JP2012087162A - Wavelength conversion member and light source comprising using the same - Google Patents

Wavelength conversion member and light source comprising using the same Download PDF

Info

Publication number
JP2012087162A
JP2012087162A JP2010232459A JP2010232459A JP2012087162A JP 2012087162 A JP2012087162 A JP 2012087162A JP 2010232459 A JP2010232459 A JP 2010232459A JP 2010232459 A JP2010232459 A JP 2010232459A JP 2012087162 A JP2012087162 A JP 2012087162A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
glass
light
phosphor particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010232459A
Other languages
Japanese (ja)
Inventor
Yoshio Mayahara
芳夫 馬屋原
Shunsuke Fujita
俊輔 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2010232459A priority Critical patent/JP2012087162A/en
Publication of JP2012087162A publication Critical patent/JP2012087162A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion member which comprises using an inorganic nanocrystal phosphor particle, and is excellent in heat resistance and weather resistance.SOLUTION: The wavelength conversion member comprises a sintered compact of a mixture including: an inorganic nanocrystal phosphor particle; and glass powder, and the light source includes: the wavelength conversion member; and a light-emitting element. The inorganic nanocrystal phosphor particle desirably is at least one sort chosen from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, and InP or a composite of two or more sorts thereof.

Description

本発明は、波長変換部材およびそれを備える光源に関する。特に、本発明は、無機ナノ結晶蛍光体粒子をガラスマトリクス中に分散してなる波長変換部材およびそれを備える光源に関する。   The present invention relates to a wavelength conversion member and a light source including the same. In particular, the present invention relates to a wavelength conversion member formed by dispersing inorganic nanocrystalline phosphor particles in a glass matrix and a light source including the same.

近年、例えば、一般照明、液晶ディスプレイのバックライトなどに用いられる白色光源の開発が盛んに行われている。そのような白色光源の一例として、例えば特許文献1には、青色光を出射するLED(Light Emitting Diode)の光出射側に、LEDからの光の一部を吸収し、黄色の光を出射する波長変換部材を配置した光源が開示されている。この光源は、青色光と黄色光の合成により白色光を発することができる。   In recent years, for example, a white light source used for general illumination and a backlight of a liquid crystal display has been actively developed. As an example of such a white light source, for example, in Patent Document 1, a part of the light from the LED is absorbed and the yellow light is emitted on the light emitting side of an LED (Light Emitting Diode) that emits blue light. A light source in which a wavelength conversion member is disposed is disclosed. This light source can emit white light by combining blue light and yellow light.

この波長変換部材としては、従来、樹脂マトリクス中に希土類イオンをドープした無機蛍光体粉末を分散させたものが使用されていた。しかしながら、希土類イオンをドープした無機蛍光体は、蛍光寿命が1ミリ秒程度と長く、そのため励起光を照射してもそれを素早く必要な光に変換することができない。よって、効率よく波長変換することができず、輝度の向上に限界があることが指摘されている。   As this wavelength conversion member, a material in which an inorganic phosphor powder doped with rare earth ions is dispersed in a resin matrix has been used. However, inorganic phosphors doped with rare earth ions have a long fluorescence lifetime of about 1 millisecond, so that they cannot be quickly converted into necessary light even when irradiated with excitation light. Therefore, it has been pointed out that wavelength conversion cannot be performed efficiently and there is a limit to improvement in luminance.

このような問題に鑑み、例えば特許文献2および3には、蛍光体として無機ナノ結晶を使用した波長変換部材が提案されている。無機ナノ結晶は、蛍光寿命が10ナノ秒程度と非常に短いため、励起光を素早く必要な光に変換し、再び光を吸収できるので、高い輝度を得ることが可能となる。   In view of such a problem, for example, Patent Documents 2 and 3 propose wavelength conversion members using inorganic nanocrystals as phosphors. Since inorganic nanocrystals have a very short fluorescence lifetime of about 10 nanoseconds, excitation light can be quickly converted into necessary light and absorbed again, so that high luminance can be obtained.

特開2007−25285号公報JP 2007-25285 A 特開2006−322001号公報JP 2006-322001 A 特許第3677538号公報Japanese Patent No. 3767538

特許文献2に記載の波長変換部材は、マトリクスとしてエポキシ樹脂、シリコーン樹脂、アクリル樹脂、カーボネート樹脂を用いることが記載されている。しかしながら、これらの樹脂は耐熱性、耐水性に劣り、長期信頼性を確保することが困難である。具体的には、励起光が波長変換部材に照射される際、エネルギーの一部が熱に変換されるが、その熱により樹脂が変色して光束値が低下するという問題がある。また、これらの樹脂は耐水性に劣り水分を透過しやすいため、硫化物などの耐水性の低い無機ナノ結晶蛍光体粒子を使用した場合は、樹脂を透過した水分と無機ナノ結晶蛍光体粒子とが反応し、蛍光強度が低下するという問題がある。   The wavelength conversion member described in Patent Document 2 describes that an epoxy resin, a silicone resin, an acrylic resin, or a carbonate resin is used as a matrix. However, these resins are inferior in heat resistance and water resistance, and it is difficult to ensure long-term reliability. Specifically, when excitation light is irradiated onto the wavelength conversion member, a part of the energy is converted into heat, but there is a problem that the resin is discolored by the heat and the luminous flux value is lowered. In addition, since these resins are poor in water resistance and easily transmit moisture, when inorganic nanocrystalline phosphor particles having low water resistance such as sulfides are used, the moisture permeated through the resin and the inorganic nanocrystal phosphor particles Reacts and the fluorescence intensity decreases.

特許文献3には、ゾルゲル法により微小ガラス球中に、無機ナノ結晶蛍光体粒子を分散させる技術が開示されている。しかしながら、当該方法により得られるのは多孔質ゲル状ガラス体であり、水分が透過しやすく無機ナノ結晶蛍光体粒子を劣化させやすいという問題がある。なお、特許文献3に記載されているSiOからなる多孔質ゲル状石英ガラスを完全に焼結させ、細孔を消失させるには1000℃程度の高温で焼成する必要である。このような高温の処理を施すと、無機ナノ結晶蛍光体粒子が変質し、蛍光強度が低下するという問題がある。 Patent Document 3 discloses a technique for dispersing inorganic nanocrystalline phosphor particles in fine glass spheres by a sol-gel method. However, a porous gel-like glass body is obtained by this method, and there is a problem that moisture easily permeates and the inorganic nanocrystalline phosphor particles are easily deteriorated. In addition, in order to completely sinter the porous gel-like quartz glass made of SiO 2 described in Patent Document 3 and eliminate the pores, it is necessary to fire at a high temperature of about 1000 ° C. When such high temperature treatment is performed, there is a problem that the inorganic nanocrystalline phosphor particles are altered and the fluorescence intensity is lowered.

