JP2005063836A - Light emitting device, illumination device, and image display device - Google Patents

Light emitting device, illumination device, and image display device Download PDF

Info

Publication number
JP2005063836A
JP2005063836A JP2003293092A JP2003293092A JP2005063836A JP 2005063836 A JP2005063836 A JP 2005063836A JP 2003293092 A JP2003293092 A JP 2003293092A JP 2003293092 A JP2003293092 A JP 2003293092A JP 2005063836 A JP2005063836 A JP 2005063836A
Authority
JP
Japan
Prior art keywords
light
emitting device
phosphor
emitting
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003293092A
Other languages
Japanese (ja)
Inventor
Takatoshi Seto
孝俊 瀬戸
Naoto Kijima
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003293092A priority Critical patent/JP2005063836A/en
Publication of JP2005063836A publication Critical patent/JP2005063836A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting device having a high color rendering property and high light-emitting intensity, formed by combining an excitation source and a phosphor emitting light with a wavelength of 350 to 480 nm. <P>SOLUTION: The light-emitting device formed by combining the excitation source and the phosphor emitting light with a wavelength of 350 to 480 nm uses the phosphor including a crystal phase having a chemical composition expressed by formula [1]. In formula [1], M<SP>1</SP>denotes a metal element group having positive valence including not less than 50 mol% of Ca, excluding Eu, Ga, Al, In, B; M<SP>2</SP>denotes at least one kind of element chosen from Ga, Al, In, B, wherein, Ga is not less than 80 mol%; M<SP>3</SP>denotes at least one kind of element chosen from S, Se, Te, O, wherein, S is not less than 80 mol%; b is a number fulfilling 0.001<b<1; a and b fulfill 0.9≤(a+b)≤1.1; and c fulfills 3.6≤c≤4.4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は発光装置に関し、詳しくは、電力源により紫外光から可視光領域の光を発光する第1の発光体と、その紫外光から可視光領域にある光を吸収し長波長の可視光を発する母体化合物が発光中心イオンを含有する蛍光体を有する波長変換材料としての第2の発光体とを組み合わせることにより、使用環境によらず高強度の発光を発生させることのできる発光装置に関する。   The present invention relates to a light-emitting device, and more specifically, a first light emitter that emits light from ultraviolet light to visible light region by a power source, and absorbs light in the visible light region from the ultraviolet light to generate long-wavelength visible light. The present invention relates to a light-emitting device capable of generating high-intensity light emission regardless of the use environment by combining with a second light-emitting material as a wavelength conversion material having a phosphor containing a phosphor containing a luminescent center ion.

近年に開発された低電圧で発光強度の高い半導体発光素子である窒化ガリウム(GaN)系の発光ダイオード(LED)やレーザーダイオード(LD)等の光源に対し、波長変換材料としての蛍光体を組み合わせた白色発光の発光装置が、消費電力が小さく長寿命であるという特徴を活かして画像表示装置や照明装置の発光源として提案されている。例えば、特開平10−242513号公報において、この窒化物系半導体のLED又はLDチップを使用し、蛍光体としてイットリウム・アルミニウム・ガーネット系を使用することを特徴とする発光装置が示されている。これは、半導体の青色光源と蛍光体の黄色発光を組み合わせて白色光を発光させているが、この[青色+黄色]の混色による白色光発光法は、高い演色性が決して得られないという原理的な欠点を抱えている。   Combining phosphors as wavelength conversion materials with light sources such as gallium nitride (GaN) light-emitting diodes (LEDs) and laser diodes (LDs), which are semiconductor light-emitting devices with low voltage and high emission intensity developed in recent years A white light emitting device has been proposed as a light emitting source of an image display device or a lighting device taking advantage of the feature of low power consumption and long life. For example, Japanese Patent Application Laid-Open No. 10-242513 discloses a light emitting device using the nitride semiconductor LED or LD chip and using yttrium, aluminum, and garnet as the phosphor. This is a combination of the blue light source of semiconductor and the yellow light emission of the phosphor to emit white light, but the white light emission method using this [blue + yellow] color mixture never gives a high color rendering property. Have some disadvantages.

そのため、近年では、LEDやLDからの近紫外光を受け、青色、赤色、緑色にそれぞれ発光する蛍光体を組み合わせたり、青色LEDからの青色光を受け、緑色、赤色にそれぞれ発光する蛍光体を組み合わせたりして、演色性の高い白色光を発光させるための、蛍光体の提案がなされている。例えば、WO00/33389号公報においては、白色や緑色の照明を目的として、青色LEDからの青色光を受け、緑色に発光する蛍光体(Sr,Ca,Ba)(Al,Ga)24:Eu2+等が示されている。この蛍光体は、535−545nm付近の緑色発光を呈すると記載されているが、具体的な組成範囲が記載されておらず、さらに、従来の254nm励起蛍光体として良好とされてきた1〜5モル%のEuで付活された(Sr,Ca,Ba)(Al,Ga)24を第2の発光体に用いる蛍光体とし、第1の発光体である青色LEDと組み合わせたような発光装置では、その緑色発光の強度が低いため、白色光としても緑色光としても満足できるものでなく、ディスプレイやバックライト光源、信号機などの発光源としてさらなる改良が求められる。また、特開2002−60747号公報において、白色や緑色の照明を目的として、青色LEDからの青色光を受け、緑色又は赤色に発光する蛍光体希土類付活の硫化物が提案されており、Journal of the Electrochemical Society,150,H57−H60(2003)には、白色の照明を目的として、青色LEDと5モル%のEuで付活されたSrGa24を組み合わせた実験例が示されているが、それらではまだ十分な発光強度とはいえず、緑色発光の強度をより向上させることが求められる。 Therefore, in recent years, phosphors that receive near-ultraviolet light from LEDs and LDs and emit blue, red, and green light respectively, or phosphors that receive blue light from blue LEDs and emit light in green and red, respectively. For example, phosphors have been proposed to emit white light having high color rendering properties in combination. For example, in WO00 / 33389, phosphors (Sr, Ca, Ba) (Al, Ga) 2 S 4 that receive blue light from a blue LED and emit green light for the purpose of white or green illumination: Eu 2+ and the like are shown. Although this phosphor is described as exhibiting green light emission in the vicinity of 535-545 nm, a specific composition range is not described, and further, 1 to 5 which has been considered favorable as a conventional 254 nm excitation phosphor. (Sr, Ca, Ba) (Al, Ga) 2 S 4 activated by mol% Eu is used as a phosphor for the second light emitter, and is combined with the blue LED as the first light emitter. In the light emitting device, since the intensity of the green light emission is low, it is not satisfactory as white light or green light, and further improvement is required as a light emitting source for a display, a backlight light source, a traffic light or the like. Japanese Patent Laid-Open No. 2002-60747 proposes a phosphor rare earth activated sulfide that receives blue light from a blue LED and emits green or red light for the purpose of white or green illumination. of the Electrochemical Society, 150 , H57-H60 (2003) shows an experimental example in which a blue LED and SrGa 2 S 4 activated by 5 mol% Eu are combined for the purpose of white illumination. However, they still cannot be said to have sufficient light emission intensity, and it is required to further improve the intensity of green light emission.

また、[緑色]+[赤色]+[青色]の組み合わせでは、緑色と赤色の中間の550−570nmの波長領域に十分な発光強度を持たないため、十分な演色性が得られないという問題点もある。
特開平10−242513号公報 WO00/33389号公報 特開2002−60747号公報 Journal of the Electrochemical Society,150,H57−H60(2003)
In addition, the combination of [green] + [red] + [blue] has a problem in that sufficient color rendering cannot be obtained because the light emission intensity is not sufficient in the wavelength range of 550 to 570 nm between green and red. There is also.
Japanese Patent Laid-Open No. 10-242513 WO00 / 33389 JP 2002-60747 A Journal of the Electrochemical Society, 150, H57-H60 (2003)

本発明は、前述の従来技術に鑑み、演色性が高く、かつ、発光強度が高い発光装置を開発すべくなされたものであって、従って、本発明は、製造が容易であると共に、高い演色性を与え、かつ、発光強度が高いダブル発光体型発光装置を得ることを提供することを目的とする。   The present invention has been made in view of the above-described conventional technology to develop a light emitting device having high color rendering properties and high light emission intensity. Therefore, the present invention is easy to manufacture and has high color rendering. An object of the present invention is to provide a double light emitter type light emitting device that imparts high performance and high emission intensity.

