JP2017083814A - Wavelength conversion member and manufacturing method therefor - Google Patents

Wavelength conversion member and manufacturing method therefor Download PDF

Info

Publication number
JP2017083814A
JP2017083814A JP2016109816A JP2016109816A JP2017083814A JP 2017083814 A JP2017083814 A JP 2017083814A JP 2016109816 A JP2016109816 A JP 2016109816A JP 2016109816 A JP2016109816 A JP 2016109816A JP 2017083814 A JP2017083814 A JP 2017083814A
Authority
JP
Japan
Prior art keywords
substrate
wavelength conversion
conversion member
glass
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016109816A
Other languages
Japanese (ja)
Inventor
民雄 安東
Tamio Ando
民雄 安東
忠仁 古山
Tadahito Furuyama
忠仁 古山
俊輔 藤田
Shunsuke Fujita
俊輔 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to PCT/JP2016/080254 priority Critical patent/WO2017073328A1/en
Priority to TW105134140A priority patent/TW201726571A/en
Publication of JP2017083814A publication Critical patent/JP2017083814A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion member capable of minimizing discoloration thereof when irradiated with excitation light and temporal degradation of inorganic nanophosphor particles.SOLUTION: A wavelength conversion member 10 comprises a first substrate 1, a second substrate 2, and a phosphor layer 3 which is formed between the first substrate 1 and the second substrate 2 and contains inorganic nanophosphor particles. The first substrate 1 and the second substrate 2 are made of an inorganic material, and peripheral edge portions thereof are fused together.SELECTED DRAWING: Figure 1

Description

本発明は、無機ナノ結晶蛍光体粒子を用いた波長変換部材及びその製造方法に関する。   The present invention relates to a wavelength conversion member using inorganic nanocrystalline phosphor particles and a method for producing the same.

近年、発光ダイオード(LED)や半導体レーザー(LD)等の励起光源を用い、これらの励起光源から発生した励起光を、蛍光体に照射することによって発生する蛍光を照明光として用いる発光装置が検討されている。また、蛍光体として、量子ドット等の無機ナノ蛍光体粒子を用いることが検討されている。量子ドットは、その直径を変えることにより蛍光波長の調整が可能であり、高い発光効率を有する(例えば、特許文献1〜3参照)。   In recent years, a light-emitting device using an excitation light source such as a light emitting diode (LED) or a semiconductor laser (LD) and using fluorescence generated by irradiating the phosphor with excitation light generated from these excitation light sources has been studied. Has been. In addition, the use of inorganic nanophosphor particles such as quantum dots as a phosphor has been studied. The quantum dot can be adjusted in fluorescence wavelength by changing its diameter, and has high luminous efficiency (see, for example, Patent Documents 1 to 3).

無機ナノ蛍光体粒子は、大気中の水分や酸素と接触すると劣化しやすいという性質を有している。このため、無機ナノ蛍光体粒子は、外部環境と接しないように、樹脂等により封止して用いられる。   Inorganic nanophosphor particles have the property of being easily deteriorated when they come into contact with moisture or oxygen in the atmosphere. For this reason, the inorganic nanophosphor particles are used by being sealed with a resin or the like so as not to contact the external environment.

国際公開第2012/102107号公報International Publication No. 2012/102107 国際公開第2012/161065号公報International Publication No. 2012/161065 特表2013−525243号公報Special table 2013-525243 gazette

封止材として樹脂を用いた場合、励起光の照射により無機ナノ蛍光体粒子から発生する熱により樹脂が変色するという問題がある。また、樹脂は耐水性に劣り、水分を透過しやすいため、無機ナノ蛍光体粒子が経時劣化しやすいという問題がある。   When a resin is used as the sealing material, there is a problem that the resin is discolored by heat generated from the inorganic nanophosphor particles when irradiated with excitation light. Further, since the resin is inferior in water resistance and easily penetrates moisture, there is a problem that the inorganic nanophosphor particles are likely to deteriorate over time.

以上に鑑み、本発明は、励起光を照射した際の部材の変色や、無機ナノ蛍光体粒子の経時劣化を抑制することが可能な波長変換部材を提供することを目的とする。   In view of the above, an object of the present invention is to provide a wavelength conversion member capable of suppressing discoloration of a member when irradiated with excitation light and deterioration with time of inorganic nanophosphor particles.

本発明の波長変換部材は、第1の基板及び第2の基板と、第1の基板と第2の基板の間に形成された、無機ナノ蛍光体粒子を含有する蛍光体層と、を有する波長変換部材であって、第1の基板と第2の基板は無機材料からなり、互いに融着していることを特徴とする。   The wavelength conversion member of the present invention has a first substrate and a second substrate, and a phosphor layer containing inorganic nanophosphor particles formed between the first substrate and the second substrate. The wavelength conversion member is characterized in that the first substrate and the second substrate are made of an inorganic material and are fused to each other.

本発明の波長変換部材は上記構成を有することにより、無機ナノ蛍光体粒子が、無機材料からなる第1の基板及び第2の基板の間に封止される。そのため、無機ナノ蛍光体粒子は外部環境による影響を受けにくく、経時劣化を抑制することができる。また、樹脂封止の場合と異なり、無機ナノ蛍光体粒子を封止するための基板として無機材料を使用することにより、励起光を照射した際の部材の変色を抑制することができる。   Since the wavelength conversion member of the present invention has the above configuration, the inorganic nanophosphor particles are sealed between the first substrate and the second substrate made of an inorganic material. Therefore, the inorganic nanophosphor particles are hardly affected by the external environment, and can be prevented from deterioration over time. Moreover, unlike the case of resin sealing, by using an inorganic material as a substrate for sealing inorganic nanophosphor particles, discoloration of a member when irradiated with excitation light can be suppressed.

本発明の波長変換部材において、第1の基板と第2の基板が周縁部で互いに融着していることが好ましい。   In the wavelength conversion member of the present invention, it is preferable that the first substrate and the second substrate are fused to each other at the peripheral portion.

本発明の波長変換部材において、第1の基板及び第2の基板の少なくとも一方の屈伏点が380℃以下であることが好ましい。上記構成によれば、波長変換部材を作製する際の熱処理工程で、無機ナノ蛍光体粒子の劣化を抑制することができる。   In the wavelength conversion member of the present invention, it is preferable that the yield point of at least one of the first substrate and the second substrate is 380 ° C. or lower. According to the said structure, degradation of an inorganic nano fluorescent substance particle can be suppressed at the heat processing process at the time of producing a wavelength conversion member.

本発明の波長変換部材において、第1の基板及び第2の基板の少なくとも一方がガラスからなることが好ましい。ガラスは、その構造上、水分や酸素を透過させにくいため、無機ナノ蛍光体粒子の劣化を抑制する効果が高い。また、樹脂と比較して耐熱性にも優れるため、励起光を照射した際の部材の変色を抑制することができる。さらに、ガラスは光透過性に優れるため、励起光の入射効率や蛍光の出射効率を高めることができ、結果として、波長変換部材の発光効率を高めることが可能となる。   In the wavelength conversion member of the present invention, it is preferable that at least one of the first substrate and the second substrate is made of glass. Glass is difficult to permeate moisture and oxygen due to its structure, and thus has a high effect of suppressing deterioration of inorganic nanophosphor particles. Moreover, since it is excellent also in heat resistance compared with resin, the discoloration of the member at the time of irradiating excitation light can be suppressed. Furthermore, since glass is excellent in light transmittance, the incident efficiency of excitation light and the emission efficiency of fluorescence can be increased, and as a result, the light emission efficiency of the wavelength conversion member can be increased.

本発明の波長変換部材において、ガラスがSn−P系ガラスまたはSn−P−F系ガラスであることが好ましい。Sn−P系ガラス及びSn−P−F系ガラスは、容易に屈伏点を低くすることができるため好ましい。   In the wavelength conversion member of the present invention, the glass is preferably Sn-P glass or Sn-PF glass. Sn-P glass and Sn-PF glass are preferable because the yield point can be easily lowered.

本発明の波長変換部材において、Sn−P系ガラスが、モル%で、SnO 50〜80%、P 15〜25%(ただし、25%は含まない)、ZrO 0〜3%、Al 0〜10%、B 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 0〜10%、MgO 0〜10%、CaO 0〜3%、SrO 0〜2.5%、BaO 0〜2%、MgO+CaO+SrO+BaO 0〜11%及びZrO+Al+MgO 0〜10%を含有し、SnO/P 1.6〜4.8であることが好ましい。 In the wavelength conversion member of the present invention, Sn-P-based glass is mol%, SnO 50-80%, P 2 O 5 15-25% (however, 25% is not included), ZrO 2 0-3%, al 2 O 3 0~10%, B 2 O 3 0~10%, Li 2 O 0~10%, Na 2 O 0~10%, K 2 O 0~10%, Li 2 O + Na 2 O + K 2 O 0 ~10%, 0~10% MgO, CaO 0~3%, SrO 0~2.5%, BaO 0~2%, MgO + CaO + SrO + BaO 0~11% and ZrO 2 + Al 2 O 3 + containing 0% MgO SnO / P 2 O 5 is preferably 1.6 to 4.8.

本発明の波長変換部材において、Sn−P−F系ガラスが、カチオン%で、Sn2+ 10〜90%、P5+ 10〜70%、アニオン%で、O2− 30〜99.9%、F 0.1〜70%を含有することが好ましい。 In the wavelength converting member of the present invention, Sn-P-F-based glass, by cationic%, Sn 2+ 10~90%, P 5+ 10~70%, by anionic%, O 2- 30~99.9%, F - preferably contains 0.1 to 70%.

本発明の波長変換部材において、無機ナノ蛍光体粒子が、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、InP、GaN、GaAs、GaP、AlN、AlP、AlSb、InN、InAs及びInSbから選択される少なくとも一種、またはこれら二種以上の複合体からなる量子ドット蛍光体であることが好ましい。あるいは、無機ナノ蛍光体粒子が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物及びハロリン酸塩化物から選択される少なくとも一種からなる無機粒子からなるものであってもよい。   In the wavelength conversion member of the present invention, the inorganic nanophosphor particles are selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, InP, GaN, GaAs, GaP, AlN, AlP, AlSb, InN, InAs, and InSb. A quantum dot phosphor composed of at least one kind or a composite of two or more of these is preferred. Alternatively, the inorganic nanophosphor particles are inorganic particles composed of at least one selected from oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, and halophosphates. It may be.

本発明の波長変換部材において、蛍光体層が、ガラスマトリクス中に無機ナノ蛍光体粒子が分散されてなることが好ましい。当該構成によれば、無機ナノ蛍光体粒子が、外部環境による影響をより一層受けにくくなり、経時劣化を抑制する上で有利である。   In the wavelength conversion member of the present invention, the phosphor layer is preferably formed by dispersing inorganic nanophosphor particles in a glass matrix. According to this configuration, the inorganic nanophosphor particles are less susceptible to the influence of the external environment, which is advantageous for suppressing deterioration over time.

