JP2015227252A - Glass composition for fluophor dispersion glass sheet and glass sheet using the same - Google Patents

Glass composition for fluophor dispersion glass sheet and glass sheet using the same Download PDF

Info

Publication number
JP2015227252A
JP2015227252A JP2012210885A JP2012210885A JP2015227252A JP 2015227252 A JP2015227252 A JP 2015227252A JP 2012210885 A JP2012210885 A JP 2012210885A JP 2012210885 A JP2012210885 A JP 2012210885A JP 2015227252 A JP2015227252 A JP 2015227252A
Authority
JP
Japan
Prior art keywords
glass
glass sheet
phosphor
powder
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012210885A
Other languages
Japanese (ja)
Inventor
谷田 正道
Masamichi Tanida
正道 谷田
英樹 沼倉
Hideki NUMAKURA
英樹 沼倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012210885A priority Critical patent/JP2015227252A/en
Priority to PCT/JP2013/075258 priority patent/WO2014050684A1/en
Publication of JP2015227252A publication Critical patent/JP2015227252A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7726Borates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glass composition used for production of a fluophor dispersion glass sheet having less included bubbles in the glass sheet, and having high LED light emission efficiency in burning under the atmosphere.SOLUTION: Provided is a glass composition for fluophor dispersion glass sheet including a glass powder and fluophor powder, in which difference (ΔTgs) between Ts and Tg calculated from a DTA curvature of the glass powder is 50-105°C.

Description

本発明は青色光源、特に青色発光ダイオード(LED)素子の青色光を白色に変換するための光変換部材に関する。   The present invention relates to a light conversion member for converting blue light of a blue light source, particularly a blue light emitting diode (LED) element, into white.

白色LEDは、微小電力の白色照明光源として利用され、照明用途への応用が期待されている。白色LEDの白色光は、青色LED素子から発せれられる青色光と、前記青色光の一部を蛍光体で黄色に変換した黄色光とを合成して得られる。   The white LED is used as a white illumination light source with a minute electric power, and is expected to be applied to illumination applications. The white light of the white LED is obtained by synthesizing blue light emitted from a blue LED element and yellow light obtained by converting a part of the blue light into yellow with a phosphor.

従来、光の変換部材としては、ガラス中に無機蛍光体を分散した構成の蛍光体分散ガラスシート(以下、ガラスシートともいう)が知られている(例えば、特許文献1)。このような構成をとることで、ガラスの高い透過率を利用でき、さらに、素子から発せられる熱を部材の外部に効率よく放出できる。また、光や熱による部材の損傷も低く、長期の信頼性が得られる。   Conventionally, as a light conversion member, a phosphor-dispersed glass sheet (hereinafter also referred to as a glass sheet) having a configuration in which an inorganic phosphor is dispersed in glass is known (for example, Patent Document 1). By adopting such a configuration, the high transmittance of the glass can be used, and furthermore, the heat generated from the element can be efficiently released to the outside of the member. Moreover, the damage of the member by light and a heat | fever is also low, and long-term reliability is acquired.

ガラスシートは、ガラス粉末と蛍光体粉末とを混合し、これを焼成して製造される。従来、焼成工程で発生した気泡がガラス中に残存する問題があった。ガラス中の気泡(以下、内包泡)があると、ガラスの透過率が低下し、LEDの発光効率の低下を引き起こしていた。また、内包泡により、ガラス中で光が散乱し、蛍光体に当たる光の量が低下するおそれがあった。   The glass sheet is produced by mixing glass powder and phosphor powder and firing the mixture. Conventionally, there has been a problem that bubbles generated in the baking process remain in the glass. If there are bubbles in the glass (hereinafter referred to as encapsulated bubbles), the transmittance of the glass is lowered, causing a reduction in the luminous efficiency of the LED. In addition, the encapsulated foam may cause light to scatter in the glass and reduce the amount of light striking the phosphor.

特許文献2には、SiO−B系のガラスとSnO−P系のガラスを使用し、内包泡を低減させるため、焼成工程を減圧下で行う方法が記載されている。しかし、減圧雰囲気下での焼成では、内包泡を低減できるが、ガラス組成によっては成分が揮散するおそれがあった。また、SiO−B系のガラスのように軟化点が高いガラスでは、焼成温度が高温になり、蛍光体が劣化するおそれもあった。 Patent Document 2 describes a method of using a SiO 2 —B 2 O 3 -based glass and a SnO—P 2 O 5 -based glass and performing a firing step under reduced pressure in order to reduce encapsulated bubbles. . However, in the baking under a reduced pressure atmosphere, the encapsulated foam can be reduced, but depending on the glass composition, the component may be volatilized. Further, in a glass having a high softening point such as SiO 2 —B 2 O 3 glass, the firing temperature becomes high, and the phosphor may be deteriorated.

特開2003−258308号公報JP 2003-258308 A 特開2007−311743号公報JP 2007-311743 A

前記問題に鑑み、本発明者らは、ガラス軟化点の低いガラスを使用することで、焼成温度を低くして蛍光体の劣化を防ぎ、また、焼成温度域において急峻な粘性曲線を示すガラスを使用することで焼成後のガラスシートの内包泡を低減できることを見出し、本発明に到った。
すなわち、本発明は、ガラスシートの内包泡が少なく、透過率が高い蛍光体分散ガラスシートを低温で製造できるガラス組成物の提供を目的とする。
In view of the above problems, the present inventors use a glass having a low glass softening point, thereby lowering the firing temperature to prevent the phosphor from being deteriorated, and exhibiting a glass having a steep viscosity curve in the firing temperature range. It has been found that the encapsulated foam in the glass sheet after firing can be reduced by using it, and the present invention has been achieved.
That is, this invention aims at provision of the glass composition which can manufacture the fluorescent substance dispersion | distribution glass sheet with few inclusion bubbles of a glass sheet, and high transmittance | permeability at low temperature.

本発明のガラス組成物は、ガラス粉末と蛍光体粉末を含有する蛍光体分散ガラスシート用ガラス組成物であって、前記ガラス粉末のDTA曲線から算出されるTsとTgとの差(ΔTgs)が、50〜105℃であることを特徴とする。   The glass composition of the present invention is a glass composition for a phosphor-dispersed glass sheet containing glass powder and phosphor powder, and the difference (ΔTgs) between Ts and Tg calculated from the DTA curve of the glass powder is 50 to 105 ° C.

本発明の蛍光体分散ガラスシート用ガラス組成物は、焼成温度を低くでき、さらに、焼成後のガラスシートの内包泡を少なくできる。低温焼成のため、製造工程での蛍光体の劣化を抑制できる。さらに、ガラスシート内部での光の散乱を抑制でき、ガラスシートの透過率を高くできて、LEDの発光効率を高くできる。   The glass composition for a phosphor-dispersed glass sheet of the present invention can lower the firing temperature and can further reduce the encapsulated foam of the glass sheet after firing. Due to the low temperature firing, it is possible to suppress the deterioration of the phosphor in the manufacturing process. Furthermore, light scattering inside the glass sheet can be suppressed, the transmittance of the glass sheet can be increased, and the luminous efficiency of the LED can be increased.

