JP2011122067A - Wavelength conversion member and method for manufacturing the same - Google Patents

Wavelength conversion member and method for manufacturing the same Download PDF

Info

Publication number
JP2011122067A
JP2011122067A JP2009281125A JP2009281125A JP2011122067A JP 2011122067 A JP2011122067 A JP 2011122067A JP 2009281125 A JP2009281125 A JP 2009281125A JP 2009281125 A JP2009281125 A JP 2009281125A JP 2011122067 A JP2011122067 A JP 2011122067A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
glass
inorganic phosphor
phosphor powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009281125A
Other languages
Japanese (ja)
Other versions
JP5532508B2 (en
Inventor
Tadahito Furuyama
忠仁 古山
Yoshio Mayahara
芳夫 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009281125A priority Critical patent/JP5532508B2/en
Publication of JP2011122067A publication Critical patent/JP2011122067A/en
Application granted granted Critical
Publication of JP5532508B2 publication Critical patent/JP5532508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength conversion member in which inorganic phosphor powder is dispersed in a glass matrix, and which can efficiently transmit excitation light or emission light from the inorganic phosphor powder, and provides a high light-emitting efficiency. <P>SOLUTION: The wavelength conversion member in which inorganic phosphor powder is dispersed in a glass matrix has a difference in Vickers hardness (ΔHv(0.05)) between the inorganic phosphor powder and the glass of ≥300, and has surface roughness Ra of ≤0.1 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、白色LED等の構成部材として用いられる波長変換部材およびその製造方法に関するものである。   The present invention relates to a wavelength conversion member used as a constituent member such as a white LED and a method for manufacturing the same.

近年、白色LEDの開発が盛んになっている。白色LEDは、例えば青色または紫外の励起光を発するLEDと、無機蛍光体粉末が樹脂等のマトリクス中に分散されてなる波長変換部材から構成されている。無機蛍光体粉末はLEDからの励起光を受けて励起光とは異なる波長の光(蛍光)を発する。一方、LEDからの励起光のうち一部は波長変換に寄与せずに波長変換部材を透過する。これらの光が混ざり合って白色光が得られる。   In recent years, white LEDs have been actively developed. The white LED is composed of, for example, an LED that emits blue or ultraviolet excitation light, and a wavelength conversion member in which inorganic phosphor powder is dispersed in a matrix such as a resin. The inorganic phosphor powder receives the excitation light from the LED and emits light (fluorescence) having a wavelength different from that of the excitation light. On the other hand, a part of the excitation light from the LED does not contribute to wavelength conversion and passes through the wavelength conversion member. These lights are mixed to obtain white light.

白色LEDは白熱灯や蛍光灯に比べ消費電力が低く寿命が長いことを特徴としており、携帯電話やデジタルカメラ等のバックライトとして使用されつつある。今後は、白熱灯や蛍光灯に替わる次世代の光源として、照明用途への応用が期待されている。   White LEDs are characterized by low power consumption and long life compared to incandescent lamps and fluorescent lamps, and are being used as backlights for mobile phones and digital cameras. In the future, as a next-generation light source that replaces incandescent and fluorescent lamps, it is expected to be applied to lighting applications.

ところで、白色LEDは用途によってはますます高い輝度(ハイパワー化)が要求されている。従来のように樹脂マトリクス中に無機蛍光体粉末を分散させる方法では、LEDからの熱によって樹脂マトリクスが変色し、長期間使用すると輝度が低下するという問題があった。また、無機蛍光体粉末を含有する樹脂をLED上に塗布する際、厚みにばらつきが生じやすく、配光性低下の原因にもなっていた。   Incidentally, white LEDs are required to have higher luminance (higher power) depending on applications. In the conventional method of dispersing the inorganic phosphor powder in the resin matrix, there is a problem that the resin matrix is discolored by heat from the LED and the luminance is lowered when used for a long time. In addition, when a resin containing an inorganic phosphor powder is applied on the LED, the thickness is likely to vary, which causes a decrease in light distribution.

これらの問題を解決するために、無機蛍光体粉末をガラス中に分散させ、波長変換部材を完全に無機化する方法が提案されている(例えば、特許文献1および2参照)。当該方法によれば、波長変換部材の耐熱性および耐候性を向上させることが可能となる。例えば、長時間の高温環境下(150℃、600時間)や長時間の高温高湿環境下(2000時間、温度85℃、湿度85%)に晒しても白色LEDの発光特性がほとんど変化せず、また太陽光の紫外線に長時間晒されても着色や劣化がほとんどない。さらには、加工性に優れることから、厚みばらつきによる配光性の低下も抑制することが可能となる。   In order to solve these problems, a method has been proposed in which inorganic phosphor powder is dispersed in glass to completely mineralize the wavelength conversion member (see, for example, Patent Documents 1 and 2). According to this method, the heat resistance and weather resistance of the wavelength conversion member can be improved. For example, the light emission characteristics of a white LED hardly change even when exposed to a long high temperature environment (150 ° C., 600 hours) or a long time high temperature high humidity environment (2000 hours, temperature 85 ° C., humidity 85%). Moreover, there is almost no coloring or deterioration even when exposed to the ultraviolet rays of sunlight for a long time. Furthermore, since it is excellent in workability, it is possible to suppress a decrease in light distribution due to thickness variations.

特開2005−11933号公報JP 2005-11933 A 特許第4158012号公報Japanese Patent No. 4158012

無機蛍光体粉末をガラスマトリクスに分散させてなる波長変換部材は、従来品と比較して長期安定性に優れるものの、励起光を受ける受光面と、無機蛍光体粉末の発光(あるいは波長変換されなかった励起光の透過光)が発せられる発光面において、反射や散乱による光損失が発生するため発光効率が未だ不十分である。   A wavelength conversion member made by dispersing inorganic phosphor powder in a glass matrix is superior in long-term stability compared to conventional products, but it has a light-receiving surface that receives excitation light and light emission from inorganic phosphor powder (or wavelength conversion is not performed). In the light emitting surface from which the transmitted light of the excitation light is emitted, light loss due to reflection and scattering occurs, so that the light emission efficiency is still insufficient.

したがって、本発明は、ガラスマトリクス中に無機蛍光体粉末が分散された波長変換部材であって、励起光や無機蛍光体粉末の発光を効率よく透過させることができ、高い発光効率を得ることができる波長変換部材を提供することを課題とする。   Therefore, the present invention is a wavelength conversion member in which inorganic phosphor powder is dispersed in a glass matrix, and can efficiently transmit excitation light and light emission of inorganic phosphor powder, thereby obtaining high light emission efficiency. It is an object to provide a wavelength conversion member that can be used.

本発明者等は鋭意検討した結果、ガラスマトリクス中に無機蛍光体粉末が分散された波長変換部材において、ガラスマトリクスと無機蛍光体粉末の硬度差に着目し、当該硬度差を特定の範囲に制限するとともに、特定の表面性状を有する構造とすることにより、前記課題を解決できることを見出し、本発明として提案するものである。   As a result of intensive studies, the inventors focused on the hardness difference between the glass matrix and the inorganic phosphor powder in the wavelength conversion member in which the inorganic phosphor powder is dispersed in the glass matrix, and limited the hardness difference to a specific range. In addition, the present inventors have found that the above problem can be solved by using a structure having a specific surface property, and propose the present invention.

すなわち、本発明は、無機蛍光体粉末がガラスマトリクス中に分散してなる波長変換部材であって、無機蛍光体粉末とガラスのビッカース硬度差(ΔHv(0.05))が300以上であり、かつ表面粗さRaが0.1μm以下であることを特徴とする波長変換部材に関する。   That is, the present invention is a wavelength conversion member in which the inorganic phosphor powder is dispersed in a glass matrix, the difference in Vickers hardness (ΔHv (0.05)) between the inorganic phosphor powder and the glass is 300 or more, In addition, the present invention relates to a wavelength conversion member having a surface roughness Ra of 0.1 μm or less.