本発明者は、前記課題を解決すべく鋭意検討した結果、現状の550−570nmという、発光強度の不十分な波長領域に寄与し、かつ、3色混色の際の緑色の視感効果も出しうる黄緑色の発光が強い蛍光体を見い出すことができれば、[青色]+[赤色]+[黄緑色]、あるいは、[青色]+[緑色]+[赤色]+[黄緑色]の混色で非常に演色性の高い発光装置が得られるという考えに到達し、GaN系青色LED光源を例とする415nmを越え480nm以下の発光源に対し、[赤色]+[黄緑色]の蛍光体を、または、[緑色]+[赤色]+[黄緑色]の蛍光体を組み合わせる方法、あるいは、GaN系近紫外光源を例とする350nm以上415nm以下の発光源に対し、[青色]+[黄緑色]+[赤色]の蛍光体を、または、[青色]+[緑色]+[赤色]+[黄緑色]の蛍光体を組み合わせる方法等により、550−570nmの波長領域の、また、色度座標で言えば、(0.39,0.59)付近の黄緑色光の強度が顕著に高くなり、発光装置全体として、演色性が高く、かつ、強度の高い白色光、または、強度の高い黄緑色光を発生させることができ、前記目的が達成できることを見い出し本発明に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventor contributed to the current wavelength range of 550-570 nm where the emission intensity is insufficient, and also produced a green visual effect when mixing three colors. If you can find a phosphor with strong yellow-green light emission, you can find [Blue] + [Red] + [Yellow green] or [Blue] + [Green] + [Red] + [Yellow green] To the idea that a light emitting device with high color rendering can be obtained, and a phosphor of [red] + [yellowish green] for a light emitting source of more than 415 nm and less than 480 nm, for example, a GaN-based blue LED light source, or , [Green] + [Red] + [Yellow green] A method of combining phosphors, or a GaN-based near-ultraviolet light source as an example of an emission source of 350 nm to 415 nm, [Blue] + [Yellow green] + [Red] phosphor, or According to a method of combining phosphors of [blue] + [green] + [red] + [yellowish green] or the like in the wavelength region of 550 to 570 nm and chromaticity coordinates, (0.39, 0.59) The intensity of the yellow-green light in the vicinity is remarkably increased, and the light emitting device as a whole can generate white light having a high color rendering property and high intensity or yellow-green light having a high intensity, thereby achieving the object. I found out what I could do and reached the present invention.

即ち、350−480nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、上記第2の発光体として下記特定の化学組成を有する結晶相を含有する蛍光体を用いると、前記蛍光体が350−480nm付近の光の照射を受け、高い強度で黄緑色の発光を起こす結果前記目的を達成できること、具体的には、350−480nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体が、一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする発光装置をその要旨とする。   That is, in the light emitting device including the first light emitter that generates light of 350 to 480 nm and the second light emitter that generates visible light by irradiation of light from the first light emitter, When a phosphor containing a crystal phase having the following specific chemical composition is used as the illuminant, the phosphor achieves the above object as a result of being irradiated with light in the vicinity of 350-480 nm and emitting yellow-green light with high intensity. Specifically, in a light-emitting device including a first light emitter that generates light of 350 to 480 nm and a second light emitter that generates visible light when irradiated with light from the first light emitter. The gist of the light-emitting device is that the second light-emitting body contains a phosphor having a crystal phase having a chemical composition represented by the general formula [1].

Figure 2005063836
Figure 2005063836

(但し、Mは、Eu、Ga、Al、In、Bを除き、Caを50mol%以上含むプラス価数の金属元素群を表し、Mは、Ga、Al、In、及びBからなる群から選ばれる少なくとも一種の元素を表し、かつ、Gaが80mol%以上であり、Mは、S、Se、Te、及びOからなる群から選ばれる少なくとも一種の元素を表し、かつ、Sが80mol%以上である。bは、0.001<b<1を満足する数であり、aとbは、0.9≦(a+b)≦1.1を満足する数であり、cは、3.6≦c≦4.4を満足する数である。) (However, M 1 represents a positive valence metal element group containing 50 mol% or more of Ca except Eu, Ga, Al, In, and B, and M 2 is a group consisting of Ga, Al, In, and B. And at least one element selected from the group consisting of Ga, 80 mol% or more, M 3 represents at least one element selected from the group consisting of S, Se, Te, and O, and S is 80 mol. B is a number that satisfies 0.001 <b <1; a and b are numbers that satisfy 0.9 ≦ (a + b) ≦ 1.1; (It is a number satisfying 6 ≦ c ≦ 4.4.)

本発明によれば、高い演色性を与え、かつ、発光強度の高い発光装置を提供することができる。   According to the present invention, it is possible to provide a light emitting device that provides high color rendering properties and high light emission intensity.

本発明は、350−480nmの光を発生する第1の発光体と蛍光体である第2の発光体を組み合わせた発光装置であり、その第2の発光体が、下記一般式[1]の化学組成を
有する結晶相を有する蛍光体を含有してなることを特徴とする。
The present invention is a light-emitting device in which a first light-emitting body that generates light of 350 to 480 nm and a second light-emitting body that is a phosphor are combined, and the second light-emitting body is represented by the following general formula [1]. It contains a phosphor having a crystal phase having a chemical composition.

Figure 2005063836
Figure 2005063836

式[1]中の元素Mは、Eu,Ga,Al,In,Bを除き、Caを50mol%以上含むプラス価数の金属元素群である。発光強度や発光波長等の面から、MがCaを80mol%以上含むプラス価数の金属元素群であることがより好ましく、MがCaからなることがより好ましい。M中の金属元素としてCa以外のプラス価数の金属元素を結晶中に含有させる場合、その金属元素に特に制約はないが、Caと同じ価数、即ち2価の金属元素、例えばMg、Sr、Ba、Zn、Mn、Sn等を含有させると、結晶構造を保持しやすく、発光波長の微調整ができるので好ましい。これら2価の金属元素及び発光中心Eu2+の焼成時の固体内拡散によるチオガリウム酸塩の結晶化を助ける意味で、M中の金属元素として1価、4価、5価、又は6価等の金属元素を少量導入しても良い。発光波長や発光強度を調節する意味で、増感剤となりうるMn等の金属元素を少量置換してもよい。 The element M 1 in the formula [1] is a positive valence metal element group that contains 50 mol% or more of Ca except Eu, Ga, Al, In, and B. From the viewpoint of emission intensity, emission wavelength, etc., M 1 is more preferably a positive valence metal element group containing 80 mol% or more of Ca, and more preferably M 1 is made of Ca. When a metal element having a positive valence other than Ca is included in the crystal as the metal element in M 1 , the metal element is not particularly limited, but the same valence as Ca, that is, a divalent metal element such as Mg, The inclusion of Sr, Ba, Zn, Mn, Sn, etc. is preferable because the crystal structure is easily retained and the emission wavelength can be finely adjusted. The monovalent, tetravalent, pentavalent, or hexavalent metal elements in M 1 are meant to assist crystallization of thiogallate by diffusion in the solid during firing of these divalent metal elements and the emission center Eu 2+. A small amount of a metal element such as may be introduced. In order to adjust the emission wavelength and emission intensity, a small amount of a metal element such as Mn which can be a sensitizer may be substituted.

式[1]中の元素Mは、Ga、Al、In、及びBからなる群から選ばれる少なくとも一種の元素を表し、かつ、Gaが80mol%以上である。発光強度等の面から、MがGa、及びAlからなる群から選ばれる少なくとも一種の元素を表すことが好ましく、MがGaからなることがより好ましい。 Elements M 2 in the formula [1], Ga, represents Al, In, and at least one element selected from the group consisting of B, and is Ga or more 80 mol%. From the viewpoint of emission intensity and the like, M 2 preferably represents at least one element selected from the group consisting of Ga and Al, and more preferably M 2 consists of Ga.

式[1]中の元素Mは、S、Se、Te、及びOからなる群から選ばれる少なくとも一種の元素を表し、かつ、Sが80mol%以上である。発光強度等の面から、MがS,Seからなる群から選ばれる少なくとも一種の元素を表すことが好ましく、MがSからなることがより好ましい。 The element M 3 in the formula [1] represents at least one element selected from the group consisting of S, Se, Te, and O, and S is 80 mol% or more. Terms such as light emission intensity, M 3 is S, preferably representing at least one element selected from the group consisting of Se, M 3 is more preferably made of S.

式[1]中のEuのモル比bは、0.001<b<1を満足する数である。発光強度や発光波長等の面から、350nm以上415nm以下の光を発生する第1の発光体を使用する場合は、bの値の下限としては、0.01≦bが好ましく、0.01<bがより好ましく、0.03≦bが更に好ましく、0.03<bが特に好ましい。上限としては、b≦0.2が好ましく、b<0.2がより好ましく、b≦0.15が更に好ましく、b<0.15が特に好ましい。   The molar ratio b of Eu in the formula [1] is a number satisfying 0.001 <b <1. In the case of using the first illuminant that generates light of 350 nm or more and 415 nm or less in terms of emission intensity, emission wavelength, etc., the lower limit of the value of b is preferably 0.01 ≦ b, and 0.01 < b is more preferable, 0.03 ≦ b is further preferable, and 0.03 <b is particularly preferable. As an upper limit, b ≦ 0.2 is preferable, b <0.2 is more preferable, b ≦ 0.15 is still more preferable, and b <0.15 is particularly preferable.

