JP4873361B2 - Luminescent color conversion member - Google Patents

Luminescent color conversion member Download PDF

Info

Publication number
JP4873361B2
JP4873361B2 JP2005343847A JP2005343847A JP4873361B2 JP 4873361 B2 JP4873361 B2 JP 4873361B2 JP 2005343847 A JP2005343847 A JP 2005343847A JP 2005343847 A JP2005343847 A JP 2005343847A JP 4873361 B2 JP4873361 B2 JP 4873361B2
Authority
JP
Japan
Prior art keywords
conversion member
color conversion
glass
powder
luminescent color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005343847A
Other languages
Japanese (ja)
Other versions
JP2006202726A (en
Inventor
芳夫 馬屋原
克 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2005343847A priority Critical patent/JP4873361B2/en
Publication of JP2006202726A publication Critical patent/JP2006202726A/en
Application granted granted Critical
Publication of JP4873361B2 publication Critical patent/JP4873361B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は紫外線光源、特に紫外LED素子から白色光、もしくは任意の色度をもつ光を得るために使用される発光色変換部材に関するものである。   The present invention relates to a luminescent color conversion member used for obtaining white light or light having an arbitrary chromaticity from an ultraviolet light source, particularly an ultraviolet LED element.

白色LEDは、近年、高効率、高信頼性の白色光源として注目され、一部が微小電力型光源として既に使用に供されている。この種のLEDは、青色LED素子を、黄色蛍光体と透明樹脂との混合物で被覆モールドしたもの、紫外LED素子を、青色(B)、緑(G)色、赤色(R)の三原色の蛍光体と透明樹脂との混合物でモールドしたもの等がある。   In recent years, white LEDs have attracted attention as high-efficiency and high-reliability white light sources, and some of them have already been used as micro-power type light sources. This type of LED has a blue LED element coated and molded with a mixture of a yellow phosphor and a transparent resin, and an ultraviolet LED element has three primary colors of blue (B), green (G), and red (R) fluorescence. And the like molded with a mixture of a body and a transparent resin.

特に紫外LEDとRGB蛍光体による白色LEDは演色性が高く、また蛍光体の配合比で発光色の調整ができるため、蛍光ランプに代わる照明として注目されている。   In particular, white LEDs using ultraviolet LEDs and RGB phosphors have high color rendering properties, and the emission color can be adjusted by the blending ratio of the phosphors, and thus are attracting attention as an alternative to fluorescent lamps.

しかしながら、透明樹脂によるモールドは、経年使用により水分が浸入してLEDの動作を阻害する。また紫外線を受けて樹脂が変色し、白色光の透過率を低下させたり、発光色の色調の変化をもたしたりするという問題がある。   However, the mold made of a transparent resin impedes the operation of the LED due to moisture entering with age. In addition, there is a problem that the resin is discolored by receiving ultraviolet rays, and the transmittance of white light is lowered, or the color tone of the emission color is changed.

このような樹脂モールドの問題点を解決する技術として、発光ダイオードの保護層を樹脂ではなく、ゾルゲルガラスで封止する方式が開示されている(例えば特許文献1)。しかしながら、この方式は、金属アルコキシドを出発原料とするため、材料コストが高くなるという問題がある。
特許第3307316号公報
As a technique for solving such problems of the resin mold, a method of sealing a protective layer of a light emitting diode with sol-gel glass instead of resin is disclosed (for example, Patent Document 1). However, since this method uses metal alkoxide as a starting material, there is a problem that the material cost increases.
Japanese Patent No. 3307316

本発明の目的は、化学的に安定で、かつ安価に作製可能な発光色変換部材及びその製造方法、並びにこれを用いた発光色変換方法を提供することである。   An object of the present invention is to provide a luminescent color conversion member that is chemically stable and can be produced at low cost, a method for manufacturing the same, and a luminescent color conversion method using the same.

本発明者は種々の実験を重ねた結果、紫外線透過率の高い酸化物ガラスと紫外線で励起する蛍光体を複合することにより、化学的に安定で、かつ安価に作製可能な発光色変換部材を提供できることを見出し、本発明を提案するに至った。   As a result of repeating various experiments, the present inventor has obtained a luminescent color conversion member that is chemically stable and can be manufactured at low cost by combining an oxide glass having a high ultraviolet transmittance and a phosphor excited by ultraviolet rays. The present invention has been found out and can be proposed.

即ち、本発明の発光色変換部材の製造方法は、FeおよびTiOの含有量の合計が10ppm以上かつ0.05質量%以下、特にTiOの含有量が0.02質量%以下である酸化物ガラス粉末と、350〜410nmの紫外線で励起する蛍光体粉末とを混合し、成形後、酸化物ガラスの軟化点±150℃の温度範囲で焼結させるにあたり、酸化物ガラス粉末として、SiO 2 −RO(R=Mg、Ca、Sr、Baから選ばれる1種以上)系ガラス粉末又はZnO−B 2 3 系ガラス粉末を使用し、蛍光体粉末として、カルコゲン化物蛍光体粉末又はハロゲン化物蛍光体粉末を使用することを特徴とする
That is, in the method for producing a luminescent color conversion member of the present invention, the total content of Fe 2 O 3 and TiO 2 is 10 ppm or more and 0.05% by mass or less, and particularly the content of TiO 2 is 0.02% by mass or less. When the oxide glass powder and the phosphor powder excited by ultraviolet rays of 350 to 410 nm are mixed, and after sintering , the oxide glass powder is sintered at a temperature range of ± 150 ° C. as an oxide glass powder. , SiO 2 —RO (one or more selected from R = Mg, Ca, Sr, Ba) glass powder or ZnO—B 2 O 3 glass powder, and as the phosphor powder, the chalcogenide phosphor powder or It is characterized by using a halide phosphor powder .