蛍光体分散ガラスシートの断面図。Sectional drawing of a fluorescent substance dispersion | distribution glass sheet.

ガラスシートの内包泡の存在によるLEDの発光効率への影響を、図1を用いて説明する。図1は、発光素子1上にある蛍光体分散ガラスシート2の概略断面図である。   The influence on the light emission efficiency of the LED due to the presence of the encapsulated foam of the glass sheet will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of a phosphor-dispersed glass sheet 2 on a light-emitting element 1.

図1(a)は、蛍光体3の周りおよび、発光素子1から蛍光体3までの間に内包泡が無い場合である。素子から発せられた光がガラスシート内で散乱などされないので、ガラスシートを通過する光量の低下が小さい。そのため、LEDの発光効率が高い。さらに、発光素子1から放出された光5は、効率よく蛍光体3に当たり、蛍光7に変換される。したがって、蛍光体3の変換効率の低下は小さい。   FIG. 1A shows a case where there are no encapsulated bubbles around the phosphor 3 and between the light emitting element 1 and the phosphor 3. Since the light emitted from the element is not scattered in the glass sheet, the decrease in the amount of light passing through the glass sheet is small. Therefore, the luminous efficiency of the LED is high. Further, the light 5 emitted from the light emitting element 1 efficiently hits the phosphor 3 and is converted into fluorescence 7. Therefore, a decrease in the conversion efficiency of the phosphor 3 is small.

図1(b)は、内包泡4が蛍光体3に接して存在する場合である。この場合、内包泡4とガラス6との界面で光が反射しやすく、光5は一部が散乱光8となる。さらに、内包泡4があると、ガラスシート内で多重散乱しやすくなる。多重散乱すると、光路長が長くなりガラスシート内で光が減衰し、ガラスシートを透過する光量が減少し、LEDの発光効率が低下するおそれがある。また、蛍光体3に当たる光量が低減されると、蛍光7の量が低下し、変換効率が低下するおそれがある。   FIG. 1B shows a case where the enclosing bubble 4 is in contact with the phosphor 3. In this case, light is easily reflected at the interface between the encapsulated bubble 4 and the glass 6, and part of the light 5 becomes scattered light 8. Furthermore, if the encapsulated foam 4 is present, multiple scattering tends to occur within the glass sheet. When multiple scattering is performed, the optical path length becomes long, light is attenuated in the glass sheet, the amount of light transmitted through the glass sheet is reduced, and the light emission efficiency of the LED may be lowered. Further, when the amount of light hitting the phosphor 3 is reduced, the amount of the fluorescence 7 is reduced, and the conversion efficiency may be reduced.

図1(c)は、内包泡があるものの、蛍光体3に接せず、発光素子1と蛍光体3の間に内包泡4がある場合である。図1(b)と同様に、ガラス6から内包泡4に入る時および内包泡4からガラス6へ出る時に、光5が界面で反射される。すなわち内包泡4部分で、光が散乱し一部が散乱光8となる。ガラスシート内で光が散乱すると、図1(b)の場合と同様に、LEDの発光効率が低下するおそれがある。また、蛍光体3に当たる光量が低減されると、蛍光7の量が低下し、変換効率が低下するおそれがある。   FIG. 1 (c) shows a case where there is an encapsulated bubble but it does not contact the phosphor 3 and there is an encapsulated bubble 4 between the light emitting element 1 and the phosphor 3. Similar to FIG. 1B, when the encapsulated foam 4 enters the glass 6 and when the encapsulated foam 4 exits the glass 6, the light 5 is reflected at the interface. That is, light is scattered and part of the encapsulated foam 4 becomes scattered light 8. If the light is scattered in the glass sheet, the light emission efficiency of the LED may be reduced as in the case of FIG. Further, when the amount of light hitting the phosphor 3 is reduced, the amount of the fluorescence 7 is reduced, and the conversion efficiency may be reduced.

素子から発せられる光5と蛍光7はガラスシートを透過して出射する。これらの光は、内包泡により多重散乱、背面反射されると、ガラスシート内で減衰するおそれがある。多重散乱や背面反射の度合は、全光線透過率により評価できる。すなわち、過度な多重散乱や背面反射が起こらないと、全光線透過率が高く、ガラスシートを通過する間の光のロスが小さくなる。   Light 5 and fluorescence 7 emitted from the element are transmitted through the glass sheet and emitted. When these light is multiple-scattered and back-reflected by the encapsulated bubbles, there is a possibility that the light is attenuated in the glass sheet. The degree of multiple scattering and back reflection can be evaluated by the total light transmittance. That is, if excessive multiple scattering and back reflection do not occur, the total light transmittance is high and the loss of light while passing through the glass sheet is small.

以上のことから、ガラスシート2に内包泡4があると、ガラスシート内で光が減衰して透過率が下がり、また、蛍光体3に当たる光が減少し蛍光体の変換効率が低下する。これにより、LEDの発光効率が低下する。したがって、LED用の変換部材としては、ガラスシート2の内包泡4の低減が求められる。   From the above, if the encapsulated foam 4 is present in the glass sheet 2, the light is attenuated in the glass sheet and the transmittance is lowered, and the light striking the phosphor 3 is reduced and the conversion efficiency of the phosphor is lowered. Thereby, the luminous efficiency of LED falls. Therefore, the LED conversion member is required to reduce the encapsulated foam 4 of the glass sheet 2.

次に、本発明のガラス組成物(以下、本ガラス組成物という)の実施態様について説明する。本ガラス粉末は、軟化点における粘性の変化率が大きく、粘性曲線が急峻であるという特長を有する。このようなガラス粉末は、焼成温度におけるガラス粘性が低いため、焼成工程において、十分に脱泡できる。   Next, embodiments of the glass composition of the present invention (hereinafter referred to as the present glass composition) will be described. This glass powder has the characteristics that the rate of change in viscosity at the softening point is large and the viscosity curve is steep. Since such glass powder has low glass viscosity at the firing temperature, it can be sufficiently defoamed in the firing step.

