JP5854367B2 - Method for manufacturing phosphor composite member - Google Patents
Method for manufacturing phosphor composite member Download PDFInfo
- Publication number
- JP5854367B2 JP5854367B2 JP2011136917A JP2011136917A JP5854367B2 JP 5854367 B2 JP5854367 B2 JP 5854367B2 JP 2011136917 A JP2011136917 A JP 2011136917A JP 2011136917 A JP2011136917 A JP 2011136917A JP 5854367 B2 JP5854367 B2 JP 5854367B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- inorganic
- composite member
- phosphor
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Glass Compositions (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Description
本発明は、例えば励起光を照射することにより蛍光を発し、透過励起光と蛍光との合成により白色光を得るために好適な蛍光体複合部材の製造方法に関するものである。 The present invention relates to a method for producing a phosphor composite member suitable for emitting fluorescence by irradiating excitation light, for example, and obtaining white light by synthesizing transmitted excitation light and fluorescence.
白色LEDは、近年、高効率、高信頼性の白色光源として注目され、既に実用化されている。白色LEDは、従来の照明装置等の光源に比べ、長寿命、高効率、高安定性、低消費電力、高応答速度、環境負荷物質を含まない等の利点を有しているため、携帯電話やテレビの液晶バックライト用光源として急速に普及が広まってきている。今後は、これに加えて一般照明にも応用が進むと期待されている。 In recent years, white LEDs have attracted attention as a highly efficient and highly reliable white light source and have already been put into practical use. White LEDs have advantages such as long life, high efficiency, high stability, low power consumption, high response speed, and no environmental load substances compared to conventional light sources such as lighting devices. As a light source for liquid crystal backlights for TVs and TVs, it is rapidly spreading. In the future, in addition to this, it is expected that the application will be advanced to general lighting.
ところで、特許文献1に開示されている白色LEDは、LEDチップの発光面を有機系バインダー樹脂に無機蛍光体粉末を分散したものをモールド被覆してなる構成を有している。そのため、青色〜紫外線領域の高出力の短波長の光や、無機蛍光体粉末の発熱、あるいはLEDチップの熱によって、上記有機系バインダー樹脂が劣化し、変色を引き起こす。その結果、発光強度の低下や色ずれが起こり、寿命が短くなるという問題がある。 By the way, the white LED disclosed in Patent Document 1 has a configuration in which a light emitting surface of an LED chip is coated with a mold in which an inorganic phosphor powder is dispersed in an organic binder resin. Therefore, the organic binder resin deteriorates and causes discoloration due to high-output short-wavelength light in the blue to ultraviolet region, heat generation of the inorganic phosphor powder, or heat of the LED chip. As a result, there is a problem in that the emission intensity is lowered and the color shift occurs and the life is shortened.
これらの問題に対し、無機蛍光体粉末とガラス粉末を混合、焼結して得られる蛍光体複合部材が提案されている(例えば、特許文献2参照)。当該蛍光体複合部材は、耐熱性の高い無機系ガラス粉末中に無機蛍光体粉末を分散してなるため、経時的な発光強度の低下を抑制することが可能である。しかしながら、特許文献2では、所望の大きさの蛍光体複合部材を得るために、切削研磨加工が必要となる。例えば、薄型の蛍光体複合部材を得るためには、一旦、無機蛍光体粉末とガラス粉末を焼結して比較的厚みの大きい部材を作製した後、当該部材を切削、研磨して薄型化する必要がある。したがって、この製造方法では、無機蛍光体粉末とガラス粉末の材料歩留まりが悪く、その結果、蛍光体複合部材の製造コストが高くなる傾向があった。 For these problems, a phosphor composite member obtained by mixing and sintering inorganic phosphor powder and glass powder has been proposed (see, for example, Patent Document 2). Since the phosphor composite member is formed by dispersing the inorganic phosphor powder in an inorganic glass powder having high heat resistance, it is possible to suppress a decrease in emission intensity over time. However, in Patent Document 2, in order to obtain a phosphor composite member having a desired size, a cutting and polishing process is required. For example, in order to obtain a thin phosphor composite member, the inorganic phosphor powder and the glass powder are once sintered to produce a relatively thick member, and then the member is cut and polished to reduce the thickness. There is a need. Therefore, in this production method, the material yield of the inorganic phosphor powder and the glass powder is poor, and as a result, the production cost of the phosphor composite member tends to increase.
そこで、無機基材表面に、無機蛍光体粉末を含有するガラス焼結体層を形成してなる蛍光体複合部材が提案されている(例えば、特許文献3または4参照)。当該蛍光体複合部材は、ペースト法やグリーンシート法により、無機蛍光体粉末を含有する焼結体層が無機基板上に形成されてなる。したがって、切削や研磨等の工程を経ることなく、薄型の蛍光体複合部材を作製することができる。 Therefore, a phosphor composite member has been proposed in which a glass sintered body layer containing an inorganic phosphor powder is formed on the surface of an inorganic base material (see, for example, Patent Document 3 or 4). The phosphor composite member is formed by forming a sintered body layer containing an inorganic phosphor powder on an inorganic substrate by a paste method or a green sheet method. Therefore, a thin phosphor composite member can be produced without going through steps such as cutting and polishing.
特許文献3または4に記載の方法では、所望の形状を有する発光色変換部材を歩留まりよく製造することができるが、部材の発光強度が低いという問題があった。また、ペーストやグリーンシートの作製工程が必要であるため、製造工程が煩雑であるという問題があった。 In the method described in Patent Document 3 or 4, a light emitting color conversion member having a desired shape can be manufactured with a high yield, but there is a problem that the light emission intensity of the member is low. Moreover, since the manufacturing process of the paste and the green sheet is required, there is a problem that the manufacturing process is complicated.
このような状況を鑑みて、本発明は、従来よりも発光強度の高い蛍光体複合部材を容易に製造する方法を提供することを目的とする。 In view of such a situation, an object of the present invention is to provide a method for easily manufacturing a phosphor composite member having a higher emission intensity than the conventional one.
本発明は、無機基材上に、ガラス粉末および無機蛍光体粉末を含有する混合粉末を載置する工程、および、金型を用いて加熱しながら混合粉末をプレス成型し、無機基材表面に無機粉末焼結体層を形成する工程、を含むことを特徴とする蛍光体複合部材の製造方法に関する。 The present invention includes a step of placing a mixed powder containing a glass powder and an inorganic phosphor powder on an inorganic base material, and press-molding the mixed powder while heating using a mold to form a surface on the surface of the inorganic base material. And a step of forming an inorganic powder sintered body layer.
無機基材上に、無機蛍光体粉末を含有するガラス焼結体層をペースト法やグリーンシート法により形成した場合、有機樹脂や有機溶剤等に起因する炭素成分が焼結体中に残留し、発光強度低下の原因となる。一方、本発明の製造方法によれば、ガラス粉末および無機蛍光体粉末を含有する混合粉末に対し、有機樹脂や有機溶剤等を添加することなく、直接無機基材表面にプレス融着させることができるため、有機樹脂や有機溶剤等に起因する炭素成分が原因となる発光強度低下の問題がない。よって、発光強度に優れた発光色変換部材を得ることが可能となる。 When the glass sintered body layer containing the inorganic phosphor powder is formed on the inorganic base material by the paste method or the green sheet method, the carbon component resulting from the organic resin or the organic solvent remains in the sintered body, This causes a decrease in emission intensity. On the other hand, according to the production method of the present invention, it is possible to directly press-fuse the mixed powder containing the glass powder and the inorganic phosphor powder to the surface of the inorganic base material without adding an organic resin or an organic solvent. Therefore, there is no problem of a decrease in light emission intensity caused by a carbon component caused by an organic resin, an organic solvent, or the like. Therefore, it is possible to obtain a light emission color conversion member having excellent light emission intensity.