本発明の波長変換部材において、第1の基板における蛍光体層側の表面に反射膜が形成されていてもよい。このようにすれば、反射型の波長変換部材として使用することが可能となる。   In the wavelength conversion member of the present invention, a reflective film may be formed on the surface of the first substrate on the phosphor layer side. If it does in this way, it will become possible to use as a reflection type wavelength conversion member.

本発明の波長変換部材において、第1の基板における蛍光体層側の表面にバンドパスフィルタが形成されていてもよい。このようにすれば、必要な波長の光(例えば蛍光)の外部への取り出し効率を高めることができる。   In the wavelength conversion member of the present invention, a bandpass filter may be formed on the surface of the first substrate on the phosphor layer side. In this way, it is possible to increase the efficiency of extracting light having a required wavelength (for example, fluorescence) to the outside.

本発明の波長変換部材において、バンドパスフィルタが、励起光を透過し、蛍光体層から発せられる蛍光を反射することが好ましい。   In the wavelength conversion member of the present invention, it is preferable that the bandpass filter transmits the excitation light and reflects the fluorescence emitted from the phosphor layer.

本発明の波長変換部材において、第2の基板における蛍光体層とは反対側の表面に反射防止膜が形成されていることが好ましい。このようにすれば、蛍光(あるいは励起光)の外部への取り出し効率を高めることができる。   In the wavelength conversion member of the present invention, it is preferable that an antireflection film is formed on the surface of the second substrate opposite to the phosphor layer. In this way, it is possible to increase the efficiency of taking out fluorescence (or excitation light) to the outside.

本発明の波長変換部材の製造方法は、第1の基板及び第2の基板の間に、無機ナノ蛍光体粒子を含有する蛍光体層を挟持し、金型を用いて熱圧着プレスすることにより、第1の基板及び第2の基板を互いに融着させることを特徴とする。   In the method for producing a wavelength conversion member of the present invention, a phosphor layer containing inorganic nanophosphor particles is sandwiched between a first substrate and a second substrate, and thermocompression-pressed using a mold. The first substrate and the second substrate are fused to each other.

金型を用いて熱圧着プレスすることにより、比較的短時間で第1の基板及び第2の基板を互いに融着させることができるため、製造工程における無機ナノ蛍光体粒子の熱劣化を抑制することができる。また、第1の基板及び第2の基板がガラス(特にSn−P−F系ガラス)等の脆性材料からなる場合であっても、本発明の製造方法では部材が破損しにくいという利点がある。よって、薄型の波長変換部材を容易に作製することができる。なお、ペースト法やグリーンシート法により蛍光体層を形成する場合は、溶剤や結合剤等に起因する炭素成分が焼結体中に残留し、発光強度低下の原因となる場合がある。それに対し、本発明の製造方法であれば、溶剤や結合剤等の有機化合物を使用する必要がないため、炭素成分に起因する発光強度低下を未然に防止することが可能となる。   By performing thermocompression pressing using a mold, the first substrate and the second substrate can be fused to each other in a relatively short time, so that thermal degradation of the inorganic nanophosphor particles in the manufacturing process is suppressed. be able to. Further, even when the first substrate and the second substrate are made of a brittle material such as glass (particularly Sn—P—F-based glass), the manufacturing method of the present invention has an advantage that the member is not easily damaged. . Therefore, a thin wavelength conversion member can be easily produced. Note that when the phosphor layer is formed by the paste method or the green sheet method, the carbon component due to the solvent, the binder, or the like may remain in the sintered body, which may cause a decrease in emission intensity. On the other hand, according to the production method of the present invention, it is not necessary to use an organic compound such as a solvent or a binder, and thus it is possible to prevent a decrease in emission intensity due to the carbon component.

本発明の波長変換部材の製造方法において、熱圧着プレスを400℃以下で行うことが好ましい。このようにすれば、熱圧着プレス時における無機ナノ蛍光体粒子の熱劣化を抑制することができる。なお、一般的な無機ナノ蛍光体粒子(特に量子ドット蛍光体)は350℃を超える熱で劣化し、発光効率が低下するが、熱圧着プレスによる基板の融着は比較的短時間で行うことができるため、無機ナノ蛍光体粒子の発光効率の低下を抑制できる。   In the manufacturing method of the wavelength conversion member of this invention, it is preferable to perform a thermocompression-bonding press at 400 degrees C or less. If it does in this way, the thermal deterioration of the inorganic nano fluorescent substance particle at the time of thermocompression-bonding press can be suppressed. Note that general inorganic nanophosphor particles (especially quantum dot phosphors) are deteriorated by heat exceeding 350 ° C. and light emission efficiency is reduced, but the substrates are fused in a relatively short time by a thermocompression press. Therefore, a decrease in the luminous efficiency of the inorganic nanophosphor particles can be suppressed.

本発明によれば、励起光を照射した際の部材の変色や、無機ナノ蛍光体粒子の経時劣化を抑制することが可能な波長変換部材を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the wavelength conversion member which can suppress the discoloration of the member at the time of irradiating excitation light, and temporal deterioration of an inorganic nano fluorescent substance particle.

(a)本発明の第1の実施形態に係る波長変換部材の模式的断面図である。(b)第1の実施形態に係る波長変換部材の模式的平面図である。(A) It is a typical sectional view of a wavelength conversion member concerning a 1st embodiment of the present invention. (B) It is a typical top view of the wavelength conversion member concerning a 1st embodiment. 本発明の第1の実施形態に係る波長変換部材の製造工程を示す模式的断面図である。It is typical sectional drawing which shows the manufacturing process of the wavelength conversion member which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る波長変換部材の模式的断面図である。It is a typical sectional view of a wavelength conversion member concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る波長変換部材の模式的断面図である。It is a typical sectional view of a wavelength conversion member concerning a 3rd embodiment of the present invention. 実施例4で得られた波長変換部材に励起光を照射した際の平面写真である。It is a plane photograph at the time of irradiating the wavelength conversion member obtained in Example 4 with excitation light.

以下、本発明の波長変換部材の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the wavelength conversion member of the present invention will be described with reference to the drawings.

(1)第1の実施形態
図1の(a)は本発明の第1の実施形態に係る波長変換部材10の模式的断面図であり、(b)は波長変換部材10の模式的平面図である。
(1) 1st Embodiment (a) of FIG. 1 is typical sectional drawing of the wavelength conversion member 10 which concerns on the 1st Embodiment of this invention, (b) is typical plan view of the wavelength conversion member 10 It is.

波長変換部材10は、無機材料からなる第1の基板1及び第2の基板2と、その間に形成された蛍光体層3を有する。蛍光体層3は無機ナノ蛍光体粒子を含有する。蛍光体層3は、第1の基板1及び第2の基板2の略中央部のみに形成されている。つまり、第1の基板1及び第2の基板2の周縁部には蛍光体層3は形成されていない。ここで、少なくとも第1の基板及び第2の基板のいずれか一方の表面に凹部が形成されており、当該凹部内に蛍光体層3が形成されていてもよい。この場合、蛍光体層3が形成された領域と、蛍光体層3が形成されていない領域の境界が明瞭になりやすい。例えば、凹部の形状を光源(例えばLEDチップ)の発光面の形状と合わせることにより、光源から発せられた光を効率良く蛍光体層3に照射することが可能となる。第1の基板1と第2の基板2は、周縁部1a及び2aで全周にわたって互いに融着している。これにより、蛍光体層3は、第1の基板1と第2の基板2により完全に封止された状態となっているため、外部環境の影響を受けにくい。よって、無機ナノ蛍光体粒子の経時劣化を抑制することができる。   The wavelength conversion member 10 includes a first substrate 1 and a second substrate 2 made of an inorganic material, and a phosphor layer 3 formed therebetween. The phosphor layer 3 contains inorganic nanophosphor particles. The phosphor layer 3 is formed only on the substantially central portion of the first substrate 1 and the second substrate 2. That is, the phosphor layer 3 is not formed on the peripheral portions of the first substrate 1 and the second substrate 2. Here, a recess may be formed on at least one surface of the first substrate and the second substrate, and the phosphor layer 3 may be formed in the recess. In this case, the boundary between the region where the phosphor layer 3 is formed and the region where the phosphor layer 3 is not formed tends to be clear. For example, the phosphor layer 3 can be efficiently irradiated with the light emitted from the light source by matching the shape of the concave portion with the shape of the light emitting surface of the light source (for example, LED chip). The 1st board | substrate 1 and the 2nd board | substrate 2 are mutually fuse | fused over the perimeter by the peripheral parts 1a and 2a. Thereby, since the phosphor layer 3 is completely sealed by the first substrate 1 and the second substrate 2, it is not easily affected by the external environment. Therefore, deterioration with time of the inorganic nanophosphor particles can be suppressed.

第1の基板1及び第2の基板2は、例えばガラス等の透光性材料からなる。第1の基板1及び第2の基板2の両方を透光性材料で構成することにより、透過型の波長変換部材として使用することができる。例えば、第1の基板1側から励起光Lを照射した場合、蛍光体層3から蛍光Lが発せられ、第2の基板2側から外部に取り出される。この際、蛍光体層3から発せられた蛍光と、波長変換されなかった励起光との合成光が、第2の基板2側から外部に取り出されるようにしてもよい。ここで、第2の基板2における蛍光体層3と反対側の表面に反射防止膜(図示せず)を形成してもよい。このようにすれば、励起光や蛍光の取り出し効率を向上させることができる。 The 1st board | substrate 1 and the 2nd board | substrate 2 consist of translucent materials, such as glass, for example. By constituting both the first substrate 1 and the second substrate 2 with a translucent material, it can be used as a transmissive wavelength conversion member. For example, when the excitation light L 0 is irradiated from the first substrate 1 side, the fluorescence L 1 is emitted from the phosphor layer 3 and is extracted from the second substrate 2 side to the outside. At this time, the combined light of the fluorescence emitted from the phosphor layer 3 and the excitation light that has not been wavelength-converted may be extracted from the second substrate 2 side to the outside. Here, an antireflection film (not shown) may be formed on the surface of the second substrate 2 opposite to the phosphor layer 3. In this way, the extraction efficiency of excitation light and fluorescence can be improved.

ガラスとしては、屈伏点が低いSn−P系ガラス、Sn−P−B系ガラス、Sn−P−F系ガラス等のSn及びPをベースとしたガラスが好ましい。なかでもSn−P−F系ガラスは屈伏点を低くすることが容易であるため好ましい。   The glass is preferably a glass based on Sn and P, such as Sn-P glass, Sn-PB glass, Sn-PF glass, etc. having a low yield point. Among these, Sn—PF glass is preferable because it is easy to lower the yield point.