本発明においては、ガラス粉末の軟化点における粘性曲線の変化率は、DTA(示差熱分析)により測定されるガラス軟化点Tsとガラス転移点Tgとの差ΔTgsの大きさで評価する。TsおよびTgはいずれも、ガラスの粘性で決まる温度である。具体的には、Tsは、ガラスの粘性が107.5dPa・sとなる温度であり、Tgは、ガラスの粘性が約1013.3dPa・sとなる温度である。したがって、ΔTgsが小さいほど、粘性の変化率は大きく、急峻な曲線になる。 In the present invention, the rate of change of the viscosity curve at the softening point of the glass powder is evaluated by the magnitude of the difference ΔTgs between the glass softening point Ts and the glass transition point Tg measured by DTA (differential thermal analysis). Ts and Tg are both temperatures determined by the viscosity of the glass. Specifically, Ts is a temperature at which the viscosity of the glass is 10 7.5 dPa · s, and Tg is a temperature at which the viscosity of the glass is about 10 13.3 dPa · s. Therefore, the smaller the ΔTgs, the greater the rate of change in viscosity and the steeper curve.

本ガラス組成物に使用するガラス粉末のΔTgsは、50〜105℃である。ΔTgsが50℃未満では、ガラスが不安定になるおそれがある。また、ΔTgsが105℃超では、焼成後のガラスシートの内包泡が多くなるおそれがある。ΔTgsは、好ましくは80〜100℃であり、より好ましくは、85〜95℃である。   ΔTgs of the glass powder used in the present glass composition is 50 to 105 ° C. If ΔTgs is less than 50 ° C., the glass may become unstable. On the other hand, if ΔTgs exceeds 105 ° C., the encapsulated foam of the glass sheet after firing may increase. ΔTgs is preferably 80 to 100 ° C., and more preferably 85 to 95 ° C.

ガラス粉末のTsは、700℃以下が好ましい。Tsが高いと焼成温度が高くなるため、焼成工程で、蛍光体粉末が劣化するおそれがある。Tsはより好ましくは、650℃以下であり、さらに好ましくは、620℃以下である。   The Ts of the glass powder is preferably 700 ° C. or lower. If Ts is high, the firing temperature becomes high, and thus the phosphor powder may be deteriorated in the firing step. Ts is more preferably 650 ° C. or lower, and further preferably 620 ° C. or lower.

ΔTgsとTsが前記範囲におるガラスとしては、Bi−ZnO−B系を主成分とするガラスが挙げられる。中でも、酸化物基準のモル%表示で、Bi 3〜30%、B 10〜50%、ZnO 0〜45%を含有するガラスがより好ましい。Bi 3〜30%、B 10〜50%、ZnO 0〜45%、SiO 5〜35%、BaO 0〜20%、MnO 0〜1%、CeO 0〜1%、を含有するガラスがさらに好ましい。Bi−ZnO−B系を主成分とするガラスとしては、Bi 3〜30%、B 10〜50%、ZnO 0〜45%、SiO 5〜35%、BaO 0〜20%、MnO 0〜1%、CeO 0〜1%から実質的になるガラスが特に好ましい。本明細書において、実質的にからなるとは、記載されている成分以外に不可避的不純物は許容するとの意味である。 Examples of the glass in which ΔTgs and Ts are in the above range include a glass mainly composed of Bi 2 O 3 —ZnO—B 2 O 3 . Among them, as represented by mol% based on oxides, Bi 2 O 3 3~30%, B 2 O 3 10~50%, the glass containing 0 to 45% ZnO is more preferable. Bi 2 O 3 3~30%, B 2 O 3 10~50%, ZnO 0~45%, SiO 2 5~35%, BaO 0~20%, MnO 2 0~1%, CeO 2 0~1% The glass containing is more preferable. As glass mainly composed of Bi 2 O 3 —ZnO—B 2 O 3 , Bi 2 O 3 3-30%, B 2 O 3 10-50%, ZnO 0-45%, SiO 2 5-35 %, BaO 0-20%, MnO 2 0-1%, CeO 2 0-1%. In the present specification, “consisting essentially of” means that inevitable impurities other than the components described are allowed.

Biは、ガラスの化学的耐久性を下げることなく、Tsを低くする成分であり、この系では、必須の成分である。Biの含有量は、3〜30%が好ましい。Biが3%未満では、ガラス粉末のTsが高くなり好ましくない。一方、30%超では、ガラスが不安定になり、結晶化しやすく、また、焼結性を損ねるおそれがある。Biの含有量は、5〜25%がより好ましく、5〜20%がさらに好ましい。 Bi 2 O 3 is a component that lowers Ts without lowering the chemical durability of glass, and is an essential component in this system. The content of Bi 2 O 3 is preferably 3 to 30%. If Bi 2 O 3 is less than 3%, Ts of the glass powder becomes high, which is not preferable. On the other hand, if it exceeds 30%, the glass becomes unstable, tends to crystallize, and the sinterability may be impaired. The content of Bi 2 O 3 is more preferably 5 to 25%, and further preferably 5 to 20%.

は、ガラスのネットワークフォーマーであり、ガラスを安定化できる成分であり、この系では、必須の成分である。Bの含有量は、10〜50%が好ましい。Bの含有量が10%未満では、ガラスが不安定になり、結晶化しやすく、また、焼結性を損ねるおそれがある。一方で、Bの含有量が50%超では、ガラスの化学的耐久性が低下するおそれがある。Bの含有量は、15〜45%がより好ましく、20〜45%がさらに好ましい。 B 2 O 3 is a glass network former and is a component that can stabilize glass, and is an essential component in this system. The content of B 2 O 3 is preferably 10 to 50%. If the content of B 2 O 3 is less than 10%, the glass becomes unstable, tends to be crystallized, and the sinterability may be impaired. On the other hand, if the content of B 2 O 3 exceeds 50%, the chemical durability of the glass may be lowered. The content of B 2 O 3 is more preferably 15 to 45%, further preferably 20 to 45%.

ZnOは、Tsを下げる成分であり、この系では必須成分ではない。ZnOの含有量は、0〜45%が好ましい。ZnOの含有量が45%超では、ガラス化し難くなり、ガラスの製造が困難になる。ZnOの含有量の下限値は、5%以上がより好ましく、10%以上がさらに好ましい。また、上限値は、40%以下がより好ましく、35%以下がさらに好ましい。   ZnO is a component that lowers Ts and is not an essential component in this system. The content of ZnO is preferably 0 to 45%. If the ZnO content exceeds 45%, it will be difficult to vitrify, and it will be difficult to produce glass. The lower limit of the ZnO content is more preferably 5% or more, and further preferably 10% or more. Further, the upper limit is more preferably 40% or less, and further preferably 35% or less.

SiOは、ガラスの安定性を高くする成分であり、この系では必須成分ではない。SiOの含有量は、0〜35%が好ましい。SiOの含有量が、35%超では、Tsが高くなるおそれがある。SiOの含有量の下限値は、5%以上がより好ましく、10%以上がさらに好ましい。また、上限値は、30%以下がより好ましく、25%以下がさらに好ましい。 SiO 2 is a component that increases the stability of the glass and is not an essential component in this system. The content of SiO 2 is preferably 0 to 35%. The content of SiO 2 is at 35 percent, there is a possibility that Ts increases. The lower limit of the content of SiO 2 is more preferably 5% or more, and further preferably 10% or more. The upper limit is more preferably 30% or less, and further preferably 25% or less.