酸化物ガラス粉末としては、SiO−BaO系を使用できる。SiO−BaO系ガラス粉末としては、特に質量百分率でSiO 30〜70%、BaO 8〜40%、CaO 0〜25%、Al 0〜20%、B 0〜15%、ZnO 0〜10%含有するガラス粉末を使用することが好ましい。ZnO−B系ガラス粉末としては、特に質量百分率でZnO 5〜60%、B 5〜50%含有するガラス粉末を使用することが好ましい。
As the oxide glass powder, a SiO 2 —BaO system can be used. The SiO 2 -BaO-based glass powder, in particular SiO 2 30 to 70% in mass percentage, BaO 8~40%, CaO 0~25% , Al 2 O 3 0~20%, B 2 O 3 0~15% It is preferable to use glass powder containing 0-10% of ZnO. As the ZnO—B 2 O 3 -based glass powder, it is particularly preferable to use glass powder containing ZnO 5 to 60% and B 2 O 3 5 to 50% by mass percentage.

酸化物ガラス粉末と蛍光体粉末の混合割合は、質量比で99.99:0.01〜50:50の範囲にあることが好ましい。   The mixing ratio of the oxide glass powder and the phosphor powder is preferably in the range of 99.99: 0.01 to 50:50 by mass ratio.

本発明の発光色変換部材は、上記方法により作製されてなることを特徴とする。   The luminescent color conversion member of the present invention is manufactured by the above method.

また本発明の発光色変換部材は、FeおよびTiOの含有量の合計が10ppm以上かつ0.05質量%以下、特にTiOの含有量が0.02質量%以下である酸化物ガラス中に、350〜410nmの紫外線で励起する蛍光体粒子が分散してなり、酸化物ガラスが、SiO 2 −RO(R=Mg、Ca、Sr、Baから選ばれる1種以上)系ガラス又はZnO−B 2 3 系ガラスであり、蛍光体粒子が、カルコゲン化物蛍光体粒子又はハロゲン化物蛍光体粒子からなることを特徴とする。
Further, the luminescent color conversion member of the present invention is an oxide in which the total content of Fe 2 O 3 and TiO 2 is 10 ppm or more and 0.05% by mass or less, in particular, the content of TiO 2 is 0.02% by mass or less. in the glass, Ri Na dispersed phosphor particles excited by ultraviolet rays of 350~410nm is an oxide glass, SiO 2 -RO (R = Mg , Ca, Sr, 1 or more selected from Ba) based glass or a ZnO-B 2 O 3 based glass, phosphor particles, characterized in Rukoto a chalcogenide phosphor particles or halide phosphor particles.

酸化物ガラスは、SiO−BaO系ガラスが使用できる。SiO−BaO系ガラスとしては、特に質量百分率でSiO 30〜70%、BaO 8〜40%、CaO 0〜25%、Al 0〜20%、B 0〜15%、ZnO 0〜10%含有するガラスであることが好ましい。ZnO−B系ガラスとしては、特に質量百分率でZnO 5〜60%、B 5〜50%含有するガラスであることが好ましい。
Oxide glasses, SiO 2 -BaO-based glass can be used. As the SiO 2 —BaO-based glass, in particular, SiO 2 30 to 70%, BaO 8 to 40%, CaO 0 to 25%, Al 2 O 3 0 to 20%, B 2 O 3 0 to 15% by mass percentage, A glass containing 0 to 10% of ZnO is preferable. The ZnO—B 2 O 3 glass is particularly preferably a glass containing 5 to 60% ZnO and 5 to 50% B 2 O 3 by mass percentage.

酸化物ガラスと蛍光体粒子の含有割合は、質量比で99.99:0.01〜50:50の範囲にあることが好ましい。   The content ratio of the oxide glass and the phosphor particles is preferably in the range of 99.99: 0.01 to 50:50 by mass ratio.

本発明の発光色変換方法は、350〜410nmの波長の紫外線を波長変換部材に照射して、紫外線を可視光に変換する発光色変換方法において、上記発光色変換部材を使用することを特徴とする。   The luminescent color conversion method of the present invention is characterized by using the luminescent color conversion member in the luminescent color conversion method of irradiating a wavelength conversion member with ultraviolet rays having a wavelength of 350 to 410 nm to convert ultraviolet rays into visible light. To do.

本発明の発光色変換部材は、紫外透過率が高く、励起光を効率良く蛍光体に照射できるので発光効率が高い。また溶融ガラス粉末を使用して作製できるため、材料コストを低く抑えることができる。なお溶融ガラス粉末とは、ガラス原料を溶融し、成形して作製されるガラス粉末のことである。   The luminescent color conversion member of the present invention has a high ultraviolet transmittance and high luminous efficiency because it can efficiently irradiate the phosphor with excitation light. Moreover, since it can produce using molten glass powder, material cost can be restrained low. The molten glass powder is a glass powder produced by melting and molding a glass raw material.

また本発明の製造方法によれば、蛍光体粉末がガラスに溶け込まないため、得られる発光色変換部材の発光強度が低くなったり、ガラスが着色して発光色がずれたりすることがない。しかも溶融ガラス粉末を使用するため、安価に作製できる。   Further, according to the production method of the present invention, since the phosphor powder does not dissolve in the glass, the light emission intensity of the obtained light emission color conversion member is not lowered, or the light emission color is not shifted due to the coloration of the glass. Moreover, since molten glass powder is used, it can be produced at low cost.

また本発明の発光色変換方法によれば、照射した紫外線を効率よく所望の色度の光に変換することができる。   Moreover, according to the luminescent color conversion method of this invention, the irradiated ultraviolet-ray can be efficiently converted into the light of desired chromaticity.

本発明の発光色変換部材は、酸化物ガラス中に1種または複数種の蛍光体粒子が分散してなる蛍光体複合ガラス体であり、350〜410nmの紫外光を照射すると、蛍光体から出力する発光により任意の色度をもつ光を得ることができるものである。   The luminescent color conversion member of the present invention is a phosphor composite glass body in which one or more kinds of phosphor particles are dispersed in an oxide glass, and is output from the phosphor when irradiated with 350 to 410 nm ultraviolet light. Light having an arbitrary chromaticity can be obtained by the emitted light.

