散させる場合、当該第2の発光体の粉と樹脂の全体に対するその粉の重量比は、通常10〜95%、好ましくは20〜90%、さらに好ましくは30〜80%である。蛍光体が多すぎると粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。   The light from the first illuminant and the light from the second illuminant are usually directed in all directions. However, when the phosphor powder of the second illuminant is dispersed in the resin, the light is out of the resin. A part of the light is reflected when exiting, so the direction of the light can be adjusted to some extent. Accordingly, since light can be guided to a certain degree in an efficient direction, it is preferable to use a phosphor in which the phosphor powder is dispersed in a resin as the second luminous body. Further, when the phosphor is dispersed in the resin, the total irradiation area of the light from the first light emitter to the second light emitter is increased, so that the light emission intensity from the second light emitter can be increased. It also has the advantage of being able to. Examples of resins that can be used in this case include silicon resins, epoxy resins, polyvinyl resins, polyethylene resins, polypropylene resins, polyester resins, and the like, but the dispersibility and stability of the phosphor powder are good. In this respect, silicon resin or epoxy resin is preferable. When the powder of the second luminous body is dispersed in the resin, the weight ratio of the powder of the second luminous body to the whole of the resin is usually 10 to 95%, preferably 20 to 90%, more preferably. Is 30-80%. If the phosphor is too much, the luminous efficiency may be reduced due to aggregation of the powder, and if it is too little, the luminous efficiency may be lowered due to light absorption or scattering by the resin.

本発明の発光装置は、波長変換材料としての前記蛍光体と、350−415nmの光を発生する発光素子とから構成されてなり、前記蛍光体が発光素子の発する350−415nmの光を吸収して、使用環境によらず演色性が良く、かつ、高強度の可視光を発生させることのできる発光装置であり、バックライト光源、信号機などの発光源、又、カラー液晶ディスプレイ等の画像表示装置や面発光等の照明装置等の光源に適している。   The light emitting device of the present invention includes the phosphor as a wavelength conversion material and a light emitting element that emits light of 350 to 415 nm, and the phosphor absorbs light of 350 to 415 nm emitted from the light emitting element. In addition, it is a light emitting device that has good color rendering properties and can generate high-intensity visible light regardless of the use environment, and a light source such as a backlight light source and a traffic light, and an image display device such as a color liquid crystal display. And suitable for light sources such as lighting devices such as surface emitting.

本発明の発光装置を図面に基づいて説明すると、図4は、第1の発光体(350−415nm発光体)と第2の発光体とを有する発光装置の一実施例を示す模式的断面図であり、4は発光装置、5はマウントリード、6はインナーリード、7は第1の発光体(350−415nmの発光体)、8は第2の発光体としての蛍光体含有樹脂部、9は導電性ワイヤー、10はモールド部材である。   The light emitting device of the present invention will be described with reference to the drawings. FIG. 4 is a schematic cross-sectional view showing one embodiment of a light emitting device having a first light emitter (350-415 nm light emitter) and a second light emitter. 4 is a light emitting device, 5 is a mount lead, 6 is an inner lead, 7 is a first light emitter (350-415 nm light emitter), 8 is a phosphor-containing resin portion as a second light emitter, 9 Is a conductive wire, and 10 is a mold member.

本発明の一例である発光装置は、図4に示されるように、一般的な砲弾型の形態をなし、マウントリード5の上部カップ内には、GaN系発光ダイオード等からなる第1の発光体(350−415nm発光体)7が、その上に、蛍光体をシリコン樹脂、エポキシ樹脂やアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより第2の発光体として形成された蛍光体含有樹脂部8で被覆されることにより固定されている。一方、第1の発光体7とマウントリード5、及び第1の発光体7とインナーリード6は、それぞれ導電性ワイヤー9で導通されており、これら全体がエポキシ樹脂等によるモールド部材10で被覆、保護されてなる。   As shown in FIG. 4, the light emitting device as an example of the present invention has a general bullet shape, and a first light emitter made of a GaN-based light emitting diode or the like is disposed in the upper cup of the mount lead 5. (350-415 nm illuminant) 7 is a phosphor formed as a second illuminant by mixing and dispersing the phosphor in a binder such as silicon resin, epoxy resin or acrylic resin and pouring it into the cup. It is fixed by being covered with the body-containing resin portion 8. On the other hand, the first light emitter 7 and the mount lead 5, and the first light emitter 7 and the inner lead 6 are each electrically connected by a conductive wire 9, and these are entirely covered with a mold member 10 made of epoxy resin or the like, Protected.