CaO、SrO、MgOまたはBaOのアルカリ土類金属酸化物は、ガラスの安定性を高めるとともに、Tsを下げる成分であり、この系では必須成分ではない。アルカリ土類金属酸化物の合計量は、0〜20%が好ましい。前記合計量が、20%超では、ガラスの安定性が低下する。より好ましくは、合計量は18%以下である。また、アルカリ土類金属酸化物としては、BaOが好ましい。   CaO, SrO, MgO or BaO alkaline earth metal oxides are components that increase the stability of glass and lower Ts, and are not essential components in this system. The total amount of alkaline earth metal oxide is preferably 0 to 20%. If the total amount exceeds 20%, the stability of the glass is lowered. More preferably, the total amount is 18% or less. Further, BaO is preferable as the alkaline earth metal oxide.

MnOおよびCeOは、いずれもこの系では必須成分ではないが、ガラス中で酸化剤として機能するため、含有が好ましい。いずれもガラス中のBiの還元を防止できるため、この系のガラスを安定化できる。Biが還元されると、ガラスが着色するため、好ましくない。さらに、焼成後のガラスシートの内包泡が多くなるおそれがある。そのため、MnOおよびCeOの含有量はそれぞれ0〜1%が好ましい。含有量が、1%超では、着色が大きくなるおそれがある。 Neither MnO 2 nor CeO 2 is an essential component in this system, but is preferably contained because it functions as an oxidizing agent in the glass. In any case, reduction of Bi 2 O 3 in the glass can be prevented, so that this type of glass can be stabilized. Reduction of Bi 2 O 3 is not preferable because the glass is colored. Furthermore, the encapsulated foam of the glass sheet after baking may increase. Therefore, the content of MnO 2 and CeO 2 is preferably 0 to 1%. If the content exceeds 1%, coloring may increase.

所定の熱特性を有するように成分を調合して混合し、電気炉などで溶融し、急冷してガラスを製造する。ガラス粉末は前記ガラスを粉砕し、分級して製造される。ガラス粉末の平均粒子直径(以下、粒子直径を粒径と略す)D50は2.0μm未満が好ましい。D50が2.0μm以上では、蛍光体粉末がガラス粉末中に均一に分散されなくなり、ガラスシートにした場合に変換効率が低下するおそれがある。D50は、より好ましくは、1.5μm以下、さらに好ましくは、1.4μm以下である。 Components are prepared and mixed so as to have predetermined thermal characteristics, melted in an electric furnace or the like, and rapidly cooled to produce glass. The glass powder is produced by pulverizing and classifying the glass. The average particle diameter (hereinafter, the particle diameter is abbreviated as particle diameter) D 50 of the glass powder is preferably less than 2.0 μm. D 50 is 2.0μm or more, the phosphor powder is not uniformly dispersed in the glass powder, it may decrease the conversion efficiency when the glass sheet. D 50 is more preferably 1.5 μm or less, and still more preferably 1.4 μm or less.

また、ガラス粉末の最大粒径Dmaxは、30μm以下が好ましい。Dmaxが、30μm超では、蛍光体粉末がガラス粉末中に均一に分散されなくなり、ガラスシートを製造した場合に、蛍光体の変換効率が低下するおそれがある。Dmaxは、より好ましくは、20μm以下、さらに好ましくは、15μm以下である。
なお、本明細書において、D50およびDmaxはいずれも、レーザ回折式粒度分布測定により算出した値である。
The maximum particle size Dmax of the glass powder is preferably 30 μm or less. When Dmax is more than 30 μm, the phosphor powder is not uniformly dispersed in the glass powder, and when the glass sheet is produced, the conversion efficiency of the phosphor may be lowered. Dmax is more preferably 20 μm or less, and still more preferably 15 μm or less.
In the present specification, both D 50 and Dmax is a value calculated by a laser diffraction type particle size distribution measurement.

本ガラス組成物に使用する蛍光体粉末としては、青色光を黄色光に変換できるものであれば、限定されない。蛍光体としては、例えば、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、ハロゲン化物、アルミン酸塩化物またはハロリン酸塩化物で、特に、波長400〜500nmに励起帯を有し、波長500〜700nmに発光ピークを有するものが好ましい。   The phosphor powder used in the present glass composition is not limited as long as it can convert blue light into yellow light. Examples of the phosphor include oxides, nitrides, oxynitrides, sulfides, oxysulfides, halides, aluminate chlorides, and halophosphates, and particularly have an excitation band at a wavelength of 400 to 500 nm. Those having an emission peak at a wavelength of 500 to 700 nm are preferable.

励起光が、波長440〜480nmの青色光の場合、蛍光体は、(Y、Gd)Al12:Ce3+、(Y、Gd)(Al、Ga)12:Ce3+、Ba(POCl:U、CaGa:Eu2+が好ましい。中でも、(Y、Gd)Al12またはCe3+、(Y、Gd)(Al、Ga)12がより好ましい。 When the excitation light is blue light having a wavelength of 440 to 480 nm, the phosphor is (Y, Gd) 3 Al 5 O 12 : Ce 3+ , (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3+ , Ba 5 (PO 4 ) 3 Cl: U and CaGa 2 S 4 : Eu 2+ are preferable. Among them, (Y, Gd) 3 Al 5 O 12 or Ce 3+ , (Y, Gd) 3 (Al, Ga) 5 O 12 is more preferable.

蛍光体粉末の平均粒径D50は15μm以下が好ましい。蛍光体粉末のD50が大きくなると、焼成後のガラスシート中で分散が悪くなり、光の変換効率が悪くなる。D50は13μm以下がより好ましく、10μm以下がさらに好ましい。 The average particle diameter D 50 of the phosphor powder is preferably 15μm or less. If D 50 of the phosphor powder becomes large, the dispersion becomes poor glass sheet after firing, the conversion efficiency of light is degraded. D 50 is more preferably 13 μm or less, and even more preferably 10 μm or less.

本ガラス組成物においては、ガラス粉末と蛍光体粉末以外に内包泡を脱泡できるものをさらに含んでもよい。このようなものとしては、塩化銅のような酸化触媒性を持つ金属化合物や酸化アンチモンのような、価数変化により複数の酸化数を持てるような元素が挙げられる。一方、生産コストの観点からは、本ガラス組成物は、ガラス粉末と蛍光体粉末とからなることが好ましい。   In the present glass composition, in addition to the glass powder and the phosphor powder, those capable of defoaming the encapsulated foam may be further included. Examples of such elements include elements that can have a plurality of oxidation numbers by changing the valence, such as metal compounds having oxidation catalytic properties such as copper chloride and antimony oxide. On the other hand, from the viewpoint of production cost, the present glass composition is preferably composed of glass powder and phosphor powder.