一般に、発光効率の高い白色LEDを得るためには、波長変換部材の励起光を受ける受光面と、無機蛍光体粉末の発光(あるいは波長変換されなかった励起光の透過光)が発せられる発光面をともに鏡面研磨することにより効率良く励起光を入射させ、かつ無機蛍光体粉末からの発光や励起光の一部を透過させることが望ましいとされている。しかしながら、ガラスと無機蛍光体粉末という異種材料を含む複合体を研磨加工する場合、両者の硬度が相当異なる場合には、研磨速度の相違が原因となって平坦な研磨面が得られず、むしろ研磨加工により凹凸がより際立つ(表面粗さRaが大きくなる)傾向があることがわかった。そして、そのようにして波長変換部材の表面に形成された凹凸が発光効率低下の原因となっていることを見出した。   Generally, in order to obtain a white LED with high luminous efficiency, a light receiving surface that receives excitation light from a wavelength conversion member and a light emitting surface that emits light emitted from inorganic phosphor powder (or transmitted light of excitation light that has not been wavelength converted). It is desirable that the excitation light is efficiently incident by mirror polishing both of the light and the light emitted from the inorganic phosphor powder or a part of the excitation light is transmitted. However, when polishing composites containing different materials such as glass and inorganic phosphor powder, if the hardness of the two is significantly different, a flat polished surface cannot be obtained due to the difference in polishing rate, rather It was found that the unevenness tends to be more conspicuous (surface roughness Ra is increased) by polishing. And it discovered that the unevenness | corrugation formed in the surface of the wavelength conversion member in that way was the cause of luminous efficiency fall.

そこで本発明では、波長変換部材における無機蛍光体粉末とガラスのビッカース硬度差(ΔHv(0.05))に着目し、特に当該ビッカース硬度差が300以上と大きい場合に、表面粗さRaを0.1μm以下に制限することにより、受光面と発光面において反射や散乱による光損失を極力抑制でき、発光効率を向上させることが可能となる。   Therefore, in the present invention, attention is paid to the Vickers hardness difference (ΔHv (0.05)) between the inorganic phosphor powder and the glass in the wavelength conversion member, and particularly when the Vickers hardness difference is as large as 300 or more, the surface roughness Ra is set to 0. By limiting the thickness to 1 μm or less, light loss due to reflection or scattering can be suppressed as much as possible on the light receiving surface and the light emitting surface, and the light emission efficiency can be improved.

なお、本発明において表面粗さRaはJIS B0601:2001に準じて測定された値をいう。   In the present invention, the surface roughness Ra is a value measured according to JIS B0601: 2001.

第二に、本発明の波長変換部材は、無機蛍光体粉末とガラス粉末を含む混合粉末の焼結体からなることを特徴とする。   2ndly, the wavelength conversion member of this invention consists of a sintered compact of the mixed powder containing inorganic fluorescent substance powder and glass powder, It is characterized by the above-mentioned.

当該構成によれば、無機蛍光体粉末をガラスマトリクス中に均一に分散させやすくなり、色ばらつきの小さい波長変換部材とすることができる。また、所望の形状(例えば板状体)を有する波長変換部材を、精度良く容易に加工することが可能となる。   According to the said structure, it becomes easy to disperse | distribute inorganic fluorescent substance powder uniformly in a glass matrix, and it can be set as the wavelength conversion member with small color dispersion. In addition, a wavelength conversion member having a desired shape (for example, a plate-like body) can be easily processed with high accuracy.

第三に、本発明の波長変換部材は、板状体であることを特徴とする。   Thirdly, the wavelength conversion member of the present invention is a plate-like body.

第四に、本発明の波長変換部材は、0.05〜1mmの肉厚を有することを特徴とする。   Fourth, the wavelength conversion member of the present invention has a thickness of 0.05 to 1 mm.

第五に、本発明の波長変換部材は、無機蛍光体粉末が、ガーネット系、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物から選ばれた1種以上であることを特徴とする。   Fifth, the wavelength conversion member of the present invention is made of an inorganic phosphor powder having a garnet type, oxide, nitride, oxynitride, sulfide, oxysulfide, rare earth sulfide, aluminate chloride, and halophosphate. It is characterized by being at least one selected from a product.

第六に、本発明の波長変換部材は、ガラスが850℃以下の軟化点を有することを特徴とする。   Sixth, the wavelength conversion member of the present invention is characterized in that the glass has a softening point of 850 ° C. or lower.

第七に、本発明は、無機蛍光体粉末とガラス粉末を含む混合粉末を予備成型し、ガラス粉末の軟化点以上の温度で焼成することにより焼結体を得る工程、および、ダイヤモンド砥粒を含む研磨スラリーを用いて焼結体の表面を研磨する工程を含む波長変換部材の製造方法に関する。   Seventh, the present invention preliminarily molds a mixed powder containing inorganic phosphor powder and glass powder, and obtains a sintered body by firing at a temperature equal to or higher than the softening point of the glass powder, and diamond abrasive grains. It is related with the manufacturing method of the wavelength conversion member including the process of grind | polishing the surface of a sintered compact using the grinding | polishing slurry containing.

無機蛍光体粉末とガラスのビッカース硬度差(ΔHv(0.05))が300以上と非常に大きい波長変換部材の表面に対して、従来一般的に用いられてきた酸化セリウム等の研磨砥粒を用いて研磨処理を施すと、無機蛍光体粉末とガラスの研磨速度差が原因となって、表面粗さRaが0.1μmより大きく(特に0.2μm以上)なる傾向がある。このようにして得られた波長変換部材を用いた白色LEDは、LEDチップからの励起光や無機蛍光体粉末からの発光が部材表面で散乱しやすく発光効率に劣る。一方、本発明の製造方法によれば、無機蛍光体粉末とガラスのビッカース硬度差(ΔHv(0.05))が300以上と非常に大きい場合であっても、部材表面の研磨にダイヤモンド砥粒を含む研磨スラリーを用いるため、当該ビッカース硬度差に起因する研磨速度差を極力小さくすることができる。したがって、無機蛍光体粉末とガラスを均一に研磨することができ、0.1μm以下という非常に小さい表面粗さRaを容易に達成することができる。その結果、発光効率に優れた波長変換部材を得ることが可能となる。   Abrasive grains, such as cerium oxide, which have been generally used for the surface of a wavelength conversion member having a very large Vickers hardness difference (ΔHv (0.05)) of 300 or more between inorganic phosphor powder and glass. When used for polishing, the surface roughness Ra tends to be larger than 0.1 μm (particularly 0.2 μm or more) due to the difference in polishing rate between the inorganic phosphor powder and the glass. In the white LED using the wavelength conversion member obtained in this way, excitation light from the LED chip and light emission from the inorganic phosphor powder are likely to be scattered on the surface of the member, and the light emission efficiency is inferior. On the other hand, according to the production method of the present invention, even when the Vickers hardness difference (ΔHv (0.05)) between the inorganic phosphor powder and the glass is as large as 300 or more, diamond abrasive grains are used for polishing the surface of the member. Therefore, the polishing rate difference due to the Vickers hardness difference can be minimized. Therefore, the inorganic phosphor powder and the glass can be uniformly polished, and a very small surface roughness Ra of 0.1 μm or less can be easily achieved. As a result, it is possible to obtain a wavelength conversion member having excellent luminous efficiency.

