JP5939463B2 - Glass and wavelength conversion member using the glass - Google Patents

Glass and wavelength conversion member using the glass Download PDF

Info

Publication number
JP5939463B2
JP5939463B2 JP2012066559A JP2012066559A JP5939463B2 JP 5939463 B2 JP5939463 B2 JP 5939463B2 JP 2012066559 A JP2012066559 A JP 2012066559A JP 2012066559 A JP2012066559 A JP 2012066559A JP 5939463 B2 JP5939463 B2 JP 5939463B2
Authority
JP
Japan
Prior art keywords
glass
wavelength conversion
conversion member
powder
phosphor powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012066559A
Other languages
Japanese (ja)
Other versions
JP2013193952A (en
Inventor
菊谷 武民
武民 菊谷
民雄 安東
民雄 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012066559A priority Critical patent/JP5939463B2/en
Priority to PCT/JP2013/056467 priority patent/WO2013141044A1/en
Publication of JP2013193952A publication Critical patent/JP2013193952A/en
Application granted granted Critical
Publication of JP5939463B2 publication Critical patent/JP5939463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、例えばLED(発光ダイオード)やLD(レーザーダイオード)等の発光デバイスの構成部材である波長変換部材に用いられるガラスに関する。   The present invention relates to glass used for a wavelength conversion member that is a constituent member of a light emitting device such as an LED (light emitting diode) or an LD (laser diode).

近年、白色LEDは、白熱電球や蛍光灯に代わる次世代の光源として、照明用途への応用が進んできてきる。白色LEDは、例えばLEDチップの発光面が蛍光体粉末を含む有機系バインダー樹脂によってモールドされた構成を有している。このモールド部分を、LEDチップから発せられた励起光が通過する際に、その一部が蛍光体粉末により吸収されて波長変換され、その他の励起光は波長変換されずにそのまま透過する。波長変換された光と、波長変換されなかった透過光とが合わさって、所望の白色光が発せられる。しかしながら、上記LED素子を構成するモールド樹脂は、青〜紫外領域の高出力の短波長の励起光によって劣化し、変色を引き起こしやすいという問題がある。   In recent years, white LEDs have been increasingly applied to lighting applications as next-generation light sources that replace incandescent bulbs and fluorescent lamps. The white LED has a configuration in which, for example, a light emitting surface of an LED chip is molded with an organic binder resin containing phosphor powder. When excitation light emitted from the LED chip passes through the mold part, a part of the excitation light is absorbed by the phosphor powder and wavelength-converted, and the other excitation light is transmitted without being wavelength-converted. The light that has undergone wavelength conversion and the transmitted light that has not undergone wavelength conversion are combined to produce desired white light. However, there is a problem that the mold resin constituting the LED element is deteriorated by high-power, short-wavelength excitation light in the blue to ultraviolet region and easily causes discoloration.

上記問題を解決するために、500℃以上の軟化点を有する非鉛系ガラス粉末と蛍光体粉末を含む材料をガラスの軟化点以上の温度で焼結することで、ガラスマトリクス中に蛍光体粉末を分散させた波長変換部材が特許文献1で提案されている。当該波長変換部材は、蛍光体粉末が無機材料であるガラスマトリクス中に分散されているため、化学的に安定で劣化が少なく、しかも、励起光による部材の変色も生じにくいという利点を有する。しかしながら、蛍光体粉末の中には耐熱性の低いものがあり、これを500℃以上の軟化点を有する非鉛系ガラス粉末とともに焼結すると、蛍光体粉末が熱劣化して発光効率が低下するという問題がある。   In order to solve the above problem, a phosphor powder is incorporated into a glass matrix by sintering a material containing a lead-free glass powder having a softening point of 500 ° C. or higher and a phosphor powder at a temperature higher than the softening point of the glass. Patent Document 1 proposes a wavelength conversion member in which the above is dispersed. Since the phosphor powder is dispersed in a glass matrix that is an inorganic material, the wavelength conversion member has an advantage that it is chemically stable and hardly deteriorated, and the member is not easily discolored by excitation light. However, some phosphor powders have low heat resistance, and when sintered together with a lead-free glass powder having a softening point of 500 ° C. or higher, the phosphor powder is thermally deteriorated and the luminous efficiency is lowered. There is a problem.

そこで、蛍光体粉末の熱劣化を抑制するため、低融点ガラスに蛍光体粉末を分散させる方法が提案されている(例えば、特許文献2および3参照)。   Therefore, in order to suppress the thermal deterioration of the phosphor powder, a method of dispersing the phosphor powder in the low melting point glass has been proposed (for example, see Patent Documents 2 and 3).

特開2003−258308号公報JP 2003-258308 A 特開2008−19421号公報JP 2008-19421 A 特開2005−11933号公報JP 2005-11933 A

特許文献2および3に記載の波長変換部材においても、依然として、焼結時におけるガラスと蛍光体粉末の反応による変色が生じやすいという問題がある。また、ガラスの耐候性が低いため、特に湿度の高い環境下では、使用中に波長変換部材の表面が変質して透過率が低下し、発光効率が大幅に低下するという問題もある。   The wavelength conversion members described in Patent Documents 2 and 3 still have a problem that discoloration is likely to occur due to the reaction between glass and phosphor powder during sintering. In addition, since the weather resistance of glass is low, there is also a problem that the surface of the wavelength conversion member is altered during use, particularly in a high humidity environment, the transmittance is lowered, and the light emission efficiency is greatly lowered.

以上に鑑み、本発明の目的は、蛍光体粉末と反応しにくく、しかも耐候性に優れ、長期間に亘って使用しても劣化が少ない波長変換部材を得ることが可能なガラスを提供することである。   In view of the above, an object of the present invention is to provide a glass that is less likely to react with a phosphor powder, has excellent weather resistance, and can obtain a wavelength conversion member that is less deteriorated even when used over a long period of time. It is.

本発明は、ガラス組成として、モル%で、SnO 50〜80%、P 15〜25%(ただし、25%は含まない)、ZrO 0.3〜3%、Al 0.1〜10%、B 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 0〜10%、MgO 0.1〜10%、CaO 0〜3%、SrO 0〜2.5%、BaO 0〜2%、MgO+CaO+SrO+BaO 0.1〜10%およびZrO+Al+MgO 0.5〜10%を含有し、SnO/P 2.1〜4.8であることを特徴とするガラスに関する。 In the present invention, the glass composition is mol%, SnO 50 to 80%, P 2 O 5 15 to 25% (however, 25% is not included), ZrO 2 0.3 to 3 %, Al 2 O 3 0 .1~10%, B 2 O 3 0~10 %, Li 2 O 0~10%, Na 2 O 0~10%, K 2 O 0~10%, Li 2 O + Na 2 O + K 2 O 0~10% MgO 0.1 to 10%, CaO 0 to 3%, SrO 0 to 2.5%, BaO 0 to 2%, MgO + CaO + SrO + BaO 0.1 to 10% and ZrO 2 + Al 2 O 3 + MgO 0.5 to 10% containing, relates to a glass which is a SnO / P 2 O 5 2.1~4.8.