蛍光体としては350〜410nmに励起光があるカルコゲン化物蛍光体又はハロゲン化物蛍光体が用いられ。カルコゲン化物蛍光体としてYS、ZnS等の硫化物蛍光体、ハロゲン化物蛍光体としてSr(POCl等の塩化物蛍光体等が挙げられる。
The phosphor excitation light there Luke Rukogen halide phosphor or halide phosphor Ru used 350~410Nm. Ca Rukogen halide phosphor as Y 2 O 2 S, sulfide phosphor such as ZnS, Sr 5 (PO 4) 3 chloride phosphors such as Cl can be cited as halide phosphor.

酸化物ガラスには、蛍光体を安定に保持するための媒体としての役割がある。そして紫外線源から照射される励起光や蛍光体が発する蛍光を吸収しない材料であることが求められる。励起光及び蛍光の波長範囲でガラスに吸収があると、発光色変換部材としてのエネルギー変換効率が落ちてしまうからである。ところで350〜410nmの波長で透過率を低下させる成分として、FeおよびTiOが存在する。これらの成分が多くなるほどガラスが励起光を吸収遮蔽して、変換部材の発光効率を低下させてしまう。それゆえこの波長範囲における透過率を高く保つために、FeおよびTiOの含有量を少なくすることが望まれる。特にガラス原料を溶融し、成形して作製されるガラス粉末(溶融ガラス粉末)を用いる場合は、原料中或いは工程中からこれらの成分が不純物として混入し易いため、FeおよびTiOの含有量をより厳密に制限する必要がある。具体的にはこれらの成分の合計を0.05質量%以下に抑えることが重要である。なおこれらの合量は10ppm以上とすることが製造コスト低減の観点から好ましい。
The oxide glass has a role as a medium for stably holding the phosphor. And it is calculated | required that it is a material which does not absorb the excitation light irradiated from an ultraviolet-ray source, and the fluorescence which a fluorescent substance emits. This is because if the glass has absorption in the wavelength range of excitation light and fluorescence, the energy conversion efficiency as the luminescent color conversion member is lowered. Meanwhile as a component to lower the transmittance at a wavelength of 350~410nm, Fe 2 O 3 and TiO 2 are present. As these components increase, the glass absorbs and shields the excitation light, thereby reducing the light emission efficiency of the conversion member. Therefore, in order to keep the transmittance in this wavelength range high, it is desired to reduce the contents of Fe 2 O 3 and TiO 2 . In particular, when a glass powder (molten glass powder) produced by melting and molding a glass raw material is used, these components are likely to be mixed as impurities from the raw material or during the process, so that Fe 2 O 3 and TiO 2 It is necessary to limit the content more strictly. Specifically, the sum of these components is 0 . It is important to keep it at 05% by mass or less. In addition, it is preferable from a viewpoint of manufacturing cost reduction that these total amount shall be 10 ppm or more.

また本発明においては、ガラスの色調の観点からTiOの混入をより厳密に制限することが望ましい。各成分の含有量は、Feが0.05質量%以下、特に0.01質量%以下、TiO0.02質量%以下であることが好ましい。なお製造コスト低減の観点からFeの含有量を5ppm以上、TiOの含有量を5ppm以上とすることが好ましい。
In the present invention, it is desirable to limit in terms of glass shades contamination of the TiO 2 more closely. The content of each component, Fe 2 O 3 is 0.05 mass% or less, particularly 0.01 wt% or less, it is preferred TiO 2 is hereinafter 0.02 wt%. From the viewpoint of reducing the manufacturing cost, it is preferable to set the content of Fe 2 O 3 to 5 ppm or more and the content of TiO 2 to 5 ppm or more.

またFe23やTiO2を含有していると、励起された電子のエネルギーがFeイオンやTiイオンの3d軌道に吸収されてしまい、蛍光自体を生じさせなくするという悪影響も懸念される。この観点から、Fe23やTiO2のみならず、3d軌道が埋まりきっていない他の原子番号21〜28の範囲にある遷移元素(Sc、V、Cr、Mn、Co、Ni)の酸化物についても極力含有しないことが好ましい。具体的にはFe23及びTiO2を除く原子番号21〜28の遷移元素(Sc、V、Cr、Mn、Co、Ni)の酸化物は、合量で0.5質量%以下、特に0.1質量%以下に制限することが望ましい。またFe23やTiO2と同様の理由から、これらの遷移元素の含有量を合量で10ppm以上とすることが好ましい。 If Fe 2 O 3 or TiO 2 is contained, the energy of the excited electrons is absorbed by the 3d orbitals of Fe ions and Ti ions, and there is a concern that the fluorescent light itself will not be generated. From this point of view, not only Fe 2 O 3 and TiO 2, but also oxidation of transition elements (Sc, V, Cr, Mn, Co, Ni) in the range of other atomic numbers 21 to 28 in which the 3d orbitals are not completely filled. It is preferable not to contain as much as possible. Specifically, the oxides of the transition elements (Sc, V, Cr, Mn, Co, Ni) of atomic numbers 21 to 28 excluding Fe 2 O 3 and TiO 2 are 0.5% by mass or less in total, especially It is desirable to limit it to 0.1% by mass or less. Further, for the same reason as Fe 2 O 3 and TiO 2 , the total content of these transition elements is preferably 10 ppm or more.