また、原料粉末をペースト化したりグリーンシート化する必要がなく、混合粉末をそのままプレス成型に用いることができるため、製造工程を簡素化することが可能となる。また、無機基材表面に非常に薄い無機粉末焼結体層を形成することも容易である。 In addition, since it is not necessary to paste the raw material powder into a green sheet and the mixed powder can be used for press molding as it is, the manufacturing process can be simplified. It is also easy to form a very thin inorganic powder sintered body layer on the inorganic substrate surface.
第二に、本発明の蛍光体複合部材の製造方法は、無機基材が、YAG系セラミックス、結晶化ガラス、ガラス、金属または金属とセラミックスの複合体であることが好ましい。 Secondly, in the method for producing a phosphor composite member of the present invention, the inorganic base material is preferably YAG ceramics, crystallized glass, glass, metal, or a metal / ceramic composite.
第三に、本発明の蛍光体複合部材の製造方法は、無機粉末焼結体層の厚みが0.3mm以下であることが好ましい。 Thirdly, in the method for producing a phosphor composite member of the present invention, the thickness of the inorganic powder sintered body layer is preferably 0.3 mm or less.
無機粉末焼結体層を薄型化することにより、無機粉末焼結体層における光散乱損失を低減することができ、結果として蛍光体複合部材の発光強度を向上させることが可能となる。 By thinning the inorganic powder sintered body layer, light scattering loss in the inorganic powder sintered body layer can be reduced, and as a result, the emission intensity of the phosphor composite member can be improved.
第四に、本発明の蛍光体複合部材の製造方法は、無機粉末焼結体層の表面粗さ(Ra)が0.5μm以下であることが好ましい。 Fourthly, in the method for producing a phosphor composite member of the present invention, the surface roughness (Ra) of the inorganic powder sintered body layer is preferably 0.5 μm or less.
当該構成によれば、無機粉末焼結層表面での光散乱損失を低減することができ、励起光および蛍光が透過しやすくなる。その結果、蛍光体複合部材の発光強度を向上させることが可能となる。 According to the said structure, the light scattering loss in the inorganic powder sintered layer surface can be reduced, and excitation light and fluorescence become easy to permeate | transmit. As a result, the emission intensity of the phosphor composite member can be improved.
第五に、本発明の蛍光体複合部材の製造方法は、ガラス粉末の平均粒径(D50)が100μm以下であることが好ましい。 Fifth, in the method for producing the phosphor composite member of the present invention, it is preferable that the average particle diameter (D50) of the glass powder is 100 μm or less.
当該構成によれば、蛍光体複合部材中における無機蛍光体粉末の分散状態が良好なものとなり、発光色のばらつきを抑制することが可能となる。 According to the said structure, the dispersion state of the inorganic fluorescent substance powder in a fluorescent substance composite member becomes a favorable thing, and it becomes possible to suppress the dispersion | variation in luminescent color.
第六に、本発明の蛍光体複合部材の製造方法は、無機粉末焼結体層における無機蛍光体粉末の割合が0.01〜90質量%であることが好ましい。 Sixth, in the method for producing a phosphor composite member of the present invention, the ratio of the inorganic phosphor powder in the inorganic powder sintered body layer is preferably 0.01 to 90% by mass.
第七に、本発明の蛍光体複合部材の製造方法は、無機粉末焼結体層が、無機フィラーを0〜30質量%含有することが好ましい。 Seventhly, in the method for producing a phosphor composite member of the present invention, the inorganic powder sintered body layer preferably contains 0 to 30% by mass of an inorganic filler.
無機粉末焼結体層中に無機フィラーを添加することにより、無機基材との膨張係数差を低減して、剥離やクラックの発生を抑制することが可能となる。 By adding an inorganic filler in the inorganic powder sintered body layer, it is possible to reduce the difference in expansion coefficient from the inorganic base material and suppress the occurrence of peeling and cracking.
第八に、本発明の蛍光体複合部材の製造方法は、ガラス粉末が、SiO2−B2O3−RO系ガラス粉末(RはMg、Ca、SrおよびBaから選ばれる1種以上)、SiO2−TiO2−Nb2O5−R’2O系ガラス粉末(R’はLi、Na、Kから選ばれる1種以上)、SnO−P2O5系ガラス粉末またはZnO−B2O3−SiO2系ガラス粉末であることが好ましい。 Eighth, in the method for producing the phosphor composite member of the present invention, the glass powder is SiO 2 —B 2 O 3 —RO glass powder (R is one or more selected from Mg, Ca, Sr and Ba), SiO 2 —TiO 2 —Nb 2 O 5 —R ′ 2 O glass powder (R ′ is one or more selected from Li, Na, K), SnO—P 2 O 5 glass powder, or ZnO—B 2 O A 3- SiO 2 glass powder is preferred.
第九に、本発明の蛍光体複合部材の製造方法は、SnO−P2O5系ガラス粉末が、ガラス組成としてモル%で、SnO 35〜80%、P2O5 5〜40%、B2O3 0〜30%を含有することが好ましい。 Ninthly, in the method for producing the phosphor composite member of the present invention, SnO-P 2 O 5 glass powder is a mol% as a glass composition, SnO 35-80%, P 2 O 5 5-40%, B preferably contains 2 O 3 0~30%.
第十に、本発明の蛍光体複合部材の製造方法は、無機蛍光体粉末が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、酸フッ化物、ハロゲン化物、アルミン酸塩またはハロリン酸塩化物であることが好ましい。 Tenth, in the method for producing the phosphor composite member of the present invention, the inorganic phosphor powder is an oxide, nitride, oxynitride, sulfide, oxysulfide, oxyfluoride, halide, aluminate or A halophosphate is preferred.
第十一に、本発明の蛍光体複合部材の製造方法は、プレス成型時の温度が900℃以下であることが好ましい。 Eleventh, in the method for producing a phosphor composite member of the present invention, the temperature at the time of press molding is preferably 900 ° C. or lower.
当該構成によれば、熱による無機蛍光体粉末の失活やガラス粉末の変性を抑制することが可能となる。 According to this configuration, it is possible to suppress the deactivation of the inorganic phosphor powder and the denaturation of the glass powder due to heat.
第十二に、本発明の蛍光体複合部材の製造方法は、プレス成型時の雰囲気が空気、真空、窒素またはアルゴンであることが好ましい。 12thly, as for the manufacturing method of the fluorescent substance composite member of this invention, it is preferable that the atmosphere at the time of press molding is air, vacuum, nitrogen, or argon.
第十三に、本発明の蛍光体複合部材の製造方法は、蛍光体複合部材の形状が、板状、半球状、半球ドーム状であることが好ましい。 Thirteenthly, in the method for manufacturing a phosphor composite member of the present invention, the phosphor composite member preferably has a plate shape, a hemispherical shape, or a hemispherical dome shape.
第十四に、本発明の蛍光体複合部材の製造方法は、前記いずれかの製造方法により作製されたことを特徴とする蛍光体複合部材に関する。 14thly, the manufacturing method of the fluorescent substance composite member of this invention is related with the fluorescent substance composite member produced by one of the said manufacturing methods.
図1に、本発明の蛍光体複合部材の製造方法の模式図を示す。 In FIG. 1, the schematic diagram of the manufacturing method of the fluorescent substance composite member of this invention is shown.
まず、図1(a)において、下金型3bの上に無機基材2を静置し、無機基材2上に無機蛍光体粉末およびガラス粉末を含有する所定量の混合粉末1を載置する。 First, in FIG. 1A, the inorganic base material 2 is allowed to stand on the lower mold 3b, and a predetermined amount of the mixed powder 1 containing the inorganic phosphor powder and the glass powder is placed on the inorganic base material 2. To do.
