JP2020154012A - Wavelength conversion member and method for manufacturing the same, and light emitting device - Google Patents
Wavelength conversion member and method for manufacturing the same, and light emitting device Download PDFInfo
- Publication number
- JP2020154012A JP2020154012A JP2019049503A JP2019049503A JP2020154012A JP 2020154012 A JP2020154012 A JP 2020154012A JP 2019049503 A JP2019049503 A JP 2019049503A JP 2019049503 A JP2019049503 A JP 2019049503A JP 2020154012 A JP2020154012 A JP 2020154012A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength conversion
- conversion member
- phosphor
- powder
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 94
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 title claims description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 151
- 239000000843 powder Substances 0.000 claims abstract description 147
- 239000011521 glass Substances 0.000 claims abstract description 91
- 239000000463 material Substances 0.000 claims abstract description 85
- 239000010410 layer Substances 0.000 claims description 167
- 238000010304 firing Methods 0.000 claims description 17
- 230000005284 excitation Effects 0.000 claims description 14
- 239000000945 filler Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 8
- 239000012790 adhesive layer Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000002223 garnet Substances 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000007423 decrease Effects 0.000 abstract description 21
- 230000004907 flux Effects 0.000 abstract description 20
- 230000008859 change Effects 0.000 abstract description 10
- 239000000758 substrate Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 238000000149 argon plasma sintering Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000007606 doctor blade method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- SITVSCPRJNYAGV-UHFFFAOYSA-L tellurite Chemical compound [O-][Te]([O-])=O SITVSCPRJNYAGV-UHFFFAOYSA-L 0.000 description 3
- -1 BN Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- QUBMWJKTLKIJNN-UHFFFAOYSA-B tin(4+);tetraphosphate Chemical compound [Sn+4].[Sn+4].[Sn+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QUBMWJKTLKIJNN-UHFFFAOYSA-B 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- DGWFDTKFTGTOAF-UHFFFAOYSA-N P.Cl.Cl.Cl Chemical compound P.Cl.Cl.Cl DGWFDTKFTGTOAF-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/06—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Led Device Packages (AREA)
- Optical Filters (AREA)
Abstract
Description
本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発する光の波長を別の波長に変換する波長変換部材及びその製造方法、並びに発光装置に関するものである。 The present invention relates to a wavelength conversion member that converts the wavelength of light emitted by a light emitting diode (LED: Light Emitting Diode), a laser diode (LD: Laser Diode), or the like into another wavelength, a method for manufacturing the same, and a light emitting device. ..
近年、蛍光ランプや白熱灯に変わる次世代の発光装置として、LEDやLDを用いた発光装置等に対する注目が高まってきている。そのような次世代の発光装置の一例として、青色光を出射するLEDと、LEDからの光の一部を吸収して黄色光に変換する波長変換部材とを組み合わせた発光装置が開示されている。この発光装置は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。特許文献1には、波長変換部材の一例として、ガラスマトリクス中に無機蛍光体粉末を分散させた波長変換部材が提案されている。 In recent years, attention has been increasing to light emitting devices using LEDs and LDs as next-generation light emitting devices that replace fluorescent lamps and incandescent lamps. As an example of such a next-generation light emitting device, a light emitting device that combines an LED that emits blue light and a wavelength conversion member that absorbs a part of the light from the LED and converts it into yellow light is disclosed. .. This light emitting device emits white light, which is a composite light of blue light emitted from an LED and yellow light emitted from a wavelength conversion member. Patent Document 1 proposes a wavelength conversion member in which an inorganic phosphor powder is dispersed in a glass matrix as an example of the wavelength conversion member.
上記の発光装置においては、点灯後、経時的に光束値が低下したり、色度が変化する傾向があり、所望の光束値や色度が得られないという問題がある。 The above-mentioned light emitting device has a problem that a desired luminous flux value and chromaticity cannot be obtained because the luminous flux value tends to decrease or the chromaticity tends to change with time after lighting.
従って、本発明は、点灯後に光束値の低下や、色度の変化が生じにくい波長変換部材と、それを用いた発光装置を提案することを目的とする。 Therefore, an object of the present invention is to propose a wavelength conversion member in which a decrease in luminous flux value and a change in chromaticity are unlikely to occur after lighting, and a light emitting device using the same.
本発明の波長変換部材は、ガラス粉末の焼結体からなる基材層と、基材層の一方の主面に形成されており、ガラス粉末と蛍光体粉末の焼結体からなる蛍光体層と、を備えることを特徴とする。このような構成にすることで、点灯後の光束値の低下や、色度の変化を抑制することができる。このメカニズムは以下のように説明することができる。 The wavelength conversion member of the present invention is formed on one main surface of a base material layer made of a glass powder sintered body and a base material layer, and is a phosphor layer made of a glass powder and a phosphor powder sintered body. It is characterized by having. With such a configuration, it is possible to suppress a decrease in the luminous flux value after lighting and a change in chromaticity. This mechanism can be explained as follows.