又、この発光素子1を組み込んだ面発光照明装置11は、図5に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース12の底面に、多数の発光装置13を、その外側に発光装置13の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース12の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板14を発光の均一化のために固定してなる。   Further, as shown in FIG. 5, the surface emitting illumination device 11 incorporating the light emitting element 1 has a large number of light emission on the bottom surface of a rectangular holding case 12 whose inner surface is light-opaque such as a white smooth surface. The device 13 is arranged with a power supply and a circuit (not shown) for driving the light emitting device 13 provided outside thereof, and a milky white acrylic plate or the like is provided at a position corresponding to the lid portion of the holding case 12. The diffusion plate 14 is fixed for uniform light emission.

そして、面発光照明装置11を駆動して、発光素子13の第1の発光体に電圧を印加す
ることにより350−415nmの光を発光させ、その発光の一部を、第2の発光体としての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板14を透過して、図面上方に出射され、保持ケース12の拡散板14面内において均一な明るさの照明光が得られることとなる。
Then, the surface emitting illumination device 11 is driven to apply light to the first light emitter of the light emitting element 13 to emit light of 350 to 415 nm, and a part of the light emission is used as the second light emitter. The phosphor in the phosphor-containing resin part absorbs and emits visible light, while light emission with high color rendering properties is obtained by mixing with blue light or the like that is not absorbed by the phosphor. 14, is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 14 of the holding case 12.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

EuF3;0.01227モル、CsF;0.1023モル、CaF2;0.0184モル、およびMgF2;0.0716モルを純水と共に、メノウ乳鉢上で粉砕、混合し、乾
燥して得られた混合物をアルミナ製坩堝中で、4%の水素を含む窒素ガス流下、950℃で24時間、加熱することにより焼成し、引き続いて、粉砕による粒径制御を施すことにより青緑色発光の蛍光体CsCa0.18Mg0.7Eu0.123(第2の発光体に用いる蛍光体)を製造した。図6にこの蛍光体のX線回折パターンを示す。図6の主なピーク群は図2の三方晶Cs2NaCrF6のピークパターンに一致しており、目的の結晶相が生成していることがわかる。
EuF 3 ; 0.01227 mol, CsF; 0.1023 mol, CaF 2 ; 0.0184 mol, and MgF 2 ; 0.0716 mol, together with pure water, ground in an agate mortar, mixed and dried. The resulting mixture was baked in an alumina crucible by heating at 950 ° C. for 24 hours under a nitrogen gas flow containing 4% hydrogen, and subsequently subjected to particle size control by pulverization to produce a blue-green phosphor. CsCa 0.18 Mg 0.7 Eu 0.12 F 3 (phosphor used for the second phosphor) was produced. FIG. 6 shows the X-ray diffraction pattern of this phosphor. The main peak group in FIG. 6 matches the peak pattern of trigonal Cs 2 NaCrF 6 in FIG. 2, and it can be seen that the target crystal phase is generated.

図7に、GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起したときの発光スペクトルを示した。図7には、参考例として公知の青色蛍光体Ba0.9Eu0.1MgAl1017(参考例1)と緑色蛍光体Sr0.99Eu0.01Ga24(参考例2)の発光スペクトルも示した。両蛍光体を製造した条件を下記に示す。 FIG. 7 shows an emission spectrum when the phosphor is excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode. FIG. 7 also shows emission spectra of a known blue phosphor Ba 0.9 Eu 0.1 MgAl 10 O 17 (Reference Example 1) and a green phosphor Sr 0.99 Eu 0.01 Ga 2 S 4 (Reference Example 2) as reference examples. Conditions for producing both phosphors are shown below.