一般に、低融点ガラスであるSnO−P系ガラスは耐候性が低く、また、蛍光体粉末と混合して焼結する際に、蛍光体粉末と反応して、発光効率が低下しやすい。一方、本発明のガラスは、SnO−P系ガラスをベースとして、ZrO、AlおよびMgOを必須成分として所定量含有することを特徴とする。それにより、本発明のガラスは、蛍光体粉末との反応が抑制できるとともに、耐候性にも優れている。よって、本発明のガラスと蛍光体粉末を含む混合粉末を焼結してなる波長変換部材は、発光効率に優れ、かつ、長期間に亘って使用しても劣化が少ないという特徴を有する。 In general, SnO—P 2 O 5 glass, which is a low-melting glass, has low weather resistance, and when it is mixed and sintered with phosphor powder, it reacts with the phosphor powder and its luminous efficiency tends to decrease. . On the other hand, the glass of the present invention is characterized by containing a predetermined amount of ZrO 2 , Al 2 O 3 and MgO as essential components based on SnO—P 2 O 5 glass. Thereby, the glass of this invention can suppress reaction with fluorescent substance powder, and is excellent also in a weather resistance. Therefore, the wavelength conversion member formed by sintering the mixed powder containing the glass and the phosphor powder of the present invention is excellent in luminous efficiency and has a characteristic that it is less deteriorated even when used over a long period of time.

第二に、本発明のガラスは、実質的にZnOを含有しないことが好ましい。   Secondly, it is preferable that the glass of the present invention does not substantially contain ZnO.

当該構成によれば、焼成時における失透の発生を抑制することができる。   According to the said structure, generation | occurrence | production of devitrification at the time of baking can be suppressed.

第三に、本発明のガラスは、実質的にSiOを含有しないことが好ましい。 Thirdly, it is preferable that the glass of the present invention does not substantially contain SiO 2 .

当該構成によれば、分相による透過率の低下を抑制することができる。   According to the said structure, the fall of the transmittance | permeability by phase-separation can be suppressed.

なお、本発明において、「実質的に含有しない」とは、不可避的不純物を除き、該当する成分を意図的に含有させない(具体的には0.1モル%未満)ことを意味する。   In the present invention, “substantially does not contain” means that the corresponding components are not intentionally contained (specifically, less than 0.1 mol%) except for inevitable impurities.

第四に、本発明のガラスは、屈伏点が400℃以下であることが好ましい。   Fourth, the glass of the present invention preferably has a yield point of 400 ° C. or lower.

当該構成によれば、本発明のガラスおよび蛍光体粉末を含む波長変換材料を低温焼結することができるため、蛍光体粉末の劣化を抑制することができる。   According to the said structure, since the wavelength conversion material containing the glass of this invention and fluorescent substance powder can be sintered at low temperature, deterioration of fluorescent substance powder can be suppressed.

第五に、本発明のガラスは、示差熱分析によって得られる測定曲線において、結晶化ピーク温度が発現しないことが好ましい。   Fifth, it is preferable that the glass of the present invention does not exhibit a crystallization peak temperature in a measurement curve obtained by differential thermal analysis.

当該構成によれば、焼成時に失透が生じにくくなる。   According to the said structure, devitrification becomes difficult to produce at the time of baking.

第六に、本発明は、前記いずれかのガラスからなるガラス粉末に関する。   Sixth, the present invention relates to a glass powder comprising any one of the above glasses.

第七に、本発明は、前記ガラス粉末と蛍光体粉末とを含む波長変換材料に関する。   Seventh, the present invention relates to a wavelength conversion material containing the glass powder and the phosphor powder.

第八に、本発明は、前記波長変換材料の焼結体からなる波長変換部材に関する。   Eighth, the present invention relates to a wavelength conversion member made of a sintered body of the wavelength conversion material.

第九に、本発明は、前記いずれかの波長変換部材と、波長変換部材に対して、蛍光体粉末の励起光を照射する光源と、を備えることを特徴とする発光デバイスに関する。   Ninthly, the present invention relates to a light emitting device comprising any one of the wavelength conversion members and a light source that irradiates the wavelength conversion member with excitation light of a phosphor powder.

本発明によれば、蛍光体粉末と反応しにくく、しかも耐候性に優れ、長期間に亘って使用しても劣化が少ない波長変換部材を得ることが可能なガラスを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the glass which can obtain the wavelength conversion member which is hard to react with fluorescent substance powder, is excellent in a weather resistance, and is hardly deteriorated even if used over a long period of time can be provided.

以下に、本発明のガラスの組成を上記の通り限定した理由を説明する。なお、以下の説明において、特に断りのない限り、「%」は「モル%」を示す。   Below, the reason which limited the composition of the glass of this invention as mentioned above is demonstrated. In the following description, “%” means “mol%” unless otherwise specified.

SnOはガラス骨格を形成するとともに、熱物性温度(ガラス転移点、屈伏点、軟化点等)を低下させる成分である。その含有量は50〜80%、好ましくは53〜75%、より好ましくは56〜72%、特に好ましくは58〜68%である。SnOの含有量が少なすぎると、熱物性温度が上昇する傾向にある。その結果、本発明のガラスを含む波長変換材料を低温で焼結しにくくなり、蛍光体粉末が劣化しやすくなる。一方、SnOの含有量が多すぎると、溶融時にガラス中にSnに起因する失透ブツ(特に4価の錫ブツ)が析出して透過率が低下する傾向にあり、結果として、高い発光効率を有する波長変換部材が得られにくくなる。また、溶融分離してガラス化しにくくなる。   SnO is a component that forms a glass skeleton and lowers the thermophysical temperature (glass transition point, yield point, softening point, etc.). The content is 50 to 80%, preferably 53 to 75%, more preferably 56 to 72%, and particularly preferably 58 to 68%. When there is too little content of SnO, it exists in the tendency for a thermophysical temperature to rise. As a result, it becomes difficult to sinter the wavelength conversion material containing the glass of the present invention at a low temperature, and the phosphor powder tends to deteriorate. On the other hand, when the content of SnO is too large, devitrification beads (especially tetravalent tin) due to Sn are precipitated in the glass at the time of melting and the transmittance tends to decrease, resulting in high luminous efficiency. It becomes difficult to obtain a wavelength conversion member having. Moreover, it becomes difficult to vitrify by melting and separating.

はガラス骨格を形成する成分である。その含有量は15〜25%(ただし、25%は含まない)、好ましくは18〜24%、より好ましくは20〜23%である。Pの含有量が少なすぎると、ガラス化しにくくなる。一方、Pの含有量が多すぎると、熱物性温度が上昇する傾向にある。その結果、本発明のガラスを含む波長変換材料を低温で焼結しにくくなり、蛍光体粉末が劣化しやすくなる。また、耐候性が著しく低下する傾向にある。 P 2 O 5 is a component that forms a glass skeleton. The content is 15 to 25% (however, 25% is not included), preferably 18 to 24%, more preferably 20 to 23%. When the content of P 2 O 5 is too small, it is difficult to vitrify. On the other hand, when the content of P 2 O 5 is too large, thermal properties temperature tends to increase. As a result, it becomes difficult to sinter the wavelength conversion material containing the glass of the present invention at a low temperature, and the phosphor powder tends to deteriorate. Further, the weather resistance tends to be remarkably lowered.