本発明は以上の点に鑑みてなされたものであり、その目的は、無機ナノ結晶蛍光体粒子を用いてなり、耐熱性および耐候性に優れた波長変換部材を提供することにある。   This invention is made | formed in view of the above point, The objective is to use the inorganic nanocrystal fluorescent substance particle, and to provide the wavelength conversion member excellent in heat resistance and a weather resistance.

本発明者らは、鋭意研究の結果、無機ナノ結晶蛍光体粒子を特定の方法によりガラスマトリクス中に分散させることにより、前記課題を解消できることを見出し、本発明として提案するものである。   As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by dispersing inorganic nanocrystalline phosphor particles in a glass matrix by a specific method, and propose the present invention.

すなわち、本発明は、無機ナノ結晶蛍光体粒子とガラス粉末を含む混合物の焼結体からなることを特徴とする波長変換部材に関する。   That is, this invention relates to the wavelength conversion member characterized by consisting of the sintered compact of the mixture containing an inorganic nanocrystal fluorescent substance particle and glass powder.

本発明の波長変換部材は、無機ナノ結晶蛍光体粒子が無機材料であるガラスマトリクス中に均一に分散された構造を有するため、耐熱性に優れている。また、無機ナノ結晶蛍光体粒子とガラス粉末を含む混合物を比較的低温で焼結することにより作製することができるため、無機ナノ結晶蛍光体粒子の劣化が少なく、発光強度にも優れる。また、ゾルゲル法を使用した場合と異なり、部材表面に細孔が存在しないため、部材内部に水分が浸入して無機ナノ結晶蛍光体粒子を劣化させるという問題もほとんど生じない。   Since the wavelength conversion member of the present invention has a structure in which inorganic nanocrystalline phosphor particles are uniformly dispersed in a glass matrix that is an inorganic material, the wavelength conversion member is excellent in heat resistance. Moreover, since it can produce by sintering the mixture containing inorganic nanocrystal fluorescent substance particle and glass powder at comparatively low temperature, there is little deterioration of inorganic nanocrystal fluorescent substance particle and it is excellent also in emitted light intensity. In addition, unlike the case where the sol-gel method is used, since there are no pores on the surface of the member, there is almost no problem that moisture penetrates into the member and deteriorates the inorganic nanocrystalline phosphor particles.

なお、本発明において、「無機ナノ結晶蛍光体粒子」とは粒径が1μm未満である無機結晶からなる蛍光体粒子を意味する。   In the present invention, “inorganic nanocrystalline phosphor particles” mean phosphor particles composed of inorganic crystals having a particle size of less than 1 μm.

第二に、本発明の波長変換部材は、無機ナノ結晶蛍光体粒子が、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、InPから選択される少なくとも1種、またはこれら2種以上の複合体であることを特徴とする。   Secondly, in the wavelength conversion member of the present invention, the inorganic nanocrystalline phosphor particles are at least one selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, InP, or a composite of two or more of these. It is characterized by being.

第三に、本発明の波長変換部材は、無機ナノ結晶蛍光体粒子の粒径が1〜30nmであることを特徴とする。   Thirdly, the wavelength conversion member of the present invention is characterized in that the inorganic nanocrystalline phosphor particles have a particle size of 1 to 30 nm.

第四に、本発明の波長変換部材は、ガラス粉末が、900℃以下の軟化点を有するガラスからなることを特徴とする。   Fourth, the wavelength conversion member of the present invention is characterized in that the glass powder is made of glass having a softening point of 900 ° C. or lower.

第五に、本発明の波長変換部材は、ガラス粉末の平均粒子径D50が、0.1〜100μmであることを特徴とする。   Fifth, the wavelength conversion member of the present invention is characterized in that the glass powder has an average particle diameter D50 of 0.1 to 100 μm.

第六に、本発明は、前記いずれかの波長変換部材と発光素子とを備えることを特徴とする光源に関する。   Sixth, the present invention relates to a light source comprising any one of the wavelength conversion members and a light emitting element.

第七に、本発明の光源は、前記発光素子は、LEDまたはLDであることを特徴とする。   Seventh, the light source of the present invention is characterized in that the light emitting element is an LED or an LD.

第八に、本発明の光源は、複数の発光素子を備えてなることを特徴とする。   Eighth, the light source of the present invention includes a plurality of light emitting elements.

本発明において使用するガラス粉末には、無機ナノ結晶蛍光体粒子を安定に保持するための媒体としての役割がある。また、使用するガラスの組成系によって、波長変換部材から発せられる光の色調が異なったり、無機ナノ結晶蛍光体粒子との反応性に差が出るため、種々の条件を考慮して使用するガラスの組成を選択する必要がある。   The glass powder used in the present invention has a role as a medium for stably holding inorganic nanocrystalline phosphor particles. Also, depending on the composition system of the glass used, the color tone of the light emitted from the wavelength conversion member is different or the reactivity with the inorganic nanocrystalline phosphor particles is different. It is necessary to select the composition.

ガラス粉末としては、無機ナノ結晶蛍光体粒子と反応しにくいものであれば、特に組成系に制限はないが、900℃以下、850℃以下、より好ましくは800℃以下の軟化点を有するガラスからなるものを用いることが好ましい。ガラスの軟化点が高くなると、焼成温度も高くなるため、無機ナノ結晶蛍光体粒子が劣化して、発光効率の高い波長変換部材が得られにくくなる。   The glass powder is not particularly limited as long as it does not easily react with the inorganic nanocrystalline phosphor particles. However, the glass powder has a softening point of 900 ° C. or lower, 850 ° C. or lower, more preferably 800 ° C. or lower. It is preferable to use When the softening point of the glass is increased, the firing temperature is also increased, so that the inorganic nanocrystalline phosphor particles are deteriorated and it becomes difficult to obtain a wavelength conversion member having high luminous efficiency.

ガラス粉末としては、例えば、SiO−B系ガラス、SiO−RO(RはMg、Ca、Sr、Baを表す)系ガラス、SiO−B−RO系ガラス、SiO−B−R’O(R’はLi、Na、Kを表す)系ガラス、SiO−B−Al系ガラス、SiO−B−ZnO系ガラス、ZnO-B系ガラス、SnO−P系ガラス、SnO−P−B系ガラスを用いることができる。なお、低温焼成を目的とする場合は、比較的容易に軟化点を低下させることが可能なZnO−B系ガラス、SnO−P系ガラス、SnO−P−B系ガラスを選択すればよく、波長変換部材の耐候性を向上させたい場合は、SiO−B系ガラス、SiO−RO系ガラス、SiO−B−RO系ガラス、SiO−B−R’O系ガラス、SiO−B−Al系ガラス、SiO−B−ZnO系ガラスを選択すればよい。 Examples of the glass powder include SiO 2 —B 2 O 3 glass, SiO 2 —RO (R represents Mg, Ca, Sr, Ba) glass, SiO 2 —B 2 O 3 —RO glass, SiO 2 2- B 2 O 3 —R ′ 2 O (R ′ represents Li, Na, K) glass, SiO 2 —B 2 O 3 —Al 2 O 3 glass, SiO 2 —B 2 O 3 —ZnO Glass, ZnO—B 2 O 3 glass, SnO—P 2 O 5 glass, or SnO—P 2 O 5 —B 2 O 3 glass can be used. Incidentally, for the purpose of low-temperature firing is relatively easy to softening point can be lowered a ZnO-B 2 O 3 based glass, SnO-P 2 O 5 based glass, SnO-P 2 O 5 -B may be selected 2 O 3 based glass, if it is desired to improve the weather resistance of the wavelength conversion member, SiO 2 -B 2 O 3 based glass, SiO 2 -RO based glass, SiO 2 -B 2 O 3 -RO system glass, SiO 2 -B 2 O 3 -R '2 O -based glass, SiO 2 -B 2 O 3 -Al 2 O 3 based glass, may be selected SiO 2 -B 2 O 3 -ZnO based glass.

SiO−B系ガラスとしては、ガラス組成として、モル%表示で、SiO 50〜80%、B 20〜50%を含有するものが好ましい。 The SiO 2 -B 2 O 3 based glass, as a glass composition, in mol%, SiO 2 50 to 80%, those containing 2 O 3 20 to 50% B preferred.

SiO−RO系ガラスとしては、ガラス組成として、モル%表示で、SiO 50〜80%、RO 20〜50%を含有するものが好ましい。 The SiO 2 -RO based glass, as a glass composition, in mol%, SiO 2 50 to 80%, those containing 20 to 50% RO preferred.

SiO−B−RO系ガラスとしては、ガラス組成として、モル%表示で、SiO 30〜80%、B 1〜30%を含有するものが好ましい。さらに任意成分として、MgO 0〜10%、CaO 0〜30%、SrO 0〜20%、BaO 0〜40%、MgO+CaO+SrO+BaO 5〜45%、Al 0〜10%およびZnO 0〜10%を含有していても構わない。また、これらの成分以外にも、LiO、NaO、KOなどのアルカリ金属酸化物等のガラスの軟化点を低下させ、低温での焼成を可能にする成分、Pなどのガラスの溶融性を向上させる成分、Ta、TiO、Nb、Gd、Laなどのガラスの化学的耐久性を向上させる成分などをさらに含有していても構わない。 The SiO 2 -B 2 O 3 -RO based glass, as a glass composition, in mol%, SiO 2 30 to 80%, those containing 2 O 3 1 to 30% B preferred. As a further optional component, 0~10% MgO, CaO 0~30% , SrO 0~20%, BaO 0~40%, MgO + CaO + SrO + BaO 5~45%, Al 2 O 3 0~10% and 0% ZnO You may contain. In addition to these components, P 2 O 5 is a component that lowers the softening point of glass such as alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O and enables firing at low temperatures. In addition, components such as Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 and other components that improve the chemical durability of the glass are further included. It does not matter.

SiO−B−R’O系ガラスとしては、ガラス組成として、モル%表示で、SiO 30〜70%、B 15〜55%、R’O 5〜35%を含有するものが好ましい。 'As the 2 O-based glass, as a glass composition, in mol%, SiO 2 30~70%, B 2 O 3 15~55%, R' SiO 2 -B 2 O 3 -R 2 O 5~35% The thing containing is preferable.

SiO−B−Al系ガラスとしては、ガラス組成として、モル%表示で、SiO 30〜70%、B 15〜55%、Al 15〜55%を含有するものが好ましい。 The SiO 2 -B 2 O 3 -Al 2 O 3 based glass, as a glass composition, in mol%, SiO 2 30~70%, B 2 O 3 15~55%, Al 2 O 3 15~55% The thing containing is preferable.

SiO−B−ZnO系ガラスとしては、ガラス組成として、モル%表示で、SiO 5〜50%、B 15〜55%、ZnO 30〜80%を含有するものが好ましい。 As the SiO 2 —B 2 O 3 —ZnO-based glass, those containing 5 to 50% SiO 2 , 15 to 55% B 2 O 3 , and 30 to 80% ZnO are preferable in terms of glass composition. .

ZnO−B系ガラスとしては、ガラス組成として、モル%表示で、ZnO 30〜80%、B 20〜70%を含有するものが好ましい。 The ZnO-B 2 O 3 based glass, as a glass composition, in mol%, 30 to 80% ZnO, those containing 2 O 3 20 to 70% B is preferred.

SnO−P系ガラスとしては、ガラス組成として、モル%表示で、SnO 40〜85%、P 15〜60%を含有するものが好ましい。 The SnO-P 2 O 5 based glass, as a glass composition, in mol%, SnO 40 to 85%, those containing P 2 O 5 15 to 60% preferred.

SnO−P−B系ガラスとしては、ガラス組成として、モル%で、SnO 35〜80%、P 5〜40%、B 1〜30%を含有するものが好ましい。さらに任意成分として、Al 0〜10%、SiO 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%およびBaO 0〜10%を含有していても構わない。また、上記成分以外にも、Ta、TiO、Nb、Gd、Laなどの耐候性を向上させる成分や、ZnOなどのガラスを安定化させる成分などをさらに含有させることもできる。 The SnO-P 2 O 5 -B 2 O 3 based glass, as a glass composition, in mol%, containing SnO 35~80%, P 2 O 5 5~40%, the 2 O 3 1 to 30% B Those are preferred. Furthermore, as optional components, Al 2 O 3 0-10%, SiO 2 0-10%, Li 2 O 0-10%, Na 2 O 0-10%, K 2 O 0-10%, MgO 0-10% , CaO 0 to 10%, SrO 0 to 10% and BaO 0 to 10% may be contained. In addition to the above components, components that improve weather resistance such as Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 , components that stabilize glass such as ZnO, etc. Can further be included.

SnO−P系ガラスおよびSnO−P−B系ガラスの軟化点を低下させ、かつガラスを安定化させる観点から、SnOとPのモル比(SnO/P)は、0.9〜16の範囲内であることが好ましく、1.5〜10の範囲内であることがより好ましく、2〜5の範囲内であることがさらに好ましい。モル比(SnO/P)が小さすぎると、低温での焼成が困難になり、無機ナノ結晶蛍光体粒子が焼成時に劣化しやすくなる場合がある。また、耐候性が低くなりすぎる場合がある。一方、モル比(SnO/P)が大きすぎると、ガラスが失透しやすくなり、ガラスの透過率が低くなりすぎる場合がある。 From the viewpoint of lowering the softening point of SnO—P 2 O 5 glass and SnO—P 2 O 5 —B 2 O 3 glass and stabilizing the glass, the molar ratio of SnO to P 2 O 5 (SnO / P 2 O 5 ) is preferably within the range of 0.9 to 16, more preferably within the range of 1.5 to 10, and even more preferably within the range of 2 to 5. When the molar ratio (SnO / P 2 O 5 ) is too small, firing at a low temperature becomes difficult, and the inorganic nanocrystalline phosphor particles may be easily deteriorated during firing. Also, the weather resistance may be too low. On the other hand, if the molar ratio (SnO / P 2 O 5 ) is too large, the glass tends to be devitrified, and the transmittance of the glass may be too low.

ガラス粉末の平均粒子径D50は0.1〜100μm、特に1〜50μmであることが好ましい。ガラス粉末の平均粒子径D50が小さすぎると、焼成時に気泡が発生しやすくなる。このため、得られる波長変換部材の強度が低下する場合がある。また、波長変換部材中における光散乱の程度が低くなり、発光効率が低下する場合がある。一方、ガラス粉末の平均粒子径D50が大きすぎると、無機ナノ結晶蛍光体粒子がガラスマトリクス中に均一に分散されにくくなり、その結果、得られる波長変換部材の発光効率が低くなる場合がある。   The average particle diameter D50 of the glass powder is preferably from 0.1 to 100 μm, particularly preferably from 1 to 50 μm. If the average particle diameter D50 of the glass powder is too small, bubbles are likely to be generated during firing. For this reason, the intensity | strength of the wavelength conversion member obtained may fall. In addition, the degree of light scattering in the wavelength conversion member is lowered, and the light emission efficiency may be reduced. On the other hand, if the average particle diameter D50 of the glass powder is too large, the inorganic nanocrystalline phosphor particles are difficult to uniformly disperse in the glass matrix, and as a result, the emission efficiency of the obtained wavelength conversion member may be lowered.

なお、本明細書において、平均粒子径D50は、島津製作所製SALD200Jを用いて、JIS−R1629に準拠して測定した値である。   In the present specification, the average particle diameter D50 is a value measured according to JIS-R1629 using SALD200J manufactured by Shimadzu Corporation.

無機ナノ結晶蛍光体粒子としては、例えばII−VI族化合物として、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、III−V族化合物として、InP、GaN、GaAs、GaP、AlN、AlP、AlSb、InN、InAs、InSbなどを使用することができる。   Examples of the inorganic nanocrystal phosphor particles include II-VI group compounds such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, and III-V group compounds such as InP, GaN, GaAs, GaP, AlN, AlP, AlSb, InN, InAs, InSb, or the like can be used.

励起光の波長域や発光させたい色に応じて複数の無機ナノ結晶蛍光体粒子を混合して用いてもよい。例えば、紫外域の励起光を照射して、白色光を得たい場合は、青色、緑色および赤色の蛍光を発する無機ナノ結晶蛍光体粒子を混合して使用すればよい。また、複数の化合物の複合体を使用しても構わない。当該複合体としては、例えばCdSe粒子表面がZnSによりコーティングされたコアシェル構造のものが挙げられる。   A plurality of inorganic nanocrystalline phosphor particles may be mixed and used according to the wavelength range of the excitation light and the color to be emitted. For example, when it is desired to obtain white light by irradiating ultraviolet excitation light, inorganic nanocrystalline phosphor particles emitting blue, green and red fluorescence may be mixed and used. A complex of a plurality of compounds may be used. Examples of the composite include a core-shell structure in which the surface of CdSe particles is coated with ZnS.

なお、無機ナノ結晶蛍光体粒子は、結晶粒径をコントロールすることにより発光波長を変更することができるため、1種類の無機ナノ結晶蛍光体粒子で複数の蛍光を得ることも可能である。   In addition, since the inorganic nanocrystalline phosphor particles can change the emission wavelength by controlling the crystal grain size, it is also possible to obtain a plurality of fluorescence with one kind of inorganic nanocrystalline phosphor particles.

無機ナノ結晶蛍光体粒子は、例えばトルエン等の有機溶媒にコロイド状に分散させた形態で取り扱われる。ここで、無機ナノ結晶蛍光体粒子同士が凝集することを防止するため、無機ナノ結晶蛍光体粒子表面に有機物が結合した構造(例えば、有機物からなる突起が形成された構造)を有していてもよい。   The inorganic nanocrystalline phosphor particles are handled in a colloidally dispersed form in an organic solvent such as toluene. Here, in order to prevent the inorganic nanocrystalline phosphor particles from aggregating, the surface of the inorganic nanocrystalline phosphor particles has a structure in which an organic substance is bonded (for example, a structure in which protrusions made of the organic substance are formed). Also good.

無機ナノ結晶蛍光体粒子の粒径は特に限定されず、例えば100nm以下、50nm以下、特に1〜30nm、1〜15nm、さらには1.5〜12nmの範囲で適宜選択される。   The particle size of the inorganic nanocrystalline phosphor particles is not particularly limited, and is appropriately selected within a range of, for example, 100 nm or less, 50 nm or less, particularly 1 to 30 nm, 1 to 15 nm, or 1.5 to 12 nm.

波長変換部材の発光効率(lm/W)は、ガラスマトリクス中に分散した無機ナノ結晶蛍光体粒子の種類や含有量、および波長変換部材の肉厚によって変化する。発光効率を高めたい場合、部材の肉厚を薄くして励起光や変換された光の透過光を高めたり、無機ナノ結晶蛍光体粒子の含有量を多くして、波長変換する光量を増やすことで調整すればよい。ただし、無機ナノ結晶蛍光体粒子の含有量が多くなりすぎると、焼結しにくくなり、気孔率が大きくなって、励起光が効率良く無機ナノ結晶蛍光体粒子に照射されにくくなったり、波長変換部材の機械的強度が低下しやすくなるなどの問題が生じる。一方、少なすぎると、十分な発光量が得られにくくなる。したがって、波長変換部材における無機ナノ結晶蛍光体粒子の含有量は0.01〜30質量%、0.05〜10質量%、特に0.08〜5質量%の範囲で調整することが好ましい。   The luminous efficiency (lm / W) of the wavelength conversion member varies depending on the type and content of inorganic nanocrystalline phosphor particles dispersed in the glass matrix and the thickness of the wavelength conversion member. If you want to increase luminous efficiency, reduce the thickness of the member to increase the transmitted light of excitation light or converted light, or increase the content of inorganic nanocrystalline phosphor particles to increase the amount of light to be wavelength converted You can adjust with. However, if the content of the inorganic nanocrystalline phosphor particles is too large, it becomes difficult to sinter, the porosity is increased, and the excitation light is not easily irradiated onto the inorganic nanocrystalline phosphor particles, or wavelength conversion is performed. There arises a problem that the mechanical strength of the member tends to decrease. On the other hand, if the amount is too small, it becomes difficult to obtain a sufficient amount of light emission. Therefore, the content of the inorganic nanocrystalline phosphor particles in the wavelength conversion member is preferably adjusted in the range of 0.01 to 30% by mass, 0.05 to 10% by mass, and particularly 0.08 to 5% by mass.

なお、本発明の波長変換部材には、ガラス粉末および無機ナノ結晶蛍光体粒子以外にも、例えばアルミナ、シリカ等の光拡散材を合量で30質量%まで含有していてもよい。   In addition, the wavelength conversion member of the present invention may contain a light diffusing material such as alumina and silica up to 30% by mass in addition to the glass powder and the inorganic nanocrystalline phosphor particles.

本発明の波長変換部材は、ガラス粉末と無機ナノ結晶蛍光体粒子を含む混合物を焼成することにより作製される。焼成温度は300〜900℃(より好ましくは300〜850℃)の範囲であり、かつ、ガラスの軟化点±50℃以内であることが好ましい。焼成温度が900℃またはガラスの軟化点+50℃より高くなると、無機ナノ結晶蛍光体粒子が劣化したり、ガラス粉末と無機ナノ結晶蛍光体粒子が反応して発光効率が著しく低下する場合がある。また、焼成温度が300℃またはガラスの軟化点−50℃より低くなると、波長変換部材の気孔率が大きくなる。結果として、波長変換部材における光の散乱が強くなり、透過する光量が少なくなって発光効率が低下する場合がある。   The wavelength conversion member of the present invention is produced by baking a mixture containing glass powder and inorganic nanocrystalline phosphor particles. The firing temperature is preferably in the range of 300 to 900 ° C. (more preferably 300 to 850 ° C.) and within the softening point of glass within ± 50 ° C. If the firing temperature is higher than 900 ° C. or the softening point of glass + 50 ° C., the inorganic nanocrystalline phosphor particles may be deteriorated, or the glass powder and the inorganic nanocrystalline phosphor particles may react to significantly reduce the luminous efficiency. Moreover, when the firing temperature is lower than 300 ° C. or the softening point of glass −50 ° C., the porosity of the wavelength conversion member increases. As a result, scattering of light in the wavelength conversion member becomes strong, and the amount of light transmitted may decrease and the light emission efficiency may decrease.

焼成時の気圧は、1気圧(1.013×10Pa)よりも低いことが好ましい。それにより、焼成時において無機ナノ結晶蛍光体粒子を酸化させる原因となる雰囲気中の酸素の量を少なくすることができ、無機ナノ結晶蛍光体粒子の劣化を防止することができる。したがって、得られる波長変換部材は、無機ナノ結晶蛍光体粒子の劣化が少なく、化学的に安定で、高出力の光に長期間曝されても変色を抑制することが可能となる。 The pressure during firing is preferably lower than 1 atmosphere (1.013 × 10 5 Pa). Thereby, the amount of oxygen in the atmosphere that causes oxidation of the inorganic nanocrystalline phosphor particles during firing can be reduced, and deterioration of the inorganic nanocrystalline phosphor particles can be prevented. Therefore, the obtained wavelength conversion member has little deterioration of the inorganic nanocrystalline phosphor particles, is chemically stable, and can suppress discoloration even when exposed to high output light for a long period of time.

本発明の製造方法において、ガラス粉末と無機ナノ結晶蛍光体粒子を含む原料粉末を予め所望の形状に成型してから焼成してもよい。原料粉末の成型方法としては特に制限はなく、例えば原料粉末を金型に投入して加圧成型するプレス成形法や、射出成形法、シート成形法、押し出し成形法等の方法を採用することができる。   In the production method of the present invention, the raw material powder containing glass powder and inorganic nanocrystalline phosphor particles may be preliminarily molded into a desired shape and fired. There is no particular limitation on the method of molding the raw material powder, and for example, a press molding method in which the raw material powder is put into a mold and press-molded, an injection molding method, a sheet molding method, an extrusion molding method, or the like can be adopted. it can.

また、上記のようにして焼成して得られた焼結体を加熱延伸成形して、アスペクト比の大きい波長変換部材を得ることもできる。加熱延伸はガラス粉末の軟化点以上であって、ガラス粉末の軟化点よりも200℃高い温度以下の温度で行うことが好ましい。そうすることにより、焼結体プリフォームの加熱延伸を好適に行うことができる。また、より高強度の波長変換部材を製造することができる。なお、焼結体プリフォーム中の無機ナノ結晶蛍光体粒子の含有量が多い場合(例えば、5質量%以上、特に8質量%以上)、十分に軟化変形が促進されるように、ガラス粉末の軟化点よりも100℃以上、特に150℃以上高い温度で加熱延伸を行うことが好ましい。   Moreover, the wavelength conversion member with a large aspect-ratio can also be obtained by heat-stretching the sintered compact obtained by baking as mentioned above. The heat stretching is preferably performed at a temperature not lower than the softening point of the glass powder and not higher than 200 ° C. higher than the softening point of the glass powder. By doing so, the heat-stretching of a sintered compact preform can be performed suitably. In addition, a wavelength conversion member with higher strength can be manufactured. In addition, when there is much content of the inorganic nanocrystal fluorescent substance particle in a sintered compact preform (for example, 5 mass% or more, especially 8 mass% or more), in order to fully promote softening deformation, It is preferable to perform the heat stretching at a temperature higher than the softening point by 100 ° C or higher, particularly 150 ° C or higher.

本発明の波長変換部材の加熱延伸成形の形状は、特に限定されない。本発明の波長変換部材は、例えば板状または棒状であってもよい。具体的には、本発明の波長変換部材は、長さ寸法と厚み寸法との比が100:1以上の板状であってもよい。なお、本発明において、「板状」には「シート状」や「フィルム状」が含まれるものとする。   The shape of the heat stretch molding of the wavelength conversion member of the present invention is not particularly limited. The wavelength conversion member of the present invention may be, for example, a plate shape or a rod shape. Specifically, the wavelength conversion member of the present invention may have a plate shape in which the ratio of the length dimension to the thickness dimension is 100: 1 or more. In the present invention, “plate shape” includes “sheet shape” and “film shape”.

本発明の光源は、本発明の波長変換部材と、波長変換部材に対して、波長変換部材の励起光を出射する発光素子とを備えてなるものである。ここで、発光素子は特に限定されず、例えば、LEDやLD(レーザーダイオード)を用いることができる。特にLEDを用いることにより、長い製品寿命、低消費電力を実現することができる。   The light source of the present invention comprises the wavelength conversion member of the present invention and a light emitting element that emits excitation light of the wavelength conversion member with respect to the wavelength conversion member. Here, the light emitting element is not particularly limited, and for example, an LED or an LD (laser diode) can be used. In particular, by using an LED, a long product life and low power consumption can be realized.

ここで、光源としては複数の発光素子を備えてなるものであってもよい。例えば、板状の波長変換部材と複数の発光素子を備えた面状光源であってもよいし、アスペクト比の大きい板状または棒状の波長変換部材に対し、複数の発光素子を線状に設置してなる線状光源であってもよい。   Here, the light source may include a plurality of light emitting elements. For example, a planar light source including a plate-like wavelength conversion member and a plurality of light-emitting elements may be used, or a plurality of light-emitting elements are installed in a line with respect to a plate-like or rod-like wavelength conversion member having a large aspect ratio. It may be a linear light source.

本発明に係る光源は、どのような色調の光を出射するものであってもよい。本発明に係る光源は、例えば、青色光を出射する発光素子と、発光素子からの青色光を吸収し、黄色光を発する無機ナノ結晶蛍光体粒子を含む波長変換部材とを備え、青色光と黄色光の合成により白色光を出射するものであってもよい。また、青色光を出射する発光素子と、発光素子からの青色光を吸収し緑色光を発する無機ナノ結晶蛍光体粒子と、青色光を吸収し赤色光を発する無機ナノ結晶蛍光体粒子を含む波長変換部材とを備え、青色光、緑色光、赤色光の合成により白色光を出射するものであってもよい。   The light source according to the present invention may emit light of any color tone. The light source according to the present invention includes, for example, a light emitting element that emits blue light, and a wavelength conversion member that includes inorganic nanocrystalline phosphor particles that absorb blue light from the light emitting element and emit yellow light, White light may be emitted by synthesis of yellow light. The wavelength includes a light emitting element that emits blue light, inorganic nanocrystalline phosphor particles that absorb blue light from the light emitting element and emit green light, and inorganic nanocrystalline phosphor particles that absorb blue light and emit red light It may be provided with a conversion member and emit white light by combining blue light, green light, and red light.

なお、本発明において「青色光」とは、440nm〜480nmの波長域の光をいう。「白色光」とは、色度xが0.25〜0.45、色度yが0.25〜0.45の光をいう。特にその中でも黒体輻射の軌跡に近い光が好ましい。   In the present invention, “blue light” refers to light in the wavelength range of 440 nm to 480 nm. “White light” refers to light having a chromaticity x of 0.25 to 0.45 and a chromaticity y of 0.25 to 0.45. In particular, light close to the locus of black body radiation is preferable.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はかかる実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to this Example.

(実施例)
下記のガラス粉末と無機ナノ結晶蛍光体粒子とを、質量比(ガラス粉末:無機ナノ結晶蛍光体粒子)が99:1となるように混合し、金型を用いてプレス成型することにより、予備成形体を作製した。その後、その成形体を下記の条件で焼成することにより、波長変換部材を作製した。
(Example)
The following glass powder and inorganic nanocrystalline phosphor particles are mixed so that the mass ratio (glass powder: inorganic nanocrystal phosphor particles) is 99: 1, and preliminarily formed by press molding using a mold. A molded body was produced. Then, the wavelength conversion member was produced by baking the molded object on the following conditions.

ガラス粉末の組成(質量比):SiO 50%、BaO 25%、CaO 10%、B 5%、Al 5%、ZnO 5%
ガラス粉末の平均粒子径D50:3μm
ガラス粉末の軟化点:850℃
無機ナノ結晶蛍光体粒子:CdSe(コア)/ZnS(シェル)のコアシェル構造
無機ナノ結晶蛍光体粒子の粒径:6nm
焼成最高温度:850℃
焼成時の雰囲気:空気
焼成時の雰囲気の圧力:100Pa
Composition (mass ratio) of glass powder: SiO 2 50%, BaO 25%, CaO 10%, B 2 O 3 5%, Al 2 O 3 5%, ZnO 5%
Average particle diameter D50 of glass powder: 3 μm
Softening point of glass powder: 850 ° C
Inorganic nanocrystalline phosphor particles: Core-shell structure of CdSe (core) / ZnS (shell) Particle size of inorganic nanocrystalline phosphor particles: 6 nm
Maximum firing temperature: 850 ° C
Firing atmosphere: Air Firing atmosphere pressure: 100 Pa

得られた波長変換部材を、直径10mm、厚み0.3mmに加工、青色LED(発光波長:460nm)の光を照射したところ、白色光が確認された。   When the obtained wavelength conversion member was processed into a diameter of 10 mm and a thickness of 0.3 mm and irradiated with light from a blue LED (emission wavelength: 460 nm), white light was confirmed.

本実施例において得られた波長変換部材について、上記LEDを用いて青色光を照射し、オーシャンフォトニクス製、小型分光器(USB2000)を用いて、その際に得られた光の全光束値を測定した。また、得られた波長変換部材について、温度85℃−湿度85%の環境試験を2000時間行った後、同様に全光束値を測定した。環境試験前後の光束値を比較したところ、試験後の光束値は試験前の99.8%であり、全光束値がほぼ維持されていることがわかった。   The wavelength conversion member obtained in this example was irradiated with blue light using the LED, and the total luminous flux value of the light obtained at that time was measured using a small spectroscope (USB2000) manufactured by Ocean Photonics. did. The obtained wavelength conversion member was subjected to an environmental test at a temperature of 85 ° C. and a humidity of 85% for 2000 hours, and then the total luminous flux value was measured in the same manner. When the luminous flux values before and after the environmental test were compared, the luminous flux value after the test was 99.8% before the test, and it was found that the total luminous flux value was almost maintained.

(比較例)
実施例において用いた無機ナノ結晶蛍光体粒子を、シリコーン樹脂中に分散し、波長変換部材を作製した。実施例と同様に環境試験を2000時間行い、試験前後の全光束値を比較したところ、試験後の全光束値は試験前の70.5%であった。
(Comparative example)
The inorganic nanocrystalline phosphor particles used in the examples were dispersed in a silicone resin to prepare a wavelength conversion member. When the environmental test was conducted for 2000 hours in the same manner as in the Examples and the total luminous flux values before and after the test were compared, the total luminous flux value after the test was 70.5% before the test.

以上の結果から、本発明の波長変換部材は化学的耐久性が高く、高い信頼性を有していることがわかる。   From the above results, it can be seen that the wavelength conversion member of the present invention has high chemical durability and high reliability.

Claims (8)

無機ナノ結晶蛍光体粒子とガラス粉末を含む混合物の焼結体からなることを特徴とする波長変換部材。   A wavelength conversion member comprising a sintered body of a mixture containing inorganic nanocrystalline phosphor particles and glass powder. 無機ナノ結晶蛍光体粒子が、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、InPから選択される少なくとも1種、またはこれら2種以上の複合体であることを特徴とする請求項1に記載の波長変換部材。   2. The inorganic nanocrystalline phosphor particles are at least one selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, and InP, or a composite of two or more thereof. Wavelength conversion member. 無機ナノ結晶蛍光体粒子の粒径が1〜30nmであることを特徴とする請求項1または2に記載の波長変換部材。   The wavelength conversion member according to claim 1 or 2, wherein the inorganic nanocrystalline phosphor particles have a particle size of 1 to 30 nm. ガラス粉末が、900℃以下の軟化点を有するガラスからなることを特徴とする請求項1〜3のいずれかに記載の波長変換部材。   The wavelength conversion member according to any one of claims 1 to 3, wherein the glass powder is made of glass having a softening point of 900 ° C or lower. ガラス粉末の平均粒子径D50が、0.1〜100μmであることを特徴とする請求項1〜4のいずれかに記載の波長変換部材。   The average particle diameter D50 of glass powder is 0.1-100 micrometers, The wavelength conversion member in any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5のいずれかに記載の波長変換部材と発光素子とを備えることを特徴とする光源。   A light source comprising the wavelength conversion member according to claim 1 and a light emitting element. 前記発光素子は、LEDまたはLDであることを特徴とする請求項6に記載の光源。   The light source according to claim 6, wherein the light emitting element is an LED or an LD. 複数の発光素子を備えてなることを特徴とする請求項6または7に記載の光源。   The light source according to claim 6, comprising a plurality of light emitting elements.
JP2010232459A 2010-10-15 2010-10-15 Wavelength conversion member and light source comprising using the same Pending JP2012087162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010232459A JP2012087162A (en) 2010-10-15 2010-10-15 Wavelength conversion member and light source comprising using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010232459A JP2012087162A (en) 2010-10-15 2010-10-15 Wavelength conversion member and light source comprising using the same

Publications (1)

Publication Number Publication Date
JP2012087162A true JP2012087162A (en) 2012-05-10

Family

ID=46259152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010232459A Pending JP2012087162A (en) 2010-10-15 2010-10-15 Wavelength conversion member and light source comprising using the same

Country Status (1)

Country Link
JP (1) JP2012087162A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190962A1 (en) * 2012-06-18 2013-12-27 シャープ株式会社 Semiconductor light emitting device
JP2014031488A (en) * 2012-07-10 2014-02-20 Nippon Electric Glass Co Ltd Wavelength conversion member, light-emitting device, and method of manufacturing wavelength conversion member
CN104230168A (en) * 2014-08-28 2014-12-24 华南理工大学 Preparation method of transparent nanocrystal doped glass
WO2015146231A1 (en) * 2014-03-27 2015-10-01 三井金属鉱業株式会社 Phosphor and use thereof
WO2016035543A1 (en) * 2014-09-01 2016-03-10 日本電気硝子株式会社 Process for producing wavelength conversion member, and wavelength conversion member
KR20170032214A (en) 2014-07-17 2017-03-22 니폰 덴키 가라스 가부시키가이샤 Method for producing phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member
WO2017073328A1 (en) * 2015-10-27 2017-05-04 日本電気硝子株式会社 Wavelength conversion member and production method therefor
WO2017073329A1 (en) * 2015-10-27 2017-05-04 日本電気硝子株式会社 Production method for wavelength conversion members
WO2017081901A1 (en) * 2015-11-13 2017-05-18 日本電気硝子株式会社 Method for manufacturing wavelength conversion member and wavelength conversion member
JP2017083814A (en) * 2015-10-27 2017-05-18 日本電気硝子株式会社 Wavelength conversion member and manufacturing method therefor
WO2018092644A1 (en) * 2016-11-17 2018-05-24 日本電気硝子株式会社 Inorganic nano fluorescent particle composite and wavelength converting member
WO2018235580A1 (en) * 2017-06-19 2018-12-27 日本電気硝子株式会社 Nanophosphor-attached inorganic particles and wavelength conversion member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365526A (en) * 1989-07-31 1991-03-20 Hoya Corp Production of fine particle-dispersed glass
JPH04295027A (en) * 1991-03-26 1992-10-20 Hoya Corp Production of particulate dispersion glass
JPH06107433A (en) * 1992-09-28 1994-04-19 Hoya Corp Production of particulate dispersed glass
JP2006054313A (en) * 2004-08-11 2006-02-23 Rohm Co Ltd Semiconductor light-emitting device
JP2006249402A (en) * 2004-10-29 2006-09-21 National Institute Of Advanced Industrial & Technology Fluorescent glass material
JP2008019421A (en) * 2006-06-14 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite material and phosphor composite member
JP2010229002A (en) * 2009-03-30 2010-10-14 Nippon Electric Glass Co Ltd SnO-P2O5 GLASS USED FOR PHOSPHOR COMPOSITE MATERIAL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365526A (en) * 1989-07-31 1991-03-20 Hoya Corp Production of fine particle-dispersed glass
JPH04295027A (en) * 1991-03-26 1992-10-20 Hoya Corp Production of particulate dispersion glass
JPH06107433A (en) * 1992-09-28 1994-04-19 Hoya Corp Production of particulate dispersed glass
JP2006054313A (en) * 2004-08-11 2006-02-23 Rohm Co Ltd Semiconductor light-emitting device
JP2006249402A (en) * 2004-10-29 2006-09-21 National Institute Of Advanced Industrial & Technology Fluorescent glass material
JP2008019421A (en) * 2006-06-14 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite material and phosphor composite member
JP2010229002A (en) * 2009-03-30 2010-10-14 Nippon Electric Glass Co Ltd SnO-P2O5 GLASS USED FOR PHOSPHOR COMPOSITE MATERIAL

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013190962A1 (en) * 2012-06-18 2016-05-26 シャープ株式会社 Semiconductor light emitting device
WO2013190962A1 (en) * 2012-06-18 2013-12-27 シャープ株式会社 Semiconductor light emitting device
US9437787B2 (en) 2012-06-18 2016-09-06 Sharp Kabushiki Kaisha Semiconductor light emitting device
JP2014031488A (en) * 2012-07-10 2014-02-20 Nippon Electric Glass Co Ltd Wavelength conversion member, light-emitting device, and method of manufacturing wavelength conversion member
EP3124572A4 (en) * 2014-03-27 2017-08-30 Mitsui Mining & Smelting Co., Ltd Phosphor and use thereof
US10550321B2 (en) 2014-03-27 2020-02-04 Mitsui Mining & Smelting Co., Ltd. Phosphor and use thereof
JP5796148B1 (en) * 2014-03-27 2015-10-21 三井金属鉱業株式会社 Phosphor and its use
WO2015146231A1 (en) * 2014-03-27 2015-10-01 三井金属鉱業株式会社 Phosphor and use thereof
CN106164217A (en) * 2014-03-27 2016-11-23 三井金属矿业株式会社 Fluorophor and its purposes
US20170101579A1 (en) * 2014-03-27 2017-04-13 Mitsui Mining & Smelting Co., Ltd. Phosphor and Use Thereof
KR20170032214A (en) 2014-07-17 2017-03-22 니폰 덴키 가라스 가부시키가이샤 Method for producing phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member
TWI683794B (en) * 2014-07-17 2020-02-01 日商日本電氣硝子股份有限公司 Method for manufacturing glass powder with phosphor attached and wavelength conversion member
CN104230168A (en) * 2014-08-28 2014-12-24 华南理工大学 Preparation method of transparent nanocrystal doped glass
TWI691101B (en) * 2014-09-01 2020-04-11 日商日本電氣硝子股份有限公司 Manufacturing method of wavelength conversion member and wavelength conversion member
US20170217830A1 (en) * 2014-09-01 2017-08-03 Nippon Electric Glass Co., Ltd. Process for producing wavelength conversion member, and wavelength conversion member
WO2016035543A1 (en) * 2014-09-01 2016-03-10 日本電気硝子株式会社 Process for producing wavelength conversion member, and wavelength conversion member
JP2016050265A (en) * 2014-09-01 2016-04-11 日本電気硝子株式会社 Wavelength conversion member production method and wavelength conversion member
JP2017083814A (en) * 2015-10-27 2017-05-18 日本電気硝子株式会社 Wavelength conversion member and manufacturing method therefor
WO2017073329A1 (en) * 2015-10-27 2017-05-04 日本電気硝子株式会社 Production method for wavelength conversion members
WO2017073328A1 (en) * 2015-10-27 2017-05-04 日本電気硝子株式会社 Wavelength conversion member and production method therefor
CN108140702A (en) * 2015-10-27 2018-06-08 日本电气硝子株式会社 The manufacturing method of wavelength conversion member
JPWO2017073329A1 (en) * 2015-10-27 2018-08-16 日本電気硝子株式会社 Method for manufacturing wavelength conversion member
WO2017081901A1 (en) * 2015-11-13 2017-05-18 日本電気硝子株式会社 Method for manufacturing wavelength conversion member and wavelength conversion member
JP2017088781A (en) * 2015-11-13 2017-05-25 日本電気硝子株式会社 Manufacturing method of wavelength conversion member and wavelength conversion member
CN108352431A (en) * 2015-11-13 2018-07-31 日本电气硝子株式会社 The manufacturing method and wavelength convert component of wavelength convert component
US20180305243A1 (en) * 2015-11-13 2018-10-25 Nippon Electric Glass Co., Ltd. Method for manufacturing wavelength conversion member and wavelength conversion member
WO2018092644A1 (en) * 2016-11-17 2018-05-24 日本電気硝子株式会社 Inorganic nano fluorescent particle composite and wavelength converting member
KR20190084869A (en) 2016-11-17 2019-07-17 니폰 덴키 가라스 가부시키가이샤 Inorganic nanophosphor particle composite and wavelength converting member
JP2018080272A (en) * 2016-11-17 2018-05-24 日本電気硝子株式会社 Inorganic nano phosphor particle complex and wavelength conversion member
KR102477077B1 (en) * 2016-11-17 2022-12-12 니폰 덴키 가라스 가부시키가이샤 Inorganic nano-phosphor particle composite and wavelength conversion member
US11584887B2 (en) 2016-11-17 2023-02-21 Nippon Electric Glass Co., Ltd. Inorganic nano fluorescent particle composite and wavelength converting member
WO2018235580A1 (en) * 2017-06-19 2018-12-27 日本電気硝子株式会社 Nanophosphor-attached inorganic particles and wavelength conversion member
CN110770322A (en) * 2017-06-19 2020-02-07 日本电气硝子株式会社 Inorganic particle having nanophosphor adhered thereon and wavelength conversion member
JPWO2018235580A1 (en) * 2017-06-19 2020-04-16 日本電気硝子株式会社 Nano-phosphor-attached inorganic particles and wavelength conversion member
US11655415B2 (en) 2017-06-19 2023-05-23 Nippon Electric Glass Co., Ltd. Nanophosphor-attached inorganic particles and wavelength conversion member
JP7290108B2 (en) 2017-06-19 2023-06-13 日本電気硝子株式会社 Nano-phosphor-attached inorganic particles and wavelength conversion member

Similar Documents

Publication Publication Date Title
JP2012087162A (en) Wavelength conversion member and light source comprising using the same
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
KR101806054B1 (en) Phosphor-dispersed glass
KR102588721B1 (en) Wavelength conversion member, and light emitting device using same
KR102588722B1 (en) Wavelength conversion member, and light emitting device using same
JP2014234487A (en) Wavelength conversion member and light-emitting device
CN110770322B (en) Inorganic particle having nano phosphor attached thereto and wavelength conversion member
KR102258536B1 (en) Wavelength-conversion member and light-emitting device
WO2014106923A1 (en) Glass used in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP2013219123A (en) Wavelength conversion member and method for producing the same
KR20090093202A (en) White light emitting diode and its manufacture method
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2015071699A (en) Wavelength conversion material, wavelength conversion member and light-emitting device
JP2008255362A (en) Emitting color conversion member
JP2010132923A (en) Light emission color conversion member
KR101593582B1 (en) Quantum dot formed glass composite for color converter, preparation method thereof and white light emitting diode
JP6004250B2 (en) Wavelength conversion member and light emitting device
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
TW201605758A (en) Method for producing phosphor-attached glass powder, method for producing wavelength conversion member, and wavelength conversion member
JP2016058409A (en) Optical conversion member, manufacturing method thereof, and illumination light source with optical conversion member
JP5807780B2 (en) Wavelength converting member and light emitting device using the same
CN111480098B (en) Wavelength conversion member and light emitting device using same
JP2008208380A (en) Luminescent color-converting member
JP2013030536A (en) Light-emitting color conversion member and light-emitting device using the same
JP2010132922A (en) Composite component for light emission color conversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160304

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160401