従来の波長変換部材は、部材全体に蛍光体が均一に分散した構造を有する。ここで、蛍光体の分散媒であるガラス等のマトリクスは熱伝導性が比較的低いため、蛍光体の発光により発生した熱がマトリクスを伝導しにくく、部材外部に熱が放出されにくい。その結果、波長変換部材の温度が高温になり、蛍光体の温度消光の作用により光束値が低下しやすくなる。蛍光の光束値が低下すると、波長変換部材の出射光(蛍光と透過励起光の合成光)における蛍光成分の光束値が低下する(換言すると、透過励起光の光束値が蛍光の光束値に対して相対的に大きくなる)ため、出射光の色度が変化することとなる。 The conventional wavelength conversion member has a structure in which the phosphor is uniformly dispersed throughout the member. Here, since the matrix such as glass, which is a dispersion medium of the phosphor, has relatively low thermal conductivity, the heat generated by the light emission of the phosphor is difficult to conduct through the matrix, and the heat is not easily released to the outside of the member. As a result, the temperature of the wavelength conversion member becomes high, and the luminous flux value tends to decrease due to the action of the temperature quenching of the phosphor. When the luminous flux value of fluorescence decreases, the luminous flux value of the fluorescence component in the emitted light (combined light of fluorescence and transmitted excitation light) of the wavelength conversion member decreases (in other words, the luminous flux value of the transmitted excitation light is relative to the luminous flux value of fluorescence. Therefore, the chromaticity of the emitted light changes.
一方、本発明の波長変換部材は、基材層の表面に蛍光体層を形成した構造を有するため、部材自体の機械的強度を保持しつつ、蛍光体層における蛍光体濃度を高めて、蛍光体層部分を薄型化することができる。そのようにすれば、蛍光体層に占めるマトリクスの体積を低減し、蛍光体層の熱伝導率を高めることができるため、蛍光体により発生した熱を効率よく外部に放出することができる。その結果、蛍光体の温度消光を効果的に抑制し、経時的な光束値の低下を抑制することができる。また、本発明の波長変換部材は、基材層と蛍光体層がいずれもガラス粉末を含む焼結体からなるため、両者の密着性や結合強度に優れ、部材全体の機械的強度に優れるという特徴も有する。 On the other hand, since the wavelength conversion member of the present invention has a structure in which a phosphor layer is formed on the surface of the base material layer, the fluorescence is increased by increasing the phosphor concentration in the phosphor layer while maintaining the mechanical strength of the member itself. The body layer portion can be made thinner. By doing so, the volume of the matrix occupied in the phosphor layer can be reduced and the thermal conductivity of the phosphor layer can be increased, so that the heat generated by the phosphor can be efficiently released to the outside. As a result, it is possible to effectively suppress the temperature quenching of the phosphor and suppress the decrease in the luminous flux value with time. Further, in the wavelength conversion member of the present invention, since both the base material layer and the phosphor layer are made of a sintered body containing glass powder, they are excellent in adhesion and bond strength between them, and are excellent in mechanical strength of the entire member. It also has features.
本発明の波長変換部材は、基材層の厚みが、蛍光体層の厚みよりも大きいことが好ましい。このようにすれば、波長変換部材の機械的強度を維持しつつ、容易に蛍光体層を薄型化し、蛍光体濃度の向上を図ることができる。 In the wavelength conversion member of the present invention, the thickness of the base material layer is preferably larger than the thickness of the phosphor layer. By doing so, it is possible to easily thin the phosphor layer and improve the phosphor concentration while maintaining the mechanical strength of the wavelength conversion member.
本発明の波長変換部材は、基材層の厚みが、蛍光体層の厚みの1.1〜10倍であることが好ましい。 In the wavelength conversion member of the present invention, the thickness of the base material layer is preferably 1.1 to 10 times the thickness of the phosphor layer.
本発明の波長変換部材は、基材層の厚みが45〜900μmであることが好ましい。 In the wavelength conversion member of the present invention, the thickness of the base material layer is preferably 45 to 900 μm.
本発明の波長変換部材は、蛍光体層の厚みが5〜100μmであることが好ましい。 In the wavelength conversion member of the present invention, the thickness of the phosphor layer is preferably 5 to 100 μm.
本発明の波長変換部材は、蛍光体層における蛍光体粉末の含有量が1〜80体積%であることが好ましい。 In the wavelength conversion member of the present invention, the content of the phosphor powder in the phosphor layer is preferably 1 to 80% by volume.
本発明の波長変換部材は、蛍光体粉末がガーネット系蛍光体であることが好ましい。 In the wavelength conversion member of the present invention, it is preferable that the phosphor powder is a garnet-based phosphor.