本発明の波長変換部材は、無機蛍光体粉末とガラスマトリクスのビッカース硬度差(ΔHv(0.05))が300以上と非常に大きいにもかかわらず、表面粗さRaが0.1μm以下と小さいため、白色LEDに使用した場合に発光効率に優れる。表面粗さRaが0.1μmよりも大きいと、波長変換部材表面における光の散乱が原因で励起光の透過率が低下するとともに、無機蛍光体粉末に照射される励起光の量も低減して発光量が低下する。また、無機蛍光体粉末からの発光も波長変換部材の発光面にて散乱してロスが発生する。結果として、波長変換部材の発光効率が低下する。表面粗さRaは好ましくは0.05μm以下である。   The wavelength conversion member of the present invention has a surface roughness Ra as small as 0.1 μm or less, even though the Vickers hardness difference (ΔHv (0.05)) between the inorganic phosphor powder and the glass matrix is as large as 300 or more. Therefore, when used for a white LED, the luminous efficiency is excellent. When the surface roughness Ra is larger than 0.1 μm, the transmittance of the excitation light decreases due to light scattering on the surface of the wavelength conversion member, and the amount of excitation light irradiated to the inorganic phosphor powder also decreases. The amount of emitted light decreases. In addition, light emitted from the inorganic phosphor powder is also scattered on the light emitting surface of the wavelength conversion member, causing loss. As a result, the light emission efficiency of the wavelength conversion member decreases. The surface roughness Ra is preferably 0.05 μm or less.

なお本発明において、無機蛍光体粉末とガラスマトリクスのビッカース硬度差(ΔHv(0.05))が350以上、特に400以上であれば、本発明による効果をより一層享受しやすくなる。   In the present invention, if the difference in Vickers hardness (ΔHv (0.05)) between the inorganic phosphor powder and the glass matrix is 350 or more, particularly 400 or more, the effect of the present invention can be more easily enjoyed.

本発明の波長変換部材の形状は特に限定されないが、例えば板状体であれば、表面研磨が容易であることから上記表面粗さRaを達成しやすくなる。波長変換部材が板状体である場合、肉厚は0.05〜1mm、特に0.1〜0.8mmであることが好ましい。波長変換部材の肉厚が0.05mm未満であると、機械的強度に劣るとともに、製造および加工が困難となる。一方、波長変換部材の肉厚が1mmを超えると、LEDからの励起光が透過しにくくなり、光束値が低下する傾向がある。   Although the shape of the wavelength conversion member of the present invention is not particularly limited, for example, if it is a plate-like body, the surface roughness Ra is easily achieved because surface polishing is easy. When the wavelength conversion member is a plate-like body, the thickness is preferably 0.05 to 1 mm, particularly preferably 0.1 to 0.8 mm. When the thickness of the wavelength conversion member is less than 0.05 mm, the mechanical strength is inferior, and manufacture and processing become difficult. On the other hand, when the thickness of the wavelength conversion member exceeds 1 mm, the excitation light from the LED becomes difficult to transmit, and the light flux value tends to decrease.

なお、波長変換部材が板状体の場合、両表面ともに表面粗さRaが0.1μm以下であれば、高い発光効率が得られるために好ましい。   When the wavelength conversion member is a plate-like body, it is preferable that the surface roughness Ra of both surfaces is 0.1 μm or less because high luminous efficiency can be obtained.

無機蛍光体粉末としては、紫外または可視の励起光を入射すると、該励起光の波長よりも長波長の蛍光を発するものが挙げられる。例えば、可視光線からなる励起光を入射すると該励起光の色相に対して補色の蛍光を発する無機蛍光体粉末を用いると、透過した励起光と蛍光との混色により白色光が得られるため、容易に白色LEDデバイスを製造することができる。特に、可視光線からなる励起光が中心波長430〜490nmを有する光線であり、蛍光が中心波長530〜590nmを有する光線であると、白色光が得られやすいため好ましい。   Examples of the inorganic phosphor powder include those that emit fluorescence having a wavelength longer than the wavelength of the excitation light when ultraviolet or visible excitation light is incident. For example, when an inorganic phosphor powder that emits complementary fluorescence to the hue of excitation light when incident excitation light consisting of visible light is incident, white light can be easily obtained by mixing the transmitted excitation light and fluorescence. A white LED device can be manufactured. In particular, it is preferable that excitation light composed of visible light is light having a central wavelength of 430 to 490 nm and fluorescence is light having a central wavelength of 530 to 590 nm because white light can be easily obtained.

本発明において使用可能な無機蛍光体粉末としては、一般に市場で入手できるものであれば特に限定されない。例えば、YAG等のガーネット系(Hv(0.05)=1100〜1700)、酸化物(Hv(0.05)=800〜1600)、窒化物(Hv(0.05)=1200〜1800)、酸窒化物(Hv(0.05)=1200〜1800)、硫化物(Hv(0.05)=100〜400)、酸硫化物(Hv(0.05)=100〜400)、希土類硫化物(Hv(0.05)=100〜400)、アルミン酸塩化物(Hv(0.05)=800〜1500)、ハロリン酸塩化物(Hv(0.05)=800〜1500)などからなるものが挙げられる。   The inorganic phosphor powder usable in the present invention is not particularly limited as long as it is generally available on the market. For example, a garnet system such as YAG (Hv (0.05) = 1100 to 1700), oxide (Hv (0.05) = 800 to 1600), nitride (Hv (0.05) = 1200 to 1800), Oxynitrides (Hv (0.05) = 1200-1800), sulfides (Hv (0.05) = 100-400), oxysulfides (Hv (0.05) = 100-400), rare earth sulfides (Hv (0.05) = 100 to 400), aluminate chloride (Hv (0.05) = 800 to 1500), halophosphate chloride (Hv (0.05) = 800 to 1500), etc. Is mentioned.

上記無機蛍光体粉末の中でも、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)、赤色(波長600〜700nm)に発光するものを用いることが好ましい。   Among the inorganic phosphor powders, those having an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength 540) ˜595 nm) and red (wavelength of 600 to 700 nm) are preferably used.

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体粉末としては、Sr(POCl:Eu2+、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+などが挙げられる。 Examples of inorganic phosphor powder that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、SrSiOn:Eu2+、ZnS:Al3+,Cu、CaS:Sn2+、CaS:Sn2+,F、CaSO:Ce3+,Mn2+、LiAlO:Mn2+、BaMgAl1017:Eu2+,Mn2+、ZnS:Cu,Cl、CaWO:U、CaSiOCl:Eu2+、Sr0.2Ba0.7Cl1.1Al3.45:Ce3+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、ZnO:S、ZnO:Zn、CaBa(POCl:Eu2+、BaAl:Eu2+などが挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm, SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS : In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ , ZnS: Al 3+ , Cu + , CaS: Sn 2+ , CaS: Sn 2+ , F, CaSO 4 : Ce 3+ , Mn 2+ , LiAlO 2 : Mn 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , ZnS: Cu + , Cl , Ca 3 WO 6 : U, Ca 3 SiO 4 Cl 2: Eu 2+, Sr 0.2 Ba 0.7 Cl 1.1 Al 2 O 3.45: Ce 3+ Mn 2+, Ba 2 MgSi 2 O 7: Eu 2+, Ba 2 SiO 4: Eu 2+, Ba 2 Li 2 Si 2 O 7: Eu 2+, ZnO: S, ZnO: Zn, Ca 2 Ba 3 (PO 4) 3 Cl: Eu 2+ , BaAl 2 O 4 : Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、SrSiOn:Eu2+などが挙げられる。 Examples of inorganic phosphor powders that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、ZnS:Eu2+、Ba(POCl:U、SrWO:U、CaGa:Eu2+、SrSO:Eu2+,Mn2+、ZnS:P、ZnS:P3−,Cl、ZnS:Mn2+などが挙げられる。 Examples of inorganic phosphor powder that emits yellow fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include ZnS: Eu 2+ , Ba 5 (PO 4 ) 3 Cl: U, Sr 3 WO 6 : U, CaGa 2 S 4 : Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ , ZnS: P, ZnS: P 3− , Cl , ZnS: Mn 2+ and the like can be mentioned.