Sn−P−F系ガラスとしては、カチオン%で、Sn2+ 10〜90%、P5+ 10〜70%、アニオン%で、O2− 30〜99.9%、F 0.1〜70%を含有するものが挙げられる。以下に、各成分の含有量をこのように限定した理由を説明する。なお、特に断りがない場合、以下の各成分の含有量に関する説明において、「%」は「カチオン%」または「アニオン%」を意味する。 The Sn-P-F-based glass, cationic%, Sn 2+ 10~90%, P 5+ 10~70%, by anionic%, O 2- 30~99.9%, F - 0.1~70% The thing containing is mentioned. The reason why the content of each component is limited in this way will be described below. Unless otherwise specified, in the following description regarding the content of each component, “%” means “cation%” or “anion%”.

Sn2+は化学耐久性や耐候性を向上させる成分である。また、屈伏点を低下させる効果もある。Sn2+の含有量は10〜90%、20〜85%、特に25〜82.5%であることが好ましい。Sn2+の含有量が少なすぎると、上記効果が得られにくくなる。一方、Sn2+の含有量が多すぎると、ガラス化しにくくなったり、耐失透性が低下しやすくなる。 Sn 2+ is a component that improves chemical durability and weather resistance. It also has the effect of lowering the yield point. The Sn 2+ content is preferably 10 to 90%, 20 to 85%, particularly preferably 25 to 82.5%. When the content of Sn 2+ is too small, the above effect is difficult to obtain. On the other hand, when there is too much content of Sn2 + , it will become difficult to vitrify or devitrification resistance will fall easily.

5+はガラス骨格の構成成分である。また、光透過率を高める効果を有する。また、失透を抑制したり、屈伏点を低下させる効果も有する。P5+の含有量は10〜70%、15〜60%、特に20〜50%であることが好ましい。P5+の含有量が少なすぎると、前記効果が得られにくくなる。一方、P5+の含有量が多すぎると、Sn2+の含有量が相対的に少なくなって、耐候性が低下しやすくなる。 P 5+ is a constituent component of the glass skeleton. Moreover, it has the effect of increasing the light transmittance. It also has the effect of suppressing devitrification and lowering the yield point. The content of P 5+ is preferably 10 to 70%, 15 to 60%, and particularly preferably 20 to 50%. When there is too little content of P5 + , the said effect will become difficult to be acquired. On the other hand, when the content of P 5+ is too large, the content of Sn 2+ is relatively low, the weather resistance tends to lower.

なお、P5+とSn2+の含量は50%以上、70.5%以上、75%以上、80%以上、特に85%以上であることが好ましい。P5+とSn2+の含量が少なすぎると、耐失透性や機械的強度が低下しやすくなる。P5+とSn2+の含量の上限は特に限定されず、100%であってもよいが、他の成分を含有する場合は、99.9%以下、99%以下、95%以下、さらには90%以下としてもよい。 The content of P 5+ and Sn 2+ is preferably 50% or more, 70.5% or more, 75% or more, 80% or more, and particularly preferably 85% or more. When the content of P 5+ and Sn 2+ is too small, devitrification resistance and mechanical strength tends to decrease. The upper limit of the content of P 5+ and Sn 2+ is not particularly limited and may be 100%. However, when other components are contained, they are 99.9% or less, 99% or less, 95% or less, and further 90%. % Or less.

カチオン成分として、上記成分以外にも以下の成分を含有させることができる。   In addition to the above components, the following components can be contained as the cationic component.

3+、Zn2+、Si4+及びAl3+はガラス骨格の構成成分であり、特に化学耐久性を向上させる効果が大きい。B3++Zn2++Si4++Al3+の含有量は0〜50%、0〜30%、0.1〜25%、0.5〜20%、特に0.75〜15%であることが好ましい。B3++Zn2++Si4++Al3+の含有量が多すぎると、耐失透性が低下しやすくなる。また、溶融温度の上昇に伴いSn金属等が析出し、光透過率が低下しやすくなる。また、屈伏点が上昇しやすくなる。なお、耐候性を向上させる観点からは、B3++Zn2++Si4++Al3+を0.1%以上含有させることが好ましい。 B 3+ , Zn 2+ , Si 4+ and Al 3+ are components of the glass skeleton, and have a particularly large effect of improving chemical durability. The content of B 3+ + Zn 2+ + Si 4+ + Al 3+ is preferably 0 to 50%, 0 to 30%, 0.1 to 25%, 0.5 to 20%, particularly preferably 0.75 to 15%. When the content of B 3+ + Zn 2+ + Si 4+ + Al 3+ is too large, the devitrification resistance tends to decrease. Moreover, Sn metal etc. precipitate with a raise of melting temperature, and light transmittance becomes easy to fall. Also, the yield point tends to rise. From the viewpoint of improving the weather resistance, it is preferable to contain 0.1% or more of B 3+ + Zn 2+ + Si 4+ + Al 3+ .

3+、Zn2+、Si4+及びAl3+の各成分の好ましい含有量範囲は以下の通りである。 The preferable content range of each component of B 3+ , Zn 2+ , Si 4+ and Al 3+ is as follows.

3+はガラス骨格を構成する成分である。また、耐候性を向上させる効果があり、特に、ガラス中のP5+等の成分が水中へ選択的に溶出することを抑制する効果が大きい。B3+の含有量は0〜50%、0.1〜45%、特に0.5〜40%であることが好ましい。B3+の含有量が多すぎると、耐失透性や光透過率が低下する傾向がある。 B 3+ is a component constituting the glass skeleton. Moreover, there exists an effect which improves a weather resistance, and especially the effect which suppresses that components, such as P5 + in glass, elute selectively into water is large. The content of B 3+ is preferably 0 to 50%, 0.1 to 45%, particularly preferably 0.5 to 40%. When there is too much content of B3 + , there exists a tendency for devitrification resistance and a light transmittance to fall.

Zn2+は融剤として作用する成分である。また、耐候性を向上させ、研磨洗浄水等の各種洗浄溶液中へのガラス成分の溶出を抑制したり、高温多湿状態でのガラス表面の変質を抑制したりする効果がある。また、Zn2+はガラス化を安定にする効果もある。以上に鑑み、Zn2+の含有量は0〜40%、0.1〜30%、特に0.2〜20%であることが好ましい。Zn2+の含有量が多すぎると、耐失透性や光透過率が低下する傾向がある。 Zn 2+ is a component that acts as a flux. Moreover, there exists an effect which improves a weather resistance, suppresses the elution of the glass component in various washing | cleaning solutions, such as polishing washing water, and suppresses the quality change of the glass surface in a hot and humid state. Zn 2+ also has the effect of stabilizing vitrification. In view of the above, the content of Zn 2+ is preferably 0 to 40%, 0.1 to 30%, particularly preferably 0.2 to 20%. When there is too much content of Zn2 + , there exists a tendency for devitrification resistance and a light transmittance to fall.

Si4+はガラス骨格を構成する成分である。また、耐候性を向上させる効果があり、特に、ガラス中のP5+等の成分が水中へ選択的に溶出することを抑制する効果が大きい。Si4+の含有量は0〜20%、特に0.1〜15%であることが好ましい。Si4+の含有量が多すぎると、屈伏点が高くなりやすい。また、未溶解による脈理や気泡がガラス中に残存しやすくなる。 Si 4+ is a component constituting a glass skeleton. Moreover, there exists an effect which improves a weather resistance, and especially the effect which suppresses that components, such as P5 + in glass, elute selectively into water is large. The content of Si 4+ is preferably 0 to 20%, particularly preferably 0.1 to 15%. When the content of Si 4+ is too large, the yield point tends to be high. In addition, striae and bubbles due to undissolved are likely to remain in the glass.

Al3+は、Si4+やB3+とともにガラス骨格を構成することが可能な成分である。また、耐候性を向上させる効果があり、特に、ガラス中のP5+等の成分が水中へ選択的に溶出することを抑制する効果が大きい。Al3+の含有量は0〜20%、特に0.1〜15%であることが好ましい。Al3+の含有量が多すぎると、耐失透性や光透過率が低下する傾向がある。さらに、溶融温度が高くなって、未溶解による脈理や気泡がガラス中に残存しやすくなる。 Al 3+ is a component capable of constituting a glass skeleton together with Si 4+ and B 3+ . Moreover, there exists an effect which improves a weather resistance, and especially the effect which suppresses that components, such as P5 + in glass, elute selectively into water is large. The content of Al 3+ is preferably 0 to 20%, particularly preferably 0.1 to 15%. When there is too much content of Al3 + , there exists a tendency for devitrification resistance and a light transmittance to fall. Further, the melting temperature is increased, and striae and bubbles due to undissolution are likely to remain in the glass.

Mg2+、Ca2+、Sr2+及びBa2+(アルカリ土類金属イオン)は融剤として作用する成分である。また、耐候性を向上させ、研磨洗浄水等の各種洗浄溶液中へのガラス成分の溶出を抑制したり、高温多湿状態でのガラス表面の変質を抑制したりする効果がある。また、ガラスの硬度を高める成分である。但し、これらの成分の含有量が多すぎると、耐失透性が低下しやすくなる。よって、Mg2+、Ca2+、Sr2+及びBa2+の含量は0〜10%、0〜7.5%、0.1〜5%、特に0.2〜1.5%であることが好ましい。 Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ (alkaline earth metal ions) are components that act as fluxes. Moreover, there exists an effect which improves a weather resistance, suppresses the elution of the glass component in various washing | cleaning solutions, such as polishing washing water, and suppresses the quality change of the glass surface in a hot and humid state. Moreover, it is a component which raises the hardness of glass. However, when there is too much content of these components, devitrification resistance will fall easily. Therefore, the content of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ is preferably 0 to 10%, 0 to 7.5%, 0.1 to 5%, particularly preferably 0.2 to 1.5%.

Liは、アルカリ金属酸化物のなかで最も屈伏点を低下させる効果が大きい成分である。また、但し、Liは分相性が強いため、その含有量が多すぎると、耐失透性が低下しやすくなる。また、Liは化学耐久性を低下させやすく、光透過率も低下させやすい。従って、Liの含有量は0〜10%、0〜5%、0〜1%、特に0〜0.1%であることが好ましい。 Li + is a component having the greatest effect of lowering the yield point among alkali metal oxides. However, since Li + has a strong phase separation property, if its content is too large, the devitrification resistance tends to decrease. In addition, Li + tends to reduce chemical durability and light transmittance. Therefore, the content of Li + is preferably 0 to 10%, 0 to 5%, 0 to 1%, particularly preferably 0 to 0.1%.

Naは、Liと同様に屈伏点を低下させる効果を有する。但し、その含有量が多すぎると、脈理が生成しやすくなる。また、耐失透性が低下しやすくなる。また、Naは化学耐久性を低下させやすく、光透過率も低下させやすい。従って、Naの含有量は0〜10%、0〜5%、0〜1%、特に0〜0.1%であることが好ましい。 Na + has the effect of lowering the yield point in the same manner as Li + . However, when the content is too large, striae are easily generated. Further, the devitrification resistance is likely to be lowered. Further, Na + tends to reduce chemical durability and light transmittance. Therefore, the Na + content is preferably 0 to 10%, 0 to 5%, 0 to 1%, particularly preferably 0 to 0.1%.