415nmを越え480nm以下の光を発生する第1の発光体を使用する場合は、bの値の下限としては、0.01≦bが好ましく、0.01<bがより好ましい。更には0.03≦bが好ましく、0.03<bがより好ましく、0.08≦bが更に好ましく、0.08<bが特に好ましい。上限としては、b≦0.3が好ましく、b<0.3がより好ましく、b≦0.25が更に好ましく、b≦0.2が特に好ましい。発光中心イオンであるEu2+の含有量が少なすぎると、発光強度が小さくなる傾向があり、一方、多すぎても濃度消光と呼ばれる現象によりやはり発光強度が減少する傾向がある。 In the case of using the first light emitter that emits light exceeding 415 nm and not more than 480 nm, the lower limit of the value of b is preferably 0.01 ≦ b, more preferably 0.01 <b. Furthermore, 0.03 ≦ b is preferable, 0.03 <b is more preferable, 0.08 ≦ b is further preferable, and 0.08 <b is particularly preferable. As an upper limit, b ≦ 0.3 is preferable, b <0.3 is more preferable, b ≦ 0.25 is further preferable, and b ≦ 0.2 is particularly preferable. If the content of Eu 2+ , which is the luminescent center ion, is too small, the emission intensity tends to decrease, while if too much, the emission intensity also tends to decrease due to a phenomenon called concentration quenching.

前記一般式[1]で表される結晶相M Eu においては、Eu2+が置換されるカチオンサイト(MとEu)、主にGaが占めるカチオンサイト(M2)、主にSが占めるアニオンサイト(M3)の基本的な全モル比がそれぞれ1,2,4であるが、カチオン欠損やアニオン欠損が多少生じていても本目的の蛍光性能に大きな影響がないので、主にGaが占めるカチオンサイトの全モル比を化学式上で2と固定したときに、Eu2+が置換されるサイトの全モル比(a+b)は、0.9≦a+b≦1.1の範囲であり
、中でも、a+b=1であることが好ましい。又、主にSが占めるアニオンサイトの全モル比cは、3.6≦c≦4.4の範囲であり、中でもc=4であることが好ましい。更に、a+b=1であって、かつc=4であることが好ましい。
In the crystal phase M 1 a Eu b M 2 2 M 3 c represented by the general formula [1], a cation site (M 1 and Eu) where Eu 2+ is substituted, a cation site mainly occupied by Ga ( M2) The basic total molar ratio of anion sites (M3) occupied mainly by S is 1, 2, and 4, respectively, but even if some cation deficiency or anion deficiency occurs, it has a great influence on the fluorescence performance for this purpose. Therefore, when the total molar ratio of cation sites mainly occupied by Ga is fixed to 2 in the chemical formula, the total molar ratio (a + b) of the sites where Eu 2+ is substituted is 0.9 ≦ a + b ≦ 1. 0.1, and in particular, a + b = 1 is preferable. Further, the total molar ratio c of anion sites mainly occupied by S is in the range of 3.6 ≦ c ≦ 4.4, and it is preferable that c = 4 among them. Furthermore, it is preferable that a + b = 1 and c = 4.

本発明で使用する蛍光体は、前記一般式[1]に示されるようなM源、M源、M源の化合物、及び、発光中心イオン(Eu)の元素源化合物を下記(A)の混合法により調製した混合物を加熱処理して焼成することにより製造することができる。
(A)ハンマーミル、ロールミル、ボールミル、ジェットミル等の乾式粉砕機、又は、乳鉢と乳棒等を用いる粉砕と、リボンブレンダー、V型ブレンダー、ヘンシェルミキサー等の混合機、又は、乳鉢と乳棒を用いる混合とを合わせた乾式混合法。
なお、上記元素源化合物が硫化物でない場合は、下記(B)の湿式混合法も好ましい。
(B)粉砕機、又は、乳鉢と乳棒等を用いて、水等を加えてスラリー状態又は溶液状態で、粉砕機、乳鉢と乳棒、又は蒸発皿と撹拌棒等により混合し、噴霧乾燥、加熱乾燥、又は自然乾燥等により乾燥させる湿式混合法。
The phosphor used in the present invention includes compounds of M 1 source, M 2 source, M 3 source and element source compound of luminescent center ion (Eu) as shown in the general formula [1] (A The mixture prepared by the mixing method) can be produced by heat treatment and baking.
(A) Dry pulverizer such as hammer mill, roll mill, ball mill, jet mill, etc., pulverization using mortar and pestle, etc., mixer such as ribbon blender, V-type blender and Henschel mixer, or mortar and pestle Dry mixing method combined with mixing.
In addition, when the said element source compound is not a sulfide, the wet-mixing method of the following (B) is also preferable.
(B) Using a pulverizer or a mortar and pestle, etc., add water etc. and mix in a slurry or solution state with a pulverizer, mortar and pestle, or evaporating dish and stirrer, spray drying, heating Wet mixing method that is dried by drying or natural drying.

これらの混合法で得た混合物の加熱処理法としては、アルミナや石英製の坩堝やトレイ等の耐熱容器中で、通常600〜1400℃、好ましくは700〜1300℃の温度で、硫化水素、大気、酸素、一酸化炭素、二酸化炭素、窒素、水素、アルゴン等の気体の単独或いは混合雰囲気下、10分〜24時間、加熱することによりなされる。尚、加熱処理後、必要に応じて、洗浄、乾燥、分級処理等がなされる。   As a heat treatment method of the mixture obtained by these mixing methods, in a heat-resistant container such as a crucible or tray made of alumina or quartz, usually at a temperature of 600 to 1400 ° C., preferably 700 to 1300 ° C., hydrogen sulfide, air , Oxygen, carbon monoxide, carbon dioxide, nitrogen, hydrogen, argon and the like alone or in a mixed atmosphere for 10 minutes to 24 hours for heating. In addition, after heat processing, washing | cleaning, drying, a classification process, etc. are made | formed as needed.

尚、前記加熱雰囲気としては、発光中心イオンの元素が発光に寄与するイオン状態(価数)を得るために必要な雰囲気が選択される。本発明における2価のEu等の場合には、硫化水素、一酸化炭素、窒素、水素、アルゴン等の中性若しくは還元雰囲気下が好ましいが、大気、酸素等の酸化雰囲気下も条件さえ選べば可能である。   As the heating atmosphere, an atmosphere necessary for obtaining an ion state (valence) in which the element of the emission center ion contributes to light emission is selected. In the case of divalent Eu or the like in the present invention, a neutral or reducing atmosphere such as hydrogen sulfide, carbon monoxide, nitrogen, hydrogen, and argon is preferable. However, as long as the conditions are also selected under an oxidizing atmosphere such as air and oxygen. Is possible.

源、M源、およびEu源の化合物としては、M、M、およびEuの各硫化物、酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、ハロゲン化物等が挙げられ、M源の化合物としては、MのうちのSに対し、元素M源、M源、NH4等の硫化物、オキシ硫化物、硫化水素、NH4SH、CS2、S、(CH32NCS2Na等が挙げられ、MのうちのSeに対し、元素M源、M源、NH4等のセレン化物
、セレン化水素、セレン酸、セレン酸アンモニウム、セレン、又、MのうちのTeに対し、元素M源、M源、NH4等のテルル化物、テルル化水素、テルル酸、テルル酸ア
ンモニウム、テルル、又、Mのうちの酸素に対し、元素M源、M源、NH4等の酸
化物、水酸化物、炭酸塩、硝酸塩等が挙げられ、これらの中から、化学組成、反応性、及び、焼成時におけるNOx 、SOx等の非発生性等を考慮して選択される。
M 1 source, M 2 source, and Eu source compounds include sulfides, oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, carboxylates of M 1 , M 2 , and Eu. , halide and the like, as the compound of M 3 source, to S of of M 3, the element M 1 source, M 2 source, sulfides such as NH 4, oxysulfide, hydrogen sulfide, NH 4 SH, CS 2 , S, (CH 3 ) 2 NCS 2 Na and the like, and Se in M 3 is selenide such as element M 1 source, M 2 source, NH 4 , hydrogen selenide, selenium. Acid, ammonium selenate, selenium, or Te of M 3 , element M 1 source, M 2 source, telluride such as NH 4 , hydrogen telluride, telluric acid, ammonium tellurate, tellurium, to oxygen of M 3, the element M 1 source, M 2 source, oxides such as NH 4, hydroxide , Carbonates, nitrates, and the like, among these, chemical composition, reactivity, and, NO x during the firing, is selected in view of the non-occurrence of such as SO x.