本発明の波長変換部材は、蛍光体粉末の平均粒子径が1〜50μmであることが好ましい。 In the wavelength conversion member of the present invention, the average particle size of the phosphor powder is preferably 1 to 50 μm.
本発明の波長変換部材は、基材層におけるガラス粉末と、蛍光体層におけるガラス粉末が、実質的に同一の組成を有することが好ましい。このようにすれば、基材層におけるガラスと蛍光体層におけるガラスの屈折率差をなくすことができるため、両者の界面における反射ロスを低減することができる。その結果、波長変換部材の発光強度を向上させることができる。 In the wavelength conversion member of the present invention, it is preferable that the glass powder in the base material layer and the glass powder in the phosphor layer have substantially the same composition. By doing so, it is possible to eliminate the difference in refractive index between the glass in the base material layer and the glass in the phosphor layer, so that the reflection loss at the interface between the two can be reduced. As a result, the emission intensity of the wavelength conversion member can be improved.
本発明の波長変換部材は、基材層及び/または蛍光体層がフィラー粉末を含んでいてもよい。このようにすれば、基材層と蛍光体層の熱膨張係数を容易に整合させることができ、熱膨張係数差に起因する部材の反りやクラック等の発生を抑制することができる。また、フィラー粉末の光散乱効果により、波長変換部材の発光強度を向上させることができる。
さらに、高熱伝導率のフィラー粉末を含有させることで、波長変換部材の放熱効率を向上させることができる。
In the wavelength conversion member of the present invention, the base material layer and / or the phosphor layer may contain filler powder. By doing so, the thermal expansion coefficients of the base material layer and the phosphor layer can be easily matched, and the occurrence of warpage, cracks, etc. of the member due to the difference in thermal expansion coefficients can be suppressed. In addition, the light scattering effect of the filler powder can improve the emission intensity of the wavelength conversion member.
Further, by containing the filler powder having high thermal conductivity, the heat dissipation efficiency of the wavelength conversion member can be improved.
波長変換部材の製造方法は、上記の波長変換部材を作製するための方法であって、(a)ガラス粉末を含む基材層用グリーンシート、及び、ガラス粉末及び蛍光体粉末を含む蛍光体層用グリーンシートを準備する工程、(b)複数の基材層用グリーンシートの間に蛍光体層用グリーンシートを挟持することによりグリーンシート積層体を得る工程、(c)グリーンシート積層体を焼成することにより、ガラス粉末の焼結体からなる2つの基材層の間に、ガラス粉末及び蛍光体粉末の焼結体からなる蛍光体層が挟持されてなる焼結積層体を得る工程、及び、(d)焼結積層体における基材層のうちの一方を除去する工程、を備えることを特徴とする。材料の異なる2種類のグリーンシートを積層して焼成すると、各材料の熱膨張係数差に起因する収縮量の違いが原因となり、反りやクラックが発生しやすい。一方、本発明の製造方法のように、複数の(例えば2枚の)基材層用グリーンシートの間に蛍光体層用グリーンシートを挟持した状態で焼成することにより、部材全体での応力のバランスが取れるため、焼成時における反りやクラックが発生しにくくなる。なお、焼成後の焼結積層体においても、基材層と蛍光体層の界面で両者の熱膨張係数差に起因する応力が残存している可能性があるが、焼結積層体自体の機械的強度が比較的高いため、基材層のうちの一方を研削等の後加工により除去しても、それに起因して反りやクラック等は発生しくにい。 The method for manufacturing the wavelength conversion member is a method for producing the above-mentioned wavelength conversion member, wherein (a) a green sheet for a base material layer containing glass powder, and a phosphor layer containing glass powder and phosphor powder. Steps of preparing a green sheet for use, (b) a step of obtaining a green sheet laminate by sandwiching a green sheet for a phosphor layer between a plurality of green sheets for a base material layer, (c) firing a green sheet laminate. By doing so, a step of obtaining a sintered laminate in which a phosphor layer made of a sintered body of glass powder and a phosphor powder is sandwiched between two base material layers made of a sintered body of glass powder, and , (D) A step of removing one of the base material layers in the sintered laminate is provided. When two types of green sheets made of different materials are laminated and fired, warpage and cracks are likely to occur due to the difference in the amount of shrinkage due to the difference in the coefficient of thermal expansion of each material. On the other hand, as in the manufacturing method of the present invention, the stress of the entire member is reduced by firing with the green sheet for the phosphor layer sandwiched between a plurality of (for example, two) green sheets for the base material layer. Since it is well-balanced, warpage and cracks are less likely to occur during firing. Even in the sintered laminate after firing, there is a possibility that stress due to the difference in the coefficient of thermal expansion between the base layer and the phosphor layer remains, but the machine of the sintered laminate itself Since the target strength is relatively high, even if one of the base material layers is removed by post-processing such as grinding, warpage or cracks are unlikely to occur due to the removal.