波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、Y(Al,Gd)12:Ce2+、Ba(POCl:U、CaGa:Eu2+などが挙げられる。 As an inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm, Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ba 5 (PO 4 ) 3 Cl: U, CaGa 2 S 4 : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、CaS:Yb2+,Cl、GdGa12:Cr3+、CaGa:Mn2+、Na(Mg,Mn)LiSi10:Mn、ZnS:Sn2+、YAl12:Cr3+、SrB13:Sm2+、MgSrSi:Eu2+,Mn2+、α−SrO・3B:Sm2+、ZnS−CdS、ZnSe:Cu,Cl、ZnGa:Mn2+、ZnO:Bi3+、BaS:Au,K、ZnS:Pb2+、ZnS:Sn2+,Li、ZnS:Pb,Cu、CaTiO:Pr3+、CaTiO:Eu3+、Y:Eu3+、(Y、Gd):Eu3+、CaS:Pb2+,Mn2+、YPO:Eu3+、CaMgSi:Eu2+,Mn2+、Y(P、V)O:Eu3+、YS:Eu3+、SrAl:Eu3+、CaYAlO:Eu3+、LaOS:Eu3+、LiW:Eu3+,Sm3+、(Sr,Ca,Ba,Mg)10(POCl:Eu2+,Mn2+、BaMgSi:Eu2+,Mn2+などが挙げられる。 Examples of the inorganic phosphor powder that emits red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include CaS: Yb 2+ , Cl, Gd 3 Ga 4 O 12 : Cr 3+ , CaGa 2 S 4 : Mn. 2+ , Na (Mg, Mn) 2 LiSi 4 O 10 F 2 : Mn, ZnS: Sn 2+ , Y 3 Al 5 O 12 : Cr 3+ , SrB 8 O 13 : Sm 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , α-SrO · 3B 2 O 3 : Sm 2+ , ZnS—CdS, ZnSe: Cu + , Cl, ZnGa 2 S 4 : Mn 2+ , ZnO: Bi 3+ , BaS: Au, K, ZnS: Pb 2+ , ZnS: Sn 2+ , Li + , ZnS: Pb, Cu, CaTiO 3 : Pr 3+ , CaTiO 3 : Eu 3+ , Y 2 O 3 : Eu 3+ , ( Y, Gd) 2 O 3 : Eu 3+ , CaS: Pb 2+ , Mn 2+ , YPO 4 : Eu 3+ , Ca 2 MgSi 2 O 7 : Eu 2+ , Mn 2+ , Y (P, V) O 4 : Eu 3+ , Y 2 O 2 S: Eu 3+ , SrAl 4 O 7 : Eu 3+ , CaYAlO 4 : Eu 3+ , LaO 2 S: Eu 3+ , LiW 2 O 8 : Eu 3+ , Sm 3+ , (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , Mn 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Mn 2+ and the like.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、ZnS:Mn2+,Te2+、MgTiO:Mn4+、KSiF:Mn4+、SrS:Eu2+、CaS:Eu2+、Na1.230.42Eu0.12TiSi11、Na1.230.42Eu0.12TiSi13:Eu3+、CdS:In,Te、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、Euなどが挙げられる。 Examples of inorganic phosphor powders that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include ZnS: Mn 2+ , Te 2+ , Mg 2 TiO 4 : Mn 4+ , K 2 SiF 6 : Mn 4+ , SrS: Eu 2+ , CaS: Eu 2+ , Na 1.23 K 0.42 Eu 0.12 TiSi 4 O 11 , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 : Eu 3+ , CdS: In, Te CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , Eu 2 W 2 O 7 and the like.

なお、励起光や発光の波長域に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する無機蛍光体粉末を混合して使用すればよい。   A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders emitting blue, green, yellow, and red fluorescence may be mixed and used.

本発明におけるガラスマトリクスには、無機蛍光体粉末を安定に保持するための媒体としての役割がある。また、ガラスマトリクスのガラス組成によって波長変換部材の色調が異なり、また無機蛍光体粉末との反応性に差が出るため、これらの条件を考慮して使用するガラス組成を選択することが好ましい。さらに、ガラス組成に適した無機蛍光体粉末の添加量や、波長変換部材の厚みを決定することも重要である。ガラスとしては、無機蛍光体粉末と反応しにくいものであれば、組成系に特に制限はないが、850℃以下、さらには800℃以下の軟化点を有するガラスからなるものを用いることが好ましい。ガラスの軟化点が高くなると焼成温度も高くなるため、焼成時に無機蛍光体粉末が劣化して、発光効率の高い波長変換部材が得られにくくなる。   The glass matrix in the present invention has a role as a medium for stably holding the inorganic phosphor powder. Moreover, since the color tone of the wavelength conversion member differs depending on the glass composition of the glass matrix and the reactivity with the inorganic phosphor powder varies, it is preferable to select the glass composition to be used in consideration of these conditions. Furthermore, it is also important to determine the addition amount of the inorganic phosphor powder suitable for the glass composition and the thickness of the wavelength conversion member. The glass is not particularly limited as long as it does not easily react with the inorganic phosphor powder, but glass made of glass having a softening point of 850 ° C. or lower, more preferably 800 ° C. or lower is preferably used. When the softening point of the glass is increased, the firing temperature is also increased. Therefore, the inorganic phosphor powder is deteriorated during firing, and it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

ガラスとしては、例えば、SiO−B−RO系ガラス(RはMg、Ca、Sr、Baを示す)(Hv(0.05)=500〜700)、SiO−B−R’O系ガラス(R’はLi、Na、Kを示す)(Hv(0.05)=500〜700)、SiO−B−Al系ガラス(Hv(0.05)=500〜700)、SiO−B−ZnO系ガラス(Hv(0.05)=500〜700)、ZnO−B系ガラス(Hv(0.05)=400〜600)、SnO−P系ガラス(Hv(0.05)=200〜400)を用いることができる。これらのガラスは目的とする特性に応じて適宜選択すればよい。例えば低温で焼成したい場合は、比較的軟化点が低いZnO−B系ガラス、SnO−P系ガラスを選択すればよく、波長変換部材の耐候性を向上させたい場合は、SiO−B−RO系ガラス、SiO−B−R’O系ガラス、SiO−B−Al系ガラス、SiO−B−ZnO系ガラスを選択すればよい。 Examples of the glass include SiO 2 —B 2 O 3 —RO-based glass (R represents Mg, Ca, Sr, Ba) (Hv (0.05) = 500 to 700), SiO 2 —B 2 O 3. —R ′ 2 O-based glass (R ′ represents Li, Na, K) (Hv (0.05) = 500 to 700), SiO 2 —B 2 O 3 —Al 2 O 3 based glass (Hv (0 .05) = 500 to 700), SiO 2 —B 2 O 3 —ZnO glass (Hv (0.05) = 500 to 700), ZnO—B 2 O 3 glass (Hv (0.05) = 400 ˜600), SnO—P 2 O 5 glass (Hv (0.05) = 200 to 400) can be used. What is necessary is just to select these glasses suitably according to the characteristic made into the objective. For example, when firing at a low temperature, a ZnO—B 2 O 3 system glass or SnO—P 2 O 5 system glass having a relatively low softening point may be selected, and when it is desired to improve the weather resistance of the wavelength conversion member, SiO 2 —B 2 O 3 —RO glass, SiO 2 —B 2 O 3 —R ′ 2 O glass, SiO 2 —B 2 O 3 —Al 2 O 3 glass, SiO 2 —B 2 O 3 — A ZnO-based glass may be selected.