次に、図1(b)において、上金型3aを用いて混合粉末1をプレスしながら加熱し、混合粉末1を焼結する。これにより、図1(c)に示すように、無機基材2上に無機粉末焼結体層4が形成された蛍光体複合部材5が得られる。ここで、加熱方法は特に限定されず、所定温度に加熱した金型を用いてプレスしてもよいし、所定温度に設定した雰囲気中(例えば電気炉内)でプレスしても構わない。 Next, in FIG.1 (b), the mixed powder 1 is heated using the upper metal mold | die 3a, pressing, and the mixed powder 1 is sintered. Thereby, as shown in FIG.1 (c), the fluorescent substance composite member 5 by which the inorganic powder sintered compact layer 4 was formed on the inorganic base material 2 is obtained. Here, the heating method is not particularly limited, and pressing may be performed using a mold heated to a predetermined temperature, or pressing may be performed in an atmosphere set at a predetermined temperature (for example, in an electric furnace).
本発明において使用されるガラス粉末としては、SiO2−B2O3−RO系ガラス粉末(RはMg、Ca、SrおよびBaから選ばれる1種以上)、SiO2−TiO2−Nb2O5−R’2O系ガラス粉末(R’はLi、Na、Kから選ばれる1種以上)、SnO−P2O5系ガラス粉末またはZnO−B2O3−SiO2系ガラス粉末が挙げられる。なかでも、軟化点が比較的低いSnO−P2O5系ガラス粉末を用いれば、プレス成型温度が低くなり、無機蛍光体粉末の失活を抑制することができるため好ましい。 As glass powder used in the present invention, SiO 2 —B 2 O 3 —RO glass powder (R is one or more selected from Mg, Ca, Sr and Ba), SiO 2 —TiO 2 —Nb 2 O. 5- R ′ 2 O glass powder (R ′ is one or more selected from Li, Na, K), SnO—P 2 O 5 glass powder, or ZnO—B 2 O 3 —SiO 2 glass powder. It is done. Especially, it is preferable to use SnO—P 2 O 5 glass powder having a relatively low softening point because the press molding temperature is lowered and the deactivation of the inorganic phosphor powder can be suppressed.
SnO−P2O5系ガラス粉末としては、ガラス組成としてモル%で、SnO 35〜80%、P2O5 5〜40%、B2O3 0〜30%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 The SnO-P 2 O 5 based glass powder, in mol% as a glass composition, SnO 35~80%, P 2 O 5 5~40%, those containing 2 O 3 0 to 30% B is preferred. The reason for limiting the glass composition in this way will be described below.
SnOはガラス骨格を形成するとともに、軟化点を低下させる成分である。SnOの含有量は35〜80%、40〜70%、50〜70%、特に55〜65%であることが好ましい。SnOの含有量が少なすぎると、ガラスの軟化点が上昇する傾向にあり、耐候性が悪化する傾向がある。一方、SnOの含有量が多すぎると、ガラス中にSnに起因する失透ブツが析出して透過率が低下する傾向にあり、結果として、蛍光体複合部材5の発光強度が低下しやすくなる。また、ガラス化しにくくなる。 SnO is a component that forms a glass skeleton and lowers the softening point. The SnO content is preferably 35 to 80%, 40 to 70%, 50 to 70%, particularly 55 to 65%. When there is too little content of SnO, it exists in the tendency for the softening point of glass to rise, and there exists a tendency for a weather resistance to deteriorate. On the other hand, when the content of SnO is too large, devitrification bumps resulting from Sn are deposited in the glass and the transmittance tends to decrease, and as a result, the emission intensity of the phosphor composite member 5 tends to decrease. . Moreover, it becomes difficult to vitrify.
P2O5はガラス骨格を形成する成分である。P2O5の含有量は5〜40%、10〜30%、特に15〜24%であることが好ましい。P2O5の含有量が少なすぎると、ガラス化しにくくなる。一方、P2O5の含有量が多すぎると、軟化点が上昇したり、耐候性が著しく低下する傾向にある。 P 2 O 5 is a component that forms a glass skeleton. The content of P 2 O 5 is preferably 5 to 40%, 10 to 30%, particularly preferably 15 to 24%. When the content of P 2 O 5 is too small, it is difficult to vitrify. On the other hand, when the content of P 2 O 5 is too large, or the softening point rises, there is a tendency that weather resistance is significantly lowered.
B2O3は耐候性を向上させるとともに、ガラス粉末と無機蛍光体粉末の反応を抑制する成分である。また、ガラスを安定化させる成分でもある。B2O3の含有量は0〜30%、1〜25%、2〜20%、特に4〜18%であることが好ましい。B2O3の含有量が多すぎると、耐候性が低下しやすくなる。また、軟化点が上昇する傾向がある。 B 2 O 3 is a component that improves the weather resistance and suppresses the reaction between the glass powder and the inorganic phosphor powder. It is also a component that stabilizes the glass. The content of B 2 O 3 is preferably 0 to 30%, 1 to 25%, 2 to 20%, particularly 4 to 18%. If the B 2 O 3 content is too large, the weather resistance tends to lower. Also, the softening point tends to increase.
SiO2−B2O3−RO系ガラス粉末としては、ガラス組成として質量%で、SiO2 30〜70%、B2O3 1〜15%、MgO 0〜10%、CaO 0〜25%、SrO 0〜10%、BaO 8〜40%、MgO+CaO+SrO+BaO 10〜45%、Al2O3 0〜20%、ZnO 0〜10%を含有するものが好ましい。 The SiO 2 -B 2 O 3 -RO based glass powder, in mass% as a glass composition, SiO 2 30~70%, B 2 O 3 1~15%, 0~10% MgO, CaO 0~25%, SrO 0~10%, BaO 8~40%, MgO + CaO + SrO + BaO 10~45%, Al 2 O 3 0~20%, those preferably contain 0% ZnO.
SiO2−TiO2−Nb2O5−R’2O系ガラス粉末としては、質量百分率で、SiO2 20〜50%、Li2O 0〜10%、Na2O 0〜15%、K2O 0〜20%、Li2O+Na2O+K2O 1〜30%、B2O3 1〜20%、MgO 0〜10%、CaO 0〜20%、SrO 0〜20%、BaO 0〜15%、Al2O3 0〜20%、ZnO 0〜15%、TiO2 0.01〜20%、Nb2O5 0.01〜20%、La2O3 0〜15%、TiO2+Nb2O5+La2O3 1〜30%を含有するものが好ましい。 The SiO 2 —TiO 2 —Nb 2 O 5 —R ′ 2 O-based glass powder is, by mass percentage, SiO 2 20-50%, Li 2 O 0-10%, Na 2 O 0-15%, K 2. O 0~20%, Li 2 O + Na 2 O + K 2 O 1~30%, B 2 O 3 1~20%, 0~10% MgO, CaO 0~20%, SrO 0~20%, BaO 0~15% Al 2 O 3 0-20%, ZnO 0-15%, TiO 2 0.01-20%, Nb 2 O 5 0.01-20%, La 2 O 3 0-15%, TiO 2 + Nb 2 O 5 + La 2 O 3 which contains 1 to 30% is preferred.
ZnO−B2O3−SiO2系ガラス粉末としては、ガラス組成として質量%で、ZnO 5〜60%、B2O3 5〜50%、SiO2 2〜30%を含有するものが好ましい。 The ZnO-B 2 O 3 -SiO 2 based glass powder, in mass% as a glass composition, 5~60% ZnO, B 2 O 3 5~50%, those containing SiO 2 2 to 30% preferred.
ガラス粉末の平均粒径(D50)は100μm以下、特に50μm以下であることが好ましい。ガラス粉末の平均粒径が大きすぎると、蛍光体複合部材5中における無機蛍光体粉末の分散状態に劣り、発光色にばらつきが生じやすくなる。なお、下限については特に限定されないが、ガラス粉末の平均粒径が小さくなりすぎると、製造コストが高騰しやすくなるため、0.1μm以上、特に1μm以上であることが好ましい。 The average particle diameter (D50) of the glass powder is preferably 100 μm or less, particularly preferably 50 μm or less. When the average particle diameter of the glass powder is too large, the dispersed state of the inorganic phosphor powder in the phosphor composite member 5 is inferior, and the emission color tends to vary. The lower limit is not particularly limited, but if the average particle size of the glass powder is too small, the production cost is likely to increase, so that it is preferably 0.1 μm or more, particularly 1 μm or more.