本発明の発光装置は、上記の波長変換部材、及び、波長変換部材に対し蛍光体粉末の励起光を照射する光源、を備えることを特徴とする。 The light emitting device of the present invention is characterized by including the above-mentioned wavelength conversion member and a light source for irradiating the wavelength conversion member with excitation light of phosphor powder.
本発明の発光装置は、蛍光体層が光源と対向するように、波長変換部材が配置されていることが好ましい。特に、蛍光体層が、直接または接着剤層を介して光源と接していることが好ましい。例えば、光源であるLED等の半導体素子には、光出射面にサファイア等の熱伝導性に優れる部材が使用される。そのため、蛍光体層を、直接または接着剤層を介して光源と接するように配置すると、蛍光体層で発生した熱が光源の構成部材を伝導して、外部に効率よく放出することができる。 In the light emitting device of the present invention, it is preferable that the wavelength conversion member is arranged so that the phosphor layer faces the light source. In particular, it is preferable that the phosphor layer is in contact with the light source directly or via an adhesive layer. For example, a semiconductor element such as an LED, which is a light source, uses a member having excellent thermal conductivity such as sapphire on the light emitting surface. Therefore, when the phosphor layer is arranged so as to be in contact with the light source directly or via the adhesive layer, the heat generated in the phosphor layer can be efficiently released to the outside by conducting the constituent members of the light source.
本発明によれば、点灯後に光束値の低下や、色度の変化が生じにくい波長変換部材と、それを用いた発光装置を提案することができる。 According to the present invention, it is possible to propose a wavelength conversion member in which a decrease in luminous flux value and a change in chromaticity are unlikely to occur after lighting, and a light emitting device using the same.
以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Further, in each drawing, members having substantially the same function may be referred to by the same reference numerals.
図1は本発明の一実施形態に係る波長変換部材を示す模式的断面図である。波長変換部材10は、基材層1と蛍光体層2を備えている。蛍光体層2は基材層1の一方の主面に形成されている。基材層1はガラス粉末1aの焼結体からなる。一方、蛍光体層2はガラス粉末2aと蛍光体粉末2bの焼結体からなる。波長変換部材10の平面形状は特に限定されず、例えば正方形等の矩形や円形である。以下、構成要素ごとに詳細に説明する。 FIG. 1 is a schematic cross-sectional view showing a wavelength conversion member according to an embodiment of the present invention. The wavelength conversion member 10 includes a base material layer 1 and a phosphor layer 2. The phosphor layer 2 is formed on one main surface of the base material layer 1. The base material layer 1 is made of a sintered body of glass powder 1a. On the other hand, the phosphor layer 2 is composed of a sintered body of glass powder 2a and phosphor powder 2b. The planar shape of the wavelength conversion member 10 is not particularly limited, and is, for example, a rectangle such as a square or a circle. Hereinafter, each component will be described in detail.
(基材層)
基材層1を構成するガラス粉末1aとしては、ホウ珪酸塩系ガラス、リン酸塩系ガラス、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスなどを用いることができる。ホウ珪酸塩系ガラスとしては、質量%で、SiO2 30〜85%、Al2O3 0〜30%、B2O3 0〜50%、Li2O+Na2O+K2O 0〜10%、及び、MgO+CaO+SrO+BaO 0〜50%を含有するものが挙げられる。スズリン酸塩系ガラスとしては、モル%で、SnO 30〜90%、P2O5 1〜70%を含有するものが挙げられる。テルライト系ガラスとしては、モル%で、TeO2 50%以上、ZnO 0〜45%、RO(RはCa、Sr及びBaから選択される少なくとも1種)0〜50%、及び、La2O3+Gd2O3+Y2O3 0〜50%を含有するものが挙げられる。
(Base material layer)
As the glass powder 1a constituting the base material layer 1, borosilicate glass, phosphate-based glass, tin phosphate-based glass, bismuthate-based glass, tellurite-based glass and the like can be used. The borosilicate-based glass, in mass%, SiO 2 30~85%, Al 2 O 3 0~30%, B 2 O 3 0~50%, Li 2 O + Na 2 O + K 2 O 0~10%, and , MgO + CaO + SrO + BaO 0 to 50%. The Suzurin salt-based glass, in mol%, SnO 30 to 90%, include those containing P 2 O 5 1~70%. The tellurite glass, in mol%, TeO 2 50% or more, ZnO 0 to 45%, RO (at least one R is selected Ca, Sr and Ba) 0 to 50%, and, La 2 O 3 Those containing + Gd 2 O 3 + Y 2 O 30 to 50% can be mentioned.