金属元素群Mに対して好ましいとする前記Ca、Mg、Sr、Ba、Zn、Mn、及びSnについて、それらのM源化合物を具体的に例示すれば、Ca源化合物としては、CaS、CaSe、CaO、Ca(OH)2、CaCO3、Ca(NO32・4H2O、C
aSO4・2H2O、Ca(OCO)2・H2O、Ca(OCOCH32・H2O、CaCl2等が、又、Mg源化合物としては、MgO、Mg(OH)2、MgCO3、Mg(OH)2
・3MgCO3・3H2O、Mg(NO32・6H2O、MgSO4、Mg(OCO)2・2
2O、Mg(OCOCH32・4H2O、MgCl2等が、又、Sr源化合物としては、
SrS、SrSe、SrTe、SrO、Sr(OH)2・8H2O、SrCO3、Sr(N
32、SrSO4、Sr(OCO)2・H2O、Sr(OCOCH32・0.5H2O、SrCl2等が、又、Ba源化合物としては、BaS、BaSe、BaTe、BaO、Ba
(OH)2・8H2O、BaCO3、Ba(NO32、BaSO4、Ba(OCO)2・2H2O、Ba(OCOCH32、BaCl2等が、又、Zn源化合物としては、ZnS,Zn
Se,ZnTe,ZnO、Zn(OH)2、ZnCO3、Zn(NO32、Zn(OCO)
2、Zn(OCOCH32、ZnCl2等が、又、Mn源化合物としては、MnS、MnSe、MnTe、MnO2、Mn23、Mn34、MnO、Mn(OH)2、MnCO3、M
n(NO32、Mn(OCOCH32・2H2O、Mn(OCOCH33・nH2O、MnCl2・4H2O等が、又、Sn源化合物としては、SnS,SnS2,SnSe,SnT
e,SnO、SnO2、Sn(OCO)2、Sn(OCOCH32、Sn(OCOCH34、SnCl2、SnCl4等がそれぞれ挙げられる。
The Ca to preferred for metal element group M 1, Mg, Sr, Ba, Zn, Mn, and the Sn, In Concrete examples thereof M 1 source compound, the Ca source compound, CaS, CaSe, CaO, Ca (OH) 2 , CaCO 3 , Ca (NO 3 ) 2 .4H 2 O, C
aSO 4 · 2H 2 O, Ca (OCO) 2 · H 2 O, Ca (OCOCH 3 ) 2 · H 2 O, CaCl 2 and the like, and Mg source compounds include MgO, Mg (OH) 2 , MgCO 3 , Mg (OH) 2
· 3MgCO 3 · 3H 2 O, Mg (NO 3 ) 2 · 6H 2 O, MgSO 4 , Mg (OCO) 2 · 2
H 2 O, Mg (OCOCH 3 ) 2 .4H 2 O, MgCl 2, etc., and as the Sr source compound,
SrS, SrSe, SrTe, SrO, Sr (OH) 2 .8H 2 O, SrCO 3 , Sr (N
O 3 ) 2 , SrSO 4 , Sr (OCO) 2 .H 2 O, Sr (OCOCH 3 ) 2 .0.5H 2 O, SrCl 2 and the like, and examples of Ba source compounds include BaS, BaSe, BaTe, BaO, Ba
(OH) 2 · 8H 2 O, BaCO 3 , Ba (NO 3 ) 2 , BaSO 4 , Ba (OCO) 2 · 2H 2 O, Ba (OCOCH 3 ) 2 , BaCl 2, etc., also as Zn source compounds ZnS, Zn
Se, ZnTe, ZnO, Zn (OH) 2 , ZnCO 3 , Zn (NO 3 ) 2 , Zn (OCO)
2 , Zn (OCOCH 3 ) 2 , ZnCl 2 and the like, and as the Mn source compound, MnS, MnSe, MnTe, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , MnO, Mn (OH) 2 , MnCO 3 , M
n (NO 3 ) 2 , Mn (OCOCH 3 ) 2 .2H 2 O, Mn (OCOCH 3 ) 3 .nH 2 O, MnCl 2 .4H 2 O, etc., and Sn source compounds include SnS and SnS 2. , SnSe, SnT
e, SnO, SnO 2 , Sn (OCO) 2 , Sn (OCOCH 3 ) 2 , Sn (OCOCH 3 ) 4 , SnCl 2 , SnCl 4 and the like.

更に、発光中心イオンの元素として好ましいとする前記Euについて、その元素源化合物を具体的に例示すれば、EuS、EuSe、EuTe、Eu23、Eu2(SO43
Eu2(OCO)6 、EuCl2、EuCl3、EuF3、Eu(NO33・6H2O等が挙げられる。
Further, with respect to Eu, which is preferable as the element of the luminescent center ion, specific examples of the element source compound include EuS, EuSe, EuTe, Eu 2 O 3 , Eu 2 (SO 4 ) 3 ,
Examples include Eu 2 (OCO) 6 , EuCl 2 , EuCl 3 , EuF 3 , Eu (NO 3 ) 3 .6H 2 O, and the like.

第1の発光体に組み合わせる、第2の発光体に含有される蛍光体としては、
(1)上記一般式[1]の化学組成を有する結晶相を含有する蛍光体(以下、「本発明の[黄緑色]蛍光体」という)のみ
(2)[青色]蛍光体+本発明の[黄緑色]蛍光体+[赤色]蛍光体
(3)[青色]蛍光体+[緑色]蛍光体+[赤色]蛍光体+本発明の[黄緑色]蛍光体
(4)本発明の[黄緑色]蛍光体+[赤色]蛍光体
(5)[緑色]蛍光体+[赤色]蛍光体+本発明の[黄緑色]蛍光体
等が挙げられ、(1)の場合は、黄緑色又は白色の光を発する発光装置となり、(2)〜(5)の場合は、白色の光を発する発光装置となり、それぞれ照明又は画像表示装置などの表示等に使用できる。
As the phosphor contained in the second light emitter to be combined with the first light emitter,
(1) Only a phosphor containing a crystal phase having the chemical composition of the above general formula [1] (hereinafter referred to as “the [yellow-green] phosphor of the present invention”) (2) [blue] phosphor + of the present invention [Yellow green] phosphor + [red] phosphor (3) [Blue] phosphor + [green] phosphor + [red] phosphor + [yellow-green] phosphor of the present invention (4) [yellow] of the present invention Green] phosphor + [red] phosphor (5) [green] phosphor + [red] phosphor + [yellow-green] phosphor of the present invention. In the case of (1), yellow-green or white In the case of (2) to (5), it becomes a light emitting device that emits white light, and can be used for display of illumination or an image display device, respectively.

上述の組み合わせる[赤色]蛍光体としては、La22S:Eu、Y22S:Eu、Y23:Eu等が、[青色]蛍光体としては、BaMgAl1017:Eu、Ba3MgSi28:Eu、(Sr,Ba,Ca)5(PO43Cl:Eu等が、[緑色]蛍光体としては、BaMgAl1017:Eu,Mn、SrAl24:Eu等が挙げられるが、これらに限定されるものではない。 Examples of the [red] phosphor to be combined include La 2 O 2 S: Eu, Y 2 O 2 S: Eu, Y 2 O 3 : Eu, and the [blue] phosphor includes BaMgAl 10 O 17 : Eu. , Ba 3 MgSi 2 O 8 : Eu, (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu, and the like, as [green] phosphor, BaMgAl 10 O 17 : Eu, Mn, SrAl 2 O 4 : Eu and the like, but are not limited thereto.

本発明において、前記蛍光体に光を照射する第1の発光体は、波長350−480nmの光を発生する。好ましくは波長350−480nmの範囲にピーク波長を有する光を発生する発光体を使用する。発光装置とした場合に色調整をしやすいという点では、350nm以上415nm以下の波長の光を発生する発光体を使用することが好ましく、350nm以上415nm以下の範囲にピーク波長を有する光を発生する発光体を使用することがより好ましい。波長350−480nmの光を発生する第1の発光体の具体例としては、発光ダイオード(LED)またはレーザーダイオード(LD)等を挙げることができる。消費電力がより少ない点でレーザーダイオードが好ましい。その中で、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系はSiC系の100倍以上の発光強度を有する。GaN系化合物半導体を使用した場合には、350nm以上415nm以下の近紫外光源の方が、415nmを越え480nm以下の青色光源より強く発光するので特に好ましい。GaN系LEDやLDにおいては、AlXGaYN発光層、GaN発光層、またはInXGaYN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInXGaYN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InXGaYN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいもので
ある。GaN系LEDはこれら発光層、p層、n層、電極、および基板を基本構成要素としたものであり、発光層をn型とp型のAlXGaYN層、GaN層、またはInXGaYN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。
In the present invention, the first light emitter that irradiates the phosphor with light generates light having a wavelength of 350 to 480 nm. Preferably, a light emitter that generates light having a peak wavelength in a wavelength range of 350 to 480 nm is used. In terms of facilitating color adjustment in the case of a light emitting device, it is preferable to use a light emitter that generates light having a wavelength of 350 nm to 415 nm, and generates light having a peak wavelength in the range of 350 nm to 415 nm. More preferably, a light emitter is used. Specific examples of the first light emitter that generates light having a wavelength of 350 to 480 nm include a light emitting diode (LED) and a laser diode (LD). Laser diodes are preferred because they consume less power. Of these, GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs have significantly higher light emission output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely bright with very low power when combined with the phosphor. This is because light emission can be obtained. For example, for a current load of 20 mA, the GaN system usually has a light emission intensity 100 times or more that of the SiC system. When a GaN-based compound semiconductor is used, a near-ultraviolet light source of 350 nm or more and 415 nm or less emits light more strongly than a blue light source of more than 415 nm and 480 nm or less, which is particularly preferable. GaN-based LEDs and LDs preferably have an Al x Ga Y N light emitting layer, a GaN light emitting layer, or an In x Ga Y N light emitting layer. Among GaN-based LEDs, those having an In X Ga Y N light-emitting layer are particularly preferable because the emission intensity is very strong, and in GaN-based LDs, the multiple quantum of the In X Ga Y N layer and the GaN layer is preferred. A well structure is particularly preferable because the emission intensity is very strong. In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics. A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic constituent elements. The light-emitting layer is made of n-type and p-type Al x Ga y N layers, GaN layers, or In x. Those having a heterostructure sandwiched between Ga Y N layers and the like have high luminous efficiency, and those having a heterostructure having a quantum well structure have higher luminous efficiency and are more preferable.