なお、熱物性温度を低下させ、しかもガラスを安定化させるには、SnO/Pの値(モル比)を1.6〜4.8とする必要があり、好ましくは1.8〜3.8、より好ましくは2.3〜3.3の範囲に調整することが好ましい。SnO/Pの値が小さすぎると、熱物性温度が上昇する傾向にある。その結果、本発明のガラスを含む波長変換材料を低温で焼結しにくくなり、蛍光体粉末が劣化しやすくなる。また、耐候性が著しく低下する傾向にある。一方、SnO/Pの値が大きすぎると、ガラス中にSnに起因する失透ブツが析出し、透過率が低下する傾向にあり、結果として、高い発光効率を有する波長変換部材が得られにくくなる。 In order to lower the thermophysical temperature and stabilize the glass, the SnO / P 2 O 5 value (molar ratio) must be 1.6 to 4.8, preferably 1.8 to 4.8. It is preferable to adjust to the range of 3.8, more preferably 2.3 to 3.3. When the value of SnO / P 2 O 5 is too small, the thermophysical temperature tends to increase. As a result, it becomes difficult to sinter the wavelength conversion material containing the glass of the present invention at a low temperature, and the phosphor powder tends to deteriorate. Further, the weather resistance tends to be remarkably lowered. On the other hand, when the value of SnO / P 2 O 5 is too large, devitrification spots due to Sn are precipitated in the glass and the transmittance tends to decrease. As a result, a wavelength conversion member having high luminous efficiency is obtained. It becomes difficult to obtain.

ZrOは耐候性を向上させる成分である。その含有量は0.3〜3%、好ましくは0.35〜2、より好ましくは0.4〜1.5である。ZrOの含有量が少なすぎると、上記効果が得られにくくなる。一方、ZrOの含有量が多すぎると、溶融時に失透または分相して白濁し、透過率が低下しやすくなる。その結果、本発明のガラスを用いた波長変換部材の発光効率が低下する傾向がある。 ZrO 2 is a component that improves weather resistance. The content is 0.3 to 3%, preferably 0.35 to 2, more preferably 0.4 to 1.5. When the content of ZrO 2 is too small, the effect is difficult to obtain. On the other hand, when the content of ZrO 2 is too large, turbid and devitrification or phase separation at the time of melting, the transmittance tends to decrease. As a result, the light emission efficiency of the wavelength conversion member using the glass of the present invention tends to decrease.

Alは耐候性を向上させ、ガラスを安定化させる成分である。その含有量は0.1〜10%、好ましくは0.1〜7%、より好ましくは1〜5%である。Alの含有量が少なすぎると、上記効果が得られにくくなる。Alの含有量が多すぎると、熱物性温度が上昇する傾向にある。その結果、本発明のガラスを含む波長変換材料を低温で焼結しにくくなり、蛍光体粉末が劣化しやすくなる。 Al 2 O 3 is a component that improves the weather resistance and stabilizes the glass. Its content is 0.1 to 10%, preferably 0.1 to 7%, more preferably 1 to 5%. When the content of Al 2 O 3 is too small, the effect is difficult to obtain. When the content of Al 2 O 3 is too large, thermal properties temperature tends to increase. As a result, it becomes difficult to sinter the wavelength conversion material containing the glass of the present invention at a low temperature, and the phosphor powder tends to deteriorate.

はガラスを安定化させる成分であり、蛍光体粉末との反応を抑制する成分でもある。その含有量は0〜10%、好ましくは0〜5%、より好ましくは0〜3%である。Bの含有量が多すぎると、熱物性温度が上昇する傾向にある。その結果、本発明のガラスを含む波長変換材料を低温で焼結しにくくなり、蛍光体粉末が劣化しやすくなる。 B 2 O 3 is a component that stabilizes the glass and is also a component that suppresses the reaction with the phosphor powder. The content is 0 to 10%, preferably 0 to 5%, more preferably 0 to 3%. If the B 2 O 3 content is too large, thermal properties temperature tends to increase. As a result, it becomes difficult to sinter the wavelength conversion material containing the glass of the present invention at a low temperature, and the phosphor powder tends to deteriorate.

LiOは熱物性温度を著しく低下させるとともに、波長変換部材の発光効率を向上させる成分である。その含有量は0〜10%、好ましくは0〜7%、より好ましくは1〜5%である。LiOの含有量が多すぎると、ガラスが著しく不安定になってガラス化しにくくなる。 Li 2 O is a component that significantly lowers the thermophysical temperature and improves the luminous efficiency of the wavelength conversion member. The content is 0 to 10%, preferably 0 to 7%, more preferably 1 to 5%. The content of Li 2 O is too large, the glass becomes significantly instable difficult to vitrify.

NaOは熱物性温度を低下させるとともに、波長変換部材の発光効率を若干向上させる成分である。その含有量は0〜10%、好ましくは0〜7%、より好ましくは0〜5%である。NaOの含有量が多すぎると、ガラスが不安定になってガラス化しにくくなる。 Na 2 O is a component that lowers the thermophysical temperature and slightly improves the luminous efficiency of the wavelength conversion member. The content is 0 to 10%, preferably 0 to 7%, more preferably 0 to 5%. When the content of Na 2 O is too large, it is difficult to vitrify the glass becomes unstable.

Oは熱物性温度を若干低下させるとともに、波長変換部材の発光効率を向上させる成分である。その含有量は0〜10%、好ましくは0〜7%、より好ましくは1〜5%である。KOの含有量が多すぎると、ガラスが不安定になってガラス化しにくくなる。 K 2 O is a component that slightly lowers the thermophysical temperature and improves the light emission efficiency of the wavelength conversion member. The content is 0 to 10%, preferably 0 to 7%, more preferably 1 to 5%. When the content of K 2 O is too large, it is difficult to vitrify the glass becomes unstable.

なお、LiO、NaOおよびKOを合量で0〜10%、さらには0〜7%、特に1〜5%とすることが好ましい。これら成分の合量が多すぎると、ガラスが不安定になってガラス化しにくくなる。 Incidentally, Li 2 O, 0% in total of Na 2 O and K 2 O, further 0 to 7%, and particularly preferably 1 to 5%. When there is too much total amount of these components, glass will become unstable and it will become difficult to vitrify.

MgOは耐候性を向上させる成分である。また、波長変換部材の発光効率を著しく向上させる効果がある。その含有量は0.1〜10%、好ましくは0.3〜7%、より好ましくは0.5〜3%である。MgOの含有量が少なすぎると、上記効果が得られにくくなる。MgOの含有量が多すぎると、焼成時に失透して透過率が低下しやすくなる。その結果、高い発光効率を有する波長変換部材が得られにくくなる。   MgO is a component that improves weather resistance. Moreover, there is an effect of remarkably improving the light emission efficiency of the wavelength conversion member. The content is 0.1 to 10%, preferably 0.3 to 7%, more preferably 0.5 to 3%. If the content of MgO is too small, the above effect is difficult to obtain. When there is too much content of MgO, it will devitrify at the time of baking and the transmittance | permeability will fall easily. As a result, it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

なお、本発明において、ZrO、MgOおよびAlの合量は0.5〜11%であり、好ましくは0.5〜10%、より好ましくは1〜5%、さらに好ましくは2〜4%である。これら成分の合量が少なすぎると、耐候性向上の効果が得られにくい。これら成分の合量が多すぎると、焼成時に失透して透過率が低下しやすくなる。その結果、高い発光効率を有する波長変換部材が得られにくくなる。 In the present invention, the total amount of ZrO 2 , MgO and Al 2 O 3 is 0.5 to 11%, preferably 0.5 to 10%, more preferably 1 to 5%, still more preferably 2 to 2. 4%. When the total amount of these components is too small, it is difficult to obtain the effect of improving the weather resistance. When there is too much total amount of these components, it will devitrify at the time of baking and the transmittance | permeability will fall easily. As a result, it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