SiO−B−RO系ガラスを用いる場合、モル%で、SiO 30〜80%、B 1〜30%、MgO 0〜10%、CaO 0〜30%、SrO 0〜20%、BaO 0〜40%、MgO+CaO+SrO+BaO 5〜45%、Al 0〜10%、ZnO 0〜10%の組成を含有するガラスを使用することが好ましい。 When SiO 2 —B 2 O 3 —RO-based glass is used, the mol% is SiO 2 30-80%, B 2 O 3 1-30%, MgO 0-10%, CaO 0-30%, SrO 0 It is preferable to use a glass containing a composition of 20%, BaO 0-40%, MgO + CaO + SrO + BaO 5-45%, Al 2 O 3 0-10%, ZnO 0-10%.

また上記成分以外にも、ガラスの溶融性を向上させたり、ガラスの軟化点を下げて低温で焼成しやすくするためにLiO、NaOおよびKOを合量で5%まで添加することができる。他にも、ガラスの溶融性を向上させるためにPを5%まで、ガラスの化学的耐久性を向上させるためにTa、TiO、Nb、Gd、Laをそれぞれ15%まで添加してもよい。 In addition to the above components, Li 2 O, Na 2 O and K 2 O are added up to 5% in total in order to improve the meltability of the glass or to lower the softening point of the glass to facilitate firing at low temperatures. can do. In addition, up to 5% of P 2 O 5 in order to improve the meltability of the glass, and Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 in order to improve the chemical durability of the glass. , La 2 O 3 may be added up to 15% each.

SiO−B−R’O系ガラスを用いる場合、モル%で、SiO 30〜80%、B 1〜55%、LiO 0〜20%、NaO 0〜25%、KO 0〜25%、LiO+NaO+KO 5〜35%、Al 0〜10%、ZnO 0〜10%の組成を含有するガラスを使用することが好ましい。 When SiO 2 —B 2 O 3 —R ′ 2 O-based glass is used, it is mol%, SiO 2 30 to 80%, B 2 O 3 1 to 55%, Li 2 O 0 to 20%, Na 2 O 0. It is preferable to use glass containing a composition of ˜25%, K 2 O 0-25%, Li 2 O + Na 2 O + K 2 O 5-35%, Al 2 O 3 0-10%, ZnO 0-10%. .

また上記成分以外にも、ガラスの溶融性を向上させるためにMgO、CaO、SrOおよびBaOを合量で5%まで添加することができる。他にも、ガラスの溶融性を向上させるためにPを5%まで、ガラスの化学的耐久性を向上させるために、Ta、TiO、Nb、Gd、Laをそれぞれ15%まで添加してもよい。 In addition to the above components, MgO, CaO, SrO and BaO can be added up to 5% in total in order to improve the meltability of the glass. In addition, in order to improve the melting property of glass, P 2 O 5 is up to 5%, and in order to improve the chemical durability of glass, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 and La 2 O 3 may be added up to 15% each.

SiO−B−Al系ガラスを用いる場合、モル%で、SiO 30〜70%、B 15〜55%、Al 15〜55%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%の組成を含有するガラスを使用することが好ましい。 When SiO 2 —B 2 O 3 —Al 2 O 3 glass is used, the mol% is SiO 2 30 to 70%, B 2 O 3 15 to 55%, Al 2 O 3 15 to 55%, Li 2 O. 0~10%, Na 2 O 0~10% , K 2 O 0~10%, 0~10% MgO, CaO 0~10%, SrO 0~10%, glass containing a composition of BaO 0% Is preferably used.

また上記成分以外にも、ガラスの溶融性を向上させるためにPを5%まで、ガラスの化学的耐久性を向上させるために、Ta、TiO、Nb、Gd、Laをそれぞれ15%まで添加してもよい。 In addition to the above components, P 2 O 5 can be up to 5% in order to improve the meltability of the glass, and Ta 2 O 5 , TiO 2 , Nb 2 O 5 , in order to improve the chemical durability of the glass, Gd 2 O 3 and La 2 O 3 may be added up to 15% each.

SiO−B−ZnO系ガラスを用いる場合、モル%で、SiO 5〜50%、B 15〜55%、ZnO 30〜80%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%の組成を含有するガラスを使用することが好ましい。 When SiO 2 —B 2 O 3 —ZnO-based glass is used, the molar percentage is SiO 2 5-50%, B 2 O 3 15-55%, ZnO 30-80%, Li 2 O 0-10%, Na 2 O 0~10%, K 2 O 0~10%, 0~10% MgO, CaO 0~10%, SrO 0~10%, it is preferable to use a glass containing composition of BaO 0% .

また上記成分以外にも、ガラスの化学的耐久性を向上させるためにAlを5%まで添加してもよく、ガラスの化学的耐久性を向上させるためにTa、TiO、Nb、Gd、Laをそれぞれ15%まで添加してもよい。 In addition to the above components, Al 2 O 3 may be added up to 5% in order to improve the chemical durability of the glass, and Ta 2 O 5 and TiO 2 in order to improve the chemical durability of the glass. Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 may be added up to 15% each.

ZnO−B系ガラスを用いる場合、モル%で、ZnO 30〜80%、B 20〜70%、SiO 0〜5%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%の組成を含有するガラスを使用することが好ましい。 When using a ZnO-B 2 O 3 based glass, in mol%, 30~80% ZnO, B 2 O 3 20~70%, SiO 2 0~5%, Li 2 O 0~10%, Na 2 O 0 ~10%, K 2 O 0~10% , 0~10% MgO, CaO 0~10%, SrO 0~10%, it is preferable to use a glass containing composition of BaO 0%.

また上記成分以外にも、ガラスの化学的耐久性を向上させるためにAlを5%まで添加してもよく、ガラスの化学的耐久性を向上させるためにTa、TiO、Nb、Gd、Laをそれぞれ15%まで添加してもよい。 In addition to the above components, Al 2 O 3 may be added up to 5% in order to improve the chemical durability of the glass, and Ta 2 O 5 and TiO 2 in order to improve the chemical durability of the glass. Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 may be added up to 15% each.

SnO−P系ガラスを用いる場合、モル%で、SnO 35〜80%、P 5〜40%、B 0〜30%、Al 0〜10%、SiO 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%の組成を含有するガラスを使用することが好ましい。 When using SnO—P 2 O 5 glass, it is mol%, SnO 35-80%, P 2 O 5 5-40%, B 2 O 3 0-30%, Al 2 O 3 0-10%, SiO 2 0~10%, Li 2 O 0~10 %, Na 2 O 0~10%, K 2 O 0~10%, 0~10% MgO, CaO 0~10%, SrO 0~10%, BaO 0 It is preferable to use a glass containing 10% to 10% composition.

また上記成分以外にも、耐候性を向上させるためにZnO、Ta、TiO、Nb、Gd、Laを合量で10%まで添加してもよい。 In addition to the above components, ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , and La 2 O 3 may be added up to a total amount of 10% in order to improve the weather resistance. .

なお、軟化点を低下させ、かつガラスを安定化させるには、SnO/P(モル比)を0.9〜16の範囲にすることが好ましい。SnO/Pが0.9より小さくなると、軟化点が上昇して低温焼成が困難となり、無機蛍光体粉末が劣化しやすくなる。また、耐候性が著しく低下する傾向にある。一方、SnO/Pが16より大きくなると、ガラス中にSnに起因する失透ブツが析出し、ガラスの透過率が低下する傾向にあり、結果として、高い発光効率を有する波長変換部材が得にくくなる。SnO/Pの好ましい範囲は1.5〜10、さらには2〜5である。 In order to lower the softening point and stabilize the glass, it is preferable to set SnO / P 2 O 5 (molar ratio) in the range of 0.9 to 16. When SnO / P 2 O 5 is smaller than 0.9, the softening point is increased, making low-temperature firing difficult, and the inorganic phosphor powder tends to deteriorate. Further, the weather resistance tends to be remarkably lowered. On the other hand, when SnO / P 2 O 5 is larger than 16, devitrification bumps due to Sn are precipitated in the glass, and the transmittance of the glass tends to be lowered. As a result, the wavelength conversion member having high luminous efficiency. Is difficult to obtain. The preferable range of SnO / P 2 O 5 is 1.5 to 10, more preferably 2 to 5.