本ガラス組成物が、ガラス粉末と蛍光体粉末とからなる場合において、ガラス粉末と蛍光体粉末との混合比は、体積%で、ガラス粉末60〜99.99%と、蛍光体粉末0.01〜40%が好ましい。ガラス粉末の体積割合60%未満では、ガラス粉末と蛍光体粉末の混合体の焼結性を損ね、さらにガラスシートの透過率が低くなるおそれがある。また、黄色の光が多くなり、所望の白色光が得られないおそれがある。一方で、蛍光体粉末が0.01%未満では、青色光を十分に変換できず、LEDにした場合に、所望の白色光が得られないおそれがある。前記混合比は、ガラス粉末70〜95%と蛍光体粉末5〜30%がより好ましく、ガラス粉末80〜90%と蛍光体粉末10〜20%がさらに好ましい。   In the case where the present glass composition is composed of glass powder and phosphor powder, the mixing ratio of the glass powder and phosphor powder is volume%, glass powder 60 to 99.99%, and phosphor powder 0.01. ~ 40% is preferred. If the volume ratio of the glass powder is less than 60%, the sinterability of the mixture of the glass powder and the phosphor powder may be impaired, and the transmittance of the glass sheet may be lowered. Moreover, there is a possibility that yellow light increases and desired white light cannot be obtained. On the other hand, if the phosphor powder is less than 0.01%, the blue light cannot be sufficiently converted, and when the LED is used, desired white light may not be obtained. The mixing ratio is more preferably 70 to 95% glass powder and 5 to 30% phosphor powder, and more preferably 80 to 90% glass powder and 10 to 20% phosphor powder.

ガラスシートは、本ガラス組成物を使用し、成形工程および焼成工程を経て製造される。成形法としては、所望の形状が付与できれば、特に制限されない。プレス成形法、ロール成形法、ドクターブレード成形法などの方法が挙げられる。ドクターブレード成形法で製造されるグリーンシートは、均一な膜厚のガラスシートを大面積で効率よく製造できるため、好ましい。   The glass sheet is produced through a molding process and a baking process using the present glass composition. The molding method is not particularly limited as long as a desired shape can be imparted. Examples thereof include a press molding method, a roll molding method, and a doctor blade molding method. A green sheet manufactured by a doctor blade molding method is preferable because a glass sheet having a uniform film thickness can be efficiently manufactured in a large area.

グリーンシートは、例えば、以下の工程で製造できる。ガラス粉末と蛍光体粉末とをビヒクルに混練し、脱泡してスラリーを得る。前記スラリーをドクターブレード法により、透明樹脂上に途工し、乾燥する。乾燥後、所望の大きさに切り出し、透明樹脂を剥がして、グリーンシートを得る。さらに、これらをプレスし、積層体にすることで、所望の厚みを確保できる。   The green sheet can be manufactured, for example, by the following process. Glass powder and phosphor powder are kneaded in a vehicle and defoamed to obtain a slurry. The slurry is prepared on a transparent resin by a doctor blade method and dried. After drying, it is cut into a desired size and the transparent resin is peeled off to obtain a green sheet. Furthermore, a desired thickness can be ensured by pressing them into a laminate.

前記ビヒクルは、樹脂を有機溶媒に溶解したものである。樹脂としては、エチルセルロース、ニトロセルロース、アクリル樹脂、酢酸ビニル、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、ロジン樹脂などを使用できる。また、有機溶媒としては、エチルセルロースとニトロセルロースなどを使用できる。なお、グリーンシートの強度を向上のために、ビヒクルに、さらに、ブチラール樹脂、メラミン樹脂、アルキッド樹脂またはロジン樹脂などを含有する場合がある。   The vehicle is obtained by dissolving a resin in an organic solvent. As the resin, ethyl cellulose, nitrocellulose, acrylic resin, vinyl acetate, butyral resin, melamine resin, alkyd resin, rosin resin and the like can be used. Moreover, as an organic solvent, ethyl cellulose and nitrocellulose can be used. In order to improve the strength of the green sheet, the vehicle may further contain a butyral resin, a melamine resin, an alkyd resin, a rosin resin, or the like.

スラリーを塗工する透明樹脂としては、均一な膜厚のグリーンシートが得られれば、限定されない。例えば、PETフィルムなどが挙げられる。   The transparent resin for applying the slurry is not limited as long as a green sheet having a uniform film thickness is obtained. For example, a PET film etc. are mentioned.

ガラスシートを製造する場合の焼成温度は、450〜900℃であって、ガラス軟化点Ts±50℃の範囲内が好ましい。通常、ガラス粉末を焼成して焼結体にする場合、焼成温度をTs近傍にするとガラスシートの内包泡を低減できる。Ts+50℃より高温で焼成すると、内包泡が増大し、蛍光体粉末が熱またはガラスとの反応により劣化し、蛍光体の変換効率が低下するおそれがある。一方で、Ts−50℃より低温で焼成すると、ガラスシートの内包泡を十分に低減できない。焼成温度は、Ts±30℃がより好ましく、Ts±20℃がさらに好ましい。   When the glass sheet is produced, the firing temperature is 450 to 900 ° C., and the glass softening point Ts ± 50 ° C. is preferable. Usually, when glass powder is fired to form a sintered body, the encapsulated foam of the glass sheet can be reduced by setting the firing temperature in the vicinity of Ts. When fired at a temperature higher than Ts + 50 ° C., the encapsulated foam increases, and the phosphor powder may be deteriorated by reaction with heat or glass, and the conversion efficiency of the phosphor may be reduced. On the other hand, if it is fired at a temperature lower than Ts-50 ° C, the encapsulated foam of the glass sheet cannot be sufficiently reduced. The firing temperature is more preferably Ts ± 30 ° C., further preferably Ts ± 20 ° C.

Bi−ZnO−B系のガラスを使用する場合、Tsは530〜630℃が好ましい。そのため、焼成温度は、480〜680℃が好ましい。焼成温度は、500〜660℃がより好ましく、530〜630℃がさらに好ましい。 When Bi 2 O 3 —ZnO—B 2 O 3 based glass is used, Ts is preferably 530 to 630 ° C. Therefore, the firing temperature is preferably 480 to 680 ° C. The firing temperature is more preferably 500 to 660 ° C, further preferably 530 to 630 ° C.

焼成雰囲気は、特に限定されない。ガラスのΔTgsが本発明の範囲にあれば、大気中でも十分にガラスシートの内包泡を低減でき、蛍光体の変換効率を高められる。   The firing atmosphere is not particularly limited. If the ΔTgs of the glass is within the range of the present invention, the encapsulated bubbles of the glass sheet can be sufficiently reduced even in the atmosphere, and the conversion efficiency of the phosphor can be increased.