本発明においては、面発光型の発光体、特に面発光型GaN系レーザーダイオードを第1の発光体として使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第2の発光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、第2の発光体である蛍光体からより強い発光を得ることができる。   In the present invention, it is particularly preferable to use a surface-emitting type illuminant, particularly a surface-emitting GaN-based laser diode, as the first illuminant because the luminous efficiency of the entire light-emitting device is increased. A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is successfully performed. By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. When the surface emitting type is used, the light emission cross-sectional area per unit light emission amount can be increased compared to the type that emits light from the edge of the light emitting layer. As a result, the phosphor of the second light emitter is irradiated with the light. Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor that is the second light emitter.

第1の発光体として面発光型のものを使用する場合、第2の発光体を膜状とするのが好ましい。その結果、面発光型の発光体からの光は断面積が十分大きいので、第2の発光体をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。   When a surface-emitting type is used as the first light emitter, the second light emitter is preferably a film. As a result, the cross-sectional area of the light from the surface-emitting type light emitter is sufficiently large. Therefore, when the second light emitter is formed into a film in the direction of the cross section, the irradiation cross-section area of the phosphor from the first light emitter is irradiated. Becomes larger per unit amount of phosphor, so that the intensity of light emitted from the phosphor can be further increased.

また、第1の発光体として面発光型のものを使用し、第2の発光体として膜状のものを用いる場合、第1の発光体の発光面に、直接膜状の第2の発光体を接触させた形状とするのが好ましい。ここでいう接触とは、第1の発光体と第2の発光体とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、第1の発光体からの光が第2の発光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。   Further, when a surface-emitting type is used as the first light emitter and a film-like one is used as the second light emitter, the second light emitter directly in the form of a film on the light-emitting surface of the first light emitter. It is preferable to have a shape in which is contacted. Contact here refers to creating a state in which the first light emitter and the second light emitter are in perfect contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

本発明の発光装置の一例における第1の発光体と第2の発光体との位置関係を示す模式的斜視図を図1に示す。図1中の1は、前記蛍光体を有する膜状の第2の発光体、2は第1の発光体としての面発光型GaN系LD、3は基板を表す。相互に接触した状態をつくるために、LD2と第2の発光体1とそれぞれ別個にをつくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、LD2の発光面上に第2の発光体をを製膜(成型)させても良い。これらの結果、LD2と第2の発光体1とを接触した状態とすることができる。   FIG. 1 is a schematic perspective view showing the positional relationship between the first light emitter and the second light emitter in an example of the light emitting device of the present invention. In FIG. 1, 1 is a film-like second light emitter having the phosphor, 2 is a surface-emitting GaN-based LD as the first light emitter, and 3 is a substrate. In order to create a state in which they are in contact with each other, the LD 2 and the second light emitter 1 may be formed separately and the surfaces may be brought into contact with each other by an adhesive or other means, or the light emitting surface of the LD 2 A second light-emitting body may be formed (molded) on the top. As a result, the LD 2 and the second light emitter 1 can be brought into contact with each other.

第1の発光体からの光や第2の発光体からの光は通常四方八方に向いているが、第2の発光体の蛍光体の粉を樹脂中に分散させると、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを揃えられる。従って、効率の良い向きに光をある程度誘導できるので、第2の発光体として、前記蛍光体の粉を樹脂中へ分散したものを使用するのが好ましい。また、蛍光体を樹脂中に分散させると、第1の発光体からの光の第2の発光体への全照射面積が大きくなるので、第2の発光体からの発光強度を大きくすることができるという利点も有する。この場合に使用できる樹脂としては、シリコン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものが挙げられるが、蛍光体粉の分散性や安定性が良い点で好ましくはシリコン樹脂もしくは、エポキシ樹脂である。第2の発光体の粉を樹脂中に分散させる場合、当該第2の発光体の粉と樹脂の全体に対するその粉の重量比は、通常10〜95%、好ましくは20〜90%、さらに好ましくは30〜80%である。蛍光体が多すぎると粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。   The light from the first illuminant and the light from the second illuminant are usually directed in all directions. However, when the phosphor powder of the second illuminant is dispersed in the resin, the light is out of the resin. A part of the light is reflected when exiting, so the direction of the light can be adjusted to some extent. Accordingly, since light can be guided to a certain degree in an efficient direction, it is preferable to use a phosphor in which the phosphor powder is dispersed in a resin as the second luminous body. Further, when the phosphor is dispersed in the resin, the total irradiation area of the light from the first light emitter to the second light emitter is increased, so that the light emission intensity from the second light emitter can be increased. It also has the advantage of being able to. Examples of resins that can be used in this case include silicon resins, epoxy resins, polyvinyl resins, polyethylene resins, polypropylene resins, polyester resins, and the like, but the dispersibility and stability of the phosphor powder are good. In this respect, silicon resin or epoxy resin is preferable. When the powder of the second luminous body is dispersed in the resin, the weight ratio of the powder of the second luminous body to the whole of the resin is usually 10 to 95%, preferably 20 to 90%, more preferably. Is 30-80%. If the phosphor is too much, the luminous efficiency may be reduced due to aggregation of the powder, and if it is too little, the luminous efficiency may be lowered due to light absorption or scattering by the resin.

本発明の発光装置は、波長変換材料としての前記蛍光体と、350−480nmの光を発生する発光素子とから構成されてなり、前記蛍光体が発光素子の発する350−480nmの光を吸収して、使用環境によらず演色性が良く、かつ、高強度の可視光を発生させることのできる発光装置であり、バックライト光源、信号機などの発光源、又、カラー液晶ディスプレイ等の画像表示装置や面発光等の照明装置等の光源に適している。   The light-emitting device of the present invention includes the phosphor as a wavelength conversion material and a light-emitting element that emits light of 350 to 480 nm, and the phosphor absorbs light of 350 to 480 nm emitted from the light-emitting element. In addition, it is a light emitting device that has good color rendering properties and can generate high-intensity visible light regardless of the use environment, and a light source such as a backlight light source and a traffic light, and an image display device such as a color liquid crystal display. And suitable for light sources such as lighting devices such as surface emitting.

本発明の発光装置を図面に基づいて説明すると、図2は、第1の発光体(350−480nm発光体)と第2の発光体とを有する発光装置の一実施例を示す模式的断面図であり、4は発光装置、5はマウントリード、6はインナーリード、7は第1の発光体(350−480nmの発光体)、8は第2の発光体としての蛍光体含有樹脂部、9は導電性ワイヤー、10はモールド部材である。   The light emitting device of the present invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing one embodiment of a light emitting device having a first light emitter (350-480 nm light emitter) and a second light emitter. 4 is a light emitting device, 5 is a mount lead, 6 is an inner lead, 7 is a first light emitter (350-480 nm light emitter), 8 is a phosphor-containing resin portion as a second light emitter, 9 Is a conductive wire, and 10 is a mold member.

本発明の一例である発光装置は、図2に示されるように、一般的な砲弾型の形態をなし、マウントリード5の上部カップ内には、GaN系発光ダイオード等からなる第1の発光体(350−480nm発光体)7が、その上に、蛍光体をシリコン樹脂、エポキシ樹脂、又はアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより第2の発光体として形成された蛍光体含有樹脂部8で被覆されることにより固定されている。一方、第1の発光体7とマウントリード5、及び第1の発光体7とインナーリード6は、それぞれ導電性ワイヤー9で導通されており、これら全体がエポキシ樹脂等によるモールド部材10で被覆、保護されてなる。   As shown in FIG. 2, the light emitting device as an example of the present invention has a general bullet shape, and a first light emitter made of a GaN-based light emitting diode or the like is disposed in the upper cup of the mount lead 5. (350-480 nm phosphor) 7 was formed as a second phosphor by mixing and dispersing the phosphor in a binder such as silicon resin, epoxy resin, or acrylic resin, and pouring it into the cup. It is fixed by being covered with the phosphor-containing resin portion 8. On the other hand, the first light emitter 7 and the mount lead 5, and the first light emitter 7 and the inner lead 6 are each electrically connected by a conductive wire 9, and these are entirely covered with a mold member 10 made of epoxy resin or the like, Protected.