CaOは耐候性を向上させる成分である。その含有量は0〜3%、好ましくは0〜2.5%、より好ましくは0〜2%である。CaOの含有量が多すぎると、焼成時に失透して透過率が低下しやすくなる。その結果、高い発光効率を有する波長変換部材が得られにくくなる。   CaO is a component that improves weather resistance. Its content is 0-3%, preferably 0-2.5%, more preferably 0-2%. When there is too much content of CaO, it will devitrify at the time of baking and the transmittance | permeability will fall easily. As a result, it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

SrOは耐候性を向上させる成分である。その含有量は0〜2.5%、好ましくは0〜2%、より好ましくは0〜1.5%である。SrOの含有量が多すぎると、焼成時に失透して透過率が低下しやすくなる。その結果、高い発光効率を有する波長変換部材が得られにくくなる。   SrO is a component that improves weather resistance. The content is 0 to 2.5%, preferably 0 to 2%, more preferably 0 to 1.5%. When there is too much content of SrO, it will devitrify at the time of baking and the transmittance | permeability will fall easily. As a result, it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

BaOは耐候性を向上させる成分である。その含有量は0〜2%、好ましくは0〜1.5%、より好ましくは0〜1%である。BaOの含有量が多すぎると、焼成時に著しく失透して透過率が低下しやすくなる。その結果、高い発光効率を有する波長変換部材が得られにくくなる。   BaO is a component that improves the weather resistance. Its content is 0-2%, preferably 0-1.5%, more preferably 0-1%. When there is too much content of BaO, it will devitrify remarkably at the time of baking and it will become easy to reduce the transmittance | permeability. As a result, it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

なお、MgO、CaO、SrOおよびBaOを合量で0.1〜10%、さらには0.1〜7%、特に1〜5%とすることが好ましい。これら成分の合量が少なすぎると、耐候性を向上させる効果が得られにくくなる。一方、これら成分の合量が多すぎると、焼成時に失透して透過率が低下しやすくなる。その結果、高い発光効率を有する波長変換部材が得られにくくなる。   Note that the total amount of MgO, CaO, SrO and BaO is preferably 0.1 to 10%, more preferably 0.1 to 7%, and particularly preferably 1 to 5%. If the total amount of these components is too small, it is difficult to obtain the effect of improving the weather resistance. On the other hand, when there is too much total amount of these components, it will devitrify at the time of baking and the transmittance | permeability will fall easily. As a result, it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

ZnOは耐候性を向上させる成分であるが、本発明の組成系では少量でも含有すると、焼成時に失透する傾向がある。したがって、本発明ではZnOは実質的に含有しないことが好ましい。   ZnO is a component that improves the weather resistance, but if it is contained in a small amount in the composition system of the present invention, it tends to devitrify during firing. Therefore, in the present invention, it is preferable that ZnO is not substantially contained.

SiOは少量でも含有すると、分相して白濁化し、透過率が低下する傾向がある。したがって、本発明では、SiOを実質的に含有しないことが好ましい。 When SiO 2 is contained even in a small amount, the phase is separated and white turbid, and the transmittance tends to decrease. Therefore, in the present invention, it is preferred not to contain SiO 2 substantially.

また、上記成分以外にも、本発明の効果を損なわない範囲で種々の成分を添加することができる。例えば、耐候性を向上させるために、Ta、TiO、Nb、GdまたはLaを合量で10%まで含有させてもよい。 In addition to the above components, various components can be added as long as the effects of the present invention are not impaired. For example, in order to improve the weather resistance, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 or La 2 O 3 may be contained up to 10% in total.

ただし、Fe、Cr、CoO、CuOおよびNiO等の着色成分は、内部透過率を低下させるため、これら成分は合量で0.02%以下にすることが好ましい。 However, since coloring components such as Fe 2 O 3 , Cr 2 O 3 , CoO, CuO, and NiO reduce internal transmittance, it is preferable that these components are combined in an amount of 0.02% or less.

本発明のガラスは、厚さ1mm、波長588nmにおける内部透過率が、70%以上、さらには80%以上、特に90%以上であることが好ましい。内部透過率が低すぎると、高い発光効率を有する波長変換部材が得られにくくなる。   The glass of the present invention preferably has an internal transmittance of 70% or more, further 80% or more, particularly 90% or more at a thickness of 1 mm and a wavelength of 588 nm. If the internal transmittance is too low, it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

なお、高い内部透過率を有するガラスを得るためには、鉄、クロム、コバルト、銅、ニッケル等の着色不純物の少ないガラス原料を用いたり、Snに起因する失透ブツの析出による内部透過率の低下を抑制するために、還元雰囲気(NガスやArガス等の非酸化性雰囲気)中で溶融したり、ガラス原料中に金属アルミニウム等の還元剤を少量添加して溶融することが好ましい。 In order to obtain a glass having a high internal transmittance, a glass raw material with few colored impurities such as iron, chromium, cobalt, copper and nickel is used, or the internal transmittance due to the precipitation of devitrification bumps caused by Sn. In order to suppress the decrease, it is preferable to melt in a reducing atmosphere (non-oxidizing atmosphere such as N 2 gas or Ar gas) or to add a small amount of a reducing agent such as metallic aluminum to the glass raw material and melt it.

本発明のガラスは、屈伏点が400℃以下、さらには380℃以下であることが好ましい。屈伏点が高すぎると、本発明のガラスを含む波長変換材料を低温で焼結しにくくなり、蛍光体粉末が劣化しやすくなる。また、耐候性が著しく低下する傾向にある。   The glass of the present invention preferably has a yield point of 400 ° C. or lower, more preferably 380 ° C. or lower. If the yield point is too high, it becomes difficult to sinter the wavelength conversion material containing the glass of the present invention at a low temperature, and the phosphor powder tends to deteriorate. Further, the weather resistance tends to be remarkably lowered.

さらに、本発明のガラスは、示差熱分析によって得られる測定曲線において、結晶化ピーク温度が発現しないことが好ましい。これにより、波長変換材料の焼成時における失透が生じにくくなる。   Furthermore, it is preferable that the glass of the present invention does not exhibit a crystallization peak temperature in a measurement curve obtained by differential thermal analysis. Thereby, the devitrification at the time of baking of the wavelength conversion material becomes difficult to occur.

次に、本発明のガラスを用いた波長変換部材について説明する。本発明の波長変換部材は、本発明のガラス粉末と蛍光体粉末とを含む波長変換材料の焼結体からなる。   Next, the wavelength conversion member using the glass of this invention is demonstrated. The wavelength conversion member of the present invention comprises a sintered body of a wavelength conversion material including the glass powder of the present invention and a phosphor powder.

本発明において使用可能な蛍光体粉末としては、一般に市場で入手できるものであれば特に限定されない。例えば、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物およびハロリン酸塩化物から選ばれた少なくとも1種からなる蛍光体粉末が挙げられる。その他にも、有機物からなる蛍光体粉末を使用しても構わない。窒化物、酸窒化物、塩化物、酸塩化物、硫化物、酸硫化物、ハロゲン化物、カルコゲン化物、アルミン酸塩およびハロリン酸塩化物等の蛍光体粉末は、焼成時の加熱により、ガラス粉末と反応し、発泡や変色等の異常反応を起こしやすく、その程度は、焼成温度が高温であればあるほど著しくなる。本発明で使用するガラスは軟化点が低く、低温で焼結できる(例えば400℃以下)ため、ガラス粉末と反応しやすい上記のような蛍光体粉末も使用することができる。   The phosphor powder that can be used in the present invention is not particularly limited as long as it is generally available on the market. Examples thereof include phosphor powders made of at least one selected from oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, and halophosphates. In addition, a phosphor powder made of an organic material may be used. Phosphor powders such as nitrides, oxynitrides, chlorides, acid chlorides, sulfides, oxysulfides, halides, chalcogenides, aluminates, and halophosphates are made into glass powders by heating during firing. To cause abnormal reactions such as foaming and discoloration, and the degree becomes more remarkable as the firing temperature is higher. Since the glass used in the present invention has a low softening point and can be sintered at a low temperature (for example, 400 ° C. or lower), the above-described phosphor powder that easily reacts with the glass powder can also be used.