仕込み原料を、BaCO3;0.0103モル、塩基性炭酸マグネシウム(Mgのモル
数0.0114モル)、γ−Al23;0.0570モル、およびEu23;0.00057モルと変え、焼成条件を1600℃、2時間と変えた以外は、CsCa0.18Mg0.7
Eu0.123と同様にして製造することにより、従来の市販の青色蛍光体組成を持つBa0.9Eu0.1MgAl1017を得た。Ga23;0.058モル、SrS;0.058モル
、およびEuF3;0.00058モルをメノウ乳鉢上で粉砕、混合し、乾燥して得られ
た混合物をアルミナ製坩堝中で、アルゴンガス流下、1000℃で8時間、加熱することにより焼成し、引き続いて、粉砕による粒径制御を施すことにより緑色蛍光体組成を持つSr0.99Eu0.01Ga24を得た。
The charged materials were BaCO 3 ; 0.0103 mol, basic magnesium carbonate (Mg mole number 0.0114 mol), γ-Al 2 O 3 ; 0.0570 mol, and Eu 2 O 3 ; 0.00057 mol. CsCa 0.18 Mg 0.7 except that the firing conditions were changed to 1600 ° C. and 2 hours.
Ba 0.9 Eu 0.1 MgAl 10 O 17 having a conventional commercially available blue phosphor composition was obtained by manufacturing in the same manner as Eu 0.12 F 3 . Ga 2 S 3 ; 0.058 mol, SrS; 0.058 mol, and EuF 3 ; 0.00058 mol were pulverized and mixed in an agate mortar and dried. Firing was performed by heating at 1000 ° C. for 8 hours under a gas flow, and subsequently, particle size control by pulverization was performed to obtain Sr 0.99 Eu 0.01 Ga 2 S 4 having a green phosphor composition.

図7でみられるとおり、実施例1の青緑色蛍光体が公知の青色と緑色の蛍光体の発光スペクトルの谷間を補うことのできる強い発光ピークを有するので、少量で演色性向上を達成でき、かつ、その強い発光ピークの半値幅が充分大きいので、青色と緑色ピークの強度増大の効果もあることがわかる。表−1に、その発光ピークの波長、相対発光強度、及び半値幅を示した。表−1には参考例1と2の発光ピークの波長、相対発光強度、及び半値幅も示した。CsCa0.18Mg0.7Eu0.123の半値幅が、参考例1と2の青色と緑色のピーク波長の差(79nm)と大きく異ならない、言い換えれば、充分大きい半値幅を持ち、参考例1と2の発光強度より大きな発光強度を持つことがわかる。 As seen in FIG. 7, the blue-green phosphor of Example 1 has a strong emission peak that can compensate for the valleys of the emission spectra of known blue and green phosphors, so that color rendering can be improved in a small amount. In addition, since the half width of the strong emission peak is sufficiently large, it can be seen that there is also an effect of increasing the intensity of the blue and green peaks. Table 1 shows the wavelength of the emission peak, the relative emission intensity, and the half width. Table 1 also shows the emission peak wavelength, relative emission intensity, and half-value width of Reference Examples 1 and 2. The full width at half maximum of CsCa 0.18 Mg 0.7 Eu 0.12 F 3 is not significantly different from the difference between the blue and green peak wavelengths (79 nm) of Reference Examples 1 and 2, in other words, it has a sufficiently large half width, and Reference Examples 1 and 2 It can be seen that the light emission intensity is larger than the light emission intensity.