又、この発光素子1を組み込んだ面発光照明装置11は、図3に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース12の底面に、多数の発光装置13を、その外側に発光装置13の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース12の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板14を発光の均一化のために固定してなる。   Further, as shown in FIG. 3, the surface emitting illumination device 11 incorporating the light emitting element 1 has a large number of light emission on the bottom surface of a rectangular holding case 12 whose inner surface is light-opaque such as a white smooth surface. The device 13 is arranged with a power supply and a circuit (not shown) for driving the light emitting device 13 provided outside thereof, and a milky white acrylic plate or the like is provided at a position corresponding to the lid portion of the holding case 12. The diffusion plate 14 is fixed for uniform light emission.

そして、面発光照明装置11を駆動して、発光素子13の第1の発光体に電圧を印加することにより350−480nmの光を発光させ、その発光の一部を、第2の発光体としての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板14を透過して、図面上方に出射され、保持ケース12の拡散板14面内において均一な明るさの照明光が得られることとなる。   Then, the surface emitting illumination device 11 is driven to apply light to the first light emitter of the light emitting element 13 to emit light of 350 to 480 nm, and a part of the light emission is used as the second light emitter. The phosphor in the phosphor-containing resin part absorbs and emits visible light, while light emission with high color rendering properties is obtained by mixing with blue light or the like that is not absorbed by the phosphor. 14, is emitted upward in the drawing, and illumination light with uniform brightness is obtained within the surface of the diffusion plate 14 of the holding case 12.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

CaS;2.036g、EuF3;0.656g、およびGa23;7.388gをメ
ノウ乳鉢上で粉砕、混合して得られた混合物をアルミナ製坩堝中でアルゴンガス流下1000℃で8時間加熱することにより焼成し、引き続いて、粉砕による粒径制御を施すことにより青色発光の蛍光体Ca0.9Eu0.1Ga24を製造した。GaN系青色発光ダイオードおよびGaN系近紫外光発光ダイオードの主波長である465nmと400nmでこの蛍光体を励起させ、それぞれ発光スペクトルを測定した。表−1に、その発光ピークの波長及び、比較例1で得られた蛍光体を465nmと400nmで励起させたときの発光強度をそれぞれ100とした場合の、発光ピーク波長における発光強度(以下、相対発光強度という)を示す。
CaS; 2.036 g, EuF 3 ; 0.656 g, and Ga 2 S 3 ; 7.388 g were ground in an agate mortar and mixed in an alumina crucible at 1000 ° C. under argon gas flow for 8 hours. A blue-emitting phosphor Ca 0.9 Eu 0.1 Ga 2 S 4 was produced by firing, followed by particle size control by pulverization. The phosphor was excited at 465 nm and 400 nm, which are the main wavelengths of the GaN-based blue light-emitting diode and GaN-based near-ultraviolet light-emitting diode, and emission spectra were measured respectively. Table 1 shows the emission intensity at the emission peak wavelength when the emission peak wavelength and the emission intensity when the phosphor obtained in Comparative Example 1 was excited at 465 nm and 400 nm were set to 100 (hereinafter referred to as “emission intensity”). Relative light emission intensity).

仕込み原料を、CaS;2.187g、EuF3;0.334g、およびGa23;7
.52gと変えた以外は、実施例1と同様にして蛍光体Ca0.95Eu0.05Ga24を製造した。GaN系青色発光ダイオードおよびGaN系近紫外光発光ダイオードの主波長である465nmと400nmでこの蛍光体を励起させ、それぞれ発光スペクトルを測定した。表−1に、その発光ピークの波長及びその相対発光強度を示す。
The charged materials were CaS; 2.187 g, EuF 3 ; 0.334 g, and Ga 2 S 3 ; 7
. A phosphor Ca 0.95 Eu 0.05 Ga 2 S 4 was produced in the same manner as in Example 1 except that the amount was changed to 52 g. The phosphor was excited at 465 nm and 400 nm, which are the main wavelengths of the GaN-based blue light-emitting diode and GaN-based near-ultraviolet light-emitting diode, and emission spectra were measured respectively. Table 1 shows the wavelength of the emission peak and the relative emission intensity.

仕込み原料を、CaS;1.89g、EuF3;0.967g、およびGa23;7.
261gと変えた以外は、実施例1と同様にして蛍光体Ca0.85Eu0.15Ga24を製造した。GaN系青色発光ダイオードおよびGaN系近紫外光発光ダイオードの主波長である465nmと400nmでこの蛍光体を励起させ、それぞれ発光スペクトルを測定した。表−1に、その発光ピークの波長及びその相対発光強度を示す。
6. Feed materials were CaS; 1.89 g, EuF 3 ; 0.967 g, and Ga 2 S 3 ;
A phosphor Ca 0.85 Eu 0.15 Ga 2 S 4 was produced in the same manner as in Example 1 except that 261 g was used. The phosphor was excited at 465 nm and 400 nm, which are the main wavelengths of the GaN-based blue light-emitting diode and GaN-based near-ultraviolet light-emitting diode, and emission spectra were measured respectively. Table 1 shows the wavelength of the emission peak and the relative emission intensity.

仕込み原料を、CaS;1.748g、EuF3;1.267g、およびGa23;7
.138gと変えた以外は、実施例1と同様にして蛍光体Ca0.8Eu0.2Ga24を製造した。GaN系青色発光ダイオードおよびGaN系近紫外光発光ダイオードの主波長である465nmと400nmでこの蛍光体を励起させ、それぞれ発光スペクトルを測定した。表−1に、その発光ピークの波長及びその相対発光強度を示す。
The feed materials were CaS; 1.748 g, EuF 3 ; 1.267 g, and Ga 2 S 3 ; 7
. A phosphor Ca 0.8 Eu 0.2 Ga 2 S 4 was produced in the same manner as in Example 1 except that the amount was changed to 138 g. The phosphor was excited at 465 nm and 400 nm, which are the main wavelengths of the GaN-based blue light-emitting diode and GaN-based near-ultraviolet light-emitting diode, and emission spectra were measured respectively. Table 1 shows the wavelength of the emission peak and the relative emission intensity.

仕込み原料を、CaS;2.312g、EuF3;0.068g、およびGa23;7
.629gと変えた以外は、実施例1と同様にして蛍光体Ca0.99Eu0.01Ga24を製造した。GaN系青色発光ダイオードおよびGaN系近紫外光発光ダイオードの主波長である465nmと400nmでこの蛍光体を励起させ、それぞれ発光スペクトルを測定した。465nm励起下の発光ピークを解析したところ、国際照明委員会(CIE)により定義された色度座標(x,y)が(0.397,0.593)であり、本発光色は黄緑色に属する。表−1に、その発光ピークの波長及びその相対発光強度を示す。
The charged materials were CaS; 2.312 g, EuF 3 ; 0.068 g, and Ga 2 S 3 ; 7
. A phosphor Ca 0.99 Eu 0.01 Ga 2 S 4 was produced in the same manner as in Example 1 except that the amount was changed to 629 g. The phosphor was excited at 465 nm and 400 nm, which are the main wavelengths of the GaN-based blue light-emitting diode and GaN-based near-ultraviolet light-emitting diode, and emission spectra were measured respectively. When the emission peak under 465 nm excitation was analyzed, the chromaticity coordinates (x, y) defined by the International Commission on Illumination (CIE) were (0.397, 0.593), and the emission color was yellowish green. Belongs. Table 1 shows the wavelength of the emission peak and the relative emission intensity.

次に、実施例5で得られた蛍光体と、青色発光のBaMgAl1017:Euと、赤色発光のY22S:Euの、400nm励起下における発光ピークから求められる色度座標を、国際照明委員会により定義された色度座標の図(JIS Z 8701)にプロットした図を、図4に示す。上記3種の蛍光体の色度座標の3点を頂点とする三角形内の内部に白色領域が完全に包含されており、本発明の[黄緑色]蛍光体+[青色]蛍光体+[赤色]蛍光体の組み合わせで白色光を発生させることができることがわかる。また、この白色光は、本発明の[黄緑色]蛍光体からの発光により、緑色と赤色の中間の550−570nmの波長領域の発光強度が増大されたものであり、[緑色]蛍光体+[青色]蛍光体+[赤色]蛍光体の組み合わせよりも高い演色性を出すこととなる。 Next, the chromaticity coordinates obtained from the emission peak under excitation of 400 nm of the phosphor obtained in Example 5, blue-emitting BaMgAl 10 O 17 : Eu, and red-emitting Y 2 O 2 S: Eu are shown below. FIG. 4 shows a diagram plotted in a chromaticity coordinate diagram (JIS Z 8701) defined by the International Commission on Illumination. The white region is completely included in the inside of the triangle having the three chromaticity coordinates of the three types of phosphors as vertices, and the [yellow-green] phosphor + [blue] phosphor + [red It can be seen that white light can be generated by a combination of phosphors. In addition, the white light has an increased emission intensity in the wavelength region of 550 to 570 nm between green and red due to light emission from the [yellow-green] phosphor of the present invention. A color rendering property higher than that of the combination of [blue] phosphor + [red] phosphor is obtained.