またガラスは、SiO−BaO系等のSiO−RO(R=Mg、Ca、Sr、Baから選ばれる1種以上)系ガラス又はZnO−B系ガラス用いられる。つまりカルコゲン化物蛍光体やハロゲン化物蛍光体をガラスと混合して焼成するとガスが発生して焼結体が発泡したり、ガラスが変色したりするという問題を起こしやすい。例えば硫化物蛍光体の場合はイオウガスが、塩化物蛍光体の場合には塩素ガスが発生する。このような場合、SiO−BaO系ガラス等のSiO−RO系ガラスや、ZnO−B系ガラスを使用すると発泡や変色が起こらず、蛍光体の化学変化を抑制することができる。
The glass, SiO 2 -RO of S iO 2 -BaO-based or the like based glass or ZnO-B 2 O 3 based glass (R = Mg, Ca, Sr , 1 or more selected from Ba) is used. That is, when a chalcogenide phosphor or a halide phosphor is mixed with glass and fired, a gas is generated and the sintered body is foamed or the glass is likely to be discolored. For example, sulfur gas is generated in the case of a sulfide phosphor, and chlorine gas is generated in the case of a chloride phosphor. In such a case, when SiO 2 —RO glass such as SiO 2 —BaO glass or ZnO—B 2 O 3 glass is used, foaming or discoloration does not occur, and the chemical change of the phosphor can be suppressed. .

SiO2−BaO系ガラスの組成範囲は、質量%でSiO2 30〜70%、BaO 8〜40%、CaO 0〜25%、Al23 0〜20%、B23 0〜15%、ZnO 0〜10%であることが好ましい。上記範囲を決定した理由は以下の通りである。 Composition range of SiO 2 -BaO based glass, SiO 2 30 to 70% by mass%, BaO 8~40%, CaO 0~25 %, Al 2 O 3 0~20%, B 2 O 3 0~15% ZnO is preferably 0 to 10%. The reason for determining the above range is as follows.

SiO2はガラスのネットワークを形成する。30質量%よりも少ないと化学的耐久性が悪くなり、70質量%よりも多いと焼結温度が高温になり、蛍光体が劣化してしまう。SiO2のより好ましい範囲は40〜60%である。 SiO 2 forms a glass network. When the amount is less than 30% by mass, the chemical durability is deteriorated. When the amount is more than 70% by mass, the sintering temperature becomes high, and the phosphor is deteriorated. A more preferable range of SiO 2 is 40 to 60%.

BaOはガラスの溶融温度を低下させるとともに、蛍光体との反応を抑制する効果がある。8質量%よりも少ないと蛍光体との反応抑制効果が弱くなり、40質量%よりも多いと化学的耐久性が悪くなってしまう。BaOのより好ましい範囲は10〜35%である。   BaO has the effect of reducing the melting temperature of the glass and suppressing the reaction with the phosphor. When the amount is less than 8% by mass, the effect of suppressing the reaction with the phosphor is weakened, and when it exceeds 40% by mass, the chemical durability is deteriorated. A more preferable range of BaO is 10 to 35%.

溶融性を改善するために25質量%までのCaO、15質量%までのB23、10質量%までのZnOを加えても良い。これらの成分が上限を超えると化学的耐久性が悪くなる。上記成分のより好ましい範囲は、CaO 3〜20%、B23 2〜10%、ZnO 1〜7%である。 In order to improve the meltability, up to 25% by weight of CaO, up to 15% by weight of B 2 O 3 and up to 10% by weight of ZnO may be added. When these components exceed the upper limit, chemical durability is deteriorated. A more preferred range of the above components, CaO 3~20%, B 2 O 3 2~10%, is 1 to 7% ZnO.

化学的耐久性を向上させる目的で、20質量%までのAl23を加えることができる。しかし、上限を超えるとガラスの溶融性を損なってしまう。Al23のより好ましい範囲は2〜15%である。 In order to improve the chemical durability, up to 20% by mass of Al 2 O 3 can be added. However, if the upper limit is exceeded, the meltability of the glass is impaired. A more preferable range of Al 2 O 3 is 2 to 15%.

また上記成分以外にも、本発明の主旨を損なわない範囲で種々の成分を添加することができる。例えばアルカリ金属酸化物、CaO、BaO以外のアルカリ土類金属酸化物、P25、La23等を添加してもよい。 In addition to the above components, various components can be added as long as the gist of the present invention is not impaired. For example, alkali metal oxides, alkaline earth metal oxides other than CaO and BaO, P 2 O 5 , La 2 O 3 and the like may be added.

ZnO−B23系ガラスの組成範囲は、質量%でZnO5〜60%、B23 5〜50%SiO2 0〜30%であることが好ましい。上記範囲を決定した理由は以下の通りである。 The composition range of the ZnO—B 2 O 3 glass is preferably 5 to 60% ZnO and 5 to 50% B 2 O 3 to 30% SiO 2 to 30% by mass. The reason for determining the above range is as follows.

ZnOはガラスのネットワ−クを形成する。5質量%よりも少ないと焼結温度が高温になり、60質量%よりも多いと化学的耐久性が悪くなってしまう。ZnOの好ましい範囲は20〜50%である。   ZnO forms a glass network. When it is less than 5% by mass, the sintering temperature becomes high, and when it is more than 60% by mass, the chemical durability is deteriorated. The preferable range of ZnO is 20 to 50%.

23はガラスのネットワークを形成する。5質量%よりも少ないと焼結温度が高温になり、50質量%よりも多いと化学的耐久性が悪くなってしまう。B23の好ましい範囲は30〜48%である。 B 2 O 3 forms a glass network. When it is less than 5% by mass, the sintering temperature becomes high, and when it is more than 50% by mass, the chemical durability is deteriorated. A preferable range of B 2 O 3 is 30 to 48%.

SiO2はガラスの耐久性を向上さる成分であるが、30質量%を超えると焼結温度が高温になる。SiO2の好ましい範囲は2〜15%である。 SiO 2 is a component that improves the durability of the glass, but if it exceeds 30% by mass, the sintering temperature becomes high. The preferred range for SiO 2 is 2-15%.

また上記成分以外にも、本発明の主旨を損なわない範囲で種々の成分を添加することができる。例えばアルカリ金属酸化物、CaO、BaO以外のアルカリ土類金属酸化物、P25、La23等を添加してもよい。 In addition to the above components, various components can be added as long as the gist of the present invention is not impaired. For example, alkali metal oxides, alkaline earth metal oxides other than CaO and BaO, P 2 O 5 , La 2 O 3 and the like may be added.