仕込み原料を、EuF3;0.02384モル、CsF;0.0954モル、CaF2;0.0048モル、およびMgF2;0.06676モルと変えた以外は、実施例1と同
様にして蛍光体CsCa0.05Mg0.7Eu0.253を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対発光強度、及び半値幅を示した。CsCa0.05Mg0.7Eu0.253が、参考例1と2の青色と緑色のピーク波長の差79nmと大きく
異ならない、言い換えれば、充分大きい半値幅を持ち、参考例1と2の発光強度より大きな発光強度を持つことがわかる。
Phosphor as in Example 1 except that the raw materials were changed to EuF 3 ; 0.02384 mol, CsF; 0.0954 mol, CaF 2 ; 0.0048 mol, and MgF 2 ; 0.06676 mol CsCa 0.05 Mg 0.7 Eu 0.25 F 3 was produced. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative emission intensity, and the half width. CsCa 0.05 Mg 0.7 Eu 0.25 F 3 does not differ greatly from the difference between the peak wavelengths of blue and green in Reference Examples 1 and 2 of 79 nm. In other words, the CsCa 0.05 Mg 0.7 Eu 0.25 F 3 has a sufficiently large half width and is larger than the emission intensity of Reference Examples 1 and 2. It turns out that it has luminescence intensity.

仕込み原料を、EuF3;0.005322モル、CsF;0.1064モル、CaF2;0.0266モル、およびMgF2;0.07451モルと変えた以外は、実施例1と
同様にして蛍光体CsCa0.25Mg0.7Eu0.053を製造した。図8にこの蛍光体のX線回折パターンを示す。図8の主なピーク群は図2の三方晶Cs2NaCrF6のピークパターンに一致していることがわかる。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対発光強度、及び半値幅を示した。CsCa0.25Mg0.7Eu0.053が、参考例1と2の青色と緑色のピーク波長の差79nmと大きく異ならない、言い換えれば、充分大きい半値幅を持ち、参考例1と2の発光強度より大きな発光強度を持つことがわかる。
Phosphors in the same manner as in Example 1 except that the charged raw materials were changed to EuF 3 ; 0.005322 mol, CsF; 0.1064 mol, CaF 2 ; 0.0266 mol, and MgF 2 ; 0.07451 mol CsCa 0.25 Mg 0.7 Eu 0.05 F 3 was produced. FIG. 8 shows the X-ray diffraction pattern of this phosphor. It can be seen that the main peak group in FIG. 8 matches the peak pattern of trigonal Cs 2 NaCrF 6 in FIG. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative emission intensity, and the half width. CsCa 0.25 Mg 0.7 Eu 0.05 F 3 does not differ greatly from the difference between the peak wavelengths of blue and green in Reference Examples 1 and 2 of 79 nm, in other words, has a sufficiently large half-value width and is larger than the emission intensity of Reference Examples 1 and 2. It turns out that it has luminescence intensity.

仕込み原料を、EuF3;0.00163モル、CsF;0.1086モル、CaF2;0.0310モル、およびMgF2;0.07605モルと変えた以外は、実施例1と同
様にして蛍光体CsCa0.285Mg0.7Eu0.0153を製造した。図9にこの蛍光体のX線回折パターンを示す。図9の主なピーク群は図2の三方晶Cs2NaCrF6のピークパターンに一致していることがわかる。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対発光強度、及び半値幅を示した。CsCa0.285Mg0.7Eu0.0153が、参考例1と2の青色と緑色のピーク波長の差79nmと大きく異ならない、言い換えれば、充分大きい半値幅を持ち、参考例1と2の発光強度より大きな発光強度を持つことがわかる。
Phosphor as in Example 1 except that the raw materials were changed to EuF 3 ; 0.00163 mol, CsF; 0.1086 mol, CaF 2 ; 0.0310 mol, and MgF 2 ; 0.07605 mol CsCa 0.285 Mg 0.7 Eu 0.015 F 3 was produced. FIG. 9 shows the X-ray diffraction pattern of this phosphor. It can be seen that the main peak group in FIG. 9 matches the peak pattern of trigonal Cs 2 NaCrF 6 in FIG. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative emission intensity, and the half width. CsCa 0.285 Mg 0.7 Eu 0.015 F 3 is not significantly different from the difference between the peak wavelengths of blue and green in Reference Examples 1 and 2 of 79 nm. In other words, the CsCa 0.285 Mg 0.7 Eu 0.015 F 3 has a sufficiently large half width and is larger than the emission intensity of Reference Examples 1 and 2. It turns out that it has luminescence intensity.