なお、本明細書において、「平均粒径(D50)」はレーザー回折法により測定した値を指す。 In the present specification, “average particle diameter (D50)” refers to a value measured by a laser diffraction method.
無機基材2と無機粉末焼結体層4との界面における光散乱損失を抑制するため、両者の屈折率差は小さいほうが好ましい。例えば、無機基材2としてYAGセラミックスを用いた場合、ガラス粉末の屈折率(nd)は1.5以上、1.7以上、特に1.8以上であることが好ましい。 In order to suppress light scattering loss at the interface between the inorganic base material 2 and the inorganic powder sintered body layer 4, it is preferable that the refractive index difference between the two is small. For example, when YAG ceramics is used as the inorganic base material 2, the refractive index (nd) of the glass powder is preferably 1.5 or more, 1.7 or more, particularly 1.8 or more.
ガラス粉末の軟化点は500℃以下、450℃以下、特に400℃以下であることが好ましい。軟化点が高すぎると、焼結温度が高くなって無機蛍光体粉末が劣化しやすくなる。 The softening point of the glass powder is preferably 500 ° C. or lower, 450 ° C. or lower, and particularly preferably 400 ° C. or lower. If the softening point is too high, the sintering temperature becomes high and the inorganic phosphor powder tends to deteriorate.
無機蛍光体粉末としては、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、酸フッ化物、ハロゲン化物、アルミン酸塩またはハロリン酸塩化物が挙げられる。なかでも、波長300〜500nmに励起帯を有し、波長500〜780nmに発光ピークを有するもの、特に、赤色、黄色または緑色に発光するものを用いることが好ましい。 Inorganic phosphor powders include oxides, nitrides, oxynitrides, sulfides, oxysulfides, oxyfluorides, halides, aluminates or halophosphates. Of these, those having an excitation band at a wavelength of 300 to 500 nm and having an emission peak at a wavelength of 500 to 780 nm, particularly those emitting light in red, yellow or green are preferably used.
青色励起光を照射すると赤色の蛍光を発する無機蛍光体粉末として、CaS:Eu2+、SrS:Eu2+、CaAlSiN3:Eu2+、CaSiN3:Eu2+、(Ca、Sr)2Si5N8:Eu2+等が挙げられる。 As inorganic phosphor powders that emit red fluorescence when irradiated with blue excitation light, CaS: Eu 2+ , SrS: Eu 2+ , CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ and the like can be mentioned.
青色励起光を照射すると黄色の蛍光を発する無機蛍光体粉末として、(Sr,Ba,Ca)2SiO4:Eu2+、(Y,Gd)3(Al,Ga)5O12:Ce3+、CaGa2S4:Eu2+、La3Si6N11:Ce3+等が挙げられる。 As inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light, (Sr, Ba, Ca) 2 SiO 4 : Eu 2+ , (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ , CaGa 2 S 4 : Eu 2+ , La 3 Si 6 N 11 : Ce 3+ and the like.
青色励起光を照射すると緑色の蛍光を発する無機蛍光体粉末として、SrAl2O4:Eu2+、SrGa2S4:Eu2+、SrBaSiO4:Eu2+、Ba3Si6O12N2:Eu2+、Si2Al4O4N4:Eu2+、Sr3Si13Al3O2N21:Eu2+、Ca3Sc2Si3O12:Ce3+、CaSc2O4:Ce3+等が挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with blue excitation light, SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Ba 3 Si 6 O 12 N 2 : Eu 2+ Si 2 Al 4 O 4 N 4 : Eu 2+ , Sr 3 Si 13 Al 3 O 2 N 21 : Eu 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , CaSc 2 O 4 : Ce 3+ .
無機粉末焼結体層4における無機蛍光体粉末の含有量は0.01〜90質量%、0.05〜30質量%、特に0.08〜15%であることが好ましい。無機蛍光体粉末の含有量が多すぎると、相対的にガラス粉末の含有量が少なくなって気孔率が大きくなる傾向がある。その結果、無機粉末焼結体層4の強度が低下したり、光散乱損失が大きくなる。一方、無機蛍光体粉末の含有量が少なすぎると、十分な発光強度が得られにくくなる。 The content of the inorganic phosphor powder in the inorganic powder sintered body layer 4 is preferably 0.01 to 90% by mass, 0.05 to 30% by mass, and particularly preferably 0.08 to 15%. When there is too much content of inorganic fluorescent substance powder, there exists a tendency for content of glass powder to decrease relatively and for porosity to become large. As a result, the strength of the inorganic powder sintered body layer 4 decreases and the light scattering loss increases. On the other hand, when there is too little content of inorganic fluorescent substance powder, it becomes difficult to obtain sufficient light emission intensity.
無機粉末焼結体層4の膨張係数を調整するために、混合粉末1(無機粉末焼結体層4)中に無機フィラー粉末を添加してもよい。特に、SnO−P2O5系ガラス粉末等の熱膨張係数が大きいガラス粉末を用いた場合は、無機基材2と無機粉末焼結体層4との熱膨張係数差が大きくなって、無機粉末焼結体層4の表面にクラックが生じたり、剥離したりしやすいため、低膨張特性を有する無機フィラー粉末を添加するのが有効である。 In order to adjust the expansion coefficient of the inorganic powder sintered body layer 4, an inorganic filler powder may be added to the mixed powder 1 (inorganic powder sintered body layer 4). In particular, when a glass powder having a large thermal expansion coefficient, such as SnO—P 2 O 5 glass powder, is used, the difference in thermal expansion coefficient between the inorganic base material 2 and the inorganic powder sintered body layer 4 is increased. Since the surface of the powder sintered body layer 4 is easily cracked or peeled off, it is effective to add an inorganic filler powder having low expansion characteristics.
無機フィラー粉末としては、低膨張特性を有するリン酸ジルコニウム、リン酸タングステン酸ジルコニウム、タングステン酸ジルコニウム、NZP型結晶およびこれらの固溶体等が挙げられ、これらを単独で、または混合して使用することができる。ここで、「NZP型結晶」とは、例えば、NbZr(PO4)3や[AB2(MO4)3]の基本構造をもつ結晶が含まれる。
A:Li、Na、K、Mg、Ca、Sr、Ba、Zn、Cu、Ni、Mn等
B:Zr、Ti、Sn、Nb、Al、Sc、Y等
M:P、Si、W、Mo等
Examples of the inorganic filler powder include zirconium phosphate, zirconium phosphate tungstate, zirconium tungstate, NZP type crystals and solid solutions thereof having low expansion characteristics, and these may be used alone or in combination. it can. Here, the “NZP type crystal” includes, for example, a crystal having a basic structure of NbZr (PO 4 ) 3 or [AB 2 (MO 4 ) 3 ].
A: Li, Na, K, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Mn etc. B: Zr, Ti, Sn, Nb, Al, Sc, Y etc. M: P, Si, W, Mo etc.
なお、無機フィラー粉末はZr成分を含有するものを使用することが好ましい。Zr成分を含有する無機フィラー粉末は、SnO−P2O5系ガラスとの適合性が良好、つまりSnO−P2O5系ガラスとの反応性が低く、プレス成型時にガラス粉末を失透させにくい性質を有しているためである。 In addition, it is preferable to use the inorganic filler powder containing a Zr component. Inorganic filler powder containing Zr component, compatibility with SnO-P 2 O 5 based glass is satisfactory, i.e. low reactivity with the SnO-P 2 O 5 based glass, a glass powder was devitrification during press molding This is because it has difficult properties.
無機フィラー粉末の含有量は、無機粉末焼結体層4において0〜30質量%、1.5〜25質量%、特に2〜20質量%であることが好ましい。無機フィラー粉末の含有量が多すぎると、ガラス粉末の含有量が相対的に少なくなって機械的強度が低下しやすくなる。また、ガラスマトリクスと無機フィラー粉末の界面における光散乱損失が大きくなり、発光強度が低下する傾向がある。 The content of the inorganic filler powder in the inorganic powder sintered body layer 4 is preferably 0 to 30% by mass, 1.5 to 25% by mass, and particularly preferably 2 to 20% by mass. When there is too much content of an inorganic filler powder, content of glass powder will decrease relatively and it will become easy to reduce mechanical strength. In addition, light scattering loss at the interface between the glass matrix and the inorganic filler powder increases, and the light emission intensity tends to decrease.