発光色変換部材のエネルギー変換効率(励起光と蛍光との強度比)や発光効率は、ガラス中に分散した蛍光体粒子の種類や含有量、及び変換部材の厚さによって変化する。蛍光体の含有量と変換部材の厚さは、発光効率が最適になるように調整すればよいが、蛍光体が多くなりすぎると焼結しにくくなったり、励起光が効率良く蛍光体に照射されにくくなったりするなどの問題が生じる。また少なすぎると十分に発光させることが難しくなる。それゆえガラスと蛍光体の含有割合は、99.99:0.01〜50:50、特に99:1〜60:40の範囲で調整することが望ましい。   The energy conversion efficiency (intensity ratio between excitation light and fluorescence) and the light emission efficiency of the luminescent color conversion member vary depending on the type and content of phosphor particles dispersed in the glass and the thickness of the conversion member. The phosphor content and the thickness of the conversion member may be adjusted so as to optimize the light emission efficiency. However, if the phosphor is too much, it becomes difficult to sinter or the phosphor is efficiently irradiated with excitation light. The problem that it becomes difficult to be done arises. On the other hand, if the amount is too small, it becomes difficult to emit light sufficiently. Therefore, it is desirable to adjust the content ratio of the glass and the phosphor in the range of 99.99: 0.01 to 50:50, particularly 99: 1 to 60:40.

次に本発明の発光色変換部材を製造する好適な方法を説明する。   Next, a preferred method for producing the luminescent color conversion member of the present invention will be described.

まずFeおよびTiOの含有量の合計が0.05質量%以下の酸化物ガラス粉末と、350〜410nmの紫外線で励起する蛍光体粉末を用意する。
First, an oxide glass powder having a total content of Fe 2 O 3 and TiO 2 of 0.05 % by mass or less and a phosphor powder that is excited by ultraviolet rays of 350 to 410 nm are prepared.

酸化物ガラス粉末としては、上述したように、SiO2−BaO系ガラス粉末等のSiO2−RO(R=Mg、Ca、Sr、Ba、Znから選ばれる1種以上)系ガラス粉末や、ZnO−B23系ガラスを用いることができる。SiO2−BaO系ガラス粉末としては、特に質量百分率でSiO2 30〜70%、BaO 8〜40%、CaO 0〜25%、Al23 0〜20%、B23 0〜15%、ZnO 0〜10%含有するガラス粉末を使用することが好ましい。またZnO−B23系ガラス粉末としては、特に質量百分率でZnO 5〜60%、B23 5〜50%、SiO2 0〜30%含有するガラス粉末を用いることができる。なおガラス粉末の作製には、ガラス原料を溶融し、成形して作製する溶融法を利用することがコスト面で有利である。ただしガラス原料及び工程中からのFe23およびTiO2の混入が極力起こらないように配慮することが重要である。 As described above, as the oxide glass powder, SiO 2 —RO (one or more selected from R = Mg, Ca, Sr, Ba, Zn) glass powder such as SiO 2 —BaO glass powder, ZnO, etc. -B 2 O 3 based glass can be used. The SiO 2 -BaO-based glass powder, in particular SiO 2 30 to 70% in mass percentage, BaO 8~40%, CaO 0~25% , Al 2 O 3 0~20%, B 2 O 3 0~15% It is preferable to use glass powder containing 0-10% of ZnO. As the ZnO-B 2 O 3 based glass powder, in particular 5 to 60% ZnO in percent by mass, B 2 O 3 5~50%, it is possible to use a glass powder containing SiO 2 0 to 30%. For the production of glass powder, it is advantageous in terms of cost to use a melting method in which a glass raw material is melted and molded. However, it is important to consider so that mixing of Fe 2 O 3 and TiO 2 from the glass raw material and the process does not occur as much as possible.

蛍光体粉末としては、カルコゲン化物蛍光体粉末又はハロゲン化物蛍光体粉末使用されるこの合、焼成時にガスが発生したり、ガラスが変色したりしないように、ガラス粉末にSiO−BaO系ガラス粉末やZnO−B系ガラス粉末選択されるThe phosphor powder, chalcogenide phosphor powder or halide phosphor powder are used. In this case, gas may be generated during firing, so that the glass does not discolor, SiO 2 -BaO-based glass powder, ZnO-B 2 O 3 based glass powder is selected in the glass powder.

次に酸化物ガラス粉末と蛍光体粉末を混合する。混合割合は、蛍光体粉末の種類や含有量、及び変換部材の厚さによって適宜調整すればよいが、何れにしても質量比で99.99:0.01〜50:50の範囲内で調整することが好ましい。   Next, the oxide glass powder and the phosphor powder are mixed. The mixing ratio may be appropriately adjusted depending on the type and content of the phosphor powder and the thickness of the conversion member, but in any case, the mixing ratio is adjusted within the range of 99.99: 0.01 to 50:50. It is preferable to do.

続いて混合粉末を、酸化物ガラスの軟化点±150℃、特に軟化点±100℃の温度範囲で焼結させることが望ましい。軟化点−150℃より低い温度ではガラスが流動しにくく、緻密な焼結体を得ることが難しくなる。軟化点+150℃より高い温度では蛍光体がガラス中に溶け出し、発光が弱くなったりガラスが変色したりするおそれがある。   Subsequently, it is desirable to sinter the mixed powder in the temperature range of the softening point of the oxide glass ± 150 ° C., particularly the softening point ± 100 ° C. At a temperature lower than the softening point of −150 ° C., the glass hardly flows and it becomes difficult to obtain a dense sintered body. If the temperature is higher than the softening point + 150 ° C., the phosphor may be dissolved in the glass, and the light emission may be weakened or the glass may be discolored.

なお焼結に先立ち、混合粉末を所望の形状に成形等行っておくことが望ましい。成形等を行うに当たっては、種々の方法が採用できる。例えば複雑な形状の場合はプレス成型、板状の形状の場合はグリーンシート成形すればよい。またガラス基板などの表面に膜として形成する場合は、混合粉末をペースト状にして印刷した後、焼成すればよい。   Prior to sintering, it is desirable to form the mixed powder into a desired shape. Various methods can be employed for forming and the like. For example, press molding may be used for complicated shapes, and green sheet molding may be used for plate shapes. Moreover, when forming as a film | membrane on surfaces, such as a glass substrate, what is necessary is just to bake, after printing mixed powder into paste form.