上記蛍光体粉末の中で、波長300〜500nmに励起帯を有し、波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)、赤色(波長600〜700nm)に発光するものを用いることが好ましい。   Among the phosphor powders, those having an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength) It is preferable to use one that emits light in the range of 540 to 595 nm and red (wavelength of 600 to 700 nm).

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色に発光する蛍光体粉末としては、(Sr,Ba)MgSi:Eu2+等が挙げられる。 (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ is an example of the phosphor powder that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色に発光する蛍光体粉末としては、SrAl:Eu2+等が挙げられる。 The phosphor powder that emits green light when irradiated with ultraviolet to near-ultraviolet excitation light of wavelength 300~440nm, SrAl 2 O 4: Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると緑色に発光する蛍光体粉末としては、SrGa:Eu2+等が挙げられる。 Examples of the phosphor powder that emits green light when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrGa 2 S 4 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色に発光する蛍光体粉末としては、ZnS:Eu2+等が挙げられる。 Examples of the phosphor powder that emits yellow light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include ZnS: Eu 2+ .

波長440〜480nmの青色の励起光を照射すると黄色に発光する蛍光体粉末としては、Y(Al,Gd)12:Ce2+、SrBaSiO:Eu2+、LaSi11:Ce3+等が挙げられる。 As phosphor powder that emits yellow light when irradiated with blue excitation light having a wavelength of 440 to 480 nm, Y 3 (Al, Gd) 5 O 12 : Ce 2+ , SrBaSiO 4 : Eu 2+ , La 3 Si 6 N 11 : Ce 3+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色に発光する蛍光体粉末としては、CaS:Yb2+等が挙げられる。 Examples of the phosphor powder that emits red light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include CaS: Yb 2+ .

波長440〜480nmの青色の励起光を照射すると赤色に発光する蛍光体粉末としては、(Ca,Sr)Si:Eu2+等が挙げられる。 Examples of the phosphor powder that emits red light when irradiated with blue excitation light having a wavelength of 440 to 480 nm include (Ca, Sr) 2 Si 5 N 8 : Eu 2+ .

なお、励起光や発光の波長域に合わせて、複数の蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する蛍光体粉末を混合して使用すればよい。   A plurality of phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiating excitation light in the ultraviolet region, phosphor powders that emit blue, green, yellow, and red fluorescence may be mixed and used.

波長変換部材の発光効率は、ガラスマトリクス中に分散した蛍光体粉末の種類や含有量、および、波長変換部材の厚み等によって変化する。蛍光体粉末の含有量と波長変換部材の厚みは、発光効率が最適になるように調整すればよいが、蛍光体粉末の含有量が多くなりすぎると、焼結しにくくなったり、気孔率が大きくなって、励起光が効率良く蛍光体粉末に照射されにくくなったり、波長変換部材の機械的強度が低下しやすくなる等の問題を生じる。一方、蛍光体粉末の含有量が少なすぎると、十分な発光が得られにくくなる。したがって、波長変換材料における蛍光体粉末の含有量は、質量%で、0.01〜60%、さらには0.05〜55%、特に0.08〜50%であることが好ましい。   The luminous efficiency of the wavelength conversion member varies depending on the type and content of the phosphor powder dispersed in the glass matrix, the thickness of the wavelength conversion member, and the like. The phosphor powder content and the thickness of the wavelength conversion member may be adjusted so as to optimize the luminous efficiency. However, if the phosphor powder content is too high, sintering becomes difficult or the porosity is low. As a result, it becomes difficult to efficiently irradiate the phosphor powder with the excitation light, and the mechanical strength of the wavelength conversion member tends to decrease. On the other hand, if the content of the phosphor powder is too small, it becomes difficult to obtain sufficient light emission. Therefore, the content of the phosphor powder in the wavelength conversion material is preferably 0.01% to 60%, more preferably 0.05% to 55%, and particularly preferably 0.08% to 50% in mass%.

本発明の波長変換材料には、本発明の効果を損なわない範囲で、シリカやアルミナ等の光拡散材を含有させても構わない。   The wavelength conversion material of the present invention may contain a light diffusing material such as silica or alumina as long as the effects of the present invention are not impaired.

波長変換材料の焼成は、大気中で行ってもよいが、減圧または真空雰囲気中、あるいは窒素やアルゴン等の不活性ガス雰囲気中で焼成することにより、緻密な焼結体が得られやすく、また、ガラス粉末と蛍光体粉末の反応を抑制できるため好ましい。   The wavelength conversion material may be fired in the air, but a dense sintered body can be easily obtained by firing in a reduced pressure or vacuum atmosphere or an inert gas atmosphere such as nitrogen or argon. It is preferable because the reaction between the glass powder and the phosphor powder can be suppressed.

波長変換材料の焼成温度は300〜400℃の範囲であることが好ましい。焼成温度が低すぎると、焼結体の気孔率が大きくなり、透過率が低下する場合がある。一方、焼成温度が高すぎると、蛍光体粉末が劣化したり、ガラス粉末と蛍光体粉末が反応し、発光効率が著しく低下する場合がある。   The firing temperature of the wavelength conversion material is preferably in the range of 300 to 400 ° C. If the firing temperature is too low, the porosity of the sintered body increases and the transmittance may decrease. On the other hand, when the firing temperature is too high, the phosphor powder may be deteriorated, or the glass powder and the phosphor powder may react to significantly reduce the light emission efficiency.

本発明の波長変換材料の形態は特に限定されるものではなく、例えば、粉末、加圧成型体、ペースト、グリーンシート等が挙げられる。   The form of the wavelength conversion material of the present invention is not particularly limited, and examples thereof include powder, a pressure-molded body, a paste, and a green sheet.

波長変換材料の加圧成型体は、ガラス粉末および蛍光体粉末を含む混合粉末に樹脂バインダーを0〜5質量%添加して、金型で加圧成型することにより作製することができる。この加圧成型体を例えば250℃以下の温度で加熱して脱バインダーを行った後、既述の焼成温度で焼成することにより、波長変換部材とすることができる。   The pressure-molded body of the wavelength conversion material can be produced by adding 0 to 5% by mass of a resin binder to a mixed powder containing glass powder and phosphor powder, and pressure-molding with a mold. The pressure-molded body is heated at a temperature of, for example, 250 ° C. or less to remove the binder, and then fired at the firing temperature described above to obtain a wavelength conversion member.

樹脂バインダーとしては、樹脂の分解終了温度が250℃以下のものを用いることが好ましく、例えば、ニトロセルロース、ポリイソブチルアクリレート、ポリエチルカーボネート、脂肪族ポリプロピレンカーボネート、ポリブチルメタクリレート、ポリビニルブチラール、ポリメチルメタクリレート、ポリエチルメタクリレート等が挙げられる。これらは単独で、または2種以上を混合して使用することができる。   As the resin binder, a resin binder having a decomposition end temperature of 250 ° C. or lower is preferably used. For example, nitrocellulose, polyisobutyl acrylate, polyethyl carbonate, aliphatic polypropylene carbonate, polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate And polyethyl methacrylate. These can be used alone or in admixture of two or more.