本発明の波長変換部材は、無機蛍光体粉末がガラスマトリクス中に分散してなるものであれば特に限定されないが、無機蛍光体粉末とガラス粉末を含む混合粉末の焼結体からなるものであると、無機蛍光体粉末をガラスマトリクス中に容易かつ均一に分散させることができるため好ましい。   The wavelength conversion member of the present invention is not particularly limited as long as the inorganic phosphor powder is dispersed in the glass matrix, but is composed of a sintered body of a mixed powder containing the inorganic phosphor powder and the glass powder. Inorganic phosphor powder is preferable because it can be easily and uniformly dispersed in the glass matrix.

本発明に使用するガラス粉末の平均粒径D50は、0.1〜100μm、特に1〜50μmであることが好ましい。ガラス粉末の平均粒径D50が小さすぎると、焼成する際に気泡の発生量が多くなる。波長変換部材中に気泡が多く含まれると光散乱の原因となり発光効率が低下する傾向がある。好ましい気孔率は2%以下、特に1%以下である。一方、平均粒径D50が大きすぎると、波長変換部材中に無機蛍光体粉末が均一に分散されにくくなり、結果として、波長変換部材の発光効率が低下する傾向がある。 The average particle diameter D 50 of the glass powder used in the present invention, 0.1 to 100 [mu] m, it is particularly preferably 1 to 50 [mu] m. When the average particle diameter D 50 of the glass powder is too small, the greater the amount of generation of bubbles during the firing. If many bubbles are contained in the wavelength conversion member, light emission is likely to be caused and light emission efficiency tends to be reduced. The preferred porosity is 2% or less, particularly 1% or less. On the other hand, when the average particle diameter D 50 is too large, the inorganic phosphor powder is less likely to be uniformly dispersed in the wavelength conversion member, as a result, there is a tendency that emission efficiency of the wavelength conversion member is reduced.

波長変換部材の発光効率(lm/W)は、ガラスマトリクス中に分散した無機蛍光体粉末の種類や含有量、さらには発光色変換部材の肉厚によって変化する。波長変換部材の発光効率を高めたい場合、肉厚を薄くして励起光や蛍光の透過率を高めたり、無機蛍光体粉末の含有量を多くして、変換させる光量を増加させることで調整すればよい。しかしながら、無機蛍光体粉末の含有量が多くなりすぎると、緻密な構造が得られにくくなり気孔率が大きくなる傾向がある。結果として、励起光が効率良く無機蛍光体粉末に照射されにくくなったり、波長変換部材の機械的強度が低下しやすくなるなどの問題が生じる。一方、無機蛍光体粉末の含有量が少なすぎると、十分な発光が得られにくくなる。したがって、波長変換部材における無機蛍光体粉末の含有量は、質量%で、0.01〜30%、0.05〜20%、特に0.08〜15%であることが好ましい。   The luminous efficiency (lm / W) of the wavelength conversion member varies depending on the type and content of the inorganic phosphor powder dispersed in the glass matrix and the thickness of the luminescent color conversion member. If you want to increase the luminous efficiency of the wavelength conversion member, adjust the thickness by reducing the thickness to increase the transmittance of excitation light or fluorescence, or increase the content of inorganic phosphor powder to increase the amount of light to be converted. That's fine. However, when the content of the inorganic phosphor powder is too large, it is difficult to obtain a dense structure and the porosity tends to increase. As a result, problems such as it becomes difficult for the excitation light to be efficiently applied to the inorganic phosphor powder, and the mechanical strength of the wavelength conversion member tends to decrease. On the other hand, when there is too little content of inorganic fluorescent substance powder, it becomes difficult to obtain sufficient light emission. Therefore, the content of the inorganic phosphor powder in the wavelength conversion member is preferably 0.01% to 30%, 0.05% to 20%, and particularly preferably 0.08% to 15% in mass%.

本発明の波長変換部材の製造方法は、無機蛍光体粉末とガラス粉末を含む混合粉末を予備成型し、ガラス粉末の軟化点以上の温度で焼成することにより焼結体を得る工程、および、ダイヤモンド砥粒を含む研磨スラリーを用いて焼結体の表面を研磨する工程を含むことを特徴とする。   The method for producing a wavelength conversion member of the present invention comprises a step of obtaining a sintered body by preforming a mixed powder containing an inorganic phosphor powder and a glass powder, and firing the mixture at a temperature equal to or higher than the softening point of the glass powder, and diamond. It includes a step of polishing the surface of the sintered body using a polishing slurry containing abrasive grains.

予備成型方法は特に制限されず、プレス成形法や、射出成形法、シート成形法、押し出し成形法等の方法を採用することができる。   The preforming method is not particularly limited, and methods such as a press molding method, an injection molding method, a sheet molding method, and an extrusion molding method can be employed.

ガラス粉末と無機蛍光体粉末の混合粉末を焼成する温度としては、300〜900℃、特に300〜850℃の範囲であり、かつ、ガラス粉末の軟化点±50℃以内であることが望ましい。焼成温度が900℃またはガラス粉末の軟化点+50℃より高くなると、無機蛍光体粉末が劣化したり、ガラス粉末と無機蛍光体粉末が反応して発光効率が著しく低下する場合がある。また、焼成温度が300℃またはガラス粉末の軟化点−50℃より低くなると、波長変換部材の気孔率が増加し、光の散乱が強くなりやすく、結果として、透過する光量が低下して発光効率が低下する場合がある。   The temperature for firing the mixed powder of glass powder and inorganic phosphor powder is preferably in the range of 300 to 900 ° C., particularly 300 to 850 ° C., and within the softening point of glass powder within ± 50 ° C. When the firing temperature is higher than 900 ° C. or the softening point of glass powder + 50 ° C., the inorganic phosphor powder may be deteriorated, or the glass powder and the inorganic phosphor powder may react to significantly reduce the light emission efficiency. Further, when the firing temperature is lower than 300 ° C. or the softening point of glass powder −50 ° C., the porosity of the wavelength conversion member increases, light scattering tends to be strong, and as a result, the amount of transmitted light decreases and the luminous efficiency decreases. May decrease.

ダイヤモンド砥粒の粒径が小さすぎると、研磨速度が不十分となり生産性に劣る傾向がある。一方、ダイヤモンド砥粒の粒径が大きすぎると、所望の表面粗さRaが得られにくくなる。ダイヤモンド砥粒の平均粒径D50の好ましい範囲は1〜10μm、特に2〜3μmである。 If the diameter of the diamond abrasive grains is too small, the polishing rate becomes insufficient and the productivity tends to be inferior. On the other hand, when the grain size of the diamond abrasive grains is too large, it becomes difficult to obtain a desired surface roughness Ra. A preferable range of the average particle diameter D 50 of the diamond abrasive grains is 1 to 10 μm, particularly 2 to 3 μm.

なお、研磨定盤としては、表面に繊維を織り込んだクロス材を表面にもつ定盤、錫と樹脂の複合定盤、ウレタン製パッド等を用いることができる。   As the polishing surface plate, a surface plate having a cloth material woven with fibers on the surface, a composite surface plate of tin and resin, a urethane pad, or the like can be used.

研磨方法は特に限定されず、例えば波長変換部材の片面を研磨定盤上に固定させて片面毎に研磨する方法(修正輪型研磨方式)が挙げられる。また、波長変換部材を固定用のキャリアに固定させて定盤に挟み、両面を一度に研磨するバッチ式の研磨方法でもよい。   The polishing method is not particularly limited, and examples thereof include a method (fixed ring polishing method) in which one side of the wavelength conversion member is fixed on a polishing surface plate and polished on each side. Alternatively, a batch type polishing method may be used in which the wavelength conversion member is fixed to a fixing carrier and sandwiched between surface plates, and both surfaces are polished at once.