このようにして、ガラス中に蛍光体粒子が分散してなる発光色変換部材を作製することができる。   In this way, it is possible to produce a luminescent color conversion member in which phosphor particles are dispersed in glass.

続いて発光色変換部材の使用方法を説明する。   Then, the usage method of a luminescent color conversion member is demonstrated.

まず350〜410nmの波長の紫外線を照射できる紫外線源を用意する。紫外線源としては紫外LEDが好適である。また発光色変換部材を、紫外線源からの紫外線を照射可能な位置に設置する。   First, an ultraviolet ray source capable of irradiating ultraviolet rays having a wavelength of 350 to 410 nm is prepared. An ultraviolet LED is suitable as the ultraviolet source. Further, the luminescent color conversion member is installed at a position where it can be irradiated with ultraviolet rays from an ultraviolet ray source.

次いで、紫外線源を駆動させて、350〜410nmの波長の紫外線を発光色変換部材に照射する。   Next, the ultraviolet ray source is driven to irradiate the emission color conversion member with ultraviolet rays having a wavelength of 350 to 410 nm.

発光色変換部材に紫外線が照射されると、紫外線はガラス中で減衰されることなく蛍光体粒子へ到達する。蛍光体粒子は紫外線のエネルギーを変換して蛍光を発する。発せられた蛍光はガラス中を減衰することなく透過し、部材外へと放射される。   When the emission color conversion member is irradiated with ultraviolet rays, the ultraviolet rays reach the phosphor particles without being attenuated in the glass. The phosphor particles emit fluorescence by converting the energy of ultraviolet rays. The emitted fluorescence passes through the glass without being attenuated and is emitted to the outside of the member.

発光色変換部材から放射される光の色調は、蛍光体の種類及び割合で決定される。例えば白色光を得たい場合には、紫外線を励起光とする青色(B)、緑(G)色、赤色(R)の三原色の蛍光体を含有させた発光色変換部材を使用すればよい。   The color tone of the light emitted from the luminescent color conversion member is determined by the type and ratio of the phosphor. For example, when it is desired to obtain white light, an emission color conversion member containing phosphors of three primary colors of blue (B), green (G), and red (R) using ultraviolet light as excitation light may be used.

以下に本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

表1はSiO2−BaO系ガラス粉末を用いた本発明の実施例(試料No.1、3、5、7)及び比較例(試料No.2、4、6、8)を示している。 Table 1 shows examples of the present invention (sample Nos. 1, 3, 5, and 7) and comparative examples (samples No. 2, 4, 6, and 8) using SiO 2 —BaO-based glass powder.

まず表1に示す組成となるように各成分を秤量、混合し、白金坩堝において表1に示す溶融温度で1時間溶融してガラス化し、フィルム状に成形した。フィルム状ガラスをボ−ルミルで粉砕した後、325メッシュの篩を通して分級し、酸化物ガラス粉末を得た。なおガラス中に含まれるFe23及びTiO2の含有量はICP−AES分析にて確認した。 First, each component was weighed and mixed so as to have the composition shown in Table 1, and melted at a melting temperature shown in Table 1 for 1 hour in a platinum crucible to be vitrified and formed into a film. The film-like glass was pulverized with a ball mill and then classified through a 325 mesh sieve to obtain an oxide glass powder. The contents of Fe 2 O 3 and TiO 2 contained in the glass were confirmed by ICP-AES analysis.

続いてガラス粉末と蛍光体粉末を表1に示した配合比で調合し、少量の樹脂バインダ−を添加して混合した後、金型で加圧成型して直径1cmのボタン状予備成型体を作製した。さらに表1に示す焼結温度で予備成型体を焼結した後、加工し、直径8mm、厚さ0.1mmの円盤状発光色変換部材を得た。   Subsequently, glass powder and phosphor powder were prepared in the mixing ratio shown in Table 1, a small amount of resin binder was added and mixed, and then pressure-molded with a mold to form a button-shaped preform having a diameter of 1 cm. Produced. Further, the preform was sintered at the sintering temperature shown in Table 1 and then processed to obtain a disk-like light emitting color conversion member having a diameter of 8 mm and a thickness of 0.1 mm.

得られた変換部材について分光スペクトルを測定し、発光効率を計算より求めた。   A spectral spectrum was measured for the obtained conversion member, and luminous efficiency was determined by calculation.

その結果、表1から明らかなように実施例である試料No.1、3、5、7では発光効率が3.5lm/W以上であるが、比較である試料No.2、4、6、8では発光効率が0.7lm/W以下となった。
As a result, the sample is a real施例As apparent from Table 1 No. Although emission efficiency at 1, 3, 5, 7 is 3.5lm / W or more, and Comparative Sample No. In 2, 4, 6, and 8, the luminous efficiency was 0.7 lm / W or less.

なお軟化点は示唆熱分析装置により求めた。   The softening point was determined by a suggested thermal analyzer.

発光効率は、発光の全光束を、積分球を用いて求め、標準比視感度を掛け合わせて光源の電力で除して算出した。   The luminous efficiency was calculated by calculating the total luminous flux using an integrating sphere, multiplying it by the standard relative luminous sensitivity, and dividing by the power of the light source.

表2はZnO−B23系ガラス粉末を用いた本発明の実施例(試料No.9、11)及び比較例(試料No.10、12)を示している。 Table 2 shows examples (sample Nos. 9 and 11) and comparative examples (samples No. 10 and 12) of the present invention using ZnO—B 2 O 3 glass powder.