また、電気炉を使用して焼成を行う場合、ビヒクル中のバインダ等の除去を行うための脱バインダ焼成と、ガラス粉末を焼結させる本焼成の2段階で行うことが好ましい。   In addition, when firing using an electric furnace, it is preferably performed in two stages: binder removal firing for removing the binder and the like in the vehicle and main firing for sintering the glass powder.

脱バインダ焼成は、グリーンシートの製造で使用したビヒクル中のバインダの種類や量による。例えば、電気炉などを使用して、400〜480℃で1〜6時間保持して行うことが好ましい。   Binder removal firing depends on the type and amount of binder in the vehicle used in the production of the green sheet. For example, it is preferable to carry out by using an electric furnace etc. and hold | maintaining at 400-480 degreeC for 1 to 6 hours.

本ガラス組成物から製造されるガラスシートは、内包泡が少なく、蛍光体の変換効率を高くできる。   The glass sheet produced from the present glass composition has few encapsulated bubbles and can increase the conversion efficiency of the phosphor.

ガラスシートの気孔率と正の相関があるため、内包泡の量は気孔率で評価できる。ガラスシートの気孔率は、5%以下が好ましい。気孔率が5%超では、ガラスシートの内包泡が多く、ガラスシートで光が散乱しやすい。気孔率は、低いほど好ましく、2.5%以下がより好ましく、1%以下がさらに好ましい。なお、本明細書において、気孔率は、ガラスシートの理論比重に対する実測比重の偏差から導いた値をいう。   Since there is a positive correlation with the porosity of the glass sheet, the amount of encapsulated foam can be evaluated by the porosity. The porosity of the glass sheet is preferably 5% or less. When the porosity is more than 5%, the glass sheet contains many bubbles and light is likely to be scattered by the glass sheet. The porosity is preferably as low as possible, more preferably 2.5% or less, and even more preferably 1% or less. In the present specification, the porosity means a value derived from the deviation of the measured specific gravity with respect to the theoretical specific gravity of the glass sheet.

ガラスシートは、内包泡による内部散乱が少なく、かつ、吸収が少ないことが好ましい。ガラスシートで内部散乱が多いと、ガラスが不透明になり好ましくない。ガラスシートの散乱は、平行光線透過率測定および全光線透過率測定により評価できる。本明細書において、平行光線透過率と全光線透過率は、ともに、JIS−K−7136に準じた方法で測定した値である。   The glass sheet preferably has less internal scattering due to encapsulated foam and less absorption. If the glass sheet has a large amount of internal scattering, the glass becomes opaque, which is not preferable. Scattering of the glass sheet can be evaluated by measuring parallel light transmittance and measuring total light transmittance. In this specification, both the parallel light transmittance and the total light transmittance are values measured by a method according to JIS-K-7136.

平行光線透過率は4%以上が好ましく、5%以上がより好ましい。平行光線透過率が4%未満では、蛍光体に変換されない青色光がガラスシート内部で散乱され、LEDの発行効率が低下するおそれがある。   The parallel light transmittance is preferably 4% or more, and more preferably 5% or more. If the parallel light transmittance is less than 4%, blue light that is not converted into a phosphor is scattered inside the glass sheet, and the LED issuance efficiency may be reduced.

全光線透過率は70%以上が好ましく、75%以上がより好ましく、80%以上がさらにより好ましい。全光線透過率が70%未満では、発光素子から放出された光が、ガラスシート内部で吸収などされ、LEDの輝度が低下し、すなわちLEDの発光効率が低下するため好ましくない。   The total light transmittance is preferably 70% or more, more preferably 75% or more, and even more preferably 80% or more. If the total light transmittance is less than 70%, the light emitted from the light emitting element is absorbed inside the glass sheet, and the luminance of the LED is lowered, that is, the luminous efficiency of the LED is not preferable.

ガラスシート中で蛍光体の変換効率は、量子変換効率により評価できる。量子変換効率は、85%以上が好ましい。85%未満では、入射する青色光が十分に黄色光に変換できておらず、合成して得られる光が所望の白色にならないおそれがある。量子変換効率は、86%以上がより好ましい。なお、前記量子変換効率は、励起光を照射した時の、発光としてサンプルから放出されたフォトン数と、サンプルにより吸収されたフォトン数との比率で表され、フォトン数は、積分球法で測定する。   The conversion efficiency of the phosphor in the glass sheet can be evaluated by the quantum conversion efficiency. The quantum conversion efficiency is preferably 85% or more. If it is less than 85%, the incident blue light cannot be sufficiently converted to yellow light, and the light obtained by the synthesis may not be a desired white color. The quantum conversion efficiency is more preferably 86% or more. The quantum conversion efficiency is expressed as a ratio of the number of photons emitted from the sample as light emission when irradiated with excitation light and the number of photons absorbed by the sample. The number of photons is measured by an integrating sphere method. To do.

以下、実施例に基づき本発明を説明する。なお、例1と例2が本発明の実施例であり、例3は比較例である。   Hereinafter, the present invention will be described based on examples. Examples 1 and 2 are examples of the present invention, and example 3 is a comparative example.

(例1)
酸化物基準のモル%表記で、Bi 8.9%、SiO 15.2%、B 31%、ZnO 33.5%、BaO 11.2%、MnO 0.1%、CeO 0.1%となるようにガラス原料を混合した。これを、白金ルツボ中で1200〜1400℃に電気炉で加熱し、溶融して、融液を回転ロールで急冷して、ガラスリボンを形成した。ガラスリボンを、ボールミルで粉砕し、目開き150μmの網目を有する篩にかけ、さらに気流分級し、ガラス1の粉末(ガラス粉末1)を得た。
(Example 1)
Bi 2 O 3 8.9%, SiO 2 15.2%, B 2 O 3 31%, ZnO 33.5%, BaO 11.2%, MnO 2 0.1% in terms of mole% based on oxide. was mixed glass raw materials such that the CeO 2 0.1%. This was heated in an electric furnace to 1200 to 1400 ° C. in a platinum crucible and melted, and the melt was quenched with a rotating roll to form a glass ribbon. The glass ribbon was pulverized by a ball mill, passed through a sieve having a mesh having an opening of 150 μm, and further classified by air flow to obtain glass 1 powder (glass powder 1).

得られたガラス粉末1のガラス転位温度Tgとガラス軟化点Tsを、示差熱分析計(リガク社製、商品名:TG8110)を使用して測定した。また、D50およびDmaxは、レーザ回折式粒度分布測定(島津製作所社製、装置名:SALD2100)により算出した。この結果を表1に示す。 The glass transition temperature Tg and the glass softening point Ts of the obtained glass powder 1 were measured using a differential thermal analyzer (trade name: TG8110, manufactured by Rigaku Corporation). D 50 and Dmax were calculated by laser diffraction particle size distribution measurement (manufactured by Shimadzu Corporation, apparatus name: SALD2100). The results are shown in Table 1.