なお、ダイヤモンド砥粒による研磨を行う前に、アルミナセラミックや炭化珪素等の遊離砥粒による荒削り研磨を行うことが好ましい。遊離砥粒の番手としては、#1200以上、さらには#2000以上、平均粒径D50としては10〜20μmであることが好ましい。荒削り研磨後の波長変換部材の表面粗さRaは0.5μm以下であることが好ましい。また荒削り研磨後の波長変換部材の厚みは、目標とする最終製品の厚みに対して+15〜+20μmであることが好ましい。荒削り研磨後の波長変換部材の表面粗さRaまたは厚みが上記範囲を超えると、ダイヤモンド砥粒による研磨時間が大幅に増加して生産性が悪化する。 In addition, before polishing with diamond abrasive grains, it is preferable to perform rough polishing with loose abrasive grains such as alumina ceramic or silicon carbide. The count of free abrasive grains, # 1200 or more, more # 2000 or more, preferably a 10~20μm the average particle diameter D 50. The surface roughness Ra of the wavelength conversion member after rough polishing is preferably 0.5 μm or less. Moreover, it is preferable that the thickness of the wavelength conversion member after rough polishing is +15 to +20 μm with respect to the target final product thickness. When the surface roughness Ra or the thickness of the wavelength conversion member after rough polishing exceeds the above range, the polishing time by the diamond abrasive grains is greatly increased and the productivity is deteriorated.

本発明の製造方法によると、板状体の波長変換部材の厚みを一定にすることが容易となり、当該波長変換部材を用いた白色LEDデバイスは均一な白色光が得られやすくなる。また、波長変換部材の厚みを変化させるだけで、励起光強度と蛍光強度のバランスを自由に変化させることができるため、所望の色度や色温度の白色光が容易に得ることができる。   According to the manufacturing method of the present invention, it is easy to make the thickness of the wavelength conversion member of the plate-like body constant, and the white LED device using the wavelength conversion member can easily obtain uniform white light. Further, since the balance between the excitation light intensity and the fluorescence intensity can be freely changed simply by changing the thickness of the wavelength conversion member, white light having a desired chromaticity and color temperature can be easily obtained.

本発明の波長変換部材は、LEDチップ上に直接接着してもよいし、LEDチップを取り囲む函体上に接着して用いてもよい。また、本発明の板状体の波長変換部材の下側にLEDチップを複数個設置することによって、発光機能と拡散機能を備えた面発光デバイスとして利用することも可能である。   The wavelength conversion member of the present invention may be directly adhered on the LED chip, or may be adhered on a box surrounding the LED chip. In addition, by installing a plurality of LED chips below the wavelength conversion member of the plate-like body of the present invention, it can be used as a surface emitting device having a light emitting function and a diffusing function.

以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

表1〜3は本発明の実施例(No.1、3、5、7、9、11、13、15)および比較例(No.2、4、6、8、10、12、14、16)を示している。   Tables 1-3 show Examples (No. 1, 3, 5, 7, 9, 11, 13, 15) and Comparative Examples (No. 2, 4, 6, 8, 10, 12, 14, 16) of the present invention. ).

Figure 2011122067
Figure 2011122067

Figure 2011122067
Figure 2011122067

Figure 2011122067
Figure 2011122067

まず、表に示すガラス組成となるようにガラス原料を秤量して混合し、この混合物を白金坩堝中において900〜1400℃で1時間溶融してガラス化した。溶融ガラスをフィルム状に成形し、得られたフィルム状ガラスをボールミルで粉砕した後、325メッシュの篩に通して分級し、平均粒径D50が45μmのガラス粉末を得た。得られたガラス粉末について軟化点を測定した。軟化点は、マクロ型視差熱分析計を用いて測定し、得られたグラフの第四の変曲点の値を軟化点とした。 First, glass raw materials were weighed and mixed so as to have the glass composition shown in the table, and this mixture was melted in a platinum crucible at 900 to 1400 ° C. for 1 hour to be vitrified. Molding the molten glass into a film, and the obtained film-like glass was pulverized by a ball mill and then classified through a sieve of 325 mesh, average particle diameter D 50 was obtained glass powder 45 [mu] m. The softening point of the obtained glass powder was measured. The softening point was measured using a macro type parallax thermal analyzer, and the value of the fourth inflection point of the obtained graph was used as the softening point.

次に、ガラス粉末と無機蛍光体粉末を表に示す配合比となるように混合し、金型を用いて加圧成形して直径1cmのボタン状の予備成形体を作製した。この予備成形体を表に示す焼成温度で焼成し、焼結体を得た。焼結体に対して荒削り研磨処理を施して直径8mm、厚さ0.3mmに加工した。続いて、ダイヤモンド砥粒と繊維を織り込んだクロス材を表面にもつ定盤を用いて両面研磨を行い、波長変換部材を得た。なお、比較例の試料は酸化セリウム砥粒とウレタン製パッドを用いて両面研磨を行った。得られた波長変換部材について、ガラスマトリクスと無機蛍光体粉末のビッカース硬度と発光効率を測定した。結果を表1〜3に示す。   Next, glass powder and inorganic phosphor powder were mixed so as to have a blending ratio shown in the table, and pressure-molded using a mold to produce a button-shaped preform having a diameter of 1 cm. This preform was fired at the firing temperature shown in the table to obtain a sintered body. The sintered body was subjected to rough grinding and polishing to a diameter of 8 mm and a thickness of 0.3 mm. Subsequently, double-side polishing was performed using a surface plate having a cloth material woven with diamond abrasive grains and fibers on the surface to obtain a wavelength conversion member. The sample of the comparative example was double-side polished using cerium oxide abrasive grains and a urethane pad. About the obtained wavelength conversion member, the Vickers hardness and luminous efficiency of the glass matrix and inorganic fluorescent substance powder were measured. The results are shown in Tables 1-3.

ビッカース硬度測定値(HV)は、同一測定サンプル表面の十点につき測定した値の平均とした。測定に用いた荷重は50gとした。   The Vickers hardness measurement value (HV) was the average of the values measured for ten points on the same measurement sample surface. The load used for the measurement was 50 g.

波長変換部材の発光特性は次のようにして評価した。青色LEDによって各サンプルを励起し、サンプル前方から発せられる光を積分球内で測定し、その発光スペクトルを得た。得られたスペクトルから発光効率を算出した。   The light emission characteristics of the wavelength conversion member were evaluated as follows. Each sample was excited by a blue LED, and light emitted from the front of the sample was measured in an integrating sphere to obtain its emission spectrum. Luminous efficiency was calculated from the obtained spectrum.

表から明らかなように、本発明の実施例である試料No.1、3、5、7、9、11、13、15の波長変換部材は、ビッカース硬度が300以上であるにも関わらず、表面粗さRa0.05μm以下となっており、各実施例に対応する比較例(試料No.2、4、6、8、10、11、12、14、16)と比較して発光効率が良好であった。   As is apparent from the table, the sample No. which is an example of the present invention. The wavelength conversion members 1, 3, 5, 7, 9, 11, 13, and 15 have a surface roughness Ra of 0.05 μm or less despite the Vickers hardness of 300 or more, corresponding to each example. Luminous efficiency was good compared with the comparative examples (sample No. 2, 4, 6, 8, 10, 11, 12, 14, 16).