ペースト形態の波長変換材料は、ガラス粉末および蛍光体粉末を含む混合粉末に対し、樹脂バインダー、溶媒等を添加して混錬することにより作製することができる。ペースト全体に占める混合粉末の割合としては、30〜90質量%が一般的である。   The paste-form wavelength conversion material can be produced by adding a resin binder, a solvent, and the like to a mixed powder containing glass powder and phosphor powder and kneading them. The proportion of the mixed powder in the entire paste is generally 30 to 90% by mass.

樹脂バインダーは、ペースト乾燥後の膜強度を高め、また膜に柔軟性を付与する成分である。樹脂バインダーとしては既述のものを使用することができ、その含有量は、0.1〜20質量%程度が一般的である。   The resin binder is a component that increases the film strength after drying the paste and imparts flexibility to the film. As the resin binder, those described above can be used, and the content is generally about 0.1 to 20% by mass.

樹脂バインダーは溶媒に希釈して使用することが好ましい。溶媒の含有量は10〜50質量%程度が一般的である。溶媒としては、テルピネオール、酢酸イソアミル、トルエン、メチルエチルケトン、ジエチレングリコールモノブチルエーテルアセテート、2,2,4−トリメチル−1,3ペンタジオールモノイソブチレート等が挙げられる。   The resin binder is preferably used after diluted in a solvent. As for content of a solvent, about 10-50 mass% is common. Examples of the solvent include terpineol, isoamyl acetate, toluene, methyl ethyl ketone, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3 pentadiol monoisobutyrate and the like.

ペースト状の波長変換材料を用いて、次のようにして波長変換部材を作製することができる。まず、ガラス粉末と同程度の熱膨張係数を有する無機材料基材を準備し、その表面にスクリーン印刷法や一括コート法等によりペースト状の波長変換材料を塗布し、所定の膜厚の塗布層を形成した後、乾燥させる。続いて、既述の焼成温度で焼成した後、無機材料基材を取り外すことにより、波長変換部材を得ることができる。   A wavelength conversion member can be produced using a paste-like wavelength conversion material as follows. First, an inorganic material base material having a thermal expansion coefficient similar to that of glass powder is prepared, and a paste-like wavelength conversion material is applied to the surface by a screen printing method, a batch coating method, or the like, and a coating layer having a predetermined film thickness And then dried. Subsequently, after firing at the firing temperature described above, the wavelength conversion member can be obtained by removing the inorganic material substrate.

グリーンシート形態の波長変換材料は、次のようにして作製することができる。まず、ガラス粉末および蛍光体粉末を含む混合粉末に対し、樹脂バインダー、可塑剤、溶剤等を添加して混錬し、スラリーを得る。得られたスラリーをドクターブレード法によって、ポリエチレンテレフタレート(PET)等のフィルムの上にシート状に成形する。シート成形体を乾燥させることによって有機系溶剤等を除去し、グリーンシートとすることができる。グリーンシート中に占める混合粉末の割合は50〜80質量%程度が一般的である。   The wavelength conversion material in the form of a green sheet can be produced as follows. First, a resin binder, a plasticizer, a solvent, etc. are added and kneaded with respect to the mixed powder containing glass powder and fluorescent substance powder, and a slurry is obtained. The obtained slurry is formed into a sheet shape on a film of polyethylene terephthalate (PET) or the like by a doctor blade method. By drying the sheet molded body, the organic solvent and the like can be removed to obtain a green sheet. As for the ratio of the mixed powder which occupies in a green sheet, about 50-80 mass% is common.

樹脂バインダーおよび溶剤としては、既述のものを使用することができる。樹脂バインダーの含有量は0.1〜30質量%程度、溶剤の含有量は1〜40質量%程度が一般的である。   As the resin binder and the solvent, those described above can be used. The resin binder content is generally about 0.1 to 30% by mass, and the solvent content is generally about 1 to 40% by mass.

可塑剤は、乾燥速度をコントロールするとともに、乾燥させた膜に柔軟性を与える成分であり、その含有量は0〜10質量%程度が一般的である。可塑剤としては、フタル酸ジブチル、ブチルベンジルフタレート、ジオクチルフタレート、ジイソオクチルフタレート、ジカプリルフタレート、ジブチルフタレート等が挙げられ、これらを単独で、または混合して使用することができる。   The plasticizer is a component that controls the drying speed and imparts flexibility to the dried film, and the content thereof is generally about 0 to 10% by mass. Examples of the plasticizer include dibutyl phthalate, butyl benzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, and dibutyl phthalate, and these can be used alone or in combination.

グリーンシート状の波長変換材料を用いて、次のようにして波長変換部材を作製することができる。まず、ガラス粉末と同程度の熱膨張係数を有する無機材料基材を用意し、その表面上にグリーンシートを積層し、熱圧着する。その後、既述の焼成温度で焼成し、無機材料の基材を取り外すことにより、波長変換部材を得ることができる。   A wavelength conversion member can be produced as follows using a green sheet-like wavelength conversion material. First, an inorganic material base material having a thermal expansion coefficient comparable to that of glass powder is prepared, a green sheet is laminated on the surface, and thermocompression bonding is performed. Thereafter, the wavelength conversion member can be obtained by firing at the firing temperature described above and removing the inorganic material substrate.

上記のようにして得られた波長変換部材と、波長変換部材に対して、蛍光体粉末の励起光を照射する光源(例えばLEDやLD)とを組み合わせることにより発光デバイスを得ることができる。   A light-emitting device can be obtained by combining the wavelength conversion member obtained as described above and a light source (for example, LED or LD) that emits excitation light of the phosphor powder to the wavelength conversion member.

以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

表1および2は本発明の実施例(試料No.1〜12およびa〜l)を示し、表3および4は比較例(試料No.13〜20およびm〜t)を示している。   Tables 1 and 2 show examples of the present invention (sample Nos. 1 to 12 and a to l), and Tables 3 and 4 show comparative examples (samples No. 13 to 20 and mt).

(1)ガラスの作製および評価
まず、表1および3に示すガラス組成となるように原料を調合し、均一に混合した。次いで、調合した原料をアルミナ坩堝に投入し、N雰囲気中950℃で2時間溶融した後、ガラス融液の一部をカーボン板の上に流し出して板状に成形した。また、ガラス融液の残りをローラー成形機を用いてフィルム状に成形し、らいかい機で粉砕した後、325メッシュの篩に通して分級することによりガラス粉末を得た。
(1) Production and Evaluation of Glass First, raw materials were prepared so as to have the glass compositions shown in Tables 1 and 3, and mixed uniformly. Next, the prepared raw material was put into an alumina crucible and melted at 950 ° C. for 2 hours in an N 2 atmosphere, and then a part of the glass melt was poured onto a carbon plate to be formed into a plate shape. Further, the remainder of the glass melt was formed into a film using a roller molding machine, pulverized with a coarse machine, and then passed through a 325 mesh sieve to obtain glass powder.

板状ガラスについては、アニール後、切断、研磨加工を行い、ガラス転移点および屈伏点の測定を行った。また、耐候性試験後の表面状態について評価した。ガラス粉末については、軟化点、結晶化温度および内部透過率の測定を行った。結果を表1および3に示す。   About plate-like glass, after annealing, it cut | disconnected and grind | polished and measured the glass transition point and the yield point. Further, the surface condition after the weather resistance test was evaluated. The glass powder was measured for softening point, crystallization temperature, and internal transmittance. The results are shown in Tables 1 and 3.