無機フィラー粉末の熱膨張係数は、30〜380℃の温度範囲で50×10−7/℃以下、特に30×10−7/℃以下であることが好ましい。無機フィラー粉末の熱膨張係数が大きすぎると、無機粉末焼結体層4の熱膨張係数を低下させる効果が得られにくい。なお、無機フィラー粉末の熱膨張係数の下限については特に限定されないが、現実的には−100×10−7/℃以上である。 The thermal expansion coefficient of the inorganic filler powder is preferably 50 × 10 −7 / ° C. or less, particularly preferably 30 × 10 −7 / ° C. or less in the temperature range of 30 to 380 ° C. If the thermal expansion coefficient of the inorganic filler powder is too large, it is difficult to obtain the effect of reducing the thermal expansion coefficient of the inorganic powder sintered body layer 4. In addition, although it does not specifically limit about the minimum of the thermal expansion coefficient of inorganic filler powder, Actually, it is more than -100x10 < -7 > / degreeC.
無機フィラー粉末の平均粒径(D50)は0.1〜50μm、特に3〜20μmであることが好ましい。無機フィラー粉末の平均粒径が小さすぎると、無機粉末焼結体層4の熱膨張係数を低下させる効果に劣る傾向がある。あるいは、プレス成型時にガラス粉末に溶け込み、フィラーとしての役割を果たさなくなるおそれがある。無機フィラー粉末の平均粒径が大きすぎると、ガラス粉末と無機フィラー粉末の境界にクラックが発生しやすくなる。 The average particle size (D50) of the inorganic filler powder is preferably 0.1 to 50 μm, particularly 3 to 20 μm. If the average particle size of the inorganic filler powder is too small, the effect of reducing the thermal expansion coefficient of the inorganic powder sintered body layer 4 tends to be inferior. Alternatively, it may be dissolved in the glass powder at the time of press molding and may not serve as a filler. If the average particle size of the inorganic filler powder is too large, cracks are likely to occur at the boundary between the glass powder and the inorganic filler powder.
なお、無機基材2からの無機粉末焼結体層4の剥離を防止するためには、無機基材2の熱膨張係数をα1、無機粉末焼結体層4の熱膨張係数をα2としたとき、−5ppm/℃≦α1−α2≦5ppm/℃、特に−1ppm/℃≦α1−α2≦1ppm/℃であることが好ましい。α1−α2が上記範囲外になると、無機粉末焼結体層4が無機基材2から剥離しやすくなる。 In order to prevent peeling of the inorganic powder sintered body layer 4 from the inorganic base material 2, the thermal expansion coefficient of the inorganic base material 2 is α1, and the thermal expansion coefficient of the inorganic powder sintered body layer 4 is α2. -5 ppm / ° C. ≦ α 1 −α 2 ≦ 5 ppm / ° C., particularly preferably −1 ppm / ° C. ≦ α 1 −α 2 ≦ 1 ppm / ° C. When α1-α2 is out of the above range, the inorganic powder sintered body layer 4 is easily peeled off from the inorganic substrate 2.
無機基材2としては、YAG系セラミックス、結晶化ガラス、ガラス、金属または金属とセラミックスの複合体等が挙げられる。なお、YAG系セラミックスとしては、透明または半透明のいずれのものであっても使用することが可能である。 Examples of the inorganic substrate 2 include YAG ceramics, crystallized glass, glass, metal, or a composite of metal and ceramic. The YAG ceramics can be used regardless of whether they are transparent or translucent.
ここで、無機基材2として、励起光や蛍光を透過させる材料を用いることで、例えば、励起光の透過光と、無機蛍光体粉末から発せられた蛍光の組み合わせにより、白色光を得ることが可能である。 Here, by using a material that transmits excitation light or fluorescence as the inorganic base material 2, for example, white light can be obtained by a combination of transmitted light of excitation light and fluorescence emitted from the inorganic phosphor powder. Is possible.
なお、無機基材2として、金属や金属とセラミックスとの複合体を用いることで、反射型の蛍光体複合部材とすることが可能である。金属としてはAl、Cu、Ag等が挙げられる。金属とセラミックスの複合体としては、例えばAlとSiCまたはAlNの複合体(焼結体)等が挙げられる。無機基材2と無機粉末焼結体4の界面にAg、Al等の反射層(図示せず)を必要に応じて設けても構わない。金属や金属とセラミックスとの複合体は熱伝導性に優れるため、青色LD等の高強度な励起光に曝されるときに蛍光体から発生する熱を効率よく放熱させることが可能であり、無機蛍光体粉末の温度消光を軽減させることができる。 In addition, by using a metal or a composite of metal and ceramics as the inorganic substrate 2, a reflective phosphor composite member can be obtained. Examples of the metal include Al, Cu, and Ag. Examples of the composite of metal and ceramic include a composite (sintered body) of Al and SiC or AlN. A reflective layer (not shown) such as Ag or Al may be provided on the interface between the inorganic base material 2 and the inorganic powder sintered body 4 as necessary. Metals and composites of metals and ceramics are excellent in thermal conductivity, so it is possible to efficiently dissipate heat generated from phosphors when exposed to high-intensity excitation light such as blue LD. Temperature quenching of the phosphor powder can be reduced.
無機基材2の厚みは特に限定されないが、例えば0.1〜10.0mmであることが好ましい。無機基材2の厚みが小さすぎると、機械的強度が不十分になる傾向にある。一方、無機基材2の厚みが大きすぎると、励起光が透過しにくくなって、発光効率が低下しやすくなったり、蛍光体複合部材5の重量が不当に大きくなる傾向がある。 Although the thickness of the inorganic base material 2 is not specifically limited, For example, it is preferable that it is 0.1-10.0 mm. If the thickness of the inorganic substrate 2 is too small, the mechanical strength tends to be insufficient. On the other hand, when the thickness of the inorganic base material 2 is too large, the excitation light is difficult to transmit, and the light emission efficiency tends to decrease, or the weight of the phosphor composite member 5 tends to be unreasonably large.
プレス温度は、無機蛍光体粉末の失活や、ガラスの変性を防止する観点から、900℃以下、700℃以下、特に500℃以下であることが好ましい。一方、ガラス粉末が十分に軟化して無機基材2表面に固着する必要があるため、下限は200℃以上、特に250℃以上であることが好ましい。 The press temperature is preferably 900 ° C. or lower, 700 ° C. or lower, particularly 500 ° C. or lower, from the viewpoint of preventing the deactivation of the inorganic phosphor powder and the glass denaturation. On the other hand, since the glass powder needs to be sufficiently softened and fixed to the surface of the inorganic substrate 2, the lower limit is preferably 200 ° C. or higher, particularly 250 ° C. or higher.
プレス圧は、目的とする無機粉末焼結体層4の厚みに応じて、1N/mm2以上、特に3N/mm2以上で適宜調整される。一方、上限は特に限定されないが、無機基材2の破損を防止するため、100N/mm2以下、特に50N/mm2以下とすることが好ましい。 Press pressure, depending on the thickness of the inorganic powder sintered body layer 4 for the purpose, 1N / mm 2 or more, particularly suitably adjusted 3N / mm 2 or more. On the other hand, although an upper limit is not specifically limited, In order to prevent the damage of the inorganic base material 2, it is preferable to set it as 100 N / mm < 2 > or less, especially 50 N / mm < 2 > or less.
プレス時間は特に限定されないが、無機粉末焼結体層4が無機基材2表面に十分に固着するよう、0.1〜30分間、0.5〜10分間、特に1〜5分間で適宜調整すればよい。 The pressing time is not particularly limited, but is appropriately adjusted for 0.1 to 30 minutes, 0.5 to 10 minutes, particularly 1 to 5 minutes so that the inorganic powder sintered body layer 4 is sufficiently fixed to the surface of the inorganic base material 2. do it.