ガラス粉末1aの軟化点は、250℃〜1000℃であることが好ましく、300℃〜950℃であることがより好ましく、500℃〜900℃の範囲内であることがさらに好ましい。ガラス粉末1aの軟化点が低すぎると、波長変換部材10の機械的強度や化学的耐久性が低下する場合がある。また、ガラス粉末1a自体の耐熱性が低いため、蛍光体から発生する熱により軟化変形するおそれがある。一方、ガラス粉末1aの軟化点が高すぎると、後述する製造時の焼成工程において、蛍光体粉末2bが劣化して、波長変換部材10の発光強度が低下する場合がある。なお、波長変換部材10の化学的安定性及び機械的強度を高める観点からはガラス粉末1aの軟化点は500℃以上、600℃以上、700℃以上、800℃以上、特に850℃以上であることが好ましい。そのようなガラスとしては、ホウ珪酸塩系ガラスが挙げられる。ただし、ガラス粉末1aの軟化点が高くなると、焼成温度も高くなり、結果として製造コストが高くなる傾向がある。よって、波長変換部材10を安価に製造する観点からは、ガラス粉末1aの軟化点は550℃以下、530℃以下、500℃以下、480℃以下、特に460℃以下であることが好ましい。そのようなガラスとしては、スズリン酸塩系ガラス、ビスマス酸塩系ガラス、テルライト系ガラスが挙げられる。 The softening point of the glass powder 1a is preferably 250 ° C. to 1000 ° C., more preferably 300 ° C. to 950 ° C., and even more preferably in the range of 500 ° C. to 900 ° C. If the softening point of the glass powder 1a is too low, the mechanical strength and chemical durability of the wavelength conversion member 10 may decrease. Further, since the heat resistance of the glass powder 1a itself is low, it may be softened and deformed by the heat generated from the phosphor. On the other hand, if the softening point of the glass powder 1a is too high, the phosphor powder 2b may deteriorate in the firing step at the time of manufacturing described later, and the emission intensity of the wavelength conversion member 10 may decrease. From the viewpoint of enhancing the chemical stability and mechanical strength of the wavelength conversion member 10, the softening point of the glass powder 1a is 500 ° C. or higher, 600 ° C. or higher, 700 ° C. or higher, 800 ° C. or higher, particularly 850 ° C. or higher. Is preferable. Examples of such glass include borosilicate-based glass. However, when the softening point of the glass powder 1a becomes high, the firing temperature also becomes high, and as a result, the manufacturing cost tends to be high. Therefore, from the viewpoint of inexpensively manufacturing the wavelength conversion member 10, the softening point of the glass powder 1a is preferably 550 ° C or lower, 530 ° C or lower, 500 ° C or lower, 480 ° C or lower, and particularly preferably 460 ° C or lower. Examples of such glass include tin phosphate-based glass, bismuthate-based glass, and tellurite-based glass.
基材層1の厚みは、45〜900μm、50〜500μm、70〜300μm、特に90〜200μmであることが好ましい。基材層1の厚みが小さすぎると、波長変換部材10の機械的強度が低下しやすくなる。一方、基材層1の厚みが大きすぎると、基材層1の内部で励起光や蛍光が過剰に吸収または散乱されて、波長変換部材10の発光強度が低下しやすくなる。 The thickness of the base material layer 1 is preferably 45 to 900 μm, 50 to 500 μm, 70 to 300 μm, and particularly preferably 90 to 200 μm. If the thickness of the base material layer 1 is too small, the mechanical strength of the wavelength conversion member 10 tends to decrease. On the other hand, if the thickness of the base material layer 1 is too large, excitation light and fluorescence are excessively absorbed or scattered inside the base material layer 1, and the emission intensity of the wavelength conversion member 10 tends to decrease.
基材層1の厚みは蛍光体層2の厚みよりも大きいことが好ましい。具体的には、基材層1の厚みが、蛍光体層2の厚みの1.1〜10倍、1.2〜7倍、1.5〜6倍、1.8〜5倍、特に3〜4倍であることが好ましい。このようにすれば、波長変換部材10の機械的強度を維持しつつ、容易に蛍光体層2を薄型化し、蛍光体濃度の向上を図ることができる。 The thickness of the base material layer 1 is preferably larger than the thickness of the phosphor layer 2. Specifically, the thickness of the base material layer 1 is 1.1 to 10 times, 1.2 to 7 times, 1.5 to 6 times, 1.8 to 5 times, particularly 3 times the thickness of the phosphor layer 2. It is preferably ~ 4 times. By doing so, the phosphor layer 2 can be easily thinned and the phosphor concentration can be improved while maintaining the mechanical strength of the wavelength conversion member 10.