このようにして得たガラス粉末1と、YAG蛍光体粉末とを、ガラス粉末1を84体積%と蛍光体粉末を16体積%で混合し、さらにビヒクルと混練し、脱泡してスラリーを得た。このスラリーをPETフィルム(帝人社製)にドクターブレード法で塗工した。これを、乾燥炉で約30分間乾燥し、約7cm四方の大きさに切り出し、PETフィルムを剥がして、厚み約0.5mmのグリーンシートを得た。   The glass powder 1 thus obtained and the YAG phosphor powder are mixed with 84% by volume of the glass powder 1 and 16% by volume of the phosphor powder, kneaded with a vehicle, and defoamed to obtain a slurry. It was. This slurry was applied to a PET film (manufactured by Teijin Limited) by the doctor blade method. This was dried in a drying furnace for about 30 minutes, cut into a size of about 7 cm square, and the PET film was peeled off to obtain a green sheet having a thickness of about 0.5 mm.

グリーンシートを2枚積層し、プレスした。これを、離型剤を塗布したムライト基板に載せて大気中で、420℃で4時間脱バイ処理し、さらに、550℃で常圧下で1時間焼成し、その後、片面鏡面研磨し、ガラスシートを作成した。マイクロメータにより測定したガラスシートの板厚は、135μmであった。   Two green sheets were laminated and pressed. This was placed on a mullite substrate coated with a release agent, deburied at 420 ° C. for 4 hours in the atmosphere, further baked at 550 ° C. under normal pressure for 1 hour, then mirror-polished on one side, and a glass sheet It was created. The thickness of the glass sheet measured with a micrometer was 135 μm.

このようにして得られたガラスシートについて、気孔率、量子変換効率および透過率を測定した。これらの結果を表1に示す。   The porosity, quantum conversion efficiency, and transmittance of the glass sheet thus obtained were measured. These results are shown in Table 1.

ガラスシートの気孔率はアルキメデス法により測定した。量子変換効率は、絶対PL量子収率測定装置(浜松ホトニクス社製、商品名:Quantauru−QY)を使用して、励起光波長460nmにて測定した。ガラスシートのヘイズ、透過率は、ヘイズ測定装置(スガ試験機社製、商品名:ヘイズメーターHZ−2)を使用して、C光源にて測定した。   The porosity of the glass sheet was measured by the Archimedes method. The quantum conversion efficiency was measured at an excitation light wavelength of 460 nm using an absolute PL quantum yield measuring apparatus (manufactured by Hamamatsu Photonics, trade name: Quantauru-QY). The haze and transmittance of the glass sheet were measured with a C light source using a haze measuring device (manufactured by Suga Test Instruments Co., Ltd., trade name: Haze Meter HZ-2).

(例2)
ガラス粉末1を使用して例1と同様の方法により、グリーンシートを得た。グリーンシートを2枚積層し、プレスした。これを、離型剤を塗布したムライト基板に載せて大気中で、460℃で6時間脱バイ処理し、さらに、減圧下(約60Pa)において570℃で1時間焼成し、その後、片面鏡面研磨し、ガラスシートを作成した。マイクロメータにより測定したガラスシートの板厚は、135μmであった。
(Example 2)
A green sheet was obtained by the same method as in Example 1 using glass powder 1. Two green sheets were laminated and pressed. This was placed on a mullite substrate coated with a release agent, deburied at 460 ° C. for 6 hours in the atmosphere, further baked at 570 ° C. for 1 hour under reduced pressure (about 60 Pa), and then single-sided mirror polishing And the glass sheet was created. The thickness of the glass sheet measured with a micrometer was 135 μm.

得られたガラスシートについて、例1と同様の方法で、気孔率、量子変換効率および透過率を測定した。これらの結果を表1に示す。   About the obtained glass sheet, the porosity, the quantum conversion efficiency, and the transmittance | permeability were measured by the method similar to Example 1. FIG. These results are shown in Table 1.

(例3)
酸化物基準のモル%表記で、SiO 21%、B 31%、ZnO 2%、LiO 16%、MgO 9%、CaO 5%、BaO2%、Al 14%となるようにガラス原料を混合した。これを、白金ルツボ中で1300〜1500℃に電気炉で加熱し、溶融して、融液を回転ロールで急冷して、ガラスリボンを形成した。ガラスリボンをボールミルで粉砕し、目開き150μmの網目を有する篩にかけ、さらに気流分級し、ガラス2の粉末(ガラス粉末2)を得た。
(Example 3)
In terms of oxide-based mol%, SiO 2 21%, B 2 O 3 31%, ZnO 2%, Li 2 O 16%, MgO 9%, CaO 5%, BaO 2 %, Al 2 O 3 14%. The glass raw materials were mixed as described above. This was heated in an electric furnace to 1300-1500 ° C. in a platinum crucible and melted, and the melt was quenched with a rotating roll to form a glass ribbon. The glass ribbon was pulverized with a ball mill, passed through a sieve having a mesh having an opening of 150 μm, and further subjected to air classification to obtain glass 2 powder (glass powder 2).

例1と同様の方法によりガラスの特性を評価した。この結果を表1に示す。   The characteristics of the glass were evaluated in the same manner as in Example 1. The results are shown in Table 1.

ガラス粉末2を使用して例1と同様の方法により、ガラスシートを作成した。ガラスシートの板厚は154μmであった。また、ガラスシートについて、例1と同様の方法で、気孔率、量子変換効率および透過率を測定した。これらの結果を表1に示す。   A glass sheet was prepared in the same manner as in Example 1 using glass powder 2. The plate thickness of the glass sheet was 154 μm. Moreover, the porosity, the quantum conversion efficiency, and the transmittance | permeability were measured by the method similar to Example 1 about the glass sheet. These results are shown in Table 1.

Figure 2015227252
Figure 2015227252

本発明の蛍光体分散ガラスシート用ガラス組成物は、青色光源を変換して白色LEDの白色光源を得るための蛍光体分散ガラスシートの製造に使用される。   The glass composition for a phosphor-dispersed glass sheet of the present invention is used for producing a phosphor-dispersed glass sheet for converting a blue light source to obtain a white light source of a white LED.