プレス成型時の雰囲気としては、空気、真空、窒素またはアルゴンが挙げられる。なかでも、無機蛍光体粉末の失活やガラス粉末の変性、さらにはプレス金型の酸化による劣化を抑制するため、窒素やアルゴン等の不活性ガス、特にランニングコストを考慮して窒素であることが好ましい。 The atmosphere at the time of press molding includes air, vacuum, nitrogen or argon. Among them, in order to suppress the deactivation of the inorganic phosphor powder, the modification of the glass powder, and the deterioration due to the oxidation of the press mold, the inert gas such as nitrogen and argon, especially nitrogen in consideration of running cost. Is preferred.
無機粉末焼結体層4の厚みは0.3mm以下、0.25mm以下、特に0.2mm以下であることが好ましい。無機粉末焼結体層4の厚みが大きすぎると、励起光が透過しにくくなり、所望の色を有する光が得られにくくなる。一方、無機粉末焼結体層4の厚みが小さすぎると、機械的耐久性が不十分となる傾向があるため、下限は0.01mm以上、0.03mm以上、特に0.05mm以上であることが好ましい。 The thickness of the inorganic powder sintered body layer 4 is preferably 0.3 mm or less, 0.25 mm or less, particularly preferably 0.2 mm or less. When the thickness of the inorganic powder sintered body layer 4 is too large, the excitation light is hardly transmitted, and it becomes difficult to obtain light having a desired color. On the other hand, if the thickness of the inorganic powder sintered body layer 4 is too small, the mechanical durability tends to be insufficient. Therefore, the lower limit is 0.01 mm or more, 0.03 mm or more, particularly 0.05 mm or more. Is preferred.
無機粉末焼結体層4の表面粗さ(Ra)は0.5μm以下、0.2μm以下、特に0.1μm以下であることが好ましい。無機粉末焼結体層4の表面粗さが大きすぎると、光散乱損失が大きくなり、励起光および蛍光の透過率が低下して発光強度が低下する傾向がある。 The surface roughness (Ra) of the inorganic powder sintered body layer 4 is preferably 0.5 μm or less, 0.2 μm or less, and particularly preferably 0.1 μm or less. When the surface roughness of the inorganic powder sintered body layer 4 is too large, the light scattering loss increases, and the transmittance of excitation light and fluorescence tends to decrease and the emission intensity tends to decrease.
蛍光体複合部材5の形状は特に限定されず、板状、半球状、半球ドーム状等が挙げられる。 The shape of the phosphor composite member 5 is not particularly limited, and examples thereof include a plate shape, a hemispherical shape, and a hemispherical dome shape.
以下、実施例に基づき、本発明の蛍光体複合部材を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the phosphor composite member of the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
(実施例1)
(1)セラミックス基材の作製
まず、高純度かつ2μm以下の粒経を有する原料を用いて、YAG(Y3Al5O12)の量論組成となるように、モル%で、Y2O3 37.4625%、Al2O3 62.5%、Ce2O3 0.0375%を秤量し、これに対し焼結助剤としてテトラエトキシシランを0.6質量%添加した。次に、ボールミルを用いて、調合した原料をエタノール中で17時間攪拌混合した後、減圧乾燥して粉体を得た。続いて、得られた粉体を200MPaの圧力でプレス成型して直径10mm、厚さ3mmのプレス成型体を作製し、これを真空雰囲気中1750℃で10時間焼成を行うことで焼結体を得た。その後、その焼結体を0.12mmの厚さとなるように両面研磨することでセラミックス基材を得た。
Example 1
(1) Production of ceramic base material First, using a raw material having a high purity and a particle size of 2 μm or less, Y 2 O in mol% so as to have a stoichiometric composition of YAG (Y 3 Al 5 O 12 ). 3 37.4625%, Al 2 O 3 62.5%, Ce 2 O 3 0.0375% were weighed, and 0.6% by mass of tetraethoxysilane was added thereto as a sintering aid. Next, using a ball mill, the prepared raw materials were stirred and mixed in ethanol for 17 hours, and then dried under reduced pressure to obtain a powder. Subsequently, the obtained powder was press-molded at a pressure of 200 MPa to produce a press-molded body having a diameter of 10 mm and a thickness of 3 mm, and this was fired at 1750 ° C. in a vacuum atmosphere for 10 hours to obtain a sintered body. Obtained. Thereafter, the sintered body was polished on both sides so as to have a thickness of 0.12 mm to obtain a ceramic substrate.
このようにして得られたセラミックス基材について、X線粉末回折装置を用いて析出結晶の同定を行ったところYAG結晶が単相で析出していることが確認された。 About the ceramic base material obtained in this way, when the deposited crystal was identified using an X-ray powder diffractometer, it was confirmed that the YAG crystal was precipitated in a single phase.
また、得られたYAGセラミックス基材について、発光スペクトルを測定したところ、波長550nm付近に中心を有する黄色の蛍光と、波長465nm付近に中心を有する青色励起光(セラミックス基材を透過した励起光)によるピークが観測された。 Further, when the emission spectrum of the obtained YAG ceramic substrate was measured, yellow fluorescence having a center near a wavelength of 550 nm and blue excitation light having a center near a wavelength of 465 nm (excitation light transmitted through the ceramic substrate) A peak due to was observed.
(2)蛍光体複合部材の作製
表1に記載のガラス粉末、無機蛍光体粉末および無機フィラー粉末を所定の割合で混合して混合粉末とした。
(2) Production of phosphor composite member Glass powder, inorganic phosphor powder and inorganic filler powder listed in Table 1 were mixed at a predetermined ratio to obtain a mixed powder.
なお、ガラス粉末は次のようにして作製した。まず、表1に記載の組成になるように調合したガラス原料をアルミナ坩堝に投入し、電気炉内950℃で窒素雰囲気にて1時間溶融した。その後、ガラス融液をフィルム成形し、らいかい機で粉砕することによりガラス粉末を得た。得られた粉末の平均粒径(D50)は32μmであった。 The glass powder was produced as follows. First, glass raw materials prepared so as to have the composition shown in Table 1 were put into an alumina crucible and melted in an electric furnace at 950 ° C. in a nitrogen atmosphere for 1 hour. Thereafter, the glass melt was formed into a film and pulverized with a rough machine to obtain glass powder. The average particle diameter (D50) of the obtained powder was 32 μm.
ホットプレート上に(1)で得られたYAGセラミックス基材を静置し、さらにその上に、混合粉末を所定量載置した。次に、混合粉末に対し金型を押し当て、表1に記載のプレス圧およびプレス温度にて、窒素雰囲気中で3分間プレス成型することにより、YAGセラミックス基材表面に無機粉末焼結体層を形成し、蛍光体複合部材を得た。 The YAG ceramic substrate obtained in (1) was allowed to stand on a hot plate, and a predetermined amount of the mixed powder was placed thereon. Next, a metal mold is pressed against the mixed powder, and press-molded for 3 minutes in a nitrogen atmosphere at the press pressure and press temperature shown in Table 1, so that an inorganic powder sintered body layer is formed on the surface of the YAG ceramic substrate. To obtain a phosphor composite member.
(3)全光束および色度の測定
得られた蛍光体複合部材について、発光スペクトルを次のようにして測定した。校正された積分球内で、200mAの電流で点灯した青色LEDによって蛍光体複合部材を励起し、光ファイバーを通じてその発光を小型分光器(オーシャンオプティクス製 USB−4000)に取り込み、制御PC上に発光スペクトル(エネルギー分布曲線)を得た。得られた発光スペクトルから全光束および色度を算出した。結果を表1に示す。
(3) Measurement of total luminous flux and chromaticity The emission spectrum of the obtained phosphor composite member was measured as follows. Inside the calibrated integrating sphere, the phosphor composite member is excited by a blue LED that is lit at a current of 200 mA, and the emitted light is taken into a small spectroscope (USB-4000 manufactured by Ocean Optics) through an optical fiber. (Energy distribution curve) was obtained. Total luminous flux and chromaticity were calculated from the obtained emission spectrum. The results are shown in Table 1.