も、Liと同様に屈伏点を低下させる効果を有する。但し、その含有量が多すぎると、耐候性が低下する傾向がある。また、耐失透性が低下しやすくなる。また、Kは化学耐久性を低下させやすく、光透過率も低下させやすい。従って、KOの含有量は0〜10%、0〜5%、0〜1%、特に0〜0.1%であることが好ましい。 K + also has the effect of lowering the yield point in the same way as Li + . However, if the content is too large, the weather resistance tends to decrease. Further, the devitrification resistance is likely to be lowered. Further, K + tends to reduce chemical durability and light transmittance. Therefore, the content of K 2 O is preferably 0 to 10%, 0 to 5%, 0 to 1%, particularly preferably 0 to 0.1%.

なお、Li、Na及びKの含量は0〜10%、0〜5%、0〜1%、特に0〜0.1%であることが好ましい。Li、Na及びKの含量が多すぎると、失透しやすくなり、化学耐久性も低下する傾向がある。 In addition, it is preferable that the content of Li <+> , Na <+> and K <+> is 0 to 10%, 0 to 5%, 0 to 1%, particularly 0 to 0.1%. When there is too much content of Li <+> , Na <+> and K < + > , it will become easy to devitrify and there exists a tendency for chemical durability to fall.

上記成分以外にも、La3+、Gd3+、Ta5+、W6+、Nb5+、Ti4+、Y3+、Yb3+、Ge4+、Te4+、Bi3+及びZr4+等を合量で10%まで含有させることができる。 In addition to the above components, La 3+ , Gd 3+ , Ta 5+ , W 6+ , Nb 5+ , Ti 4+ , Y 3+ , Yb 3+ , Ge 4+ , Te 4+ , Bi 3+ and Zr 4+ are contained up to 10%. Can be made.

Ce4+、Pr3+、Nd3+、Eu3+、Tb3+及びEr3+等の希土類成分、Fe3+、Ni2+、Co2+は光透過率を低下させる成分である。よって、これら成分の含有量は各々0.1%以下であることが好ましく、含有させないことがより好ましい。 Rare earth components such as Ce 4+ , Pr 3+ , Nd 3+ , Eu 3+ , Tb 3+ and Er 3+ , Fe 3+ , Ni 2+ and Co 2+ are components that reduce the light transmittance. Therefore, the content of these components is preferably 0.1% or less, and more preferably not contained.

In3+は失透傾向が強いため、含有しないことが好ましい。 Since In 3+ has a strong devitrification tendency, it is preferably not contained.

なお、環境上の理由から、Pb2+及びAs3+を含有しないことが好ましい。 Incidentally, for environmental reasons, it is preferred not to contain Pb 2+ and As 3+.

アニオン成分であるFは屈伏点を低下させる作用や光透過率を高める効果を有する。但し、その含有量が多すぎると、溶融時の揮発性が高くなり脈理が発生しやすくなる。また、耐失透性が低下しやすくなる。Fの含有量は0.1〜70%、1〜67.5%、5〜65%、2〜60%、特に10〜60%であることが好ましい。なお、Fを導入するための原料としては、SnFの他、La、Gd、Ta、W、Nb、Y、Yb、Ge、Mg、Ca、Sr、Ba等のフッ化物が挙げられる。 F which is an anionic component has an effect of lowering the yield point and an effect of increasing the light transmittance. However, if the content is too large, the volatility at the time of melting becomes high and striae easily occurs. Further, the devitrification resistance is likely to be lowered. The content of F is preferably 0.1 to 70%, 1 to 67.5%, 5 to 65%, 2 to 60%, particularly 10 to 60%. In addition, examples of the raw material for introducing F include fluorides such as La, Gd, Ta, W, Nb, Y, Yb, Ge, Mg, Ca, Sr, and Ba, in addition to SnF 2 .

なお、F以外のアニオン成分としては、通常、O2−を含有する。つまり、O2−の含有量は、Fの含有量に応じて決定される。具体的には、O2−の含有量は30〜99.9%、32.5〜99%、35〜95%、40〜98%、特に40〜90%であることが好ましい。 In addition, as anion components other than F , O 2 is usually contained. That is, the content of O 2− is determined according to the content of F . Specifically, the content of O 2− is preferably 30 to 99.9%, 32.5 to 99%, 35 to 95%, 40 to 98%, particularly 40 to 90%.

Sn−P系ガラスとしては、モル%で、SnO 50〜80%、P 15〜25%(ただし、25%は含まない)、ZrO 0〜3%、Al 0〜10%、B 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 0〜10%、MgO 0〜10%、CaO 0〜3%、SrO 0〜2.5%、BaO 0〜2%、MgO+CaO+SrO+BaO 0〜11%及びZrO+Al+MgO 0〜10%を含有し、SnO/P 1.6〜4.8であるものが挙げられる。 The sn-P based glass, in mol%, SnO 50~80%, P 2 O 5 15~25% ( however, not including 25%), ZrO 2 0~3% , Al 2 O 3 0~10 %, B 2 O 3 0~10% , Li 2 O 0~10%, Na 2 O 0~10%, K 2 O 0~10%, Li 2 O + Na 2 O + K 2 O 0~10%, MgO 0~ 10%, CaO 0-3%, SrO 0-2.5%, BaO 0-2%, MgO + CaO + SrO + BaO 0-11% and ZrO 2 + Al 2 O 3 + MgO 0-10%, SnO / P 2 O 5 What is 1.6-4.8 is mentioned.

第1の基板1及び第2の基板2の屈伏点は380℃以下、300℃以下、特に200℃以下であることが好ましい。第1の基板1及び第2の基板2の屈伏点が高すぎると、波長変換部材10を作製する際の熱処理工程で、無機ナノ蛍光体粒子が劣化しやすくなる。一方、第1の基板1及び第2の基板2の屈伏点の下限は特に限定されないが、現実的には100℃以上、特に120℃以上である。ここで屈伏点とは、熱膨張係数測定(TMA)装置での測定において、試験片が最大の伸びを示した点、即ち試験片の伸びが停止した値を指す。   The yield points of the first substrate 1 and the second substrate 2 are preferably 380 ° C. or lower, 300 ° C. or lower, particularly 200 ° C. or lower. If the yield point of the first substrate 1 and the second substrate 2 is too high, the inorganic nanophosphor particles are likely to deteriorate in the heat treatment step when the wavelength conversion member 10 is produced. On the other hand, the lower limit of the yield point of the first substrate 1 and the second substrate 2 is not particularly limited, but is actually 100 ° C. or higher, particularly 120 ° C. or higher. Here, the yield point refers to the point at which the test piece showed the maximum elongation in the measurement with the thermal expansion coefficient measurement (TMA) apparatus, that is, the value at which the elongation of the test piece stopped.

なお、第1の基板1及び第2の基板2の両方の屈伏点が上記範囲内であってもよいが、いずれか一方のみの屈伏点が上記範囲内であってもよい。例えば、第1の基板1の屈伏点が上記範囲であり、第2の基板2の屈伏点が上記範囲より高い場合は、第1の基板1の屈伏点〜屈伏点+100℃程度で熱処理を行うことにより、第1の基板1を軟化変形させて第2の基板2に融着させることが可能である。例えば、第1の基板1がSn−P−F系ガラス等の低屈伏点ガラスからなり、第2の基板2がケイ酸塩ガラス、ホウケイ酸塩ガラス、石英ガラス等の屈伏点が比較的高いガラスからなるものであったり、Al、AlN等のセラミックスからなるものであってもよい。あるいは、第1の基板1がSn−P−F系ガラス等の低屈伏点ガラスからなり、第2の基板2がAl、Cu、Ag等の金属からなるものを使用し、反射型の波長変換部材としてもよい。第1の基板1及び第2の基板2の熱膨張係数を整合させる観点から、両者の熱膨張係数差(温度範囲:30〜380℃)は±50×10−7/℃、特に±30×10−7/℃の範囲内にあることが好ましい。 In addition, although the yield point of both the 1st board | substrate 1 and the 2nd board | substrate 2 may be in the said range, only one of the yield points may be in the said range. For example, when the yield point of the first substrate 1 is in the above range and the yield point of the second substrate 2 is higher than the above range, the heat treatment is performed at the yield point to the yield point + 100 ° C. of the first substrate 1. As a result, the first substrate 1 can be softened and deformed and fused to the second substrate 2. For example, the first substrate 1 is made of a low yield point glass such as Sn—PF glass, and the second substrate 2 has a relatively high yield point such as silicate glass, borosilicate glass, or quartz glass. It may be made of glass, or may be made of ceramics such as Al 2 O 3 and AlN. Alternatively, the first substrate 1 is made of a low yield point glass such as Sn—PF glass, and the second substrate 2 is made of a metal such as Al, Cu, Ag, etc. It is good also as a member. From the viewpoint of matching the thermal expansion coefficients of the first substrate 1 and the second substrate 2, the difference in thermal expansion coefficient between them (temperature range: 30 to 380 ° C.) is ± 50 × 10 −7 / ° C., particularly ± 30 ×. It is preferably within the range of 10 −7 / ° C.

第1の基板1及び第2の基板2の厚みは0.1〜1mm、特に0.1〜0.5mmであることが好ましい。第1の基板1及び第2の基板2の厚みが小さすぎると、機械的強度が低下するため、製造時や使用時に破損しやすくなる。一方、第1の基板1及び第2の基板2の厚みが大きすぎると、熱圧着プレスにより両者を融着させるために要する時間が長くなり、無機ナノ蛍光体粒子が劣化しやすくなる。   The thickness of the first substrate 1 and the second substrate 2 is preferably 0.1 to 1 mm, particularly preferably 0.1 to 0.5 mm. If the thickness of the first substrate 1 and the second substrate 2 is too small, the mechanical strength is lowered, and therefore, the first substrate 1 and the second substrate 2 are easily damaged during manufacturing and use. On the other hand, when the thickness of the 1st board | substrate 1 and the 2nd board | substrate 2 is too large, the time required in order to fuse both with a thermocompression press will become long, and inorganic nano fluorescent substance particle will deteriorate easily.