Claims (7)

無機蛍光体粉末がガラスマトリクス中に分散してなる波長変換部材であって、無機蛍光体粉末とガラスのビッカース硬度差(ΔHv(0.05))が300以上であり、かつ表面粗さRaが0.1μm以下であることを特徴とする波長変換部材。   A wavelength conversion member in which an inorganic phosphor powder is dispersed in a glass matrix, the Vickers hardness difference (ΔHv (0.05)) between the inorganic phosphor powder and the glass is 300 or more, and the surface roughness Ra is A wavelength conversion member characterized by being 0.1 μm or less. 無機蛍光体粉末とガラス粉末を含む混合粉末の焼結体からなることを特徴とする請求項1に記載の波長変換部材。   The wavelength conversion member according to claim 1, comprising a sintered body of a mixed powder containing an inorganic phosphor powder and a glass powder. 板状体であることを特徴とする請求項1または2に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the wavelength conversion member is a plate-like body. 0.05〜1mmの肉厚を有することを特徴とする請求項3に記載の波長変換部材。   The wavelength conversion member according to claim 3, wherein the wavelength conversion member has a thickness of 0.05 to 1 mm. 無機蛍光体粉末が、ガーネット系、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物から選ばれた1種以上であることを特徴とする請求項1〜4のいずれかに記載の波長変換部材。   The inorganic phosphor powder is at least one selected from garnet, oxide, nitride, oxynitride, sulfide, oxysulfide, rare earth sulfide, aluminate chloride and halophosphate chloride The wavelength conversion member according to any one of claims 1 to 4, wherein ガラスが850℃以下の軟化点を有することを特徴とする請求項1〜5のいずれかに記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the glass has a softening point of 850 ° C. or less. 無機蛍光体粉末とガラス粉末を含む混合粉末を予備成型し、ガラス粉末の軟化点以上の温度で焼成することにより焼結体を得る工程、および、ダイヤモンド砥粒を含む研磨スラリーを用いて焼結体の表面を研磨する工程を含む波長変換部材の製造方法。   Pre-molding mixed powder containing inorganic phosphor powder and glass powder, sintering at a temperature equal to or higher than the softening point of glass powder, and sintering using polishing slurry containing diamond abrasive grains The manufacturing method of the wavelength conversion member including the process of grind | polishing the surface of a body.
JP2009281125A 2009-12-11 2009-12-11 Wavelength conversion member and manufacturing method thereof Active JP5532508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009281125A JP5532508B2 (en) 2009-12-11 2009-12-11 Wavelength conversion member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009281125A JP5532508B2 (en) 2009-12-11 2009-12-11 Wavelength conversion member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011122067A true JP2011122067A (en) 2011-06-23
JP5532508B2 JP5532508B2 (en) 2014-06-25

Family

ID=44286266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281125A Active JP5532508B2 (en) 2009-12-11 2009-12-11 Wavelength conversion member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5532508B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055269A (en) * 2011-09-06 2013-03-21 Nippon Electric Glass Co Ltd Wavelength conversion member and light-emitting device
CN103185295A (en) * 2011-12-27 2013-07-03 日亚化学工业株式会社 Wavelength converting device and light emitting device using the same
WO2019021846A1 (en) * 2017-07-27 2019-01-31 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2019029648A (en) * 2017-07-27 2019-02-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2020080429A (en) * 2020-02-27 2020-05-28 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
KR20200117976A (en) 2018-02-05 2020-10-14 니폰 덴키 가라스 가부시키가이샤 Phosphor glass thin plate and its reorganization manufacturing method, and phosphor glass thin plate and its reorganization
KR20200129838A (en) * 2019-05-10 2020-11-18 한국산업기술대학교산학협력단 Method for producing phosphor plate
JP2021121855A (en) * 2016-06-27 2021-08-26 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559279B1 (en) 2014-12-02 2015-10-08 대주전자재료 주식회사 A phosphor composition containing a glass frit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member
JP2007161944A (en) * 2005-12-16 2007-06-28 Nippon Electric Glass Co Ltd Phosphor
WO2007148829A1 (en) * 2006-06-22 2007-12-27 Ube Industries, Ltd. Composite for light conversion, light emitting device using the same, and method for controlling color tone
JP2008041844A (en) * 2006-08-03 2008-02-21 Toyoda Gosei Co Ltd Optical apparatus and manufacturing method thereof
WO2009104356A1 (en) * 2008-02-18 2009-08-27 日本電気硝子株式会社 Wavelength conversion member and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258308A (en) * 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd Emission color converting member
JP2007161944A (en) * 2005-12-16 2007-06-28 Nippon Electric Glass Co Ltd Phosphor
WO2007148829A1 (en) * 2006-06-22 2007-12-27 Ube Industries, Ltd. Composite for light conversion, light emitting device using the same, and method for controlling color tone
JP2008041844A (en) * 2006-08-03 2008-02-21 Toyoda Gosei Co Ltd Optical apparatus and manufacturing method thereof
WO2009104356A1 (en) * 2008-02-18 2009-08-27 日本電気硝子株式会社 Wavelength conversion member and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055269A (en) * 2011-09-06 2013-03-21 Nippon Electric Glass Co Ltd Wavelength conversion member and light-emitting device
CN103185295A (en) * 2011-12-27 2013-07-03 日亚化学工业株式会社 Wavelength converting device and light emitting device using the same
CN103185295B (en) * 2011-12-27 2015-12-23 日亚化学工业株式会社 Wavelength converting device and make use of the light-emitting device of this wavelength converting device
US9519207B2 (en) 2011-12-27 2016-12-13 Nichia Corporation Wavelength converting device and light emitting device using the same
JP2021121855A (en) * 2016-06-27 2021-08-26 日本電気硝子株式会社 Wavelength conversion member and light-emitting device using the same
TWI757521B (en) * 2017-07-27 2022-03-11 日商日本電氣硝子股份有限公司 Wavelength conversion member and light-emitting device
WO2019021846A1 (en) * 2017-07-27 2019-01-31 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP2019029648A (en) * 2017-07-27 2019-02-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP7090842B2 (en) 2017-07-27 2022-06-27 日本電気硝子株式会社 Wavelength conversion member and light emitting device
US11433500B2 (en) 2018-02-05 2022-09-06 Nippon Electric Glass Co., Ltd. Manufacturing method for phosphor glass thin plate and piece thereof, and phosphor glass thin plate and piece thereof
KR20200117976A (en) 2018-02-05 2020-10-14 니폰 덴키 가라스 가부시키가이샤 Phosphor glass thin plate and its reorganization manufacturing method, and phosphor glass thin plate and its reorganization
KR102219874B1 (en) 2019-05-10 2021-02-24 한국산업기술대학교 산학협력단 Method for producing phosphor plate
KR20200129838A (en) * 2019-05-10 2020-11-18 한국산업기술대학교산학협력단 Method for producing phosphor plate
JP7011195B2 (en) 2020-02-27 2022-01-26 日亜化学工業株式会社 Luminescent device
JP2020080429A (en) * 2020-02-27 2020-05-28 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP5532508B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5532508B2 (en) Wavelength conversion member and manufacturing method thereof
WO2011111462A1 (en) Wavelength conversion member, optical device, and process for production of wavelength conversion member
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2008021868A (en) Phosphor composite member
JP2014234487A (en) Wavelength conversion member and light-emitting device
JP5242905B2 (en) Luminescent color conversion member manufacturing method and luminescent color conversion member
JP2013219123A (en) Wavelength conversion member and method for producing the same
JP2013055269A (en) Wavelength conversion member and light-emitting device
WO2015093267A1 (en) Wavelength-conversion member and light-emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2011222751A (en) Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP2014041984A (en) Wavelength conversion material
JP2013095849A (en) Wavelength conversion member and light emitting device using the same
JP6004250B2 (en) Wavelength conversion member and light emitting device
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
TWI782996B (en) Glass for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP5713273B2 (en) Joining material and member joining method using the same
JP5807780B2 (en) Wavelength converting member and light emitting device using the same
KR102654998B1 (en) Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices
JP7339609B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2012052018A (en) Phosphor-containing composition and wavelength conversion member obtained by firing the same
CN111480098B (en) Wavelength conversion member and light emitting device using same
JP7004235B2 (en) Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
JP2013030536A (en) Light-emitting color conversion member and light-emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5532508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140413