1 LED発光素子、2 ガラスシート、3 蛍光体、4 内包泡、5 LED光、
6 ガラス、7 蛍光、8 散乱光
1 LED light emitting element, 2 glass sheet, 3 phosphor, 4 encapsulated foam, 5 LED light,
6 Glass, 7 Fluorescence, 8 Scattered light

Claims (9)

ガラス粉末と蛍光体粉末とを含有する蛍光体分散ガラスシート用ガラス組成物であって、前記ガラス粉末は、DTA曲線から算出されるTsとTgとの差(ΔTgs)が50〜105℃であることを特徴とする蛍光体分散ガラスシート用ガラス組成物。   A glass composition for a phosphor-dispersed glass sheet comprising glass powder and phosphor powder, wherein the glass powder has a difference (ΔTgs) between Ts and Tg calculated from a DTA curve of 50 to 105 ° C. A glass composition for a phosphor-dispersed glass sheet. 前記ガラスは、Bi−ZnO−B系である請求項1記載の蛍光体分散ガラスシート用ガラス組成物。 The glass composition for a phosphor-dispersed glass sheet according to claim 1, wherein the glass is a Bi 2 O 3 —ZnO—B 2 O 3 system. 前記ガラスは、モル%表示で、Bi 3〜30%、ZnO 0〜45%、B 10〜50%を含有する請求項2記載の蛍光体分散ガラスシート用ガラス組成物。 3. The glass composition for a phosphor-dispersed glass sheet according to claim 2, wherein the glass contains, in mol%, Bi 2 O 3 3 to 30%, ZnO 0 to 45%, and B 2 O 3 10 to 50%. 前記ガラスは、モル%表示で、Bi 3〜30%、B 10〜50%、ZnO 0〜45%、SiO 5〜35%、BaO 0〜20%、MnO 0〜1%、CeO 0〜1%を含有する請求項2または3記載の蛍光体分散ガラスシート用ガラス組成物。 The glass is expressed in mol%, Bi 2 O 3 3-30%, B 2 O 3 10-50%, ZnO 0-45%, SiO 2 5-35%, BaO 0-20%, MnO 2 0 The glass composition for a phosphor-dispersed glass sheet according to claim 2 or 3 containing 1% and CeO 2 0 to 1%. 請求項1〜4のいずれか1項記載の蛍光体分散ガラスシート用ガラス組成物を焼成して製造されるガラスシート。   The glass sheet manufactured by baking the glass composition for fluorescent substance dispersion | distribution glass sheets of any one of Claims 1-4. 気孔率が5%以下である請求項5記載の蛍光体分散ガラスシート。   The phosphor-dispersed glass sheet according to claim 5, wherein the porosity is 5% or less. 全光線透過率が70%以上である請求項5または6のいずれか1項記載の蛍光体分散ガラスシート。   The phosphor-dispersed glass sheet according to claim 5, wherein the total light transmittance is 70% or more. 平行光線透過率が4%以上で、かつ、全光線透過率が70%以上である請求項5〜7のいずれか1項記載の蛍光体分散ガラスシート。   The phosphor-dispersed glass sheet according to any one of claims 5 to 7, wherein the parallel light transmittance is 4% or more and the total light transmittance is 70% or more. 量子変換効率が85%以上である請求項5〜8のいずれか1項記載の蛍光体分散ガラスシート。   Quantum conversion efficiency is 85% or more, The fluorescent substance dispersion | distribution glass sheet of any one of Claims 5-8.
JP2012210885A 2012-09-25 2012-09-25 Glass composition for fluophor dispersion glass sheet and glass sheet using the same Pending JP2015227252A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012210885A JP2015227252A (en) 2012-09-25 2012-09-25 Glass composition for fluophor dispersion glass sheet and glass sheet using the same
PCT/JP2013/075258 WO2014050684A1 (en) 2012-09-25 2013-09-19 Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210885A JP2015227252A (en) 2012-09-25 2012-09-25 Glass composition for fluophor dispersion glass sheet and glass sheet using the same

Publications (1)

Publication Number Publication Date
JP2015227252A true JP2015227252A (en) 2015-12-17

Family

ID=50388089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210885A Pending JP2015227252A (en) 2012-09-25 2012-09-25 Glass composition for fluophor dispersion glass sheet and glass sheet using the same

Country Status (2)

Country Link
JP (1) JP2015227252A (en)
WO (1) WO2014050684A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008369A1 (en) * 2016-07-06 2018-01-11 セントラル硝子株式会社 Sealing material for sealing phosphor and wavelength conversion member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467315B (en) * 2018-10-23 2022-04-05 温州大学新材料与产业技术研究院 InN-doped sodium-based glass and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465989B2 (en) * 2003-06-18 2010-05-26 旭硝子株式会社 Light emitting diode element
JP5369408B2 (en) * 2007-06-14 2013-12-18 旭硝子株式会社 Glass for optical element coating, glass-coated light-emitting element, and glass-coated light-emitting device
JP2012158494A (en) * 2011-01-31 2012-08-23 Ohara Inc Glass composition
JP5939463B2 (en) * 2012-03-23 2016-06-22 日本電気硝子株式会社 Glass and wavelength conversion member using the glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008369A1 (en) * 2016-07-06 2018-01-11 セントラル硝子株式会社 Sealing material for sealing phosphor and wavelength conversion member

Also Published As

Publication number Publication date
WO2014050684A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
JP4978886B2 (en) Phosphor composite material and phosphor composite member
JP4765525B2 (en) Luminescent color conversion member
JP5757238B2 (en) Phosphor-dispersed glass and method for producing the same
JP5483795B2 (en) Luminescent color conversion material and luminescent color conversion member
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2007191702A (en) Light emission color converting material
JP6508045B2 (en) Light conversion member, method of manufacturing light conversion member, illumination light source and liquid crystal display device
JP2008169348A (en) Phosphor composite material
KR101785798B1 (en) Phosphor-dispersed glass
JP5939463B2 (en) Glass and wavelength conversion member using the glass
TW201817043A (en) Wavelength conversion member, and light emitting device using same
JP6222452B2 (en) Wavelength conversion member and light emitting device
JP2010229002A (en) SnO-P2O5 GLASS USED FOR PHOSPHOR COMPOSITE MATERIAL
JP2018043912A (en) Photoconversion member, illumination light source and method for producing photoconversion member
JP2015071699A (en) Wavelength conversion material, wavelength conversion member and light-emitting device
JP2012052061A (en) Phosphor composite member
JPWO2014162893A1 (en) Light conversion member, method for manufacturing the same, illumination light source, and liquid crystal display device
JP2016084269A (en) Phosphor-dispersed glass
JP2015046579A (en) Method for manufacturing optical conversion member, optical conversion member, illumination light source, and liquid crystal display device
JP2015227252A (en) Glass composition for fluophor dispersion glass sheet and glass sheet using the same
JP2016058409A (en) Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member
JP6830750B2 (en) Wavelength conversion member and light emitting device
JP5807780B2 (en) Wavelength converting member and light emitting device using the same
JP2015201565A (en) Manufacturing method of optical conversion member