蛍光体層3に使用する無機ナノ蛍光体粒子としては、II−VI族化合物としてCdS、CdSe、CdTe、ZnS、ZnSe、ZnTe等、III−V族化合物としてInP、GaN、GaAs、GaP、AlN、AlP、AlSb、InN、InAs、InSb等の量子ドット蛍光体が挙げられる。これらは単独、または二種以上を混合して使用することができる。あるいは、これら二種以上からなる複合体(例えば、CdSe粒子表面がZnSにより被覆されたコアシェル構造体)を使用してもよい。また、無機ナノ蛍光体粒子としては、量子ドット蛍光体以外にも、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物及びハロリン酸塩化物等の無機粒子からなるものを使用することもできる。これらは単独、または二種以上を混合して使用することができる。無機ナノ蛍光体粒子の平均粒子径は特に限定されないが、通常100nm以下、50nm以下、特に1〜30nm、1〜15nm、さらには1.5〜12nm程度である。なお、本明細書において、平均粒子径はJIS−R1629に準拠して測定した値(D50)を指す。   Inorganic nanophosphor particles used for the phosphor layer 3 include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, etc. as II-VI group compounds, InP, GaN, GaAs, GaP, AlN as III-V compounds. Examples thereof include quantum dot phosphors such as AlP, AlSb, InN, InAs, and InSb. These can be used alone or in admixture of two or more. Or you may use the composite_body | complex (For example, the core shell structure by which the surface of CdSe particle | grains was coat | covered with ZnS) which consists of these 2 or more types. In addition to quantum dot phosphors, inorganic nanophosphor particles include oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, halophosphates, and the like. What consists of inorganic particles can also be used. These can be used alone or in admixture of two or more. The average particle size of the inorganic nanophosphor particles is not particularly limited, but is usually 100 nm or less, 50 nm or less, particularly 1 to 30 nm, 1 to 15 nm, or even about 1.5 to 12 nm. In addition, in this specification, an average particle diameter points out the value (D50) measured based on JIS-R1629.

なお蛍光体層3は、ガラスマトリクス中に無機ナノ蛍光体粒子が分散してなるものであってもよい。このようにすれば、無機ナノ蛍光体粒子の封止性が向上するため、経時劣化を抑制しやすくなる。また、蛍光体層3に、アルミナやシリカ等の光拡散材を含有させてもよい。   The phosphor layer 3 may be formed by dispersing inorganic nanophosphor particles in a glass matrix. In this way, since the sealing properties of the inorganic nanophosphor particles are improved, deterioration over time can be easily suppressed. The phosphor layer 3 may contain a light diffusing material such as alumina or silica.

次に、波長変換部材10の製造方法を図2に基づいて説明する。   Next, the manufacturing method of the wavelength conversion member 10 is demonstrated based on FIG.

まず、第1の基板1及び第2の基板2の間に、無機ナノ蛍光体粒子3を含有する蛍光体層3を挟持してなる積層体を準備する。蛍光体層3は、第1の基板1及び第2の基板2の略中央部のみに形成し、第1の基板1の周縁部1a及び第2の基板2の周縁部2aには蛍光体層3を形成しないようにする。次に、積層体を、金型4における上金型4a及び下金型4bの間に載置する。必要に応じて予熱を行った後、上金型4aに圧力Pを印加して熱圧着プレスする。これにより、第1の基板1の周縁部1a及び第2の基板2の周縁部2aが軟化して互いに融着し、無機ナノ蛍光体粒子を含有する蛍光体層3が両基板間に封止される。このようにして波長変換部材10を得る。   First, a laminate is prepared in which a phosphor layer 3 containing inorganic nanophosphor particles 3 is sandwiched between a first substrate 1 and a second substrate 2. The phosphor layer 3 is formed only on the substantially central portion of the first substrate 1 and the second substrate 2, and the phosphor layer is formed on the peripheral portion 1 a of the first substrate 1 and the peripheral portion 2 a of the second substrate 2. 3 is not formed. Next, the laminate is placed between the upper mold 4 a and the lower mold 4 b in the mold 4. After preheating as necessary, pressure P is applied to the upper mold 4a to perform thermocompression pressing. As a result, the peripheral edge 1a of the first substrate 1 and the peripheral edge 2a of the second substrate 2 are softened and fused together, and the phosphor layer 3 containing inorganic nanophosphor particles is sealed between the two substrates. Is done. In this way, the wavelength conversion member 10 is obtained.

なお、蛍光体層3の領域は、熱圧着プレス前と比較して、熱圧着プレス後にはその面積が広がる傾向がある。そこで、少なくとも第1の基板及び第2の基板の少なくとも一方の表面に凹部を形成し、当該凹部内に蛍光体層3を形成した状態で熱圧着プレスを行ってもよい。この場合、蛍光体層3は熱圧着プレス後も凹部内に留まりやすくなり、既述の通り、蛍光体層3が形成された領域と、蛍光体層3が形成されていない領域の境界が明瞭になりやすい。   In addition, the area | region of the fluorescent substance layer 3 has the tendency for the area to expand after a thermocompression press compared with the thermocompression press. Therefore, the thermocompression pressing may be performed in a state where a recess is formed on at least one surface of at least the first substrate and the second substrate and the phosphor layer 3 is formed in the recess. In this case, the phosphor layer 3 tends to stay in the recess even after the thermocompression pressing, and the boundary between the region where the phosphor layer 3 is formed and the region where the phosphor layer 3 is not formed is clear as described above. It is easy to become.

なお、第1の基板1及び第2の基板2の間に、無機ナノ蛍光体粒子と分散媒であるガラス粉末の混合物からなる蛍光体層3を挟持した状態で、金型を用いて熱圧着プレスしてもよい。このようにすれば、ガラスマトリクス中に無機ナノ蛍光体粒子が分散してなる蛍光体層3が両基板間に封止されてなる波長変換部材を作製することができる。ガラス粉末としては、屈伏点が低いSn−F−P系ガラスからなるものを使用することが好ましい。このようにすれば、熱圧着プレス時にガラス粉末が軟化流動して緻密な構造になることから、無機ナノ蛍光体粒子の封止性を向上させることができる。また、蛍光体層3の厚みを大きくしやすく、蛍光体層3に含まれる無機ナノ蛍光体粒子の量を多くすることができ、結果として、波長変換部材10の発光強度を高めやすくなる。   In addition, thermocompression bonding is performed using a mold in a state where a phosphor layer 3 made of a mixture of inorganic nanophosphor particles and glass powder as a dispersion medium is sandwiched between the first substrate 1 and the second substrate 2. You may press. In this way, it is possible to produce a wavelength conversion member in which the phosphor layer 3 in which inorganic nanophosphor particles are dispersed in a glass matrix is sealed between both substrates. As a glass powder, it is preferable to use what consists of Sn-FP glass which has a low yield point. In this way, since the glass powder softens and flows during the thermocompression pressing and becomes a dense structure, the sealing performance of the inorganic nanophosphor particles can be improved. In addition, the thickness of the phosphor layer 3 can be easily increased, and the amount of inorganic nanophosphor particles contained in the phosphor layer 3 can be increased. As a result, the emission intensity of the wavelength conversion member 10 can be easily increased.

分散媒としては、ガラス粉末以外にも、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、ポリカーボネート樹脂等の樹脂;アルミナ粉末、シリカ粉末、チタニア粉末、酸化亜鉛粉末、炭酸カルシウム粉末、硫酸バリウム粉末等の無機粉末;セルロース繊維、キチン繊維、キトサン繊維、炭素以外の無機ファイバー、有機高分子ファイバー等の繊維が挙げられる。なお、無機ナノ蛍光体粒子をアルミナシートやセルロース繊維シート等のシート状媒体に担持させることにより蛍光体層3を形成してもよい。例えば、無機ナノ蛍光体粒子をヘキサン等の分散媒中に分散させた分散液をシート状媒体に染み込ませた後、乾燥させることにより、無機ナノ蛍光体粒子をシート状媒体に担持させることができる。   As a dispersion medium, in addition to glass powder, silicone resin, epoxy resin, urethane resin, acrylic resin, polycarbonate resin, etc .; alumina powder, silica powder, titania powder, zinc oxide powder, calcium carbonate powder, barium sulfate powder, etc. Inorganic powders such as: cellulose fibers, chitin fibers, chitosan fibers, inorganic fibers other than carbon, and organic polymer fibers. In addition, you may form the fluorescent substance layer 3 by carrying | supporting inorganic nano fluorescent substance particles on sheet-like media, such as an alumina sheet and a cellulose fiber sheet. For example, the inorganic nanophosphor particles can be supported on the sheet-like medium by immersing the dispersion liquid in which the inorganic nanophosphor particles are dispersed in a dispersion medium such as hexane into the sheet-like medium and then drying. .

熱圧着プレスの温度は、第1の基板1または第2の基板2のうち屈伏点が低い方の基板の屈伏点以上、特に当該屈伏点+20℃以上であることが好ましい。熱圧着プレス温度が低すぎると、両基板が融着しにくくなる。一方、熱圧着プレスの温度の上限は、第1の基板1または第2の基板2のうち屈伏点が低い方の基板の屈伏点+100℃以下、特に当該屈伏点+50℃以下であることが好ましい。熱圧着プレス温度が高すぎると、無機ナノ蛍光体粒子が劣化しやすくなる。熱圧着プレスの温度は、具体的には130〜400℃、さらには150〜300℃程度である。例えば第1の基板1または第2の基板2がSn−P−F系ガラスである場合は、熱圧着プレスの温度は130〜350℃、特に130〜250℃であることが好ましい。   The temperature of the thermocompression-bonding press is preferably not less than the yield point of the substrate having the lower yield point of the first substrate 1 or the second substrate 2, particularly not less than the yield point + 20 ° C. If the thermocompression press temperature is too low, it is difficult to fuse both substrates. On the other hand, the upper limit of the temperature of the thermocompression press is preferably the yield point + 100 ° C. or less of the substrate having the lower yield point of the first substrate 1 or the second substrate 2, particularly the yield point + 50 ° C. or less. . If the thermocompression pressing temperature is too high, the inorganic nanophosphor particles are likely to deteriorate. Specifically, the temperature of the thermocompression pressing is about 130 to 400 ° C, and further about 150 to 300 ° C. For example, when the first substrate 1 or the second substrate 2 is Sn—P—F-based glass, the temperature of the thermocompression press is preferably 130 to 350 ° C., particularly preferably 130 to 250 ° C.

熱圧着プレスの圧力は10〜400kPa/cm、特に20〜300kPa/cmであることが好ましい。熱圧着プレスの圧力が低すぎると、第1の基板1及び第2の基板2が融着しにくくなる。一方、熱圧着プレスの圧力が高すぎると、第1の基板1及び第2の基板2が破損しやすくなる。なお、第1の基板1または第2の基板2がSn−P−F系ガラスである場合は、プレス時の破損を抑制するため、10〜30kPa/cm、特に15〜25kPa/cmであることが好ましい。 The pressure of the thermocompression press is preferably 10 to 400 kPa / cm 2 , particularly preferably 20 to 300 kPa / cm 2 . When the pressure of the thermocompression press is too low, the first substrate 1 and the second substrate 2 are difficult to fuse. On the other hand, when the pressure of the thermocompression press is too high, the first substrate 1 and the second substrate 2 are easily damaged. In addition, when the 1st board | substrate 1 or the 2nd board | substrate 2 is Sn-PF system glass, in order to suppress the failure | damage at the time of a press, it is 10-30 kPa / cm < 2 >, Especially 15-25 kPa / cm < 2 >. Preferably there is.