(比較例1)
(1)無機粉末焼結体層用ペーストの作製
表1に記載のガラス粉末、無機蛍光体粉末および無機フィラー粉末を所定の割合で混合して混合粉末を作製した。次に、得られた混合粉末100質量部に対して、溶媒として50質量部の2,4−ジエチル−1,5−ペンタンジオール(日本香料薬品株式会社製 MARS)を添加して混合することでペーストを得た。
(Comparative Example 1)
(1) Preparation of inorganic powder sintered body layer paste A glass powder, an inorganic phosphor powder and an inorganic filler powder described in Table 1 were mixed at a predetermined ratio to prepare a mixed powder. Next, 50 parts by mass of 2,4-diethyl-1,5-pentanediol (MARS manufactured by Nippon Fragrance Chemicals Co., Ltd.) is added and mixed as a solvent to 100 parts by mass of the obtained mixed powder. A paste was obtained.
(2)蛍光体複合部材の作製
実施例1で得られたYAGセラミックス基材の表面に、上記(1)で得られた無機粉末焼結体層用ペーストをディスペンス法で厚さ約300μmとなるように塗布した。次に、約250℃のホットプレート上で熱処理することによって脱溶媒を行った。その後、窒素雰囲気中にて430℃で10分間焼成し、さらに1N/mm2の圧力でホットプレスして表面形状を整え、蛍光体複合部材を得た。
(2) Production of phosphor composite member On the surface of the YAG ceramic substrate obtained in Example 1, the paste for inorganic powder sintered body layer obtained in (1) above is about 300 μm thick by the dispense method. It was applied as follows. Next, the solvent was removed by heat treatment on a hot plate at about 250 ° C. Then, it baked for 10 minutes at 430 degreeC in nitrogen atmosphere, and also hot-pressed by the pressure of 1 N / mm < 2 >, and surface shape was adjusted, and the fluorescent substance composite member was obtained.
このようにして得られた蛍光体複合部材の全光束および色度を、実施例1と同様の方法で測定した。結果を表1に示す。表1から明らかなように、比較例1で得られた蛍光体複合部材は実施例1より全光束値が劣っていた。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as in Example 1. The results are shown in Table 1. As is clear from Table 1, the phosphor composite member obtained in Comparative Example 1 was inferior to Example 1 in total luminous flux value.
(比較例2)
(1)無機粉末焼結体層用グリーンシートの作製
表1に記載のガラス粉末、無機蛍光体粉末を所定の割合で混合して混合粉末を作製した。次に、混合粉末100質量部に対して、結合剤としてポリビニルブチラール樹脂を12質量部、可塑剤としてフタル酸ジブチルを3質量部、溶剤としてトルエンを40質量部添加し、混合してスラリーを作製した。続けて、上記スラリーをドクターブレード法によって、PETフィルム上にシート成形し、乾燥して、厚さ250μmのグリーンシートを得た。
(Comparative Example 2)
(1) Production of Green Sheet for Inorganic Powder Sintered Body Layer Glass powder and inorganic phosphor powder described in Table 1 were mixed at a predetermined ratio to produce a mixed powder. Next, 12 parts by mass of polyvinyl butyral resin as a binder, 3 parts by mass of dibutyl phthalate as a plasticizer, and 40 parts by mass of toluene as a solvent are added to 100 parts by mass of the mixed powder, and mixed to prepare a slurry. did. Subsequently, the slurry was formed into a sheet on a PET film by a doctor blade method and dried to obtain a green sheet having a thickness of 250 μm.
(2)蛍光体複合部材の作製
上記(1)で作製したグリーンシートを、実施例1で得られたYAGセラミックス基材の表面に積層し、熱圧着によって一体化して積層体を作製し、350℃で1時間脱脂した。次に、400℃で20分焼成した後、冷却して蛍光体複合部材を得た。
(2) Production of phosphor composite member The green sheet produced in (1) above is laminated on the surface of the YAG ceramic substrate obtained in Example 1, and is integrated by thermocompression bonding to produce a laminate. Degreased for 1 hour at ° C. Next, after baking at 400 degreeC for 20 minutes, it cooled and the fluorescent substance composite member was obtained.
このようにして得られた蛍光体複合部材の全光束および色度を、実施例1と同様の方法で測定した。結果を表1に示す。表1から明らかなように、比較例1と同様に、比較例2で得られた蛍光体複合部材は、実施例1より全光束値が劣っていた。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured by the same method as in Example 1. The results are shown in Table 1. As is clear from Table 1, as in Comparative Example 1, the phosphor composite member obtained in Comparative Example 2 was inferior to Example 1 in total luminous flux value.
(実施例2)
表1に記載のガラス粉末、無機蛍光体粉末および無機フィラー粉末を所定の割合で混合して混合粉末とした。
(Example 2)
Glass powder, inorganic phosphor powder and inorganic filler powder listed in Table 1 were mixed at a predetermined ratio to obtain a mixed powder.
なお、ガラス粉末は次のようにして作製した。まず、モル%で、SnO 72%、P2O5 28%を含有する組成になるように調合したガラス原料をアルミナ坩堝に投入し、電気炉内950℃で窒素雰囲気にて1時間溶融した。その後、ガラス融液をフィルム成形し、らいかい機で粉砕することによりガラス粉末を得た。得られた粉末の平均粒径(D50)は、36μmであった。 The glass powder was produced as follows. First, a glass raw material prepared so as to have a composition containing 72% SnO and 28% P 2 O 5 in mol% was put into an alumina crucible and melted in an electric furnace at 950 ° C. in a nitrogen atmosphere for 1 hour. Thereafter, the glass melt was formed into a film and pulverized with a rough machine to obtain glass powder. The average particle size (D50) of the obtained powder was 36 μm.
ホットプレート上に実施例1で得られたYAGセラミックス基材を静置し、さらにその上に、混合粉末を所定量載置した。次に、混合粉末に対し金型を押し当て、表1に記載のプレス圧およびプレス温度にて、窒素雰囲気中で3分間プレス成型することにより、YAGセラミックス基材表面に無機粉末焼結体層を形成し、蛍光体複合部材を得た。 The YAG ceramic base material obtained in Example 1 was allowed to stand on a hot plate, and a predetermined amount of the mixed powder was placed thereon. Next, a metal mold is pressed against the mixed powder, and press-molded for 3 minutes in a nitrogen atmosphere at the press pressure and press temperature shown in Table 1, so that an inorganic powder sintered body layer is formed on the surface of the YAG ceramic substrate. To obtain a phosphor composite member.
このようにして得られた蛍光体複合部材の全光束および色度を実施例1と同様の方法で測定した。結果を表1に示す。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured in the same manner as in Example 1. The results are shown in Table 1.
(実施例3〜6)
表2に記載のガラス粉末、無機蛍光体粉末、無機フィラー粉末を所定の割合で混合し、混合粉末を得た。
(Examples 3 to 6)
Glass powder, inorganic phosphor powder, and inorganic filler powder listed in Table 2 were mixed at a predetermined ratio to obtain a mixed powder.
ホットプレート上に厚み0.15mmのカバーガラス基板(松浪硝子社製)を静置し、さらにその上に、混合粉末を所定量載置した。次に、混合粉末に対し金型を押し当て、表2に記載のプレス圧およびプレス温度にて、窒素雰囲気中で3分間プレス成型することにより、カバーガラス基材表面に無機粉末焼結体層を形成し、蛍光体複合部材を得た。 A cover glass substrate (manufactured by Matsunami Glass Co., Ltd.) having a thickness of 0.15 mm was allowed to stand on the hot plate, and a predetermined amount of the mixed powder was placed thereon. Next, a metal mold is pressed against the mixed powder, and press molding is performed for 3 minutes in a nitrogen atmosphere at the press pressure and press temperature shown in Table 2, thereby forming an inorganic powder sintered body layer on the surface of the cover glass substrate. To obtain a phosphor composite member.