本実施形態では、基材層1はガラス粉末1aのみの粉末焼結体からなるが、これに限定されない。例えば、基材層1には、熱膨張係数調整や光散乱効果を得ることを目的としてフィラー粉末等の他の無機粉末を含有させてもよい。このようにすれば、基材層1と蛍光体層2の熱膨張係数を容易に整合させることができ、熱膨張係数差に起因する波長変換部材10の反りやクラック等の発生を抑制することができる。また、フィラー粉末の光散乱効果により、波長変換部材10の発光強度を向上させることができる。さらに、高熱伝導率のフィラー粉末を含有させることで、波長変換部材10の放熱効率を向上させることができる。フィラー粉末としては、MgO、Al2O3、BN、AlN等が挙げられる。なかでも、MgO、Al2O3、BNは可視域における透過率に優れるため好ましい。 In the present embodiment, the base material layer 1 is made of a powder sintered body containing only glass powder 1a, but is not limited thereto. For example, the base material layer 1 may contain other inorganic powder such as filler powder for the purpose of adjusting the coefficient of thermal expansion and obtaining a light scattering effect. By doing so, the thermal expansion coefficients of the base material layer 1 and the phosphor layer 2 can be easily matched, and the occurrence of warpage, cracks, etc. of the wavelength conversion member 10 due to the difference in thermal expansion coefficients can be suppressed. Can be done. Further, the light scattering effect of the filler powder can improve the light emission intensity of the wavelength conversion member 10. Further, by containing the filler powder having high thermal conductivity, the heat dissipation efficiency of the wavelength conversion member 10 can be improved. The filler powder, MgO, Al 2 O 3, BN, AlN , and the like. Of these, MgO, Al 2 O 3 , and BN are preferable because they have excellent transmittance in the visible region.
(蛍光体層)
蛍光体層2を構成するガラス粉末2aとしては、上記のガラス粉末1aとして例示したものと同様のものを使用することができる。ここで、基材層1におけるガラス粉末1aと蛍光体層2におけるガラス粉末2aの屈折率差が小さいことが好ましい。例えば、ガラス粉末1aとガラス粉末2aの屈折率(nd)の差が0.2以下、0.1以下、特に0.05以下であることが好ましく、両者の屈折率が同じであることが最も好ましい。このようにすれば、ガラス粉末1aの焼結体部分とガラス粉末2aの焼結体部分の屈折率差を小さくすることができるため、両者の界面における反射ロスを低減することができる。その結果、波長変換部材10の発光強度を向上させることができる。
(Fluorescent layer)
As the glass powder 2a constituting the phosphor layer 2, the same glass powder as that exemplified as the above glass powder 1a can be used. Here, it is preferable that the difference in refractive index between the glass powder 1a in the base material layer 1 and the glass powder 2a in the phosphor layer 2 is small. For example, the difference in refractive index (nd) between the glass powder 1a and the glass powder 2a is preferably 0.2 or less, 0.1 or less, particularly 0.05 or less, and the refractive index of both is the same. preferable. By doing so, the difference in refractive index between the sintered body portion of the glass powder 1a and the sintered body portion of the glass powder 2a can be reduced, so that the reflection loss at the interface between the two can be reduced. As a result, the emission intensity of the wavelength conversion member 10 can be improved.
また後述するように、基材層1と蛍光体層2は、基本的に各層の原料となるグリーンシートを積層して同時焼成することに作製されるため、ガラス粉末1aとガラス粉末2aの軟化点の差は小さいことが好ましい。例えば、ガラス粉末1aとガラス粉末2aの軟化点の差は100℃以下、50℃以下、30℃以下、特に10℃以下であることが好ましく、両者の軟化点が同じであることが最も好ましい。 Further, as will be described later, since the base material layer 1 and the phosphor layer 2 are basically produced by laminating green sheets as raw materials for each layer and firing them at the same time, the glass powder 1a and the glass powder 2a are softened. It is preferable that the difference between the points is small. For example, the difference between the softening points of the glass powder 1a and the glass powder 2a is preferably 100 ° C. or lower, 50 ° C. or lower, 30 ° C. or lower, particularly 10 ° C. or lower, and most preferably the softening points of both are the same.
以上の観点から、ガラス粉末1aとガラス粉末2aは実質的に同一の組成を有することが好ましい。なお、「実質的に同一の組成を有する」とは、ガラス組成に意図的に含有させる成分に関して同一の組成を有することを意味し、不純物として不可避的に(具体的には0.1モル%未満のレベルで)混入する成分については考慮しない。 From the above viewpoint, it is preferable that the glass powder 1a and the glass powder 2a have substantially the same composition. In addition, "having substantially the same composition" means having the same composition with respect to the components intentionally contained in the glass composition, and inevitably as an impurity (specifically, 0.1 mol%). No consideration is given to mixed components (at levels below).