仕込み原料を、EuF3;0.005055モル、CsF;0.1011モル、MgF2;0.07078モル、およびSrF2;0.0253モルと変えた以外は、実施例1と
同様にして蛍光体CsSr0.25Mg0.7Eu0.053を製造した。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対発光強度、及び半値幅を示した。CsSr0.25Mg0.7Eu0.053が、参考例1と2の青色と緑色のピーク波長の差79nmと大きく異ならない、言い換えれば、充分大きい半値幅を持ち、参考例1と2の発光強度に見合うだけの大きな発光強度を持つことがわかる。
Phosphor as in Example 1 except that the raw materials were changed to EuF 3 ; 0.005055 mol, CsF; 0.1011 mol, MgF 2 ; 0.07078 mol, and SrF 2 ; 0.0253 mol the CsSr 0.25 Mg 0.7 Eu 0.05 F 3 was produced. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative emission intensity, and the half width. CsSr 0.25 Mg 0.7 Eu 0.05 F 3 does not differ greatly from the difference between the peak wavelengths of blue and green in Reference Examples 1 and 2 of 79 nm, in other words, has a sufficiently large half-value width and matches the emission intensity of Reference Examples 1 and 2. It can be seen that it has only a large emission intensity.

仕込み原料を、EuF3;0.005073モル、CsF;0.1015モル、および
CaF2;0.0964モルと変えた以外は、実施例1と同様にして蛍光体CsCa0.95
Eu0.053を製造した。図10にこの蛍光体のX線回折パターンを示す。図10のピー
クパターンは図1の立方晶CsCaF3のピークパターンにほぼ一致していることがわか
る。GaN系発光ダイオードの紫外光領域の主波長である400nmでこの蛍光体を励起させ、発光スペクトルを測定した。表−1に、その発光ピークの波長、相対発光強度、及び半値幅を示した。CsCa0.95Eu0.053が、参考例1と2の青色と緑色のピーク波
長の差79nmより大きい半値幅を持ち、参考例1と2の発光強度に見合うだけの大きな発光強度を持つことがわかる。
Phosphor CsCa 0.95 in the same manner as in Example 1 except that the raw materials were changed to EuF 3 ; 0.005073 mol, CsF; 0.1015 mol, and CaF 2 ; 0.0964 mol.
Eu 0.05 F 3 was produced. FIG. 10 shows the X-ray diffraction pattern of this phosphor. It can be seen that the peak pattern of FIG. 10 substantially matches the peak pattern of the cubic CsCaF 3 of FIG. The phosphor was excited at 400 nm, which is the dominant wavelength in the ultraviolet region of a GaN-based light emitting diode, and the emission spectrum was measured. Table 1 shows the wavelength of the emission peak, the relative emission intensity, and the half width. It can be seen that CsCa 0.95 Eu 0.05 F 3 has a half-value width greater than 79 nm between the blue and green peak wavelengths of Reference Examples 1 and 2, and a large emission intensity corresponding to the emission intensity of Reference Examples 1 and 2. .