熱圧着プレスの時間は0.1〜10分、0.3〜5分、0.4〜3分、特に0.5〜2分であることが好ましい。熱圧着プレスの時間が短すぎると、第1の基板1及び第2の基板2が融着しにくくなる。一方、熱圧着プレスの時間が長すぎると、無機ナノ蛍光体粒子が劣化しやすくなる。   The thermocompression press time is preferably 0.1 to 10 minutes, 0.3 to 5 minutes, 0.4 to 3 minutes, particularly preferably 0.5 to 2 minutes. When the time of the thermocompression pressing is too short, the first substrate 1 and the second substrate 2 are difficult to fuse. On the other hand, if the time of the thermocompression pressing is too long, the inorganic nanophosphor particles are likely to be deteriorated.

熱圧着プレスの雰囲気は、大気雰囲気でもよいが、無機ナノ蛍光体粒子の失活、金型の酸化による劣化等の不具合を抑制するため、減圧雰囲気や不活性雰囲気、特にランニングコストを考慮して窒素雰囲気であることが好ましい。なお、第1の基板1または第2の基板2としてSn−P−F系ガラスを使用する場合、熱圧着プレスの雰囲気を減圧雰囲気や不活性雰囲気とすることにより、熱圧着プレス時の基板の変性を抑制することができる。   The atmosphere of the thermocompression press may be an air atmosphere, but in order to suppress problems such as deactivation of inorganic nanophosphor particles and deterioration due to oxidation of the mold, a reduced pressure atmosphere or an inert atmosphere, especially running cost is considered. A nitrogen atmosphere is preferred. In addition, when using Sn-PF glass as the first substrate 1 or the second substrate 2, the atmosphere of the thermocompression press can be reduced by setting the atmosphere of the thermocompression press to a reduced pressure atmosphere or an inert atmosphere. Denaturation can be suppressed.

(2)第2の実施形態
図3は本発明の第2の実施形態に係る波長変換部材20の模式的断面図である。波長変換部材20では、第1の基板1における蛍光体層3側の表面に反射膜5が形成されている点で、第1の実施形態に係る波長変換部材10と異なる。
(2) Second Embodiment FIG. 3 is a schematic cross-sectional view of a wavelength conversion member 20 according to a second embodiment of the present invention. The wavelength conversion member 20 is different from the wavelength conversion member 10 according to the first embodiment in that the reflective film 5 is formed on the surface of the first substrate 1 on the phosphor layer 3 side.

波長変換部材20は反射型の波長変換部材として使用することができる。具体的には、第2の基板2側から励起光Lを照射した場合、蛍光体層3で励起光が波長変換されて生じた蛍光L(あるいは、波長変換されなかった励起光)は、反射膜5により励起光入射側に反射され、外部に取り出される。 The wavelength conversion member 20 can be used as a reflective wavelength conversion member. Specifically, when the excitation light L 0 is irradiated from the second substrate 2 side, the fluorescence L 1 generated by the wavelength conversion of the excitation light in the phosphor layer 3 (or excitation light that has not been wavelength-converted) is The reflection film 5 reflects the excitation light incident side and takes it out.

反射膜5としては、AgやAl等の金属薄膜が挙げられる。金属薄膜の形成方法としては、メッキ法、真空蒸着法、イオンプレーティング法、スパッタリング法等が挙げられる。   Examples of the reflective film 5 include metal thin films such as Ag and Al. Examples of the method for forming the metal thin film include a plating method, a vacuum deposition method, an ion plating method, and a sputtering method.

(3)第3の実施形態
図4は本発明の第3の実施形態に係る波長変換部材30の模式的断面図である。波長変換部材30では、第1の基板1における蛍光体層3側の表面にバンドパスフィルタ6が形成されている点で、第1の実施形態に係る波長変換部材10と異なる。
(3) Third Embodiment FIG. 4 is a schematic cross-sectional view of a wavelength conversion member 30 according to a third embodiment of the present invention. The wavelength conversion member 30 is different from the wavelength conversion member 10 according to the first embodiment in that a band pass filter 6 is formed on the surface of the first substrate 1 on the phosphor layer 3 side.

バンドパスフィルタ6としては、例えば、励起光を透過し、蛍光体層3から発せられる蛍光を反射するものを使用することができる。このようにすれば、第1の基板1側から励起光Lを照射した場合、励起光はバンドパスフィルタ6を透過して蛍光体層3における無機ナノ蛍光体粒子を励起するとともに、蛍光体層3から発せられる蛍光Lはバンドパスフィルタ6により第2の基板2側に反射される。結果として、蛍光を第2の基板2側に効率良く取り出すことが可能となる。 As the band-pass filter 6, for example, a filter that transmits excitation light and reflects fluorescence emitted from the phosphor layer 3 can be used. In this way, when the excitation light L 0 is irradiated from the first substrate 1 side, the excitation light passes through the band-pass filter 6 to excite the inorganic nanophosphor particles in the phosphor layer 3 and the phosphor. The fluorescence L 1 emitted from the layer 3 is reflected by the bandpass filter 6 toward the second substrate 2 side. As a result, it is possible to efficiently extract the fluorescence to the second substrate 2 side.

バンドパスフィルタ6の具体例としては、Nb、TiO、Ta、HfO、ZrO、Al、SiN等からなる高屈折率膜と、SiO、MgF等のフッ化物等からなる低屈折率膜とを交互に積層した誘電体多層膜が挙げられる。 Specific examples of the bandpass filter 6 include a high refractive index film made of Nb 2 O 5 , TiO 2 , Ta 2 O 5 , HfO 2 , ZrO 2 , Al 2 O 3 , SiN, etc., SiO 2 , MgF 2, etc. And a dielectric multilayer film in which low refractive index films made of fluoride or the like are alternately laminated.

以上説明した波長変換部材10〜30は、LEDやLD等の励起光源と組み合わせることにより発光デバイスとして使用することができる。   The wavelength conversion members 10 to 30 described above can be used as a light emitting device by combining with an excitation light source such as an LED or an LD.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

(実施例1)
原料としてSnO、SnF、Pを用い、カチオン%で、Sn2+ 56.3%、P5+ 43.8%、アニオン%で、F 24.8%、O2− 75.2%を含有するように調合したバッチを石英ビーカーに投入し、窒素雰囲気にした電気炉内にて680℃で5分間溶融した。得られた溶融ガラスをインゴット状に成形し、切断及び両面研磨加工を施すことにより、15mm×15mm×1mmの大きさのガラス板(屈伏点=150℃)を2枚作製した。
Example 1
SnO, a SnF 2, P 2 O 5 as starting materials, by cationic%, Sn 2+ 56.3%, P 5+ 43.8%, by anionic%, F - 24.8%, O 2- 75.2% The batch prepared so as to contain the solution was put into a quartz beaker and melted at 680 ° C. for 5 minutes in an electric furnace in a nitrogen atmosphere. The obtained molten glass was formed into an ingot shape and cut and subjected to double-side polishing to produce two glass plates having a size of 15 mm × 15 mm × 1 mm (deflection point = 150 ° C.).

無機ナノ蛍光体粒子(CdSe/ZnS、平均粒子径=約3nm)を分散媒であるヘキサンに1質量%の濃度で分散させた分散液100μlを、一方のガラス板の表面の略中央部に塗布し、真空乾燥させて無機ナノ蛍光体粒子からなる蛍光体層を形成した。蛍光体層の上にもう一方のガラス板を重ねることにより得られた積層体を、タングステンカーバイド製プレス金型で挟み、窒素雰囲気中180℃で2分間予熱した。その後、180℃のまま14kPa/cmの圧力で20秒間熱圧着プレスした。これにより、2枚のガラス板の周縁部が互いに融着し、波長変換部材が得られた。 100 μl of a dispersion liquid in which inorganic nanophosphor particles (CdSe / ZnS, average particle diameter = about 3 nm) are dispersed in hexane as a dispersion medium at a concentration of 1% by mass is applied to the substantially central portion of the surface of one glass plate. Then, vacuum drying was performed to form a phosphor layer made of inorganic nanophosphor particles. The laminate obtained by stacking the other glass plate on the phosphor layer was sandwiched between tungsten carbide press dies and preheated at 180 ° C. for 2 minutes in a nitrogen atmosphere. Then, thermocompression pressing was performed for 20 seconds at a pressure of 14 kPa / cm 2 while maintaining the temperature at 180 ° C. As a result, the peripheral portions of the two glass plates were fused together, and a wavelength conversion member was obtained.

得られた波長変換部材について、発光量子効率(内部量子効率)を測定したところ43%であった。なお、発光量子効率は下記式により算出される値を指し、浜松ホトニクス社製の絶対PL量子収率装置を用いて測定した。リファレンスには石英板を用いた。   With respect to the obtained wavelength conversion member, the light emission quantum efficiency (internal quantum efficiency) was measured to be 43%. In addition, the light emission quantum efficiency points out the value calculated by the following formula, and measured using the absolute PL quantum yield apparatus made from Hamamatsu Photonics. A quartz plate was used as a reference.

発光量子効率={(発光としてサンプルから放出されたフォトン数)/(サンプルより吸収されたフォトン数)}×100(%)     Luminescence quantum efficiency = {(number of photons emitted from the sample as luminescence) / (number of photons absorbed from the sample)} × 100 (%)

(実施例2)
実施例1で作製したインゴット状ガラスを乳鉢で粉砕することによりガラス粉末(平均粒子径=25μm)を得た。ガラス粉末0.2gに対し、実施例1で作製した無機ナノ蛍光体粒子分散液100μlを添加して混合した後、真空乾燥することにより、ガラス粉末と無機ナノ蛍光体粒子の混合物を得た。得られた混合物を実施例1で得られた2枚のガラス板の間に挟持することにより得られた積層体を、タングステンカーバイド製プレス金型の下金型で挟み、窒素雰囲気中180℃で2分間予熱した。その後、180℃のまま14kPa/cmの圧力で20秒間熱圧着プレスした。これにより、2枚のガラス板の周縁部が互いに融着し、波長変換部材が得られた。得られた波長変換部材について、発光量子効率を測定したところ40%であった。
(Example 2)
The ingot-shaped glass produced in Example 1 was pulverized in a mortar to obtain glass powder (average particle size = 25 μm). 100 μl of the inorganic nanophosphor particle dispersion prepared in Example 1 was added to and mixed with 0.2 g of the glass powder, followed by vacuum drying to obtain a mixture of glass powder and inorganic nanophosphor particles. The laminate obtained by sandwiching the obtained mixture between the two glass plates obtained in Example 1 was sandwiched between the lower molds of a tungsten carbide press mold, and at 180 ° C. for 2 minutes in a nitrogen atmosphere. Preheated. Then, thermocompression pressing was performed for 20 seconds at a pressure of 14 kPa / cm 2 while maintaining the temperature at 180 ° C. As a result, the peripheral portions of the two glass plates were fused together, and a wavelength conversion member was obtained. With respect to the obtained wavelength conversion member, the light emission quantum efficiency was measured and found to be 40%.