蛍光体粉末2bは、励起光の入射により蛍光を出射するものであれば、特に限定されるものではない。蛍光体粉末2bの具体例としては、例えば、酸化物蛍光体粉末、窒化物蛍光体粉末、酸窒化物蛍光体粉末、塩化物蛍光体粉末、酸塩化物蛍光体粉末、硫化物蛍光体粉末、酸硫化物蛍光体粉末、ハロゲン化物蛍光体粉末、カルコゲン化物蛍光体粉末、アルミン酸塩蛍光体粉末、ハロリン酸塩化物蛍光体粉末及びガーネット系化合物蛍光体粉末から選ばれた1種以上等が挙げられる。なかでも、ガーネット系蛍光体は耐熱性に優れるため好ましい。励起光として青色光を用いる場合、例えば、緑色光、黄色光または赤色光を蛍光として出射する蛍光体粉末を用いることができる。 The phosphor powder 2b is not particularly limited as long as it emits fluorescence by the incident of excitation light. Specific examples of the phosphor powder 2b include oxide phosphor powder, nitride phosphor powder, oxynitride phosphor powder, chloride phosphor powder, acidified phosphor powder, sulfide phosphor powder, and the like. One or more selected from acid sulfide phosphor powder, halide phosphor powder, chalcogenide phosphor powder, aluminate phosphor powder, halophosphate phosphor powder and garnet compound phosphor powder, etc. Be done. Of these, garnet-based phosphors are preferable because they have excellent heat resistance. When blue light is used as the excitation light, for example, a phosphor powder that emits green light, yellow light, or red light as fluorescence can be used.
蛍光体粉末2bの平均粒子径は1〜50μmであることが好ましく、5〜25μmであることがより好ましい。蛍光体粉末2bの平均粒子径が小さすぎると、発光強度が低下する場合がある。一方、蛍光体粉末2bの平均粒子径が大きすぎると、発光色が不均一になる場合がある。また、蛍光体層2の薄型化が困難になる傾向がある。 The average particle size of the phosphor powder 2b is preferably 1 to 50 μm, more preferably 5 to 25 μm. If the average particle size of the phosphor powder 2b is too small, the emission intensity may decrease. On the other hand, if the average particle size of the phosphor powder 2b is too large, the emission color may become non-uniform. In addition, it tends to be difficult to reduce the thickness of the phosphor layer 2.
蛍光体層2中における蛍光体粉末2bとして、平均粒子径が異なる複数の蛍光体粉末を含有させてもよい。このようにすれば、蛍光体層2中における蛍光体粉末2bの充填率が向上し、蛍光体粉末2b間の接地点が増加することで、熱伝導経路が構築されやすくなる。その結果、波長変換部材10の放熱効率を向上させることができる。 As the phosphor powder 2b in the phosphor layer 2, a plurality of phosphor powders having different average particle diameters may be contained. By doing so, the filling rate of the phosphor powder 2b in the phosphor layer 2 is improved, and the number of grounding points between the phosphor powders 2b is increased, so that the heat conduction path can be easily constructed. As a result, the heat dissipation efficiency of the wavelength conversion member 10 can be improved.
蛍光体層2中における蛍光体粉末2bの含有量(充填率)は、1〜80体積%、10〜78体積%、20〜76体積%、30〜74体積%、特に40〜72体積%であることが好ましい。蛍光体粉末2bの含有量が少なすぎると、所望の発光色を得るために蛍光体層2の厚みを厚くする必要があり、その結果、蛍光体層2の内部散乱が増加することで、光取り出し効率が低下する場合がある。一方、蛍光体粉末2bの含有量が多すぎると、蛍光体層2の緻密性が低下しやすくなる。その結果、蛍光体層2における気孔が多くなり、内部散乱が増加することで、光取り出し効率が低下する場合がある。 The content (filling rate) of the phosphor powder 2b in the phosphor layer 2 is 1 to 80% by volume, 10 to 78% by volume, 20 to 76% by volume, 30 to 74% by volume, and particularly 40 to 72% by volume. It is preferable to have. If the content of the phosphor powder 2b is too small, it is necessary to increase the thickness of the phosphor layer 2 in order to obtain a desired emission color, and as a result, the internal scattering of the phosphor layer 2 increases, resulting in light. Extraction efficiency may decrease. On the other hand, if the content of the phosphor powder 2b is too large, the density of the phosphor layer 2 tends to decrease. As a result, the number of pores in the phosphor layer 2 increases and the internal scattering increases, which may reduce the light extraction efficiency.
蛍光体層2の厚みは5〜100μm、10〜90μm、15〜80μm、特に20〜70μmであることが好ましい。蛍光体層2の厚みが小さすぎると、十分な発光強度が得にくくなる場合がある。あるいは、所望の発光色を得るために蛍光体粉末2bの含有量を多くする必要があり、蛍光体層2の緻密性が低下しやすくなる。一方、蛍光体層2の厚みが大きすぎると、蛍光体層2における光の散乱や吸収が大きくなりすぎ、蛍光や励起光の出射効率が低くなってしまう場合がある。 The thickness of the phosphor layer 2 is preferably 5 to 100 μm, 10 to 90 μm, 15 to 80 μm, and particularly preferably 20 to 70 μm. If the thickness of the phosphor layer 2 is too small, it may be difficult to obtain sufficient emission intensity. Alternatively, it is necessary to increase the content of the phosphor powder 2b in order to obtain a desired emission color, and the density of the phosphor layer 2 tends to decrease. On the other hand, if the thickness of the phosphor layer 2 is too large, the scattering and absorption of light in the phosphor layer 2 may become too large, and the emission efficiency of fluorescence and excitation light may be lowered.