Figure 0004513287
Figure 0004513287

CsCaF3のX線回折パターン(X線源:CuKαに換算したもの)。X-ray diffraction pattern of CsCaF 3 (X-ray source: converted to CuKα). Cs2NaCrF6のX線回折パターン(X線源:CuKαに換算したもの)。X-ray diffraction pattern of Cs 2 NaCrF 6 (X-ray source: converted to CuKα). 面発光型GaN系ダイオードに膜状蛍光体を接触又は成型させた発光装置の一例を示す図。The figure which shows an example of the light-emitting device which made the film-like fluorescent substance contact or shape | mold to the surface emitting GaN-type diode. 本発明中の蛍光体と、第1の発光体(350−415nm発光体)とから構成される発光装置の一実施例を示す模式的断面図である。It is typical sectional drawing which shows one Example of the light-emitting device comprised from the fluorescent substance in this invention, and a 1st light-emitting body (350-415 nm light-emitting body). 本発明の面発光照明装置の一例を示す模式的断面図。The typical sectional view showing an example of the surface emitting illumination device of the present invention. 本発明の実施例1の蛍光体のX線回折パターン(X線源:CuKα)X-ray diffraction pattern (X-ray source: CuKα) of the phosphor of Example 1 of the present invention 発光波長400nmのGaN系発光ダイオードにより照射を受けた本発明の実施例1、参考例1、および参考例2のそれぞれの蛍光体の発光スペクトルを重ね合わせたスペクトル。A spectrum obtained by superimposing the emission spectra of the phosphors of Example 1, Reference Example 1, and Reference Example 2 of the present invention irradiated by a GaN-based light emitting diode having an emission wavelength of 400 nm. 本発明の実施例3の蛍光体のX線回折パターン(X線源:CuKα)X-ray diffraction pattern (X-ray source: CuKα) of the phosphor of Example 3 of the present invention 本発明の実施例4の蛍光体のX線回折パターン(X線源:CuKα)X-ray diffraction pattern (X-ray source: CuKα) of the phosphor of Example 4 of the present invention 本発明の実施例6の蛍光体のX線回折パターン(X線源:CuKα)X-ray diffraction pattern (X-ray source: CuKα) of the phosphor of Example 6 of the present invention

符号の説明Explanation of symbols

1;第2の発光体
2;面発光型GaN系LD
3;基板
4;発光装置
5;マウントリード
6;インナーリード
7;第1の発光体(350〜415nmの発光体)
8;本発明中の蛍光体を含有させた樹脂部
9;導電性ワイヤー
10;モールド部材
11;発光素子を組み込んだ面発光照明装置
12;保持ケース
13;発光装置
14;拡散板
1; second light emitter 2; surface-emitting GaN-based LD
3; Substrate 4; Light emitting device 5; Mount lead 6; Inner lead 7; First light emitter (light emitter of 350 to 415 nm)
8; Resin part containing phosphor in the present invention 9; Conductive wire 10; Mold member 11; Surface-emitting illumination device 12 incorporating a light-emitting element; Holding case 13; Light-emitting device 14;

Claims (11)