(2)波長変換部材の作製および評価
得られたガラス粉末に対し、蛍光体粉末を混合して混合粉末を得た。表2および4中の蛍光体粉末の欄において、「A」はY(Al,Gd)12:Ce2+、「B」は(Ca,Sr)Si:Eu2+を示す。また、混合粉末中の蛍光体粉末の含有量は3質量%とした。
(2) Production and Evaluation of Wavelength Conversion Member A phosphor powder was mixed with the obtained glass powder to obtain a mixed powder. In the phosphor powder column in Tables 2 and 4, “A” indicates Y 3 (Al, Gd) 5 O 12 : Ce 2+ , and “B” indicates (Ca, Sr) 2 Si 5 N 8 : Eu 2+ . . Moreover, content of the fluorescent substance powder in mixed powder was 3 mass%.

混合粉末を金型に投入して加圧成型し、大きさ15mm×15mm、厚さ5mmの加圧成型体を作製した。この加圧成型体を、100Paの減圧雰囲気下、表に示す焼成温度で焼結した後、加工し、大きさ10mm×10mm、厚み1mmの波長変換部材を得た。得られた波長変換部材について、耐候性試験前後の発光効率、および、耐候性試験後の表面状態を評価した。結果を表2および4に示す。   The mixed powder was put into a mold and pressure-molded to produce a pressure-molded body having a size of 15 mm × 15 mm and a thickness of 5 mm. The pressure-molded body was sintered at a firing temperature shown in the table under a reduced pressure atmosphere of 100 Pa, and then processed to obtain a wavelength conversion member having a size of 10 mm × 10 mm and a thickness of 1 mm. About the obtained wavelength conversion member, the luminous efficiency before and behind a weather resistance test and the surface state after a weather resistance test were evaluated. The results are shown in Tables 2 and 4.

(3)各特性の測定および評価方法
ガラス転移点および屈伏点は、熱機械分析装置(Thermo plus TMA8310:株式会社リガク製)を用いて測定した。
(3) Measurement and evaluation method of each characteristic The glass transition point and the yield point were measured using a thermomechanical analyzer (Thermo plus TMA8310: manufactured by Rigaku Corporation).

軟化点および結晶化温度は、DTA(示差熱分析)装置(TAS−100:株式会社リガク製)を用いて測定した。   The softening point and the crystallization temperature were measured using a DTA (Differential Thermal Analysis) apparatus (TAS-100: manufactured by Rigaku Corporation).

内部透過率は次のようにして求めた。ガラス粉末を表1および表3に記載の焼結温度で焼成して得られた焼結体を、肉厚が1mmになるように光学研磨加工を行い、試料を作製した。得られた試料について、分光光度計を用いて波長588nmにおける透過率および反射率を測定し、当該透過率および反射率の測定値から内部透過率(透過率に試料両面での反射率を加えた値)を求めた。   The internal transmittance was determined as follows. A sintered body obtained by firing the glass powder at the sintering temperatures shown in Tables 1 and 3 was subjected to optical polishing processing so that the thickness became 1 mm to prepare a sample. For the obtained sample, the transmittance and reflectance at a wavelength of 588 nm were measured using a spectrophotometer, and the internal transmittance (the reflectance on both sides of the sample was added to the transmittance from the measured value of the transmittance and reflectance). Value).

耐候性の評価は、プレッシャークッカー試験機を用い、試料を気圧2気圧、湿度95%、温度121℃の条件下に24時間放置し、試験後の試料表面の白濁の有無を、目視および顕微鏡により観察することにより行った(PCT試験)。目視および顕微鏡による観察で、微小クラックまたはガラス成分等の溶出による白濁が認められなかったものを「◎」、目視では白濁が認められなかったものの、顕微鏡で白濁が認められたものを「○」、目視および顕微鏡で白濁が認められたものを「×」として評価した。   The weather resistance was evaluated by using a pressure cooker tester, allowing the sample to stand for 24 hours under conditions of an atmospheric pressure of 2 atm, a humidity of 95%, and a temperature of 121 ° C., and visually and microscopically checking for the presence of white turbidity on the sample surface. This was done by observation (PCT test). “◎” indicates that no microcracks or white turbidity due to elution of glass components, etc. was observed by visual observation and observation by a microscope, and “○” indicates that white turbidity was not observed by visual observation but was observed by a microscope. In addition, the case where cloudiness was observed visually and under a microscope was evaluated as “x”.

発光効率は次のようにして求めた。まず、電流20mAで点灯した青色LED(波長465nm)上に試料を設置し、積分球内で、部材上面から発せられる光のエネルギー分布スペクトルを測定した。次に、得られたスペクトルに標準比視感度を掛け合わせて全光束を計算し、得られた全光束を光源の電力(0.072W)で除して発光効率を算出した。   Luminous efficiency was determined as follows. First, a sample was placed on a blue LED (wavelength 465 nm) lit at a current of 20 mA, and an energy distribution spectrum of light emitted from the upper surface of the member was measured in an integrating sphere. Next, the total luminous flux was calculated by multiplying the obtained spectrum by the standard relative luminous sensitivity, and the luminous efficiency was calculated by dividing the obtained total luminous flux by the power of the light source (0.072 W).

(4)測定および評価結果の考察
表から明らかなように、実施例である試料No.1〜12のガラスは熱物性温度が低く(ガラス転移点294〜333℃、屈伏点314〜354℃、軟化点352〜393℃)、366〜399℃という低温で焼結することができた。また、結晶化ピーク温度が発現しなかった。さらに、内部透過率が83%以上と高かった。なお、試料No.1〜12のガラス、および、これらのガラスを用いて作製したa〜lの波長変換部材は、耐候性試験後の表面状態に変質がなかった。また、波長変換部材の発光効率が高く、かつ、耐候性試験前後における発光効率の変化もほとんど確認されなかった。
(4) Consideration of measurement and evaluation results As is clear from the table, sample No. Glasses 1 to 12 had low thermophysical temperatures (glass transition point 294 to 333 ° C., yield point 314 to 354 ° C., softening point 352 to 393 ° C.), and could be sintered at a low temperature of 366 to 399 ° C. Further, the crystallization peak temperature was not expressed. Furthermore, the internal transmittance was as high as 83% or more. Sample No. The glass of 1-12 and the wavelength conversion member of a-1 produced using these glasses did not change in the surface state after a weather resistance test. Moreover, the luminous efficiency of the wavelength conversion member was high, and almost no change in the luminous efficiency before and after the weather resistance test was confirmed.

これに対して、比較例である試料No.13、15および16のガラスは耐候性試験後に表面が白濁した。また、これらのガラスを用いて作製した波長変換部材は、耐候性試験前は10〜12lm/Wの発光効率を示していたが、耐候性試験後に発光効率は2〜3lm/Wに著しく低下した。No.14のガラスは溶融時に溶融分離が発生し、ガラス化しなかったため評価不能であった。No.17のガラスは分相したため白濁し、内部透過率が68%と低かった。No.18〜20のガラスは結晶性が強く、焼成時に失透したため内部透過率が55〜59%と低かった。そのため、No.17〜20のガラスを用いて作製した波長変換部材は発光効率が4〜6lm/Wと低かった。   On the other hand, sample No. which is a comparative example. The surfaces of 13, 15 and 16 became cloudy after the weather resistance test. Moreover, the wavelength conversion member produced using these glasses showed a luminous efficiency of 10 to 12 lm / W before the weather resistance test, but the luminous efficiency significantly decreased to 2 to 3 lm / W after the weather resistance test. . No. No. 14 glass could not be evaluated because melt separation occurred during melting and it did not vitrify. No. Since the glass of 17 was phase-separated, it became cloudy and the internal transmittance was as low as 68%. No. The 18-20 glass had strong crystallinity and was devitrified during firing, so the internal transmittance was as low as 55-59%. Therefore, no. The wavelength conversion member produced using 17-20 glass had a low luminous efficiency of 4-6 lm / W.