(実施例3)
予熱及び熱圧着プレスの温度を200℃にしたこと以外は、実施例1と同様にして波長変換部材を作製した。得られた波長変換部材について、発光量子効率を測定したところ30%であった。
(Example 3)
A wavelength conversion member was produced in the same manner as in Example 1 except that the temperature of the preheating and thermocompression pressing was 200 ° C. The obtained wavelength conversion member was measured for luminescence quantum efficiency and found to be 30%.

(実施例4)
実施例1と同様の方法により、10mm×7mm×1mmの大きさのガラス板を2枚作製した。一方のガラス板表面の中央部に2mm×6mm×1.1mmのアルミ箔を設置した状態で、この上下をタングステンカーバイド製プレス金型で挟み、窒素雰囲気中180℃で2分間予熱した。その後、180℃のまま14kPa/cmの圧力で20秒間熱圧着プレスした。これにより、ガラス板表面に深さ約0.13mmの長方形の凹部を形成した。実施例1で作製した無機ナノ蛍光体粒子分散液100μlを、ガラス板表面の凹部に塗布し、真空乾燥させて無機ナノ蛍光体粒子からなる蛍光体層を形成した。蛍光体層の上にもう一方のガラス板を重ねることにより得られた積層体の上下を、タングステンカーバイド製プレス金型で挟み、窒素雰囲気中180℃で2分間予熱した。その後、180℃のまま14kPa/cmの圧力で20秒間熱圧着プレスした。これにより、2枚のガラス板の周縁部が互いに融着し、波長変換部材が得られた。得られた波長変換部材に対し励起光(波長365nm)を照射した際の平面写真を図5に示す。得られた波長変換部材について、発光量子効率を測定したところ48%であった。
Example 4
Two glass plates having a size of 10 mm × 7 mm × 1 mm were produced in the same manner as in Example 1. With an aluminum foil of 2 mm × 6 mm × 1.1 mm placed at the center of one glass plate surface, this was sandwiched between tungsten carbide press dies and preheated at 180 ° C. for 2 minutes in a nitrogen atmosphere. Then, thermocompression pressing was performed for 20 seconds at a pressure of 14 kPa / cm 2 while maintaining the temperature at 180 ° C. Thereby, a rectangular recess having a depth of about 0.13 mm was formed on the glass plate surface. 100 μl of the inorganic nanophosphor particle dispersion prepared in Example 1 was applied to the recesses on the surface of the glass plate and vacuum dried to form a phosphor layer composed of inorganic nanophosphor particles. The upper and lower sides of the laminate obtained by stacking the other glass plate on the phosphor layer were sandwiched between tungsten carbide press dies and preheated at 180 ° C. for 2 minutes in a nitrogen atmosphere. Then, thermocompression pressing was performed for 20 seconds at a pressure of 14 kPa / cm 2 while maintaining the temperature at 180 ° C. As a result, the peripheral portions of the two glass plates were fused together, and a wavelength conversion member was obtained. FIG. 5 shows a plan photograph when the obtained wavelength conversion member is irradiated with excitation light (wavelength 365 nm). With respect to the obtained wavelength conversion member, the light emission quantum efficiency was measured and found to be 48%.

(実施例5)
実施例1で作製した無機ナノ蛍光体粒子分散液100μlとシリコーン樹脂(信越化学工業社製LPS5500(A/B))1gの混合物をガラス板表面の凹部に塗布し、常温で乾燥させて無機ナノ蛍光体粒子からなる蛍光体層を形成したこと以外は、実施例4と同様にして波長変換部材を作製した。得られた波長変換部材について、発光量子効率を測定したところ55%であった。
(Example 5)
A mixture of 100 μl of the inorganic nanophosphor particle dispersion prepared in Example 1 and 1 g of a silicone resin (LPS5500 (A / B) manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the recesses on the surface of the glass plate, dried at room temperature, and inorganic nano A wavelength conversion member was produced in the same manner as in Example 4 except that a phosphor layer made of phosphor particles was formed. With respect to the obtained wavelength conversion member, the light emission quantum efficiency was measured and found to be 55%.

(実施例6)
実施例1で作製した無機ナノ蛍光体粒子分散液100μlと表面疎水化アルミナ粉末(平均粒子径13nm)0.19gの混合物をガラス板表面の凹部に塗布し、真空乾燥させて無機ナノ蛍光体粒子からなる蛍光体層を形成したこと以外は、実施例4と同様にして波長変換部材を作製した。得られた波長変換部材について、発光量子効率を測定したところ44%であった。
(Example 6)
A mixture of 100 μl of the inorganic nanophosphor particle dispersion prepared in Example 1 and 0.19 g of a surface hydrophobized alumina powder (average particle size 13 nm) was applied to the recesses on the surface of the glass plate and dried in vacuo to form inorganic nanophosphor particles. A wavelength conversion member was produced in the same manner as in Example 4 except that the phosphor layer made of was formed. With respect to the obtained wavelength conversion member, the light emission quantum efficiency was measured and found to be 44%.

(実施例7)
実施例1で作製した無機ナノ蛍光体粒子分散液1.6mlとセルロース繊維0.2gの混合物をガラス板表面の凹部に塗布し、真空乾燥させて無機ナノ蛍光体粒子からなる蛍光体層を形成したこと以外は、実施例4と同様にして波長変換部材を作製した。得られた波長変換部材について、発光量子効率を測定したところ43%であった。
(Example 7)
A mixture of 1.6 ml of the inorganic nanophosphor particle dispersion prepared in Example 1 and 0.2 g of cellulose fiber was applied to the recesses on the surface of the glass plate and vacuum dried to form a phosphor layer composed of inorganic nanophosphor particles. A wavelength conversion member was produced in the same manner as in Example 4 except that. With respect to the obtained wavelength conversion member, the light emission quantum efficiency was measured and found to be 43%.

(実施例8)
セルロース繊維シート(2mm×3mm×0.1mm)に対し、実施例1で作製した無機ナノ蛍光体粒子分散液100μlを染み込ませ、真空乾燥させた。乾燥後のセルロース繊維シートを、実施例1で得られた2枚のガラス板の間に挟持し、実施例1と同様の条件で熱圧着プレスすることにより、2枚のガラス板の周縁部が互いに融着し、波長変換部材が得られた。
(Example 8)
A cellulose fiber sheet (2 mm × 3 mm × 0.1 mm) was impregnated with 100 μl of the inorganic nanophosphor particle dispersion prepared in Example 1 and vacuum dried. The dried cellulose fiber sheet is sandwiched between the two glass plates obtained in Example 1 and thermocompression-pressed under the same conditions as in Example 1 so that the peripheral portions of the two glass plates melt together. As a result, a wavelength conversion member was obtained.

(実施例9)
アルミナシート(2mm×3mm×0.1mm)に対し、実施例1で作製した無機ナノ蛍光体粒子分散液100μlを染み込ませ、真空乾燥させた。乾燥後のアルミナシートを、実施例4で得られたガラス板表面の凹部に載置し、もう一方のガラス板を重ねた後、実施例4と同様の条件で熱圧着プレスすることにより、2枚のガラス板の周縁部が互いに融着し、波長変換部材が得られた。
Example 9
An alumina sheet (2 mm × 3 mm × 0.1 mm) was impregnated with 100 μl of the inorganic nanophosphor particle dispersion prepared in Example 1 and vacuum dried. The dried alumina sheet was placed in the concave portion on the surface of the glass plate obtained in Example 4, and the other glass plate was stacked, and then thermocompression-pressed under the same conditions as in Example 4 to obtain 2 The peripheral portions of the glass plates were fused together to obtain a wavelength conversion member.

(比較例)
実施例2で得られた、ガラス粉末と無機ナノ蛍光体粒子の混合物を円柱状に予備成型した後、真空雰囲気にて200℃で20分間熱処理し、ガラス粉末を焼結させることにより波長変換部材を得た。得られた波長変換部材について、発光量子効率を測定したところ1%であった。
(Comparative example)
After pre-molding the mixture of glass powder and inorganic nanophosphor particles obtained in Example 2 into a cylindrical shape, heat treatment is performed at 200 ° C. for 20 minutes in a vacuum atmosphere, and the glass powder is sintered, thereby converting the wavelength conversion member. Got. With respect to the obtained wavelength conversion member, the light emission quantum efficiency was measured and found to be 1%.

1 第1の基板
2 第2の基板
1a、2a 周縁部
3 蛍光体層
4 金型
4a 上金型
4b 下金型
5 反射膜
6 バンドパスフィルタ
10、20、30 波長変換部材
DESCRIPTION OF SYMBOLS 1 1st board | substrate 2 2nd board | substrate 1a, 2a Peripheral part 3 Phosphor layer 4 Mold 4a Upper mold 4b Lower mold 5 Reflective film 6 Band pass filter 10, 20, 30 Wavelength conversion member

Claims (17)