このようにして得られた蛍光体複合部材の全光束および色度を実施例1と同様の方法で測定した。結果を表2に示す。 The total luminous flux and chromaticity of the phosphor composite member thus obtained were measured in the same manner as in Example 1. The results are shown in Table 2.
(比較例3)
表3に記載のガラス粉末および無機蛍光体粉末を所定の割合で混合し、混合粉末を得た。
(Comparative Example 3)
The glass powder and inorganic phosphor powder shown in Table 3 were mixed at a predetermined ratio to obtain a mixed powder.
ホットプレート上に直接、混合粉末を所定量載置し、混合粉末に対し金型を押し当て、表3に記載のプレス圧およびプレス温度にて、窒素雰囲気中で3分間プレス成型することにより、無機粉末焼結体層を形成した。 By placing a predetermined amount of the mixed powder directly on the hot plate, pressing a mold against the mixed powder, and press-molding in a nitrogen atmosphere for 3 minutes at the press pressure and press temperature described in Table 3, An inorganic powder sintered body layer was formed.
無機粉末焼結体層は非常にもろく、ホットプレートから取り外す際に破損したため、全光束および色度を測定することはできなかった。 The inorganic powder sintered body layer was very brittle and was damaged when removed from the hot plate, so that the total luminous flux and chromaticity could not be measured.
本発明の蛍光体複合部材は、照明、ディスプレイ等の発光装置、自動車等の前照灯に使用されるLEDデバイス用部材として好適である。また、本発明の蛍光体複合部材はLED用途に限られるものではなく、レーザーダイオード等のように、ハイパワーの励起光を発するLEDデバイスにおける波長変換部材として用いることも可能である。 The phosphor composite member of the present invention is suitable as a member for an LED device used in lighting, a light emitting device such as a display, and a headlamp such as an automobile. Further, the phosphor composite member of the present invention is not limited to the LED application, and can also be used as a wavelength conversion member in an LED device that emits high-power excitation light such as a laser diode.
1 混合粉末
2 無機基材
3a 上金型
3b 下金型
4 無機粉末焼結体層
5 蛍光体複合部材
P 加圧方向
DESCRIPTION OF SYMBOLS 1 Mixed powder 2 Inorganic base material 3a Upper die 3b Lower die 4 Inorganic powder sintered body layer 5 Phosphor composite member P Pressure direction
Claims (14)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011136917A JP5854367B2 (en) | 2011-06-21 | 2011-06-21 | Method for manufacturing phosphor composite member |
PCT/JP2011/064922 WO2012008306A1 (en) | 2010-07-14 | 2011-06-29 | Phosphor composite member, led device and method for manufacturing phosphor composite member |
US13/696,240 US20130049575A1 (en) | 2010-07-14 | 2011-06-29 | Phosphor composite member, led device and method for manufacturing phosphor composite member |
CN2011800114308A CN102782082A (en) | 2010-07-14 | 2011-06-29 | Phosphor composite member, LED device and method for manufacturing phosphor composite member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011136917A JP5854367B2 (en) | 2011-06-21 | 2011-06-21 | Method for manufacturing phosphor composite member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013001879A JP2013001879A (en) | 2013-01-07 |
JP5854367B2 true JP5854367B2 (en) | 2016-02-09 |
Family
ID=47670777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011136917A Active JP5854367B2 (en) | 2010-07-14 | 2011-06-21 | Method for manufacturing phosphor composite member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5854367B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6508045B2 (en) * | 2013-05-23 | 2019-05-08 | Agc株式会社 | Light conversion member, method of manufacturing light conversion member, illumination light source and liquid crystal display device |
JP7068771B2 (en) * | 2013-07-08 | 2022-05-17 | ルミレッズ ホールディング ベーフェー | Wavelength conversion type semiconductor light emitting device |
JP6398351B2 (en) * | 2013-07-25 | 2018-10-03 | セントラル硝子株式会社 | Phosphor dispersed glass |
JP2018131380A (en) * | 2013-07-25 | 2018-08-23 | セントラル硝子株式会社 | Phosphor-dispersed glass |
JPWO2015041204A1 (en) * | 2013-09-20 | 2017-03-02 | 旭硝子株式会社 | Light conversion member, method for manufacturing light conversion member, method for adjusting chromaticity of light conversion member, illumination light source, and liquid crystal display device |
KR102449778B1 (en) * | 2015-12-22 | 2022-10-04 | 엘지이노텍 주식회사 | Phosphor plate and manufacturing method thereof |
JP6862110B2 (en) * | 2016-07-04 | 2021-04-21 | 株式会社小糸製作所 | Sintered body and light emitting device |
CN113416544B (en) * | 2021-06-29 | 2022-05-10 | 有研稀土新材料股份有限公司 | Garnet structure fluorescent powder and light-emitting device comprising same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4978886B2 (en) * | 2006-06-14 | 2012-07-18 | 日本電気硝子株式会社 | Phosphor composite material and phosphor composite member |
JP4855869B2 (en) * | 2006-08-25 | 2012-01-18 | 日亜化学工業株式会社 | Method for manufacturing light emitting device |
JP2008169348A (en) * | 2007-01-15 | 2008-07-24 | Nippon Electric Glass Co Ltd | Phosphor composite material |
JP5347354B2 (en) * | 2007-09-18 | 2013-11-20 | 日亜化学工業株式会社 | Fluorescent material molded body, method for manufacturing the same, and light emitting device |
JP2010108965A (en) * | 2008-10-28 | 2010-05-13 | Nippon Electric Glass Co Ltd | Wavelength conversion member |
JP5316232B2 (en) * | 2009-06-04 | 2013-10-16 | コニカミノルタ株式会社 | Method for producing phosphor-dispersed glass |
JP2011091068A (en) * | 2009-10-20 | 2011-05-06 | Sony Corp | Luminescent color conversion member and method of manufacturing the same, and light-emitting element |
-
2011
- 2011-06-21 JP JP2011136917A patent/JP5854367B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013001879A (en) | 2013-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5854367B2 (en) | Method for manufacturing phosphor composite member | |
US20130049575A1 (en) | Phosphor composite member, led device and method for manufacturing phosphor composite member | |
KR102271648B1 (en) | Wavelength conversion member and light emitting device using same | |
JP4765525B2 (en) | Luminescent color conversion member | |
JP6273799B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
JP2008169348A (en) | Phosphor composite material | |
JP6906277B2 (en) | Wavelength conversion member and light emitting device using it | |
JP2012185980A (en) | Wavelength conversion element, light source including the same and manufacturing method of the same | |
JP2007048864A (en) | Phosphor composite material | |
JP2012036367A (en) | Phosphor composite member | |
JP7212319B2 (en) | Wavelength conversion member and light emitting device | |
JP5505864B2 (en) | Manufacturing method of semiconductor light emitting device | |
US20240014357A1 (en) | Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device | |
JP5689243B2 (en) | Semiconductor light emitting device sealing material and method for manufacturing semiconductor light emitting device using the same | |
JP2012052061A (en) | Phosphor composite member | |
WO2012008306A1 (en) | Phosphor composite member, led device and method for manufacturing phosphor composite member | |
JP2012059893A (en) | Wavelength conversion member, light source, and manufacturing method for wavelength conversion member | |
JP2019019011A (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device | |
JP5713273B2 (en) | Joining material and member joining method using the same | |
JP6830751B2 (en) | Wavelength conversion member and light emitting device | |
JP7480472B2 (en) | Wavelength conversion member, manufacturing method thereof, and light emitting device | |
JP2013047155A (en) | Method of producing glass composite sheet, and glass composite sheet | |
JP7339609B2 (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device | |
CN111480098B (en) | Wavelength conversion member and light emitting device using same | |
JP7004235B2 (en) | Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140507 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5854367 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151129 |