実施例1と同様にして変換部材を作製し、同様の方法で分光スペクトルを測定し、発光効率を計算より求めた。その結果、表2から明らかなように実施例である試料No.9、11では発光効率が4lm/W以上であるが、比較例である試料No.10、12では発光効率が1lm/W以下となった。 A conversion member was prepared in the same manner as in Example 1, and the spectrum was measured by the same method, and the luminous efficiency was determined by calculation. As a result, the sample is a real施例As apparent from Table 2 No. Although 9,11 In the light-emitting efficiency is 4lm / W or more, the ratio Comparative Examples Sample No. In 10 and 12, the luminous efficiency was 1 lm / W or less.

Claims (14)

Fe23およびTiO2の含有量の合計が10ppm以上かつ0.05質量%以下である酸化物ガラス粉末と、350〜410nmの紫外線で励起する蛍光体粉末とを混合し、酸化物ガラスの軟化点±150℃の温度範囲で焼結させる発光色変換部材の製造方法であって、酸化物ガラス粉末として、SiO 2 −RO(R=Mg、Ca、Sr、Baから選ばれる1種以上)系ガラス粉末又はZnO−B 2 3 系ガラス粉末を使用し、蛍光体粉末として、カルコゲン化物蛍光体粉末又はハロゲン化物蛍光体粉末を使用することを特徴とする製造方法An oxide glass powder having a total content of Fe 2 O 3 and TiO 2 of not less than 10 ppm and not more than 0.05 mass% is mixed with phosphor powder excited by ultraviolet rays of 350 to 410 nm, in the temperature range of the softening point ± 0.99 ° C. a method of manufacturing a light emission color conversion member Ru by sintering, as the oxide glass powder, SiO 2 -RO (R = Mg , Ca, Sr, 1 kind selected from Ba As described above , a production method comprising using a system glass powder or a ZnO—B 2 O 3 system glass powder, and using a chalcogenide phosphor powder or a halide phosphor powder as the phosphor powder . TiO2の含有量が0.02質量%以下である酸化物ガラス粉末を使用することを特徴とする請求項1の発光色変換部材の製造方法。 The method for producing a luminescent color conversion member according to claim 1, wherein an oxide glass powder having a TiO 2 content of 0.02 mass% or less is used. 酸化物ガラス粉末として、SiO2−BaO系ガラス粉末を使用することを特徴とする請求項1又は2の発光色変換部材の製造方法。 The method for producing a luminescent color conversion member according to claim 1 or 2 , wherein SiO 2 -BaO glass powder is used as the oxide glass powder. 酸化物ガラス粉末として、質量百分率でSiO2 30〜70%、BaO 8〜40%、CaO 0〜25%、Al23 0〜20%、 0〜15%、ZnO 0〜10%含有するガラス粉末を使用することを特徴とする請求項1〜の何れかの発光色変換部材の製造方法。 As the oxide glass powder, SiO 2 30 to 70% in mass percentage, BaO 8~40%, CaO 0~25% , Al 2 O 3 0~20%, 0~15%, glass containing 0% ZnO The method for producing a luminescent color conversion member according to any one of claims 1 to 3 , wherein powder is used. 酸化物ガラス粉末として、質量百分率でZnO 5〜60%、B23 5〜50%含有するガラス粉末を使用することを特徴とする請求項1又は2の発光色変換部材の製造方法。 As the oxide glass powder, 5 to 60% ZnO in percent by mass, B 2 O 3 process according to claim 1 or 2 emission color converting member, characterized by using a glass powder containing 5-50%. 酸化物ガラス粉末と蛍光体粉末の混合割合が、質量比で99.99:0.01〜50:50の範囲にあることを特徴とする請求項1〜の何れかの発光色変換部材の製造方法。 The mixing ratio of the oxide glass powder and the phosphor powder is in the range of 99.99: 0.01 to 50:50 by mass ratio, The luminescent color conversion member according to any one of claims 1 to 5 , Production method. 請求項1〜の何れかの方法により作製されてなることを特徴とする発光色変換部材。 Emitting color conversion member, characterized by comprising produced by the method of any of claims 1-6. Fe23およびTiO2の含有量の合計が10ppm以上かつ0.05質量%以下である酸化物ガラス中に、350〜410nmの紫外線で励起する蛍光体粒子が分散してなる発光色変換部材であって、酸化物ガラスが、SiO 2 −RO(R=Mg、Ca、Sr、Baから選ばれる1種以上)系ガラス又はZnO−B 2 3 系ガラスであり、蛍光体粒子が、カルコゲン化物蛍光体粒子又はハロゲン化物蛍光体粒子からなることを特徴とする発光色変換部材Fe 2 O 3 and the total content of TiO 2 is 10ppm or more and the oxide glass is 0.05 mass% or less, light emission color phosphor particles excited with ultraviolet rays of 350~410nm is ing dispersed The conversion member , wherein the oxide glass is SiO 2 —RO (one or more selected from R = Mg, Ca, Sr, Ba) glass or ZnO—B 2 O 3 glass, and the phosphor particles are An emission color conversion member comprising chalcogenide phosphor particles or halide phosphor particles . TiO2の含有量が0.02質量%以下である酸化物ガラス中に蛍光体粒子が分散してなることを特徴とする請求項の発光色変換部材。 The luminescent color conversion member according to claim 8 , wherein phosphor particles are dispersed in an oxide glass having a TiO 2 content of 0.02% by mass or less. 酸化物ガラスが、SiO2−BaO系ガラスであることを特徴とする請求項8又は9の発光色変換部材。 The luminescent color conversion member according to claim 8 or 9 , wherein the oxide glass is SiO 2 —BaO-based glass. 酸化物ガラスが、質量百分率でSiO2 30〜70%、BaO 8〜40%、CaO 0〜25%、Al23 0〜20%、B23 0〜15%、ZnO 0〜10%含有するガラスであることを特徴とする請求項10の何れかの発光色変換部材。 Oxide glass, SiO 2 30 to 70% in mass percentage, BaO 8~40%, CaO 0~25% , Al 2 O 3 0~20%, B 2 O 3 0~15%, ZnO 0~10% The luminescent color conversion member according to any one of claims 8 to 10 , wherein the luminescent color conversion member is glass. 酸化物ガラスが、質量百分率でZnO 5〜60%、B23 5〜50%含有するガラス粉末を使用することを特徴とする請求項8又は9の発光色変換部材。 10. The luminescent color conversion member according to claim 8 , wherein the oxide glass uses glass powder containing 5 to 60% ZnO and 5 to 50% B 2 O 3 by mass percentage. 酸化物ガラスと蛍光体粒子の含有割合が、質量比で99.99:0.01〜50:50の範囲にあることを特徴とする請求項12の何れかの発光色変換部材。 The content of oxide glass and the phosphor particles, the mass ratio 99.99: 0.01 to 50: one of the light emitting color conversion member according to claim 8-12, characterized in that in the range of 50. 350〜410nmの波長の紫外線を波長変換部材に照射して、紫外線を可視光に変換する発光色変換方法において、請求項13の何れかの発光色変換部材を使用することを特徴とする発光色変換方法。
In the luminescent color conversion method of irradiating a wavelength conversion member with ultraviolet rays having a wavelength of 350 to 410 nm to convert ultraviolet rays into visible light, the luminescent color conversion member according to any one of claims 8 to 13 is used. Luminescent color conversion method.
JP2005343847A 2004-12-20 2005-11-29 Luminescent color conversion member Expired - Fee Related JP4873361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343847A JP4873361B2 (en) 2004-12-20 2005-11-29 Luminescent color conversion member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004367877 2004-12-20
JP2004367877 2004-12-20
JP2005343847A JP4873361B2 (en) 2004-12-20 2005-11-29 Luminescent color conversion member