第1の基板及び第2の基板と、
前記第1の基板と前記第2の基板の間に形成された、無機ナノ蛍光体粒子を含有する蛍光体層と、
を有する波長変換部材であって、
前記第1の基板と前記第2の基板は無機材料からなり、互いに融着していることを特徴とする波長変換部材。
A first substrate and a second substrate;
A phosphor layer containing inorganic nanophosphor particles formed between the first substrate and the second substrate;
A wavelength conversion member having
The wavelength conversion member, wherein the first substrate and the second substrate are made of an inorganic material and are fused to each other.
前記第1の基板と前記第2の基板が周縁部で互いに融着していることを特徴とする請求項1に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein the first substrate and the second substrate are fused to each other at a peripheral edge portion. 前記第1の基板及び前記第2の基板の少なくとも一方の屈伏点が380℃以下であることを特徴とする請求項1または2に記載の波長変換部材。   The wavelength conversion member according to claim 1 or 2, wherein a yield point of at least one of the first substrate and the second substrate is 380 ° C or lower. 前記第1の基板及び前記第2の基板の少なくとも一方がガラスからなることを特徴とする請求項1〜3のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 3, wherein at least one of the first substrate and the second substrate is made of glass. 前記ガラスがSn−P系ガラスであることを特徴とする請求項4に記載の波長変換部材。   The wavelength conversion member according to claim 4, wherein the glass is Sn—P-based glass. 前記Sn−P系ガラスが、モル%で、SnO 50〜80%、P 15〜25%(ただし、25%は含まない)、ZrO 0〜3%、Al 0〜10%、B 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、LiO+NaO+KO 0〜10%、MgO 0〜10%、CaO 0〜3%、SrO 0〜2.5%、BaO 0〜2%、MgO+CaO+SrO+BaO 0〜11%及びZrO+Al+MgO 0〜10%を含有し、SnO/P 1.6〜4.8であることを特徴とする請求項5に記載の波長変換部材。 The Sn—P-based glass is mol%, SnO 50-80%, P 2 O 5 15-25% (however, 25% is not included), ZrO 2 0-3%, Al 2 O 3 0-10. %, B 2 O 3 0~10% , Li 2 O 0~10%, Na 2 O 0~10%, K 2 O 0~10%, Li 2 O + Na 2 O + K 2 O 0~10%, MgO 0~ 10%, CaO 0-3%, SrO 0-2.5%, BaO 0-2%, MgO + CaO + SrO + BaO 0-11% and ZrO 2 + Al 2 O 3 + MgO 0-10%, SnO / P 2 O 5 It is 1.6-4.8, The wavelength conversion member of Claim 5 characterized by the above-mentioned. 前記ガラスがSn−P−F系ガラスであることを特徴とする請求項4に記載の波長変換部材。   The wavelength conversion member according to claim 4, wherein the glass is Sn—PF glass. 前記Sn−P−F系ガラスが、カチオン%で、Sn2+ 10〜90%、P5+ 10〜70%、アニオン%で、O2− 30〜99.9%、F 0.1〜70%を含有することを特徴とする請求項7に記載の波長変換部材。 The Sn-P-F-based glass, by cationic%, Sn 2+ 10~90%, P 5+ 10~70%, by anionic%, O 2- 30~99.9%, F - 0.1~70% The wavelength conversion member according to claim 7, comprising: 前記無機ナノ蛍光体粒子が、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、InP、GaN、GaAs、GaP、AlN、AlP、AlSb、InN、InAs及びInSbから選択される少なくとも一種、またはこれら二種以上の複合体からなる量子ドット蛍光体であることを特徴とする請求項1〜8のいずれか一項に記載の波長変換部材。   The inorganic nanophosphor particles are at least one selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, InP, GaN, GaAs, GaP, AlN, AlP, AlSb, InN, InAs, and InSb, or these two types The wavelength conversion member according to any one of claims 1 to 8, wherein the wavelength conversion member is a quantum dot phosphor made of the above composite. 前記無機ナノ蛍光体粒子が、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、希土類硫化物、アルミン酸塩化物及びハロリン酸塩化物から選択される少なくとも一種からなる無機粒子であることを特徴とする請求項1〜8のいずれか一項に記載の波長変換部材。   The inorganic nanophosphor particles are inorganic particles composed of at least one selected from oxides, nitrides, oxynitrides, sulfides, oxysulfides, rare earth sulfides, aluminate chlorides, and halophosphates. The wavelength conversion member according to any one of claims 1 to 8, wherein: 前記蛍光体層が、ガラスマトリクス中に前記無機ナノ蛍光体粒子が分散されてなることを特徴とする請求項1〜10のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 10, wherein the phosphor layer is formed by dispersing the inorganic nanophosphor particles in a glass matrix. 前記第1の基板における前記蛍光体層側の表面に反射膜が形成されていることを特徴とする請求項1〜11のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to claim 1, wherein a reflection film is formed on a surface of the first substrate on the phosphor layer side. 前記第1の基板における前記蛍光体層側の表面にバンドパスフィルタが形成されていることを特徴とする請求項1〜12のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 12, wherein a band pass filter is formed on a surface of the first substrate on the phosphor layer side. 前記バンドパスフィルタが、励起光を透過し、前記蛍光体層から発せられる蛍光を反射することを特徴とする請求項13に記載の波長変換部材。   The wavelength conversion member according to claim 13, wherein the band-pass filter transmits excitation light and reflects fluorescence emitted from the phosphor layer. 前記第2の基板における前記蛍光体層とは反対側の表面に反射防止膜が形成されていることを特徴とする請求項1〜14のいずれか一項に記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 14, wherein an antireflection film is formed on a surface of the second substrate opposite to the phosphor layer. 第1の基板及び第2の基板の間に、無機ナノ蛍光体粒子を含有する蛍光体層を挟持し、金型を用いて熱圧着プレスすることにより、前記第1の基板及び前記第2の基板の周縁部を融着させることを特徴とする波長変換部材の製造方法。   A phosphor layer containing inorganic nanophosphor particles is sandwiched between the first substrate and the second substrate, and the first substrate and the second substrate are pressed by thermocompression using a mold. A method for producing a wavelength conversion member, comprising fusing a peripheral portion of a substrate. 熱圧着プレスを400℃以下で行うことを特徴とする請求項16に記載の波長変換部材の製造方法。   The method for producing a wavelength conversion member according to claim 16, wherein the thermocompression pressing is performed at 400 ° C. or lower.
JP2016109816A 2015-10-27 2016-06-01 Wavelength conversion member and manufacturing method therefor Pending JP2017083814A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/080254 WO2017073328A1 (en) 2015-10-27 2016-10-12 Wavelength conversion member and production method therefor
TW105134140A TW201726571A (en) 2015-10-27 2016-10-21 Wavelength conversion member and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015210348 2015-10-27
JP2015210348 2015-10-27

Publications (1)

Publication Number Publication Date
JP2017083814A true JP2017083814A (en) 2017-05-18

Family

ID=58711971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016109816A Pending JP2017083814A (en) 2015-10-27 2016-06-01 Wavelength conversion member and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2017083814A (en)
TW (1) TW201726571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215386A (en) * 2016-05-30 2017-12-07 日本特殊陶業株式会社 Wavelength converter, manufacturing method therefor, and light-emitting device
WO2018194124A1 (en) 2017-04-20 2018-10-25 学校法人慶應義塾 Reagent for differentiating somatic cells into alveolar epithelial cells, and use of said reagent
JP2019214494A (en) * 2018-06-13 2019-12-19 国立大学法人 鹿児島大学 Glass, glass paste, and manufacturing method of glass
WO2023167106A1 (en) * 2022-03-02 2023-09-07 Agc株式会社 Low-melting-point glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632704B (en) * 2017-08-18 2018-08-11 昆泰電子有限公司 Color purification unit and three-color semiconductor luminescent material light source device with color purification unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011953A (en) * 2003-06-18 2005-01-13 Toyoda Gosei Co Ltd Light emitting device
JP2012087162A (en) * 2010-10-15 2012-05-10 Nippon Electric Glass Co Ltd Wavelength conversion member and light source comprising using the same
JP2013193952A (en) * 2012-03-23 2013-09-30 Nippon Electric Glass Co Ltd Glass and wavelength conversion member using the glass
WO2014085424A1 (en) * 2012-11-30 2014-06-05 Corning Incorporated Led lighting devices with quantum dot glass containment plates
JP2014199267A (en) * 2011-08-05 2014-10-23 シャープ株式会社 Phosphor substrate, display unit, and electronic apparatus
JP2014207436A (en) * 2013-03-18 2014-10-30 日本碍子株式会社 Wavelength converter
JP2015516350A (en) * 2012-02-27 2015-06-11 コーニング インコーポレイテッド Low Tg glass gasket for hermetic sealing applications
US20150187987A1 (en) * 2013-12-27 2015-07-02 Samsung Display Co., Ltd. Method of manufacturing a quantum dot optical component and backlight unit having the quantum dot optical component
US20160067948A1 (en) * 2014-09-04 2016-03-10 Hon Hai Precision Industry Co., Ltd. Encapsulation structure and method for making same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011953A (en) * 2003-06-18 2005-01-13 Toyoda Gosei Co Ltd Light emitting device
JP2012087162A (en) * 2010-10-15 2012-05-10 Nippon Electric Glass Co Ltd Wavelength conversion member and light source comprising using the same
JP2014199267A (en) * 2011-08-05 2014-10-23 シャープ株式会社 Phosphor substrate, display unit, and electronic apparatus
JP2015516350A (en) * 2012-02-27 2015-06-11 コーニング インコーポレイテッド Low Tg glass gasket for hermetic sealing applications
JP2013193952A (en) * 2012-03-23 2013-09-30 Nippon Electric Glass Co Ltd Glass and wavelength conversion member using the glass
WO2014085424A1 (en) * 2012-11-30 2014-06-05 Corning Incorporated Led lighting devices with quantum dot glass containment plates
JP2014207436A (en) * 2013-03-18 2014-10-30 日本碍子株式会社 Wavelength converter
US20150187987A1 (en) * 2013-12-27 2015-07-02 Samsung Display Co., Ltd. Method of manufacturing a quantum dot optical component and backlight unit having the quantum dot optical component
US20160067948A1 (en) * 2014-09-04 2016-03-10 Hon Hai Precision Industry Co., Ltd. Encapsulation structure and method for making same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215386A (en) * 2016-05-30 2017-12-07 日本特殊陶業株式会社 Wavelength converter, manufacturing method therefor, and light-emitting device
WO2018194124A1 (en) 2017-04-20 2018-10-25 学校法人慶應義塾 Reagent for differentiating somatic cells into alveolar epithelial cells, and use of said reagent
JP2019214494A (en) * 2018-06-13 2019-12-19 国立大学法人 鹿児島大学 Glass, glass paste, and manufacturing method of glass
WO2023167106A1 (en) * 2022-03-02 2023-09-07 Agc株式会社 Low-melting-point glass

Also Published As

Publication number Publication date
TW201726571A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
JP2017083814A (en) Wavelength conversion member and manufacturing method therefor
WO2018092644A1 (en) Inorganic nano fluorescent particle composite and wavelength converting member
JP5633114B2 (en) SnO-P2O5 glass used for phosphor composite material
WO2017073329A1 (en) Production method for wavelength conversion members
JP5939463B2 (en) Glass and wavelength conversion member using the glass
JP2009067632A (en) Sealing glass for optical component, and method for sealing optical component
WO2019102787A1 (en) Wavelength conversion member and light emitting device
JP2012036367A (en) Phosphor composite member
WO2017073328A1 (en) Wavelength conversion member and production method therefor
JP2012052061A (en) Phosphor composite member
JP7121329B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
EP3620440B1 (en) Laminate for preparing a wavelength converting member and process for preparing a wavelength converting member
US20220131050A1 (en) Two component glass body for tape casting phosphor in glass led converters
KR102318233B1 (en) Composition for Manufacturing Ceramic Fluorescent Plate, Ceramic Fluorescent Plate and Light Emitting Apparatus
JP2015147705A (en) Glass member and method of producing the same
TWI638788B (en) Led chip scale package with color conversion materials using glass frit and method for manufacturing the same
TWI670870B (en) Manufacturing method of glass for led, led chip encapsulation member using the glass for led, and led package comprising the led chip encapsulation member
WO2017183453A1 (en) Wavelength conversion member
US20190378958A1 (en) Optoelectronic component and method of manufacturing an optoelectronic component
JP2019163208A (en) Raw material powder for wavelength conversion member
CN111480098B (en) Wavelength conversion member and light emitting device using same
JP2013047155A (en) Method of producing glass composite sheet, and glass composite sheet
CN112174647B (en) Low-temperature cofiring fluorescent ceramic composite for white light illumination, preparation method and light source device
JP2018013681A (en) Wavelength conversion member and light emitting device
KR20220153278A (en) Wavelength conversion member and light emitting device comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201124