仕込み原料を、CaS;1.48g、EuF3;1.838g、およびGa23;6.
904gと変えた以外は、実施例1と同様にして蛍光体Ca0.7Eu0.3Ga24を製造した。GaN系青色発光ダイオードおよびGaN系近紫外光発光ダイオードの主波長である465nmと400nmでこの蛍光体を励起させ、それぞれ発光スペクトルを測定した。表−1に、その発光ピークの波長及びその相対発光強度を示す。
The charged materials were CaS; 1.48 g, EuF 3 ; 1.838 g, and Ga 2 S 3 ;
A phosphor Ca 0.7 Eu 0.3 Ga 2 S 4 was produced in the same manner as in Example 1 except that the amount was changed to 904 g. The phosphor was excited at 465 nm and 400 nm, which are the main wavelengths of the GaN-based blue light-emitting diode and GaN-based near-ultraviolet light-emitting diode, and emission spectra were measured respectively. Table 1 shows the wavelength of the emission peak and the relative emission intensity.

仕込み原料を、CaS;2.332g、EuF3;0.027g、およびGa23;7
.646gと変えた以外は、実施例1と同様にして蛍光体Ca0.996Eu0.004Ga24を製造した。GaN系青色発光ダイオードおよびGaN系近紫外光発光ダイオードの主波長である465nmと400nmでこの蛍光体を励起させ、それぞれ発光スペクトルを測定
した。表−1に、その発光ピークの波長及びその相対発光強度を示す。
(比較例1)
仕込み原料を、Ga23;6.582g、SrS;3.176g、およびEuF30.292gと変えた以外は、実施例1と同様にして製造することにより、蛍光体Sr0.95Eu0.05Ga24を得た。GaN系青色発光ダイオードおよびGaN系近紫外光発光ダイオードの主波長である465nmと400nmでこの蛍光体を励起させ、それぞれ発光スペクトルを測定した。表−1に、その発光ピークの波長及びその発光強度(それぞれ100とし、これらを基準とする)を示す。
The raw materials were CaS; 2.332 g, EuF 3 ; 0.027 g, and Ga 2 S 3 ; 7
. A phosphor Ca 0.996 Eu 0.004 Ga 2 S 4 was produced in the same manner as in Example 1 except that the amount was changed to 646 g. The phosphor was excited at 465 nm and 400 nm, which are the main wavelengths of the GaN-based blue light-emitting diode and GaN-based near-ultraviolet light-emitting diode, and emission spectra were measured respectively. Table 1 shows the wavelength of the emission peak and the relative emission intensity.
(Comparative Example 1)
The phosphor Sr 0.95 Eu 0.05 Ga was produced in the same manner as in Example 1 except that the charged raw materials were changed to Ga 2 S 3 ; 6.582 g, SrS; 3.176 g, and EuF 3 ; 0.292 g. to obtain a 2 S 4. The phosphor was excited at 465 nm and 400 nm, which are the main wavelengths of the GaN-based blue light-emitting diode and GaN-based near-ultraviolet light-emitting diode, and emission spectra were measured respectively. Table 1 shows the wavelength of the light emission peak and the light emission intensity (each of which is 100, based on these).

465nmと400nm励起による実施例1ないし7の蛍光体が比較例1の蛍光体に比べ遜色のない発光強度を与える上に、純緑色でない黄緑色の発光を与え、演色性を高める効果があることがわかる。特に、GaN系青色発光ダイオードの主波長である465nm励起下では、実施例1ないし5の蛍光体の発光強度が比較例1の蛍光体の発光強度を顕著に上回り、GaN系近紫外光発光ダイオードの主波長である400nm励起下では、実施例1ないし3の蛍光体の発光強度が比較例1の蛍光体の発光強度を上回ることがわかる。(比較例2)
仕込み原料を、Ga23;6.582g、BaS;4.685g、およびEuF3;0
.058gと変えた以外は、実施例1と同様にして蛍光体Ba0.99Eu0.01Ga24を製造した。GaN系青色発光ダイオードおよびGaN系近紫外光発光ダイオードの主波長である465nmと400nmでこの蛍光体を励起させ、それぞれ発光スペクトルを測定した。表−1に、その発光ピークの波長及びその相対発光強度を示す。465nmと400nm励起による実施例1ないし7の蛍光体が比較例2の蛍光体に比べ大きい発光強度を与える上に、純緑色でない黄緑色の発光を与え、演色性を高める効果があることがわかる。
The phosphors of Examples 1 to 7 excited by excitation at 465 nm and 400 nm give a light emission intensity comparable to that of the phosphor of Comparative Example 1, and also have the effect of giving yellow-green light emission that is not pure green and enhancing the color rendering. I understand. In particular, under the excitation of 465 nm, which is the main wavelength of the GaN-based blue light-emitting diode, the emission intensity of the phosphors of Examples 1 to 5 significantly exceeds the emission intensity of the phosphor of Comparative Example 1, and the GaN-based near-ultraviolet light-emitting diode. It can be seen that the emission intensity of the phosphors of Examples 1 to 3 exceeds the emission intensity of the phosphor of Comparative Example 1 under excitation at 400 nm, which is the main wavelength of. (Comparative Example 2)
The charged raw materials were Ga 2 S 3 ; 6.582 g, BaS; 4.685 g, and EuF 3 ; 0
. A phosphor Ba 0.99 Eu 0.01 Ga 2 S 4 was produced in the same manner as in Example 1 except that the amount was changed to 058 g. The phosphor was excited at 465 nm and 400 nm, which are the main wavelengths of the GaN-based blue light-emitting diode and GaN-based near-ultraviolet light-emitting diode, and emission spectra were measured respectively. Table 1 shows the wavelength of the emission peak and the relative emission intensity. It can be seen that the phosphors of Examples 1 to 7 excited by excitation at 465 nm and 400 nm give a light emission intensity higher than that of the phosphor of Comparative Example 2 and also have a yellow-green light emission that is not pure green, thereby improving the color rendering. .

Figure 2005063836
Figure 2005063836

面発光型GaN系ダイオードに膜状蛍光体を接触又は成型させた発光装置の一例を示す図。The figure which shows an example of the light-emitting device which made the film-like fluorescent substance contact or shape | mold to the surface emitting type GaN-type diode. 本発明中の蛍光体と、第1の発光体(350−480nm発光体)とから構成される発光装置の一実施例を示す模式的断面図である。It is typical sectional drawing which shows one Example of the light-emitting device comprised from the fluorescent substance in this invention, and a 1st light-emitting body (350-480 nm light-emitting body). 本発明の面発光照明装置の一例を示す模式的断面図。The typical sectional view showing an example of the surface emitting illumination device of the present invention. 実施例5の蛍光体、BaMgAl1017:Eu、及びY22S:Euの色度座標上の関係を示す図。Phosphor of Example 5, BaMgAl 10 O 17: Eu , and Y 2 O 2 S: diagram showing the relationship between the chromaticity coordinates of Eu.