下記一般式[1]の化学組成を有する結晶相を有する蛍光体。
Figure 0004513287
(上記一般式[1]において、AはCsであり、MはMg,Ca,Srから選ばれる2価の金属元素を表し、Xはハロゲン元素を表すが、70mol%以上がFであり、aは、0.01≦a≦0.25を満足する数である。)
Phosphor having a crystal phase having a chemical composition of the following one general formula [1].
Figure 0004513287
(In the above general formula [1], A is Cs, M is Mg, Ca, a divalent metal element selected from Sr, X table but a halogen element, or 70 mol% is F, a is a number satisfying 0.01 ≦ a ≦ 0.25 .)
MにおけるMgの割合が50mol%以上であることを特徴とする請求項1に記載の蛍光体The phosphor according to claim 1, wherein the ratio of Mg in M is 50 mol% or more. 元素MがCa又はSrを含むことを特徴とする請求項1又は2に記載の蛍光体The phosphor according to claim 1 or 2 , wherein the element M contains Ca or Sr. 350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置における第2の発光体に用いられるものであることを特徴とする請求項1ないし3のいずれか1つに記載の蛍光体A first light emitter which emits light of 350-415Nm, used in the second luminous body of the light emitting device and a second luminous body which emits visible light when irradiated with light from the first luminous body The phosphor according to any one of claims 1 to 3, wherein 350−415nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体が、請求項1ないし3のいずれか1つに記載の蛍光体を含有してなることを特徴とする発光装置。In a light-emitting device including a first light-emitting body that generates light of 350 to 415 nm and a second light-emitting body that generates visible light when irradiated with light from the first light-emitting body, the second light-emitting body includes: A light-emitting device comprising the phosphor according to any one of claims 1 to 3. 第1の発光体がレーザーダイオード又は発光ダイオードであることを特徴とする請求項に記載の発光装置。 6. The light emitting device according to claim 5 , wherein the first light emitter is a laser diode or a light emitting diode. 第1の発光体がGaN系化合物半導体を使用してなることを特徴とする請求項5又は6に記載の発光装置。 The light emitting device according to claim 5 or 6 , wherein the first light emitter is made of a GaN-based compound semiconductor. 第1の発光体が面発光型GaN系レーザーダイオードであることを特徴とする請求項ないしのいずれか1つに記載の発光装置。 First light emitter emitting device according to any one of claims 5 to 7, characterized in that a surface-emitting type GaN-based laser diode. 第2の発光体の粉をシリコン樹脂、及び/又はエポキシ樹脂に分散させたものに第1の発光体からの光を照射させることを特徴とする請求項ないしのいずれか一つに記載の発光装置。 The second powder of silicon resin emitters, and / or according to any one of claims 5 to 8, characterized in that to irradiate the light of the first from the light emitters are dispersed in an epoxy resin Light-emitting device. 請求項ないしのいずれか一つに記載の発光装置を有する照明装置。 Lighting device comprising a light-emitting device according to any one of claims 5 to 9. 請求項ないしのいずれか一つに記載の発光装置を有する画像表示装置。

An image display device having a light-emitting device according to any one of claims 5 to 9.

JP2003289872A 2003-08-08 2003-08-08 Light emitting device, lighting device, and image display device Expired - Fee Related JP4513287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289872A JP4513287B2 (en) 2003-08-08 2003-08-08 Light emitting device, lighting device, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289872A JP4513287B2 (en) 2003-08-08 2003-08-08 Light emitting device, lighting device, and image display device

Publications (2)

Publication Number Publication Date
JP2005063727A JP2005063727A (en) 2005-03-10
JP4513287B2 true JP4513287B2 (en) 2010-07-28

Family

ID=34368068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289872A Expired - Fee Related JP4513287B2 (en) 2003-08-08 2003-08-08 Light emitting device, lighting device, and image display device

Country Status (1)

Country Link
JP (1) JP4513287B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210118477A (en) * 2015-12-23 2021-09-30 아반타마 아게 Display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143669A (en) * 1997-07-29 1999-02-16 Toshiba Corp Phosphor and display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143669A (en) * 1997-07-29 1999-02-16 Toshiba Corp Phosphor and display

Also Published As

Publication number Publication date
JP2005063727A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
US7357882B2 (en) Light emitting device and illuminator using the same
JP2005298805A (en) Light emitting device and illumination device
JP4168776B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4617890B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4706358B2 (en) Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display
US20080160343A1 (en) Phosphors and light emitting device using the same
JP4165255B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4411841B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4972904B2 (en) Phosphor, method for manufacturing the phosphor, light-emitting device using the phosphor, image display device, and illumination device
JP4389513B2 (en) Light emitting device, lighting device, and image display device
JP5326986B2 (en) Phosphor used in light emitting device
JP2004253747A (en) Light emitting device and lighting device using same
JP2004235546A (en) Light emitting device and lighting device and display using it
JP4561064B2 (en) Light emitting device, lighting device, and image display device
JP4513287B2 (en) Light emitting device, lighting device, and image display device
JP4617889B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2010059429A (en) Phosphor, luminescent device using the same, image display and illuminating device
JP4337468B2 (en) Light emitting device, lighting device, and image display device
JP4604516B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4246502B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4363194B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4337465B2 (en) Light emitting device, lighting device, and image display device
JP4433847B2 (en) Phosphor, light emitting device using the same, image display device, and illumination device
JP2005064189A (en) Light emitting device, lighting device and image display device
JP4380118B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees