JP2014015359A - Method of manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device - Google Patents

Method of manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device Download PDF

Info

Publication number
JP2014015359A
JP2014015359A JP2012154609A JP2012154609A JP2014015359A JP 2014015359 A JP2014015359 A JP 2014015359A JP 2012154609 A JP2012154609 A JP 2012154609A JP 2012154609 A JP2012154609 A JP 2012154609A JP 2014015359 A JP2014015359 A JP 2014015359A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
phosphor powder
inorganic phosphor
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012154609A
Other languages
Japanese (ja)
Other versions
JP6019842B2 (en
Inventor
Tadahito Furuyama
忠仁 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012154609A priority Critical patent/JP6019842B2/en
Publication of JP2014015359A publication Critical patent/JP2014015359A/en
Application granted granted Critical
Publication of JP6019842B2 publication Critical patent/JP6019842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion member capable of emitting high-intensity fluorescence.SOLUTION: A raw ceramic element body 3 containing a glass powder and an inorganic phosphor powder 12 is prepared. A firing step of firing the raw ceramic element body 3 to obtain a wavelength conversion member 1 including a glass matrix 11 and the inorganic phosphor powder 12 arranged in the glass matrix 11 is performed. In the firing step, the raw ceramic element body 3 is heated to a temperature at which the viscosity of glass is 10dPa s or less.

Description

本発明は、波長変換部材の製造方法、波長変換部材及び発光デバイスに関する。   The present invention relates to a wavelength conversion member manufacturing method, a wavelength conversion member, and a light emitting device.

従来、励起光が入射したときに、励起光とは異なる波長の蛍光を出射する波長変換部材が知られている。特許文献1には、波長変換部材の一例として、ガラスマトリクス中に無機蛍光体粉末を分散させた波長変換部材が提案されている。   Conventionally, a wavelength conversion member that emits fluorescence having a wavelength different from that of excitation light when excitation light is incident is known. Patent Document 1 proposes a wavelength conversion member in which an inorganic phosphor powder is dispersed in a glass matrix as an example of a wavelength conversion member.

特開2003−258308号公報JP 2003-258308 A

近年、波長変換部材から出射される蛍光の強度をさらに高めたいという要望がある。蛍光の強度を高める方法としては、波長変換部材における蛍光体の濃度を高める方法が考えられる。しかしながら、蛍光体の濃度を高めた場合であっても、波長変換部材から出射される蛍光の強度を十分に高めることができない場合がある。   In recent years, there is a desire to further increase the intensity of fluorescence emitted from the wavelength conversion member. As a method for increasing the intensity of fluorescence, a method for increasing the concentration of the phosphor in the wavelength conversion member is conceivable. However, even when the concentration of the phosphor is increased, the intensity of the fluorescence emitted from the wavelength conversion member may not be sufficiently increased.

本発明の目的は、高強度な蛍光を出射できる波長変換部材を提供することを主な目的とする。   The main object of the present invention is to provide a wavelength conversion member capable of emitting high-intensity fluorescence.

本発明に係る波長変換部材の製造方法では、ガラス粉末と無機蛍光体粉末とを含む生のセラミック素体を用意する。生のセラミック素体を焼成することにより、ガラスマトリクスとガラスマトリクス中に配された無機蛍光体粉末とを備える波長変換部材を得る焼成工程を行う。焼成工程において、生のセラミック素体を、ガラスの粘度が、10dPa・s以下となる温度まで加熱する。 In the method for manufacturing a wavelength conversion member according to the present invention, a raw ceramic body including glass powder and inorganic phosphor powder is prepared. By firing the raw ceramic body, a firing process is performed to obtain a wavelength conversion member including a glass matrix and an inorganic phosphor powder disposed in the glass matrix. In the firing step, the raw ceramic body is heated to a temperature at which the glass has a viscosity of 10 7 dPa · s or less.

本発明に係る波長変換部材の製造方法において、生のセラミック素体におけるガラス粉末と無機蛍光体粉末との比((ガラス粉末):(無機蛍光体粉末))を、体積%で90:10〜40:60の範囲内とすることが好ましい。   In the method for producing a wavelength conversion member according to the present invention, the ratio of glass powder to inorganic phosphor powder in the raw ceramic body ((glass powder) :( inorganic phosphor powder)) is 90:10 by volume%. It is preferable to be within the range of 40:60.

本発明に係る波長変換部材の製造方法において、無機蛍光体粉末の屈折率が、ガラスマトリクスの屈折率よりも高いことが好ましい。   In the method for manufacturing a wavelength conversion member according to the present invention, the refractive index of the inorganic phosphor powder is preferably higher than the refractive index of the glass matrix.

本発明に係る波長変換部材は、ガラスマトリクスと、無機蛍光体粉末とを備える。無機蛍光体粉末は、ガラスマトリクス中に配されている。ガラスマトリクスの表層における無機蛍光体粉末の濃度が、ガラスマトリクスの中央部における無機蛍光体粉末の濃度よりも低い。   The wavelength conversion member according to the present invention includes a glass matrix and an inorganic phosphor powder. The inorganic phosphor powder is arranged in a glass matrix. The density | concentration of the inorganic fluorescent substance powder in the surface layer of a glass matrix is lower than the density | concentration of the inorganic fluorescent substance powder in the center part of a glass matrix.

本発明に係る波長変換部材では、ガラスマトリクスの表層において、ガラスマトリクスの中央側から表面側に向かって、無機蛍光体粉末の濃度が漸減していてもよい。   In the wavelength conversion member according to the present invention, in the surface layer of the glass matrix, the concentration of the inorganic phosphor powder may gradually decrease from the center side to the surface side of the glass matrix.

本発明に係る波長変換部材では、無機蛍光体粉末の屈折率が、ガラスマトリクスの屈折率よりも高いことが好ましい。   In the wavelength conversion member according to the present invention, the refractive index of the inorganic phosphor powder is preferably higher than the refractive index of the glass matrix.

本発明に係る波長変換部材では、ガラスマトリクスにおける無機蛍光体粉末の含有量は、10体積%〜60体積%の範囲内であることが好ましい。   In the wavelength conversion member according to the present invention, the content of the inorganic phosphor powder in the glass matrix is preferably within the range of 10% by volume to 60% by volume.

本発明に係る発光デバイスは、上記波長変換部材と、光源とを備える。光源は、波長変換部材に無機蛍光体粉末の励起波長の光を照射する。   The light emitting device according to the present invention includes the wavelength conversion member and a light source. The light source irradiates the wavelength conversion member with light having an excitation wavelength of the inorganic phosphor powder.

本発明によれば、高強度な蛍光を出射できる波長変換部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the wavelength conversion member which can radiate | emit high intensity | strength fluorescence can be provided.

本発明の一実施形態における波長変換部材の略図的断面図である。It is a schematic sectional drawing of the wavelength conversion member in one Embodiment of this invention. 本発明の一実施形態における発光デバイスの模式図である。It is a schematic diagram of the light-emitting device in one Embodiment of this invention. 本発明の一実施形態における生のセラミック素体の略図的断面図である。1 is a schematic cross-sectional view of a raw ceramic body in an embodiment of the present invention. 実施例1において作製した波長変換部材の表面の写真である。2 is a photograph of the surface of a wavelength conversion member produced in Example 1. 比較例1において作製した波長変換部材の表面の写真である。4 is a photograph of the surface of a wavelength conversion member produced in Comparative Example 1.

以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。   Hereinafter, an example of the preferable form which implemented this invention is demonstrated. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.

また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。   Moreover, in each drawing referred in embodiment etc., the member which has a substantially the same function shall be referred with the same code | symbol. The drawings referred to in the embodiments and the like are schematically described. A ratio of dimensions of an object drawn in a drawing may be different from a ratio of dimensions of an actual object. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.

(波長変換部材1)
図1は、本実施形態における波長変換部材1の略図的断面図である。波長変換部材1の形状寸法は、波長変換部材1が用いられるデバイスの形状寸法などに応じて適宜設定することができる。波長変換部材1は、例えば、平面形状が矩形状や円形状である板状であってもよい。
(Wavelength conversion member 1)
FIG. 1 is a schematic cross-sectional view of a wavelength conversion member 1 in the present embodiment. The shape dimension of the wavelength conversion member 1 can be appropriately set according to the shape dimension of the device in which the wavelength conversion member 1 is used. The wavelength conversion member 1 may be, for example, a plate shape whose planar shape is a rectangular shape or a circular shape.

図1に示されるように、波長変換部材1は、ガラスマトリクス11と無機蛍光体粉末12とを備える。   As shown in FIG. 1, the wavelength conversion member 1 includes a glass matrix 11 and an inorganic phosphor powder 12.

ガラスマトリクス11は、無機蛍光体粉末12の分散媒として好適なものである限りにおいて特に限定されない。ガラスマトリクス11は、例えば、硼珪酸塩系ガラスや、SnO−P系ガラスなどのリン酸塩系ガラスなどにより構成することができる。ガラスマトリクス11の屈折率は、1.45〜2.00であることが好ましく、1.47〜1.90であることが好ましい。ガラスマトリクス11の軟化点は、250℃〜1000℃であることが好ましく、300℃〜850℃であることがより好ましい。 The glass matrix 11 is not particularly limited as long as it is suitable as a dispersion medium for the inorganic phosphor powder 12. The glass matrix 11 can be made of, for example, phosphate glass such as borosilicate glass or SnO—P 2 O 5 glass. The refractive index of the glass matrix 11 is preferably 1.45 to 2.00, and preferably 1.47 to 1.90. The softening point of the glass matrix 11 is preferably 250 ° C to 1000 ° C, and more preferably 300 ° C to 850 ° C.

無機蛍光体粉末12は、ガラスマトリクス11中に配されている。具体的には、無機蛍光体粉末12は、ガラスマトリクス11中に分散している。   The inorganic phosphor powder 12 is disposed in the glass matrix 11. Specifically, the inorganic phosphor powder 12 is dispersed in the glass matrix 11.

無機蛍光体粉末12は、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、ガーネット系化合物蛍光体から選ばれた1種以上を含むものとすることができる。   The inorganic phosphor powder 12 is, for example, an oxide phosphor, a nitride phosphor, an oxynitride phosphor, a chloride phosphor, an acid chloride phosphor, a sulfide phosphor, an oxysulfide phosphor, or a halide fluorescence. Body, chalcogenide phosphor, aluminate phosphor, halophosphate phosphor, and garnet compound phosphor.

波長300nm〜440nmの紫外〜近紫外の励起光を照射すると青色の蛍光を発する無機蛍光体粉末12の具体例としては、例えば、Sr(POCl:Eu2+、(Sr,Ba)MgAl1017:Eu2+などが挙げられる。 Specific examples of the inorganic phosphor powder 12 that emits blue fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 nm to 440 nm include, for example, Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba). MgAl 10 O 17 : Eu 2+ and the like.

波長300nm〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光(波長が500nm〜540nmの蛍光)を発する無機蛍光体粉末12の具体例としては、例えば、SrAl:Eu2+、SrGa:Eu2+などが挙げられる。 Specific examples of the inorganic phosphor powder 12 that emits green fluorescence (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with excitation light having a wavelength of 300 nm to 440 nm include, for example, SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4: Eu 2+.

波長440nm〜480nmの青色の励起光を照射すると緑色の蛍光(波長が500nm〜540nmの蛍光)を発する無機蛍光体粉末12の具体例としては、例えば、SrAl:Eu2+、SrGa:Eu2+などが挙げられる。 Specific examples of the inorganic phosphor powder 12 that emits green fluorescence (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with blue excitation light having a wavelength of 440 nm to 480 nm include, for example, SrAl 2 O 4 : Eu 2+ , SrGa 2 S. 4 : Eu <2+> etc. are mentioned.

波長300nm〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光(波長が540nm〜595nmの蛍光)を発する無機蛍光体粉末12の具体例としては、例えば、ZnS:Eu2+などが挙げられる。 Specific examples of the inorganic phosphor powder 12 that emits yellow fluorescence (fluorescence with a wavelength of 540 nm to 595 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 nm to 440 nm include, for example, ZnS: Eu 2+. .

波長440nm〜480nmの青色の励起光を照射すると黄色の蛍光(波長が540nm〜595nmの蛍光)を発する無機蛍光体粉末12の具体例としては、例えば、Y(Al,Gd)12:Ce2+、LuAl12:Ce2+、TbAl12:Ce2+、LaSi11:Ce、Ca(Si,Al)12(O,N)16:Eu2+、(Si,Al)(O,N):Eu2+、(Sr,Ba)SiO:Eu2+などが挙げられる。 As a specific example of the inorganic phosphor powder 12 that emits yellow fluorescence (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with blue excitation light having a wavelength of 440 nm to 480 nm, for example, Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Lu 3 Al 5 O 12 : Ce 2+ , Tb 3 Al 5 O 12 : Ce 2+ , La 3 Si 6 N 11 : Ce, Ca (Si, Al) 12 (O, N) 16 : Eu 2+ , ( Si, Al) 3 (O, N) 4 : Eu 2+ , (Sr, Ba) 2 SiO 4 : Eu 2+, and the like.

波長300nm〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光(波長が600nm〜700nmの蛍光)を発する無機蛍光体粉末12の具体例としては、例えば、GdGa12:Cr3+、CaGa:Mn2+などが挙げられる。 As a specific example of the inorganic phosphor powder 12 that emits red fluorescence (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with excitation light having a wavelength of 300 nm to 440 nm, for example, Gd 3 Ga 4 O 12 : Cr 3+ , CaGa 2 S 4 : Mn 2+ and the like.

波長440nm〜480nmの青色の励起光を照射すると赤色の蛍光(波長が600nm〜700nmの蛍光)を発する無機蛍光体粉末12の具体例としては、例えば、MgTiO:Mn4+、KSiF:Mn4+、(Ca,Sr)Si:Eu2+、CaAlSiN:Eu2+、(Sr,Ba)SiO:Eu2+、(Sr,Ca,Ba)SiO:Eu2+などが挙げられる。 Specific examples of the inorganic phosphor powder 12 that emits red fluorescence (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with blue excitation light having a wavelength of 440 nm to 480 nm include, for example, Mg 2 TiO 4 : Mn 4+ , K 2 SiF. 6 : Mn 4+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ , (Sr, Ba) 2 SiO 4 : Eu 2+ , (Sr, Ca, Ba) 2 SiO 4 : Eu 2+ Etc.

通常、無機蛍光体粉末12の屈折率は、ガラスマトリクス11を構成しているガラスの屈折率よりも高い。一般的に、無機蛍光体粉末12の屈折率は、ガラスマトリクス11を構成しているガラスの屈折率より0.05以上、さらには0.1以上高いことが多い。   Usually, the refractive index of the inorganic phosphor powder 12 is higher than the refractive index of the glass constituting the glass matrix 11. In general, the refractive index of the inorganic phosphor powder 12 is often 0.05 or more, more preferably 0.1 or more higher than the refractive index of the glass constituting the glass matrix 11.

なお、本明細書において、特に断りのない限り、屈折率とは、d線(波長が587.6nmの光)に対する屈折率をいうものとする。   In this specification, unless otherwise specified, the refractive index means a refractive index with respect to d-line (light having a wavelength of 587.6 nm).

無機蛍光体粉末12の平均粒子径が大きすぎると、発光色が不均一になる場合がある。従って、無機蛍光体粉末12の平均粒子径(D50)は、50μm以下であることが好ましく、25μm以下であることがより好ましい。但し、無機蛍光体粉末12の平均粒子径が小さすぎると、発光強度が低下する場合がある。従って、無機蛍光体粉末12の平均粒子径は、1μm以上であることが好ましく、5μm以上であることがより好ましい。 If the average particle size of the inorganic phosphor powder 12 is too large, the emission color may be non-uniform. Therefore, the average particle diameter (D 50 ) of the inorganic phosphor powder 12 is preferably 50 μm or less, and more preferably 25 μm or less. However, if the average particle size of the inorganic phosphor powder 12 is too small, the emission intensity may be reduced. Therefore, the average particle diameter of the inorganic phosphor powder 12 is preferably 1 μm or more, and more preferably 5 μm or more.

なお、本明細書において、平均粒子径は、平均粒子径(D50)を意味する。 In the present specification, the average particle diameter means the average particle diameter (D 50).

波長変換部材1における無機蛍光体粉末12の含有量は、所望する蛍光体の強度等に応じて適宜設定することができる。高強度の蛍光を得る観点からは、波長変換部材1における無機蛍光体粉末12の含有量は、10体積%以上であることが好ましく、20体積%以上であることがより好ましく、30体積%以上であることがさらに好ましい。但し、無機蛍光体粉末12の含有量が高すぎると、波長変換部材1の強度が低くなりすぎる場合がある。従って、波長変換部材1における無機蛍光体粉末12の含有量は、60体積%以下であることが好ましく、50体積%以下であることがより好ましい。   Content of the inorganic fluorescent substance powder 12 in the wavelength conversion member 1 can be suitably set according to the intensity | strength etc. of the fluorescent substance desired. From the viewpoint of obtaining high-intensity fluorescence, the content of the inorganic phosphor powder 12 in the wavelength conversion member 1 is preferably 10% by volume or more, more preferably 20% by volume or more, and 30% by volume or more. More preferably. However, if the content of the inorganic phosphor powder 12 is too high, the strength of the wavelength conversion member 1 may be too low. Therefore, the content of the inorganic phosphor powder 12 in the wavelength conversion member 1 is preferably 60% by volume or less, and more preferably 50% by volume or less.

波長変換部材1の形状寸法は、波長変換部材1が用いられるデバイスの形状寸法などに応じて適宜設定することができる。波長変換部材1は、例えば、平面形状が矩形状や円形状である板状であってもよい。波長変換部材1における励起光や蛍光の吸収を抑制する観点から、波長変換部材1の厚みは、1mm以下であることが好ましく、0.5mm以下であることがより好ましく、0.3mm以下であることがさらに好ましい。但し、波長変換部材1の厚みが小さすぎると、無機蛍光体粉末12の量が少なくなりすぎる場合がある。また、波長変換部材1の強度が低下する場合がある。従って、波長変換部材1の厚みは、0.03mm以上であることが好ましい。   The shape dimension of the wavelength conversion member 1 can be appropriately set according to the shape dimension of the device in which the wavelength conversion member 1 is used. The wavelength conversion member 1 may be, for example, a plate shape whose planar shape is a rectangular shape or a circular shape. From the viewpoint of suppressing absorption of excitation light and fluorescence in the wavelength conversion member 1, the thickness of the wavelength conversion member 1 is preferably 1 mm or less, more preferably 0.5 mm or less, and 0.3 mm or less. More preferably. However, if the thickness of the wavelength conversion member 1 is too small, the amount of the inorganic phosphor powder 12 may be too small. Moreover, the intensity | strength of the wavelength conversion member 1 may fall. Therefore, the thickness of the wavelength conversion member 1 is preferably 0.03 mm or more.

波長変換部材1は、少なくとも一つの光入出面を有する。本実施形態においては、ガラスマトリクス11の第1の主面11aが光入出面を構成している。   The wavelength conversion member 1 has at least one light entrance / exit surface. In the present embodiment, the first main surface 11a of the glass matrix 11 constitutes a light entrance / exit surface.

上述のように、波長変換部材は、屈折率が高い無機蛍光体粉末を含む。通常、波長変換部材の表面には、無機蛍光体粉末が露出している。すなわち、波長変換部材の表面には、ガラスマトリクスにより構成された領域と、無機蛍光体粉末により構成された領域とが含まれる。上述の通り、無機蛍光体粉末は、ガラスマトリクスよりも高い屈折率を有する。このため、波長変換部材の表面の無機蛍光体粉末により構成された領域における光反射率は、波長変換部材の表面のガラスマトリクスにより構成された領域における光反射率よりも高い。よって、励起光の波長変換部材内への入射効率が低くなったり、蛍光の波長変換部材からの出射効率が低くなったりする。これに伴い、得られる蛍光の強度が低くなる場合がある。例えば、得られる蛍光の濃度を高くしようとして無機蛍光体粉末の含有量を増やした場合は、波長変換部材の光入出面における無機蛍光体粉末の占める割合が高くなる。従って、波長変換部材の光入出面に光反射率の高い部分が増加し、期待したほど蛍光の強度を向上できない場合がある。   As described above, the wavelength conversion member includes an inorganic phosphor powder having a high refractive index. Usually, the inorganic phosphor powder is exposed on the surface of the wavelength conversion member. That is, the surface of the wavelength conversion member includes a region composed of a glass matrix and a region composed of an inorganic phosphor powder. As described above, the inorganic phosphor powder has a higher refractive index than the glass matrix. For this reason, the light reflectance in the area | region comprised with the inorganic fluorescent substance powder on the surface of a wavelength conversion member is higher than the light reflectance in the area | region comprised with the glass matrix of the surface of a wavelength conversion member. Therefore, the incident efficiency of the excitation light into the wavelength conversion member is lowered, or the emission efficiency of the fluorescence from the wavelength conversion member is lowered. In connection with this, the intensity | strength of the fluorescence obtained may become low. For example, when the content of the inorganic phosphor powder is increased in order to increase the concentration of the obtained fluorescence, the proportion of the inorganic phosphor powder in the light entrance / exit surface of the wavelength conversion member increases. Therefore, a portion having a high light reflectance increases on the light entrance / exit surface of the wavelength conversion member, and the fluorescence intensity may not be improved as expected.

ここで、波長変換部材1では、ガラスマトリクス11の表層における無機蛍光体粉末12の濃度が、ガラスマトリクス11の中央部における無機蛍光体粉末12の濃度よりも低い。具体的には、ガラスマトリクス11の光入出面である第1の主面11a側の表層における無機蛍光体粉末12の濃度が、ガラスマトリクス11の厚み方向の中央部における無機蛍光体粉末12の濃度よりも低い。このため、例えば、ガラスマトリクスの全体に無機蛍光体粉末が均一に分散している場合と比較して、光入出面を構成している第1の主面11aにおいて無機蛍光体粉末12が占める面積割合が小さい。よって、ガラスマトリクス11の表層における屈折率を低くできる。従って、ガラスマトリクス11の第1の主面11aにおける光反射率を低減することができる。   Here, in the wavelength conversion member 1, the concentration of the inorganic phosphor powder 12 in the surface layer of the glass matrix 11 is lower than the concentration of the inorganic phosphor powder 12 in the central portion of the glass matrix 11. Specifically, the concentration of the inorganic phosphor powder 12 in the surface layer on the first main surface 11a side which is the light entrance / exit surface of the glass matrix 11 is the concentration of the inorganic phosphor powder 12 in the central portion in the thickness direction of the glass matrix 11. Lower than. For this reason, for example, the area occupied by the inorganic phosphor powder 12 in the first main surface 11a constituting the light entrance / exit surface is compared with the case where the inorganic phosphor powder is uniformly dispersed in the entire glass matrix. The ratio is small. Therefore, the refractive index in the surface layer of the glass matrix 11 can be lowered. Therefore, the light reflectance at the first major surface 11a of the glass matrix 11 can be reduced.

以上のように、波長変換部材1では、無機蛍光体粉末12の含有量を高めた場合であっても、第1の主面11aにおける光反射率を低減できる。このため、励起光の入射率や蛍光の出射率を高めることができる。従って、蛍光の高い出射強度を実現することができる。   As described above, in the wavelength conversion member 1, even when the content of the inorganic phosphor powder 12 is increased, the light reflectance on the first main surface 11 a can be reduced. For this reason, the incident rate of excitation light and the emission rate of fluorescence can be increased. Therefore, high emission intensity of fluorescence can be realized.

無機蛍光体粉末12の屈折率が、ガラスマトリクス11の屈折率に対して高いほど、無機蛍光体粉末12の含有量を高めた場合の第1の主面11aの光反射率が増大しやすいため、本発明の効果が享受しやすい。具体的には、本実施形態の蛍光の出射強度を高め得る本実施形態の技術は、無機蛍光体粉末12の屈折率が、ガラスマトリクス11の屈折率よりも0.05以上高いときにより有用であり、0.1以上高いときにさらに有用である。   As the refractive index of the inorganic phosphor powder 12 is higher than the refractive index of the glass matrix 11, the light reflectance of the first main surface 11a when the content of the inorganic phosphor powder 12 is increased tends to increase. The effect of the present invention is easily enjoyed. Specifically, the technique of the present embodiment that can increase the emission intensity of the fluorescence of the present embodiment is more useful when the refractive index of the inorganic phosphor powder 12 is higher than the refractive index of the glass matrix 11 by 0.05 or more. Yes, more useful when higher than 0.1.

また、無機蛍光体粉末12の含有量が高いほど、無機蛍光体粉末12の含有量を高めた場合の第1の主面11aの光反射率が増大しやすい。このため、本実施形態の蛍光の出射強度を高め得る本実施形態の技術は、ガラスマトリクス11における無機蛍光体粉末12の含有量が10体積%以上である場合により有用であり、30体積%以上である場合にさらに有用であり、40体積%以上である場合に特に有用である。   Moreover, the light reflectance of the 1st main surface 11a at the time of raising content of the inorganic fluorescent substance powder 12 tends to increase, so that content of the inorganic fluorescent substance powder 12 is high. For this reason, the technique of the present embodiment that can increase the emission intensity of the fluorescence of the present embodiment is more useful when the content of the inorganic phosphor powder 12 in the glass matrix 11 is 10% by volume or more, and 30% by volume or more. It is further useful when the amount is 40% by volume or more.

ガラスマトリクス11の第1の主面11a側の表層は、無機蛍光体粉末12を実質的に含んでいなくてもよい。この場合は、第1の主面11aにおける光反射率をより低くすることができる。但し、ガラスマトリクス11の表層において、ガラスマトリクス11の中央側から表面側に向かって無機蛍光体粉末12の濃度が漸減していてもよい。   The surface layer on the first main surface 11a side of the glass matrix 11 may not substantially contain the inorganic phosphor powder 12. In this case, the light reflectance on the first main surface 11a can be further reduced. However, in the surface layer of the glass matrix 11, the concentration of the inorganic phosphor powder 12 may gradually decrease from the center side of the glass matrix 11 toward the surface side.

なお、本実施形態では、波長変換部材1の一方の主面のみが光入出面である例について説明した。但し、本発明は、この構成に限定されない。波長変換部材は、2つ以上の光入出面を有していてもよい。その場合、2つ以上の光入出面を構成している表層の少なくとも一つにおいて無機蛍光体粉末の含有量が低くされていればよく、すべての表層において無機蛍光体粉末の含有量が低くされていることがより好ましい。   In the present embodiment, an example in which only one main surface of the wavelength conversion member 1 is a light incident / exit surface has been described. However, the present invention is not limited to this configuration. The wavelength conversion member may have two or more light entrance / exit surfaces. In that case, the content of the inorganic phosphor powder only needs to be low in at least one of the surface layers constituting the two or more light entrance / exit surfaces, and the content of the inorganic phosphor powder is reduced in all the surface layers. More preferably.

(発光デバイス2)
図2に波長変換部材1を用いた発光デバイス2を示す。図2に示されるように、発光デバイス2は、光源30と、波長変換部材1とを有する。光源30は、波長変換部材1に無機蛍光体粉末12の励起波長の光L1を照射する。光L1が波長変換部材1に入射すると、無機蛍光体粉末12が光L1を吸収し、蛍光L2を出射する。波長変換部材1の光源30とは反対側には反射部材50が設けられているため、蛍光L2は、光源30側に向けて出射される。蛍光L2は、光源30と波長変換部材1との間に配されたビームスプリッタ40により反射され、発光デバイス2から取り出される。
(Light-emitting device 2)
FIG. 2 shows a light emitting device 2 using the wavelength conversion member 1. As shown in FIG. 2, the light emitting device 2 includes a light source 30 and a wavelength conversion member 1. The light source 30 irradiates the wavelength conversion member 1 with the light L1 having the excitation wavelength of the inorganic phosphor powder 12. When the light L1 enters the wavelength conversion member 1, the inorganic phosphor powder 12 absorbs the light L1 and emits fluorescence L2. Since the reflection member 50 is provided on the opposite side of the wavelength conversion member 1 from the light source 30, the fluorescence L2 is emitted toward the light source 30 side. The fluorescence L2 is reflected by the beam splitter 40 disposed between the light source 30 and the wavelength conversion member 1, and is extracted from the light emitting device 2.

上述のように、波長変換部材1は、高強度の蛍光を出射するため、高強度の光を出射できる発光デバイス2を実現することができる。   As described above, since the wavelength conversion member 1 emits high-intensity fluorescence, the light-emitting device 2 that can emit high-intensity light can be realized.

(波長変換部材1の製造方法)
波長変換部材1の製造方法は、特に限定されない。波長変換部材1は、例えば、以下の方法により製造することができる。
(Manufacturing method of wavelength conversion member 1)
The manufacturing method of the wavelength conversion member 1 is not specifically limited. The wavelength conversion member 1 can be manufactured, for example, by the following method.

まず、ガラス粉末と無機蛍光体粉末12とを含む生のセラミック素体3(図3を参照)を用意する。なお、図3においては、描画の便宜上、無機蛍光体粉末12のみを図示しており、ガラス粉末は図示していない。   First, a raw ceramic body 3 (see FIG. 3) including glass powder and inorganic phosphor powder 12 is prepared. In FIG. 3, for convenience of drawing, only the inorganic phosphor powder 12 is shown, and the glass powder is not shown.

生のセラミック素体3において、ガラス粉末と無機蛍光体粉末12との比((ガラス粉末):(無機蛍光体粉末12))は、体積%で、90:10〜40:60の範囲内にあることが好ましい。   In the raw ceramic body 3, the ratio of the glass powder to the inorganic phosphor powder 12 ((glass powder) :( inorganic phosphor powder 12)) is in the range of 90:10 to 40:60 in volume%. Preferably there is.

ガラス粉末の平均粒子径(D50)は100μm以下であることが好ましく、50μm以下であることがより好ましい。ガラス粉末の平均粒子径が大きすぎると、波長変換部材1中における無機蛍光体粉末12の分散状態に劣り、発光色にばらつきが生じやすくなる。なお、ガラス粉末の平均粒子径(D50)の下限については特に限定されないが、ガラス粉末の平均粒子径が小さくなりすぎると、製造コストが高騰しやすくなるため、0.1μm以上であることが好ましく、1μm以上であることがより好ましい。 The average particle diameter (D 50 ) of the glass powder is preferably 100 μm or less, and more preferably 50 μm or less. When the average particle diameter of the glass powder is too large, the dispersion state of the inorganic phosphor powder 12 in the wavelength conversion member 1 is inferior, and the emission color tends to vary. The lower limit of the average particle diameter (D 50 ) of the glass powder is not particularly limited, but if the average particle diameter of the glass powder is too small, the production cost is likely to increase, and therefore it may be 0.1 μm or more. Preferably, it is 1 μm or more.

生のセラミック素体3は、例えば、以下の要領で作製することができる。まず、ガラス粉末と無機蛍光体粉末12とを含むセラミックグリーンシートを作製する。次に、そのセラミックグリーンシートを複数枚積層し、必要に応じて切断及びプレスを適宜行うことにより、生のセラミック素体3を完成させることができる。なお、作製しようとする生のセラミック素体3の厚みに対して、セラミックグリーンシートの厚みが十分に厚い場合は、1枚のセラミックグリーンシートにより生のセラミック素体3を構成してもよい。   The raw ceramic body 3 can be produced, for example, in the following manner. First, a ceramic green sheet containing glass powder and inorganic phosphor powder 12 is prepared. Next, the raw ceramic body 3 can be completed by laminating a plurality of the ceramic green sheets and appropriately cutting and pressing as necessary. In addition, when the thickness of the ceramic green sheet is sufficiently thick with respect to the thickness of the raw ceramic element body 3 to be manufactured, the raw ceramic element body 3 may be configured by one ceramic green sheet.

次に、生のセラミック素体3を焼成することにより、波長変換部材1を作製する。この焼成工程において、生のセラミック素体3を、ガラスの粘度が10dPa・s以下となる温度にまで加熱する。そうすることにより、ガラスの流動が促進され、無機蛍光体粉末12が移動(沈降)しやすくなる。その結果、ガラスマトリクス11の表層における無機蛍光体粉末12の濃度が、ガラスマトリクス11の中央部における無機蛍光体粉末12の濃度よりも低い波長変換部材1を得ることができる。ガラスマトリクス11の表層における無機蛍光体粉末12の濃度をより低くする観点からは、焼成工程において、生のセラミック素体3を、ガラスの粘度が、106.5dPa・s以下となる温度にまで加熱することがより好ましく、10dPa・s以下となる温度にまで加熱することがさらに好ましい。但し、焼成工程における生のセラミック素体3の加熱温度が高すぎると、得られる波長変換部材1の形状精度が低くなりすぎる場合がある。また、無機蛍光体粉末12が劣化して蛍光強度が低下する場合がある。このため、焼成工程における生のセラミック素体3の加熱最高温度は、ガラスの粘度が10dPa・s以上となる温度であることが好ましく、10dPa・s以上となる温度であることがより好ましい。 Next, the wavelength conversion member 1 is produced by firing the raw ceramic body 3. In this firing step, the raw ceramic body 3 is heated to a temperature at which the glass has a viscosity of 10 7 dPa · s or less. By doing so, the flow of the glass is promoted, and the inorganic phosphor powder 12 is likely to move (sediment). As a result, the wavelength conversion member 1 in which the concentration of the inorganic phosphor powder 12 in the surface layer of the glass matrix 11 is lower than the concentration of the inorganic phosphor powder 12 in the central portion of the glass matrix 11 can be obtained. From the viewpoint of lowering the concentration of the inorganic phosphor powder 12 in the surface layer of the glass matrix 11, in the firing step, the raw ceramic body 3 is brought to a temperature at which the glass has a viscosity of 10 6.5 dPa · s or less. It is more preferable to heat up to a temperature of 10 6 dPa · s or less. However, if the heating temperature of the raw ceramic body 3 in the firing step is too high, the shape accuracy of the obtained wavelength conversion member 1 may be too low. Further, the inorganic phosphor powder 12 may deteriorate and the fluorescence intensity may decrease. For this reason, the maximum heating temperature of the raw ceramic body 3 in the firing step is preferably a temperature at which the viscosity of the glass is 10 4 dPa · s or higher, and preferably a temperature at which 10 5 dPa · s or higher is reached. More preferred.

また、例えば、波長変換部材1は、以下の方法によって製造することもできる。まず、ガラス粉末と無機蛍光体粉末とを含む第1のセラミックグリーンシートと、第1のセラミックグリーンシートよりも無機蛍光体粉末の含有量が少ない第2のセラミックグリーンシートとを用意する。第2のセラミックグリーンシートは、無機蛍光体粉末を実質的に含んでいなくてもよい。   For example, the wavelength conversion member 1 can also be manufactured by the following method. First, a first ceramic green sheet containing glass powder and an inorganic phosphor powder and a second ceramic green sheet having a smaller content of inorganic phosphor powder than the first ceramic green sheet are prepared. The second ceramic green sheet may not substantially contain the inorganic phosphor powder.

次に、表層が第2のセラミックグリーンシートにより構成されるように、第1のセラミックグリーンシートと第2のセラミックグリーンシートとを適宜積層し、生のセラミック素体3を作製する。また、第1のセラミックグリーンシートと第2のセラミックグリーンシートとの間に、無機蛍光体粉末の濃度が第1のセラミックグリーンシートにおける同濃度と、第2のセラミックグリーンシートにおける同濃度との間にあるセラミックグリーンシートをさらに介在させてもよい。   Next, the first ceramic green sheet and the second ceramic green sheet are appropriately laminated so that the surface layer is constituted by the second ceramic green sheet, and the raw ceramic body 3 is produced. Further, between the first ceramic green sheet and the second ceramic green sheet, the concentration of the inorganic phosphor powder is between the same concentration in the first ceramic green sheet and the same concentration in the second ceramic green sheet. A ceramic green sheet may be further interposed.

次に、生のセラミック素体3を焼成することにより波長変換部材1を完成させることができる。なお、この製造方法においては、生のセラミック素体3の焼成温度は特に限定されない。   Next, the wavelength conversion member 1 can be completed by firing the raw ceramic body 3. In this manufacturing method, the firing temperature of the raw ceramic body 3 is not particularly limited.

この製造方法は、ガラスマトリクス11の表層に無機蛍光体粉末が実質的に含まれない波長変換部材の製造に特に好適である。   This manufacturing method is particularly suitable for manufacturing a wavelength conversion member in which the surface layer of the glass matrix 11 is substantially free of inorganic phosphor powder.

以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.

(実施例1)
モル%でSiO:58%、Al:6%、B:17%、LiO:8%、NaO:8%、KO:3%となるように原料を調合し、溶融急冷法によってフィルム状にガラスを成形した。得られたガラスフィルムを、ボールミルを用いて湿式粉砕し、平均粒子径(D50)が2μmであるガラス粉末を得た。
Example 1
Raw materials so as to be SiO 2 : 58%, Al 2 O 3 : 6%, B 2 O 3 : 17%, Li 2 O: 8%, Na 2 O: 8%, K 2 O: 3% in mol% The glass was formed into a film by a melt quenching method. The obtained glass film was wet pulverized using a ball mill to obtain a glass powder having an average particle diameter (D 50 ) of 2 μm.

得られたガラス粉末と、平均粒子径(D50)が15μmであるYAG(Yttrium Aluminum Garnet,YAl12)の蛍光体の粉末とを、ガラス粉末:YAGの蛍光体粉末とが60体積%:40体積%となるように、振動混合機を用いて混合した。得られた混合粉末50gに結合剤、可塑剤、溶剤などを適量添加し、24時間混練することによりスラリーを得た。このスラリーを、ドクターブレード法を用いてポリエチレンテレフタレートフィルム上に塗布し、乾燥させることにより、セラミックグリーンシートを作製した。ブレードのギャップは200μmとした。得られたセラミックグリーンシートの厚みは100μmとなった。 The obtained glass powder and a phosphor powder of YAG (Yttrium Aluminum Garnet, Y 3 Al 5 O 12 ) having an average particle diameter (D 50 ) of 15 μm, and a glass powder: 60 phosphor powder of YAG. Volume%: Mixing was performed using a vibration mixer so as to be 40 volume%. An appropriate amount of a binder, a plasticizer, a solvent, and the like was added to 50 g of the obtained mixed powder and kneaded for 24 hours to obtain a slurry. This slurry was applied onto a polyethylene terephthalate film using a doctor blade method and dried to prepare a ceramic green sheet. The blade gap was 200 μm. The thickness of the obtained ceramic green sheet was 100 μm.

次に、得られたセラミックグリーンシートを、大気中において、500℃で1時間脱脂処理した。その後、脱脂処理したセラミックグリーンシートを680℃(最高温度)で20分間焼成することにより、波長変換部材を作製した。焼成後において、波長変換部材の厚みが80μmであった。   Next, the obtained ceramic green sheet was degreased at 500 ° C. for 1 hour in the air. Then, the wavelength conversion member was produced by baking the ceramic green sheet which carried out the degreasing process at 680 degreeC (maximum temperature) for 20 minutes. After firing, the wavelength conversion member had a thickness of 80 μm.

なお、本実施例において用いたガラスの680℃における粘度は、106.07dPa・sであった。 The viscosity of the glass used in this example at 680 ° C. was 10 6.07 dPa · s.

(比較例1)
セラミックグリーンシートを600℃(最高温度)で20分間焼成したこと以外は、実施例1と実質的に同様の構成を有する波長変換部材を実質的に同様の方法で作製した。
(Comparative Example 1)
A wavelength conversion member having a configuration substantially similar to that of Example 1 was produced in a substantially similar method except that the ceramic green sheet was baked at 600 ° C. (maximum temperature) for 20 minutes.

なお、本比較例において用いたガラスの600℃における粘度は、108.22dPa・sであった。 In addition, the viscosity in 600 degreeC of the glass used in this comparative example was 108.22 dPa * s.

(実施例2)
モル%でSiO:18%、B:38%、BaO:3%、SrO:7%:ZnO:15%、LiO:13%、ZrO:1%、La:5%となるように原料を調合し、溶融急冷法によってフィルム状にガラスを成形した。得られたガラスフィルムを、ボールミルを用いて湿式粉砕し、平均粒子径(D50)が2μmであるガラス粉末を得た。
(Example 2)
In mol%, SiO 2 : 18%, B 2 O 3 : 38%, BaO: 3%, SrO: 7%: ZnO: 15%, Li 2 O: 13%, ZrO 2 : 1%, La 2 O 3 : The raw materials were prepared so as to be 5%, and glass was formed into a film by a melt quenching method. The obtained glass film was wet pulverized using a ball mill to obtain a glass powder having an average particle diameter (D 50 ) of 2 μm.

得られたガラス粉末と、平均粒子径(D50)が15μmであるYAGの蛍光体の粉末とを、ガラス粉末:YAGの蛍光体粉末とが60体積%:40体積%となるように、振動混合機を用いて混合した。得られた混合粉末50gに結合剤、可塑剤、溶剤などを適量添加し、24時間混練することによりスラリーを得た。このスラリーを、ドクターブレード法を用いてポリエチレンテレフタレートフィルム上に塗布し、乾燥させることにより、セラミックグリーンシートを作製した。ブレードのギャップは200μmとし、得られたセラミックグリーンシートの厚みは100μmとなった。 The obtained glass powder and the YAG phosphor powder having an average particle size (D 50 ) of 15 μm were vibrated so that the glass powder: YAG phosphor powder was 60% by volume: 40% by volume. Mix using a mixer. An appropriate amount of a binder, a plasticizer, a solvent, and the like was added to 50 g of the obtained mixed powder and kneaded for 24 hours to obtain a slurry. This slurry was applied onto a polyethylene terephthalate film using a doctor blade method and dried to prepare a ceramic green sheet. The gap of the blade was 200 μm, and the thickness of the obtained ceramic green sheet was 100 μm.

次に、得られたセラミックグリーンシートを、大気中において、500℃で1時間脱脂処理した。その後、脱脂処理したセラミックグリーンシートを630℃(最高温度)で20分間焼成することにより、波長変換部材を作製した。焼成後において、波長変換部材の厚みが80μmであった。   Next, the obtained ceramic green sheet was degreased at 500 ° C. for 1 hour in the air. Then, the wavelength conversion member was produced by baking the ceramic green sheet which carried out the degreasing process for 20 minutes at 630 degreeC (maximum temperature). After firing, the wavelength conversion member had a thickness of 80 μm.

なお、本実施例において用いたガラスの630℃における粘度は、105.84dPa・sであった。 The viscosity of the glass used in this example at 630 ° C. was 10 5.84 dPa · s.

(比較例2)
セラミックグリーンシートを550℃(最高温度)で20分間焼成したこと以外は、実施例2と実質的に同様の構成を有する波長変換部材を実質的に同様の方法で作製した。
(Comparative Example 2)
A wavelength conversion member having a configuration substantially similar to that of Example 2 was produced in a substantially similar method except that the ceramic green sheet was fired at 550 ° C. (maximum temperature) for 20 minutes.

なお、本比較例において用いたガラスの550℃における粘度は、107.65dPa・sであった。 In addition, the viscosity at 550 ° C. of the glass used in this comparative example was 10 7.65 dPa · s.

(蛍光強度測定)
実施例1,2及び比較例1,2のそれぞれにおいて作製した各サンプルに、反射基板(マテリアルハウス社製のMIRO−SILVER)を、接着剤(信越化学工業社製の高反射樹脂)を用いて貼付し、測定サンプルを作製した。測定サンプルを15℃に設定したペルチェ素子上に固定し、出力が30Wであり、波長440nmの青色レーザー光を測定サンプルに照射した。その際に得られた蛍光を、光ファイバーを通して小型分光器(USB−4000、オーシャンオプティクス社製)で受光し、発光スペクトルを得た。発光スペクトルから、得られた蛍光の強度を求めた。結果を下記の表1に示す。
(Fluorescence intensity measurement)
A reflective substrate (MIRO-SILVER made by Material House Co., Ltd.) and an adhesive (high reflection resin made by Shin-Etsu Chemical Co., Ltd.) are used for each sample produced in each of Examples 1 and 2 and Comparative Examples 1 and 2. A measurement sample was prepared by pasting. The measurement sample was fixed on a Peltier device set at 15 ° C., the output was 30 W, and the measurement sample was irradiated with blue laser light having a wavelength of 440 nm. The fluorescence obtained at that time was received by a small spectroscope (USB-4000, manufactured by Ocean Optics) through an optical fiber to obtain an emission spectrum. From the emission spectrum, the intensity of the obtained fluorescence was determined. The results are shown in Table 1 below.

なお、表1に示す軟化点は、以下のようにして測定した。   In addition, the softening point shown in Table 1 was measured as follows.

軟化点:リガク社製TAS−200を用いて測定した。   Softening point: Measured with TAS-200 manufactured by Rigaku Corporation.

全光線反射率:350nm〜800nmの波長範囲において、島津製作所社製UV2500PCを用いて測定した。   Total light reflectance: Measured using a UV 2500PC manufactured by Shimadzu Corporation in the wavelength range of 350 nm to 800 nm.

(無機蛍光体粉末の含有量)
実施例1,2及び比較例1,2のそれぞれにおいて作製した各サンプルの側面を研磨し、断面が露出したサンプルを作製した。そのサンプルを電子顯微鏡により観察し、表層における無機蛍光体粉末の含有量と、中央部における無機蛍光体粉末の含有量とを観察した。
(Content of inorganic phosphor powder)
The side surface of each sample produced in each of Examples 1 and 2 and Comparative Examples 1 and 2 was polished to produce a sample with an exposed cross section. The sample was observed with an electronic microscope, and the content of the inorganic phosphor powder in the surface layer and the content of the inorganic phosphor powder in the center were observed.

その結果、実施例1,2では、表層における無機蛍光体粉末の含有量が、中央部における無機蛍光体粉末の含有量よりも少ないことが確認された。一方、比較例1,2では、表層における無機蛍光体粉末の含有量と、中央部における無機蛍光体粉末の含有量とが実質的に同じであることが確認された。この結果から、焼成工程において、生のセラミック素体を、ガラスの粘度が10dPa・s以下となる温度まで加熱することにより、表層における無機蛍光体粉末の含有量を、中央部における無機蛍光体粉末の含有量よりも少なくできることが分かる。また、図4に示す実施例1において作製した波長変換部材の表面の写真と、図5に示す比較例1において作製した波長変換部材の表面の写真との比較によっても、焼成工程において、生のセラミック素体を、ガラスの粘度が10dPa・s以下となる温度まで加熱することにより、表層における無機蛍光体粉末の含有量を、中央部における無機蛍光体粉末の含有量よりも少なくできることが分かる。表1に、実施例1,2及び比較例1,2のそれぞれにおいて作製した波長変換部材の表面の写真から算出した波長変換部材の表面に占める無機蛍光体粉末の面積比を示す。 As a result, in Examples 1 and 2, it was confirmed that the content of the inorganic phosphor powder in the surface layer was smaller than the content of the inorganic phosphor powder in the central portion. On the other hand, in Comparative Examples 1 and 2, it was confirmed that the content of the inorganic phosphor powder in the surface layer and the content of the inorganic phosphor powder in the central portion were substantially the same. From this result, in the firing step, the raw ceramic body is heated to a temperature at which the viscosity of the glass is 10 7 dPa · s or less, so that the content of the inorganic phosphor powder in the surface layer is reduced to the inorganic fluorescence in the central portion. It can be seen that the content can be smaller than the content of the body powder. In addition, the comparison between the photograph of the surface of the wavelength conversion member produced in Example 1 shown in FIG. 4 and the photograph of the surface of the wavelength conversion member produced in Comparative Example 1 shown in FIG. By heating the ceramic body to a temperature at which the viscosity of the glass is 10 7 dPa · s or less, the content of the inorganic phosphor powder in the surface layer can be made smaller than the content of the inorganic phosphor powder in the central portion. I understand. Table 1 shows the area ratio of the inorganic phosphor powder in the surface of the wavelength conversion member calculated from the photographs of the surface of the wavelength conversion member produced in each of Examples 1 and 2 and Comparative Examples 1 and 2.

表1に示す結果から、表層における無機蛍光体粉末の含有量が、中央部における無機蛍光体粉末の含有量よりも少ない実施例1,2では、表層における無機蛍光体粉末の含有量と、中央部における無機蛍光体粉末の含有量とが実質的に等しい比較例1,2よりも高強度の蛍光が得られた。   From the results shown in Table 1, in Examples 1 and 2 where the content of the inorganic phosphor powder in the surface layer is less than the content of the inorganic phosphor powder in the center portion, the content of the inorganic phosphor powder in the surface layer and the center Higher fluorescence was obtained than in Comparative Examples 1 and 2 in which the content of the inorganic phosphor powder in the part was substantially equal.

1…波長変換部材
2…発光デバイス
3…生のセラミック素体
11…ガラスマトリクス
11a…第1の主面(光入出面)
12…無機蛍光体粉末
30…光源
40…ビームスプリッタ
50…反射部材
DESCRIPTION OF SYMBOLS 1 ... Wavelength conversion member 2 ... Light emitting device 3 ... Raw ceramic body 11 ... Glass matrix 11a ... 1st main surface (light entrance / exit surface)
12 ... Inorganic phosphor powder 30 ... Light source 40 ... Beam splitter 50 ... Reflecting member

Claims (8)

ガラス粉末と無機蛍光体粉末とを含む生のセラミック素体を用意する工程と、
前記生のセラミック素体を焼成することにより、ガラスマトリクスと前記ガラスマトリクス中に配された前記無機蛍光体粉末とを備える波長変換部材を得る焼成工程と、
を備え、
前記焼成工程において、前記生のセラミック素体を、前記ガラスの粘度が、10dPa・s以下となる温度まで加熱する、波長変換部材の製造方法。
Preparing a raw ceramic body containing glass powder and inorganic phosphor powder;
A firing step of obtaining a wavelength conversion member comprising a glass matrix and the inorganic phosphor powder disposed in the glass matrix by firing the raw ceramic body,
With
In the firing step, the raw ceramic body is heated to a temperature at which the glass has a viscosity of 10 7 dPa · s or less.
前記生のセラミック素体における前記ガラス粉末と前記無機蛍光体粉末との比((ガラス粉末):(無機蛍光体粉末))を、体積%で90:10〜40:60の範囲内とする、請求項1に記載の波長変換部材の製造方法。   The ratio of the glass powder and the inorganic phosphor powder in the raw ceramic body ((glass powder) :( inorganic phosphor powder)) is within a range of 90:10 to 40:60 in volume%. The manufacturing method of the wavelength conversion member of Claim 1. 前記無機蛍光体粉末の屈折率が、前記ガラスマトリクスの屈折率よりも高い、請求項1または2に記載の波長変換部材の製造方法。   The manufacturing method of the wavelength conversion member of Claim 1 or 2 whose refractive index of the said inorganic fluorescent substance powder is higher than the refractive index of the said glass matrix. ガラスマトリクスと、
前記ガラスマトリクス中に配された無機蛍光体粉末と、
を備え、
前記ガラスマトリクスの表層における前記無機蛍光体粉末の濃度が、前記ガラスマトリクスの中央部における前記無機蛍光体粉末の濃度よりも低い、波長変換部材。
A glass matrix;
An inorganic phosphor powder disposed in the glass matrix;
With
The wavelength conversion member whose density | concentration of the said inorganic fluorescent substance powder in the surface layer of the said glass matrix is lower than the density | concentration of the said inorganic fluorescent substance powder in the center part of the said glass matrix.
前記ガラスマトリクスの表層において、前記ガラスマトリクスの中央側から表面側に向かって、前記無機蛍光体粉末の濃度が漸減している、請求項4に記載の波長変換部材。   The wavelength conversion member according to claim 4, wherein in the surface layer of the glass matrix, the concentration of the inorganic phosphor powder gradually decreases from the center side to the surface side of the glass matrix. 前記無機蛍光体粉末の屈折率が、前記ガラスマトリクスの屈折率よりも高い、請求項4または5に記載の波長変換部材。   The wavelength conversion member according to claim 4 or 5, wherein a refractive index of the inorganic phosphor powder is higher than a refractive index of the glass matrix. 前記ガラスマトリクスにおける前記無機蛍光体粉末の含有量は、10体積%〜60体積%の範囲内である、請求項4〜6のいずれか一項に記載の波長変換部材。   The content of the said inorganic fluorescent substance powder in the said glass matrix is a wavelength conversion member as described in any one of Claims 4-6 which exists in the range of 10 volume%-60 volume%. 請求項4〜7のいずれか一項に記載の波長変換部材と、
前記波長変換部材に前記無機蛍光体粉末の励起波長の光を照射する光源と、
を備える、発光デバイス。
The wavelength conversion member according to any one of claims 4 to 7,
A light source for irradiating the wavelength conversion member with light having an excitation wavelength of the inorganic phosphor powder;
A light emitting device comprising:
JP2012154609A 2012-07-10 2012-07-10 Method for manufacturing wavelength conversion member, wavelength conversion member and light emitting device Active JP6019842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154609A JP6019842B2 (en) 2012-07-10 2012-07-10 Method for manufacturing wavelength conversion member, wavelength conversion member and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012154609A JP6019842B2 (en) 2012-07-10 2012-07-10 Method for manufacturing wavelength conversion member, wavelength conversion member and light emitting device

Publications (2)

Publication Number Publication Date
JP2014015359A true JP2014015359A (en) 2014-01-30
JP6019842B2 JP6019842B2 (en) 2016-11-02

Family

ID=50110402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154609A Active JP6019842B2 (en) 2012-07-10 2012-07-10 Method for manufacturing wavelength conversion member, wavelength conversion member and light emitting device

Country Status (1)

Country Link
JP (1) JP6019842B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140854A1 (en) * 2014-03-19 2015-09-24 パナソニックIpマネジメント株式会社 Wavelength conversion element manufacturing method
WO2016004862A1 (en) * 2014-07-09 2016-01-14 深圳市绎立锐光科技开发有限公司 Wavelength conversion device and light source system
KR20170048245A (en) * 2014-03-28 2017-05-08 아포트로닉스 차이나 코포레이션 Glass fluorescent powder slice with multi-layer structrure and preparation therefor, and light-emitting device
WO2018025670A1 (en) * 2016-08-05 2018-02-08 日本電気硝子株式会社 Wavelength conversion member and production method therefor
WO2018025672A1 (en) * 2016-08-05 2018-02-08 日本電気硝子株式会社 Wavelength conversion member and production method therefor
JP2018021155A (en) * 2016-08-05 2018-02-08 日本電気硝子株式会社 Wavelength conversion member and production process therefor
WO2018074132A1 (en) * 2016-10-21 2018-04-26 日本電気硝子株式会社 Wavelength conversion member, light-emitting device, and method for manufacturing wavelength conversion member
WO2018139120A1 (en) * 2017-01-24 2018-08-02 富士フイルム株式会社 Wavelength conversion film
JP2019503556A (en) * 2015-12-22 2019-02-07 エルジー イノテック カンパニー リミテッド Phosphor plate package, light emitting package, and vehicle headlamp including the same
JP2019143162A (en) * 2019-05-22 2019-08-29 日亜化学工業株式会社 Nitride phosphor, manufacturing method and light emitting device thereof
JP2020510995A (en) * 2017-02-28 2020-04-09 オスラム ゲーエムベーハーOSRAM GmbH Optoelectronic components and methods for manufacturing optoelectronic components
JP2020154033A (en) * 2019-03-18 2020-09-24 セイコーエプソン株式会社 Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
JP2020154032A (en) * 2019-03-18 2020-09-24 セイコーエプソン株式会社 Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
CN112178591A (en) * 2020-09-18 2021-01-05 广州光联电子科技有限公司 Preparation method of wavelength conversion device for laser and wavelength conversion device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101078A (en) * 2001-09-25 2003-04-04 Toyoda Gosei Co Ltd Light-emitting device
JP2003179269A (en) * 2001-01-24 2003-06-27 Nichia Chem Ind Ltd Optical semiconductor element
JP2007284319A (en) * 2006-04-20 2007-11-01 Nippon Electric Glass Co Ltd Crystallized glass article and its producing method
JP2007311743A (en) * 2006-04-19 2007-11-29 Nippon Electric Glass Co Ltd Method of manufacturing emission color conversion member, and emission color conversion member
JP2008021868A (en) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite member
JP2009043764A (en) * 2007-08-06 2009-02-26 Nichia Corp Semiconductor light-emitting element, and method of manufacturing the same
JP2009177131A (en) * 2007-12-27 2009-08-06 Toyoda Gosei Co Ltd Method for manufacturing phosphor-containing glass plate and method for manufacturing light-emitting device
JP2010248530A (en) * 2010-07-28 2010-11-04 Sharp Corp Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member
JP2011518752A (en) * 2008-04-29 2011-06-30 ショット アクチエンゲゼルシャフト Conversion materials for white or colored light sources, particularly including semiconductor light sources, methods of manufacturing the same, and light sources including said conversion materials
JP2012031328A (en) * 2010-08-02 2012-02-16 Nippon Electric Glass Co Ltd Method for producing wavelength conversion member, wavelength conversion member and light source

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179269A (en) * 2001-01-24 2003-06-27 Nichia Chem Ind Ltd Optical semiconductor element
JP2003101078A (en) * 2001-09-25 2003-04-04 Toyoda Gosei Co Ltd Light-emitting device
JP2007311743A (en) * 2006-04-19 2007-11-29 Nippon Electric Glass Co Ltd Method of manufacturing emission color conversion member, and emission color conversion member
JP2007284319A (en) * 2006-04-20 2007-11-01 Nippon Electric Glass Co Ltd Crystallized glass article and its producing method
JP2008021868A (en) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite member
JP2009043764A (en) * 2007-08-06 2009-02-26 Nichia Corp Semiconductor light-emitting element, and method of manufacturing the same
JP2009177131A (en) * 2007-12-27 2009-08-06 Toyoda Gosei Co Ltd Method for manufacturing phosphor-containing glass plate and method for manufacturing light-emitting device
JP2011518752A (en) * 2008-04-29 2011-06-30 ショット アクチエンゲゼルシャフト Conversion materials for white or colored light sources, particularly including semiconductor light sources, methods of manufacturing the same, and light sources including said conversion materials
JP2010248530A (en) * 2010-07-28 2010-11-04 Sharp Corp Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member
JP2012031328A (en) * 2010-08-02 2012-02-16 Nippon Electric Glass Co Ltd Method for producing wavelength conversion member, wavelength conversion member and light source

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140854A1 (en) * 2014-03-19 2015-09-24 パナソニックIpマネジメント株式会社 Wavelength conversion element manufacturing method
KR20170048245A (en) * 2014-03-28 2017-05-08 아포트로닉스 차이나 코포레이션 Glass fluorescent powder slice with multi-layer structrure and preparation therefor, and light-emitting device
JP2017512746A (en) * 2014-03-28 2017-05-25 深▲ちぇん▼市繹立鋭光科技開発有限公司 Multi-layer glass phosphor sheet, method for producing the same, and light emitting device
EP3125313A4 (en) * 2014-03-28 2017-11-15 Appotronics China Corporation Glass fluorescent powder slice with multi-layer structure and preparation method therefor, and light-emitting device
US11053161B2 (en) 2014-03-28 2021-07-06 Appotronics Corporation Limited Glass fluorescent powder slice with multi-layer structure and preparation method therefor, and light-emitting device
KR101939246B1 (en) 2014-03-28 2019-01-16 아포트로닉스 코포레이션 리미티드 Glass fluorescent powder slice with multi-layer structrure and preparation therefor, and light-emitting device
WO2016004862A1 (en) * 2014-07-09 2016-01-14 深圳市绎立锐光科技开发有限公司 Wavelength conversion device and light source system
CN105276525A (en) * 2014-07-09 2016-01-27 深圳市绎立锐光科技开发有限公司 Wavelength conversion device and light source system
JP2019503556A (en) * 2015-12-22 2019-02-07 エルジー イノテック カンパニー リミテッド Phosphor plate package, light emitting package, and vehicle headlamp including the same
JP2018022095A (en) * 2016-08-05 2018-02-08 日本電気硝子株式会社 Wavelength conversion member and manufacturing method thereof
US10636947B2 (en) 2016-08-05 2020-04-28 Nippon Electric Glass Co., Ltd. Wavelength conversion member and production method therefor
WO2018025671A1 (en) * 2016-08-05 2018-02-08 日本電気硝子株式会社 Wavelength conversion member and production method therefor
US11320099B2 (en) 2016-08-05 2022-05-03 Nippon Electric Glass Co., Ltd. Wavelength conversion member and production method therefor
US11180409B2 (en) 2016-08-05 2021-11-23 Nippon Electric Glass Co., Ltd. Wavelength conversion member and production method therefor
KR102318702B1 (en) * 2016-08-05 2021-10-27 니폰 덴키 가라스 가부시키가이샤 Wavelength conversion member and manufacturing method thereof
JP2018022096A (en) * 2016-08-05 2018-02-08 日本電気硝子株式会社 Wavelength conversion member and manufacturing method thereof
WO2018025672A1 (en) * 2016-08-05 2018-02-08 日本電気硝子株式会社 Wavelength conversion member and production method therefor
KR20190032275A (en) * 2016-08-05 2019-03-27 니폰 덴키 가라스 가부시키가이샤 Wavelength conversion member and manufacturing method thereof
KR20190034143A (en) * 2016-08-05 2019-04-01 니폰 덴키 가라스 가부시키가이샤 Wavelength conversion member and manufacturing method thereof
CN109564308A (en) * 2016-08-05 2019-04-02 日本电气硝子株式会社 Wavelength conversion member and its manufacturing method
KR20190038473A (en) * 2016-08-05 2019-04-08 니폰 덴키 가라스 가부시키가이샤 Wavelength conversion member and manufacturing method thereof
CN109642967A (en) * 2016-08-05 2019-04-16 日本电气硝子株式会社 Wavelength conversion member and its manufacturing method
KR102318187B1 (en) * 2016-08-05 2021-10-26 니폰 덴키 가라스 가부시키가이샤 Wavelength conversion member and manufacturing method thereof
KR102315746B1 (en) * 2016-08-05 2021-10-20 니폰 덴키 가라스 가부시키가이샤 Wavelength conversion member and manufacturing method thereof
JP2018021155A (en) * 2016-08-05 2018-02-08 日本電気硝子株式会社 Wavelength conversion member and production process therefor
CN109564308B (en) * 2016-08-05 2021-07-23 日本电气硝子株式会社 Wavelength conversion member and method for manufacturing same
WO2018025670A1 (en) * 2016-08-05 2018-02-08 日本電気硝子株式会社 Wavelength conversion member and production method therefor
CN109642967B (en) * 2016-08-05 2021-03-12 日本电气硝子株式会社 Wavelength conversion member and method for manufacturing same
WO2018074132A1 (en) * 2016-10-21 2018-04-26 日本電気硝子株式会社 Wavelength conversion member, light-emitting device, and method for manufacturing wavelength conversion member
JP2018119042A (en) * 2017-01-24 2018-08-02 富士フイルム株式会社 Wavelength conversion film
WO2018139120A1 (en) * 2017-01-24 2018-08-02 富士フイルム株式会社 Wavelength conversion film
JP2020510995A (en) * 2017-02-28 2020-04-09 オスラム ゲーエムベーハーOSRAM GmbH Optoelectronic components and methods for manufacturing optoelectronic components
CN111708248A (en) * 2019-03-18 2020-09-25 精工爱普生株式会社 Wavelength conversion element, method for manufacturing wavelength conversion element, light source device, and projector
JP2020154032A (en) * 2019-03-18 2020-09-24 セイコーエプソン株式会社 Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
JP2020154033A (en) * 2019-03-18 2020-09-24 セイコーエプソン株式会社 Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
US11172176B2 (en) 2019-03-18 2021-11-09 Seiko Epson Corporation Wavelength conversion element, light source device, projector, and method of manufacturing wavelength conversion element
CN111708248B (en) * 2019-03-18 2022-04-19 精工爱普生株式会社 Wavelength conversion element, method for manufacturing wavelength conversion element, light source device, and projector
JP7279436B2 (en) 2019-03-18 2023-05-23 セイコーエプソン株式会社 Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
JP2019143162A (en) * 2019-05-22 2019-08-29 日亜化学工業株式会社 Nitride phosphor, manufacturing method and light emitting device thereof
CN112178591A (en) * 2020-09-18 2021-01-05 广州光联电子科技有限公司 Preparation method of wavelength conversion device for laser and wavelength conversion device

Also Published As

Publication number Publication date
JP6019842B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6019842B2 (en) Method for manufacturing wavelength conversion member, wavelength conversion member and light emitting device
JP6241517B2 (en) Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
CN207542274U (en) Wavelength convert component and luminescent device
US10557614B2 (en) Projector light source including wavelength conversion member having porous ceramic substrate
JP6063126B2 (en) Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
JP6740616B2 (en) Wavelength conversion member and light emitting device
US10580944B2 (en) Wavelength conversion member, light-emitting device, and method for manufacturing wavelength conversion member
JP7212319B2 (en) Wavelength conversion member and light emitting device
JP2007182529A (en) Fluorescent composite glass, fluorescent composite glass green sheet and process for production of fluorescent composite glass
JP2018043912A (en) Photoconversion member, illumination light source and method for producing photoconversion member
CN107586127B (en) Ceramic composite, and phosphor for projector and light-emitting device containing same
JP2018077324A (en) Wavelength conversion member and light emitting device
JP6119192B2 (en) Method for manufacturing wavelength conversion member and wavelength conversion member
TWI757521B (en) Wavelength conversion member and light-emitting device
JP5994575B2 (en) Method for manufacturing wavelength conversion member and wavelength conversion member
JP6989307B2 (en) Ceramic complexes, as well as fluorescent and light-emitting devices for projectors containing them
JP6902360B2 (en) Wavelength conversion member
JP7090842B2 (en) Wavelength conversion member and light emitting device
WO2014050684A1 (en) Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same
JP2015060969A (en) Light-emitting device
JP6902373B2 (en) Wavelength conversion member and its manufacturing method
JP6775429B2 (en) Manufacturing method of wavelength conversion member
JP2020095162A (en) Wavelength conversion member, light-emitting device, and method of manufacturing wavelength conversion member
JP2020154012A (en) Wavelength conversion member and method for manufacturing the same, and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6019842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150