符号の説明Explanation of symbols

1;第2の発光体
2;面発光型GaN系LD
3;基板
4;発光装置
5;マウントリード
6;インナーリード
7;第1の発光体(350〜480nmの発光体)
8;本発明中の蛍光体を含有させた樹脂部
9;導電性ワイヤー
10;モールド部材
11;発光素子を組み込んだ面発光照明装置
12;保持ケース
13;発光装置
14;拡散板
1; second light emitter 2; surface-emitting GaN-based LD
3; Substrate 4; Light emitting device 5; Mount lead 6; Inner lead 7; First light emitter (light emitter of 350 to 480 nm)
8; Resin part containing phosphor in the present invention 9; Conductive wire 10; Mold member 11; Surface-emitting illumination device 12 incorporating a light-emitting element; Holding case 13; Light-emitting device 14;

Claims (14)

350−480nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体が、一般式[1]の化学組成を有する結晶相を有する蛍光体を含有してなることを特徴とする発光装置。
Figure 2005063836
(但し、Mは、Eu、Ga、Al、In、Bを除き、Caを50mol%以上含むプラス価数の金属元素群を表し、Mは、Ga、Al、In、及びBからなる群から選ばれる少なくとも一種の元素を表し、かつ、Gaが80mol%以上であり、Mは、S、Se、Te、及びOからなる群から選ばれる少なくとも一種の元素を表し、かつ、Sが80mol%以上である。bは、0.001<b<1を満足する数であり、aとbは、0.9≦(a+b)≦1.1を満足する数であり、cは、3.6≦c≦4.4を満足する数である。)
In a light-emitting device including a first light-emitting body that generates light of 350 to 480 nm and a second light-emitting body that generates visible light when irradiated with light from the first light-emitting body, the second light-emitting body includes: A light-emitting device comprising a phosphor having a crystal phase having a chemical composition represented by the general formula [1].
Figure 2005063836
(However, M 1 represents a positive valence metal element group containing 50 mol% or more of Ca except Eu, Ga, Al, In, and B, and M 2 is a group consisting of Ga, Al, In, and B. And at least one element selected from the group consisting of Ga, 80 mol% or more, M 3 represents at least one element selected from the group consisting of S, Se, Te, and O, and S is 80 mol. B is a number that satisfies 0.001 <b <1; a and b are numbers that satisfy 0.9 ≦ (a + b) ≦ 1.1; (It is a number satisfying 6 ≦ c ≦ 4.4.)
350nm以上415nm以下の光を発生する第1の発光体を使用し、かつ、0.01≦b≦0.2を満足することを特徴とする請求項1に記載の発光装置。 2. The light emitting device according to claim 1, wherein a first light emitter that generates light of 350 nm or more and 415 nm or less is used, and 0.01 ≦ b ≦ 0.2 is satisfied. 415nmを越え480nm以下の光を発生する第1の発光体を使用し、かつ、0.01≦b≦0.3を満足することを特徴とする請求項1に記載の発光装置。 2. The light emitting device according to claim 1, wherein the first light emitting body that generates light having a wavelength greater than 415 nm and not greater than 480 nm is used, and 0.01 ≦ b ≦ 0.3 is satisfied. a,bが、a+b=1を満足し、かつ、cが、c=4を満足することを特徴とする請求項1ないし3のいずれか一つに記載の発光装置。 4. The light emitting device according to claim 1, wherein a and b satisfy a + b = 1, and c satisfies c = 4. 5. がCaからなり、MがGaからなり、MがSからなることを特徴とする請求項1ないし4のいずれか一つに記載の発光装置。 5. The light emitting device according to claim 1, wherein M 1 is made of Ca, M 2 is made of Ga, and M 3 is made of S. 6. 第1の発光体がレーザーダイオード又は発光ダイオードであることを特徴とする請求項1ないし5のいずれか一つに記載の発光装置。 6. The light emitting device according to claim 1, wherein the first light emitter is a laser diode or a light emitting diode. 第1の発光体がレーザーダイオードであることを特徴とする請求項6に記載の発光装置。 The light emitting device according to claim 6, wherein the first light emitter is a laser diode. 第1の発光体がGaN系化合物半導体を使用してなることを特徴とする請求項1ないし7のいずれか一つに記載の発光装置。 The light emitting device according to any one of claims 1 to 7, wherein the first light emitter uses a GaN-based compound semiconductor. 第1の発光体が面発光型GaN系レーザーダイオードであることを特徴とする請求項1ないし8のいずれか一つに記載の発光装置。 The light-emitting device according to claim 1, wherein the first light emitter is a surface-emitting GaN-based laser diode. 第2の発光体を含む物質群が膜状であり、かつ、面発光型GaN系ダイオードからの光を第2の発光体の膜に対して照射させることを特徴とする請求項1ないし9のいずれか一つに記載の発光装置。 10. The material group including the second light emitter is in the form of a film, and light from the surface-emitting GaN-based diode is irradiated onto the film of the second light emitter. The light emitting device according to any one of the above. 面発光型GaN系ダイオードである第1の発光体の発光面に、直接第2の発光体を含む膜を接触させた、又は成型した形で可視光を直接発生させることを特徴とする請求項1ないし10のいずれか一つに記載の発光装置。 The visible light is directly generated in a form in which a film containing the second light emitter is brought into contact with or directly on the light emitting surface of the first light emitter which is a surface-emitting GaN-based diode. The light emitting device according to any one of 1 to 10. 第2の発光体の粉をシリコン樹脂、及び/又はエポキシ樹脂に分散させたものに第1の発
光体からの光を照射させることを特徴とする請求項1ないし11のいずれか一つに記載の発光装置。
The light from the first light emitter is irradiated to a powder in which the second light emitter is dispersed in silicon resin and / or epoxy resin. Light-emitting device.
請求項1ないし12のいずれか一つの発光装置を有する画像表示装置。 An image display device comprising the light-emitting device according to claim 1. 請求項1ないし12のいずれか一つの発光装置を有する照明装置。
An illumination device comprising the light emitting device according to claim 1.
JP2003293092A 2003-08-13 2003-08-13 Light emitting device, illumination device, and image display device Pending JP2005063836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293092A JP2005063836A (en) 2003-08-13 2003-08-13 Light emitting device, illumination device, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293092A JP2005063836A (en) 2003-08-13 2003-08-13 Light emitting device, illumination device, and image display device

Publications (1)

Publication Number Publication Date
JP2005063836A true JP2005063836A (en) 2005-03-10

Family

ID=34370201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293092A Pending JP2005063836A (en) 2003-08-13 2003-08-13 Light emitting device, illumination device, and image display device

Country Status (1)

Country Link
JP (1) JP2005063836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261512A (en) * 2005-03-18 2006-09-28 Fujikura Ltd Light emitting device and lighting apparatus
JP2013077825A (en) * 2012-11-26 2013-04-25 Dexerials Corp Green-emitting phosphor particle, color conversion sheet, light-emitting device, and image display device assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389288A (en) * 1977-01-17 1978-08-05 Toshiba Corp Fluorescent lamp
WO2002011173A1 (en) * 2000-07-28 2002-02-07 Osram Opto Semiconductors Gmbh Luminescence conversion based light emitting diode and phosphors for wavelength conversion
JP2002531955A (en) * 1998-11-30 2002-09-24 ゼネラル・エレクトリック・カンパニイ Light emitting device using phosphor with high visibility
JP2003034791A (en) * 2001-04-04 2003-02-07 Lumileds Lighting Us Llc Fluorescence-converting light emitting diode
WO2005026285A2 (en) * 2003-04-15 2005-03-24 Sarnoff Corporation High efficiency alkaline earth metal thiogallate-based phosphors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5389288A (en) * 1977-01-17 1978-08-05 Toshiba Corp Fluorescent lamp
JP2002531955A (en) * 1998-11-30 2002-09-24 ゼネラル・エレクトリック・カンパニイ Light emitting device using phosphor with high visibility
WO2002011173A1 (en) * 2000-07-28 2002-02-07 Osram Opto Semiconductors Gmbh Luminescence conversion based light emitting diode and phosphors for wavelength conversion
JP2003034791A (en) * 2001-04-04 2003-02-07 Lumileds Lighting Us Llc Fluorescence-converting light emitting diode
WO2005026285A2 (en) * 2003-04-15 2005-03-24 Sarnoff Corporation High efficiency alkaline earth metal thiogallate-based phosphors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261512A (en) * 2005-03-18 2006-09-28 Fujikura Ltd Light emitting device and lighting apparatus
JP2013077825A (en) * 2012-11-26 2013-04-25 Dexerials Corp Green-emitting phosphor particle, color conversion sheet, light-emitting device, and image display device assembly

Similar Documents

Publication Publication Date Title
US7229573B2 (en) Ce3+ and Eu2+ doped phosphors for light generation
JP2005298805A (en) Light emitting device and illumination device
JP4617890B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4168776B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4706358B2 (en) Blue light emitting phosphor and method for manufacturing the same, light emitting device, illumination device, backlight for display and display
JP2005150691A (en) Light-emitting device and phosphor
JP4411841B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4972904B2 (en) Phosphor, method for manufacturing the phosphor, light-emitting device using the phosphor, image display device, and illumination device
JP4165255B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4389513B2 (en) Light emitting device, lighting device, and image display device
JP5326986B2 (en) Phosphor used in light emitting device
JP4561064B2 (en) Light emitting device, lighting device, and image display device
JP2004235546A (en) Light emitting device and lighting device and display using it
JP4617889B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2004253747A (en) Light emitting device and lighting device using same
JP4617888B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP2010059429A (en) Phosphor, luminescent device using the same, image display and illuminating device
JP2005064189A (en) Light emitting device, lighting device and image display device
JP4363194B2 (en) Phosphor, and light emitting device, lighting device, and image display device using the same
JP4337468B2 (en) Light emitting device, lighting device, and image display device
JP4337465B2 (en) Light emitting device, lighting device, and image display device
JP2005063836A (en) Light emitting device, illumination device, and image display device
JP4604516B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4246502B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE USING SAME, AND DISPLAY
JP4433847B2 (en) Phosphor, light emitting device using the same, image display device, and illumination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921