Publications (2)

Publication Number Publication Date
JP2006202726A JP2006202726A (en) 2006-08-03
JP4873361B2 true JP4873361B2 (en) 2012-02-08

Family

ID=36960517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343847A Expired - Fee Related JP4873361B2 (en) 2004-12-20 2005-11-29 Luminescent color conversion member

Country Status (1)

Country Link
JP (1) JP4873361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730975A (en) * 2012-06-20 2012-10-17 武汉理工大学 Glass-ceramic and preparation method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895541B2 (en) * 2005-07-08 2012-03-14 シャープ株式会社 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
JP4855869B2 (en) * 2006-08-25 2012-01-18 日亜化学工業株式会社 Method for manufacturing light emitting device
JP4905009B2 (en) 2006-09-12 2012-03-28 豊田合成株式会社 Method for manufacturing light emitting device
US7963817B2 (en) 2007-09-18 2011-06-21 Nichia Corporation Phosphor-containing molded member, method of manufacturing the same, and light emitting device having the same
JP5163073B2 (en) * 2007-11-22 2013-03-13 旭硝子株式会社 Manufacturing method of glass-coated light emitting device
JP2009270091A (en) * 2008-05-06 2009-11-19 Mitsubishi Chemicals Corp Fluorescent glass, method of manufacturing fluorescent glass, semiconductor light-emitting device, and method of manufacturing semiconductor light-emitting device
JP2011187798A (en) * 2010-03-10 2011-09-22 Nippon Electric Glass Co Ltd Wavelength converting member and optical device using the same
JP2010248530A (en) * 2010-07-28 2010-11-04 Sharp Corp Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member
JP2010261048A (en) * 2010-07-28 2010-11-18 Sharp Corp Light-emitting device and its manufacturing method
KR101753185B1 (en) * 2015-06-19 2017-07-04 주식회사 베이스 Glass with high refractivity and alkali-free and color conversion materials and led package
JP6906277B2 (en) * 2016-06-27 2021-07-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it
JP6880528B2 (en) * 2016-06-27 2021-06-02 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it
KR102215135B1 (en) * 2019-04-12 2021-02-10 주식회사 베이스 Glass composition and color conversion glass comprising it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311254B2 (en) * 1996-09-27 2002-08-05 伊藤忠セラテック株式会社 Inorganic artificial ceramic granular product having luminous fluorescent properties and method for producing the same
JP4158012B2 (en) * 2002-03-06 2008-10-01 日本電気硝子株式会社 Luminescent color conversion member
JP4442101B2 (en) * 2003-03-14 2010-03-31 日亜化学工業株式会社 Oxynitride phosphor and light emitting device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730975A (en) * 2012-06-20 2012-10-17 武汉理工大学 Glass-ceramic and preparation method thereof
CN102730975B (en) * 2012-06-20 2015-04-08 武汉理工大学 Glass-ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP2006202726A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4873361B2 (en) Luminescent color conversion member
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
KR101806054B1 (en) Phosphor-dispersed glass
JP5483795B2 (en) Luminescent color conversion material and luminescent color conversion member
JP5242905B2 (en) Luminescent color conversion member manufacturing method and luminescent color conversion member
JP6311715B2 (en) Phosphor-dispersed glass and method for producing the same
JP6425001B2 (en) Wavelength conversion material, wavelength conversion member and light emitting device
WO2011013505A1 (en) Phosphor-dispersed glass, and process for production thereof
JP2008021868A (en) Phosphor composite member
JP2008143978A (en) Luminescent color converting material
KR101785798B1 (en) Phosphor-dispersed glass
JP6222452B2 (en) Wavelength conversion member and light emitting device
JP5190680B2 (en) Luminescent color conversion member
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP5257854B2 (en) Luminescent color conversion member
JP6004250B2 (en) Wavelength conversion member and light emitting device
JP2016084269A (en) Phosphor-dispersed glass
JP5240656B2 (en) Luminescent color conversion member
JP5368785B2 (en) Luminescent color conversion member
JP2019163208A (en) Raw material powder for wavelength conversion member
JP6830751B2 (en) Wavelength conversion member and light emitting device
JP2018131380A (en) Phosphor-dispersed glass
JP2008208380A (en) Luminescent color-converting member
JP7382013B2 (en) Wavelength conversion member and light emitting device using the same
JP2013030536A (en) Light-emitting color conversion member and light-emitting device using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111113

LAPS Cancellation because of no payment of annual fees