Claims (6)

ガラス組成として、モル%で、SnO 50〜72(ただし、72%以上である場合を除く)%、P 15〜25%(ただし、25%は含まない)、ZrO 0.3〜3%、Al 0.1〜10%、B 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 0〜10%、MgO 0.1〜10%、CaO 0〜3%、SrO 0〜2.5%、BaO 0〜2%、MgO+CaO+SrO+BaO 0.1〜11%およびZrO+Al+MgO 0.5〜10%を含有し、実質的にSiO を含有せず、SnO/P 1.6〜4.8であるガラスからなるガラス粉末と蛍光体粉末を含むことを特徴とする波長変換材料As a glass composition, in mol%, SnO 50 to 72 (provided that the excluded if it is 72% or more)%, P 2 O 5 15~25 % ( however, not including 25%), ZrO 2 0.3~ 3%, Al 2 O 3 0.1~10 %, B 2 O 3 0~10%, Li 2 O 0~10%, Na 2 O 0~10%, K 2 O 0~10%, Li 2 O + Na 2 O + K 2 O 0-10%, MgO 0.1-10%, CaO 0-3%, SrO 0-2.5%, BaO 0-2%, MgO + CaO + SrO + BaO 0.1-11% and ZrO 2 + Al 2 O 3 + containing 0.5 to 10% MgO, it contains substantially no SiO 2, comprising glass powder and a phosphor powder composed of SnO / P 2 O 5 1.6~4.8 der Ruga Las A wavelength conversion material characterized by that . ガラスが実質的にZnOを含有しないことを特徴とする請求項1に記載の波長変換材料The wavelength conversion material according to claim 1, wherein the glass does not substantially contain ZnO. ガラスの屈伏点が400℃以下であることを特徴とする請求項1または2に記載の波長変換材料 Wavelength conversion material according to claim 1 or 2 yield point of the glass is characterized in that at 400 ° C. or less. ガラスが、示差熱分析によって得られる測定曲線において、結晶化ピーク温度が発現しないことを特徴とする請求項1〜のいずれか一項に記載の波長変換材料The wavelength conversion material according to any one of claims 1 to 3 , wherein the glass does not exhibit a crystallization peak temperature in a measurement curve obtained by differential thermal analysis. 請求項1〜4のいずれか一項に記載の波長変換材料の焼結体からなる波長変換部材。 The wavelength conversion member which consists of a sintered compact of the wavelength conversion material as described in any one of Claims 1-4 . 請求項に記載の波長変換部材と、波長変換部材に対して、蛍光体粉末の励起光を照射する光源と、を備えることを特徴とする発光デバイス。 A light-emitting device comprising: the wavelength conversion member according to claim 5; and a light source that irradiates the wavelength conversion member with excitation light of phosphor powder.
JP2012066559A 2012-03-23 2012-03-23 Glass and wavelength conversion member using the glass Active JP5939463B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012066559A JP5939463B2 (en) 2012-03-23 2012-03-23 Glass and wavelength conversion member using the glass
PCT/JP2013/056467 WO2013141044A1 (en) 2012-03-23 2013-03-08 Glass, and wavelength conversion member produced using said glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012066559A JP5939463B2 (en) 2012-03-23 2012-03-23 Glass and wavelength conversion member using the glass

Publications (2)

Publication Number Publication Date
JP2013193952A JP2013193952A (en) 2013-09-30
JP5939463B2 true JP5939463B2 (en) 2016-06-22

Family

ID=49222504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012066559A Active JP5939463B2 (en) 2012-03-23 2012-03-23 Glass and wavelength conversion member using the glass

Country Status (2)

Country Link
JP (1) JP5939463B2 (en)
WO (1) WO2013141044A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227252A (en) * 2012-09-25 2015-12-17 旭硝子株式会社 Glass composition for fluophor dispersion glass sheet and glass sheet using the same
JP6830751B2 (en) * 2014-10-07 2021-02-17 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP6653182B2 (en) * 2015-01-30 2020-02-26 Agcテクノグラス株式会社 Glass for fluorescent glass dosimeter
JP2017083814A (en) * 2015-10-27 2017-05-18 日本電気硝子株式会社 Wavelength conversion member and manufacturing method therefor
WO2017073328A1 (en) * 2015-10-27 2017-05-04 日本電気硝子株式会社 Wavelength conversion member and production method therefor
JP6906277B2 (en) * 2016-06-27 2021-07-21 日本電気硝子株式会社 Wavelength conversion member and light emitting device using it
JP2019163208A (en) * 2019-06-05 2019-09-26 日本電気硝子株式会社 Raw material powder for wavelength conversion member
JP7205043B2 (en) * 2019-10-15 2023-01-17 Yejガラス株式会社 Low-melting stannous phosphate-based glass frit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001010843A (en) * 1999-04-30 2001-01-16 Ohara Inc Crystalline low-melting glass and sealing composition
JP2001322832A (en) * 2000-05-15 2001-11-20 Asahi Techno Glass Corp Sealing composition
JP4978886B2 (en) * 2006-06-14 2012-07-18 日本電気硝子株式会社 Phosphor composite material and phosphor composite member
JP2009001433A (en) * 2007-06-19 2009-01-08 Nippon Electric Glass Co Ltd Sealing material
JP2010100485A (en) * 2008-10-24 2010-05-06 Nippon Electric Glass Co Ltd Nozzle for forming droplet
JP5633114B2 (en) * 2009-03-30 2014-12-03 日本電気硝子株式会社 SnO-P2O5 glass used for phosphor composite material

Also Published As

Publication number Publication date
JP2013193952A (en) 2013-09-30
WO2013141044A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP4978886B2 (en) Phosphor composite material and phosphor composite member
JP5939463B2 (en) Glass and wavelength conversion member using the glass
JP5483795B2 (en) Luminescent color conversion material and luminescent color conversion member
JP5152687B2 (en) Luminescent color conversion material
JP5633114B2 (en) SnO-P2O5 glass used for phosphor composite material
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
JP4765525B2 (en) Luminescent color conversion member
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2012036367A (en) Phosphor composite member
JP5854367B2 (en) Method for manufacturing phosphor composite member
JP6222452B2 (en) Wavelength conversion member and light emitting device
JP2016108216A (en) Fluorophor dispersion glass
JP2012052061A (en) Phosphor composite member
KR101559279B1 (en) A phosphor composition containing a glass frit
WO2012008306A1 (en) Phosphor composite member, led device and method for manufacturing phosphor composite member
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
JP7022367B2 (en) Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
JP2016058409A (en) Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member
JP6617948B2 (en) Wavelength conversion member and light emitting device
WO2014050684A1 (en) Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same
JP2019163208A (en) Raw material powder for wavelength conversion member
JP6830751B2 (en) Wavelength conversion member and light emitting device
JP7004235B2 (en) Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
JP2017194492A (en) Wavelength conversion member
JP2016052968A (en) Raw material powder for wavelength conversion member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160505

R150 Certificate of patent or registration of utility model

Ref document number: 5939463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150