本実施形態では、蛍光体層2はガラス粉末2a及び蛍光体粉末2bのみの粉末焼結体からなるが、これに限定されない。例えば、基材層1と同様、蛍光体層2には、熱膨張係数調整や光散乱効果を得ることを目的としてフィラー粉末等の他の無機粉末を含有させてもよい。このようにすれば、基材層1と蛍光体層2の熱膨張係数を容易に整合させることができ、熱膨張係数差に起因する波長変換部材10の反りやクラック等の発生を抑制することができる。また、フィラー粉末の光散乱効果により、波長変換部材10の発光強度を向上させることができる。さらに、高熱伝導率のフィラー粉末を含有させることで、波長変換部材10の放熱効率を向上させることができる。なお、基材層1及び蛍光体層2のいずれか一方のみにフィラー粉末を含有させてもよいし、両方にフィラー粉末を含有させてもよい。 In the present embodiment, the phosphor layer 2 is composed of a powder sintered body containing only glass powder 2a and phosphor powder 2b, but is not limited thereto. For example, like the base material layer 1, the phosphor layer 2 may contain other inorganic powders such as filler powder for the purpose of adjusting the coefficient of thermal expansion and obtaining a light scattering effect. By doing so, the thermal expansion coefficients of the base material layer 1 and the phosphor layer 2 can be easily matched, and the occurrence of warpage, cracks, etc. of the wavelength conversion member 10 due to the difference in thermal expansion coefficients can be suppressed. Can be done. Further, the light scattering effect of the filler powder can improve the light emission intensity of the wavelength conversion member 10. Further, by containing the filler powder having high thermal conductivity, the heat dissipation efficiency of the wavelength conversion member 10 can be improved. It should be noted that only one of the base material layer 1 and the phosphor layer 2 may contain the filler powder, or both of them may contain the filler powder.
(波長変換部材の製造方法)
図2は、本発明の一実施形態に係る波長変換部材の製造方法を示す模式図である。
まず工程(a)で、ガラス粉末1aを含む基材層用グリーンシート1’、及び、ガラス粉末2a及び蛍光体粉末2bを含む蛍光体層用グリーンシート2’を以下のようにして準備する。
(Manufacturing method of wavelength conversion member)
FIG. 2 is a schematic view showing a method of manufacturing a wavelength conversion member according to an embodiment of the present invention.
First, in the step (a), a green sheet 1'for a base material layer containing the glass powder 1a and a green sheet 2'for a phosphor layer containing the glass powder 2a and the phosphor powder 2b are prepared as follows.
ガラス粉末1aにバインダー樹脂や溶剤等の有機成分を添加し、混練することによりスラリーを作製する。作製したスラリーを支持基材上に塗布し、支持基材と所定間隔を空けて設置されたドクターブレードをスラリーに対して相対的に移動させることにより、基材層用グリーンシート1’を作製する(ドクターブレード法)。上記支持基材としては、例えば、ポリエチレンテレフタレート等の樹脂フィルムを用いることができる。 An organic component such as a binder resin or a solvent is added to the glass powder 1a and kneaded to prepare a slurry. The prepared slurry is applied onto the supporting base material, and the doctor blades installed at predetermined intervals from the supporting base material are moved relative to the slurry to prepare a green sheet 1'for the base material layer. (Doctor blade method). As the supporting base material, for example, a resin film such as polyethylene terephthalate can be used.
また、ガラス粉末2a及び蛍光体粉末2bの混合粉末にバインダー樹脂や溶剤等の有機成分を添加し、混練することによりスラリーを作製する。得られたスラリーを用いて、上記と同様のドクターブレード法により蛍光体層用グリーンシート2’を作製する。 Further, an organic component such as a binder resin or a solvent is added to the mixed powder of the glass powder 2a and the phosphor powder 2b and kneaded to prepare a slurry. Using the obtained slurry, a green sheet 2'for a phosphor layer is prepared by the same doctor blade method as described above.
次に工程(b)で、複数の基材層用グリーンシート1’の間に蛍光体層用グリーンシート2’を挟持することによりグリーンシート積層体20’を得る。ここで、各層の密着性を高めるため、グリーンシートを積層した後、プレス機により加圧することが好ましい。なお本実施形態では、2枚の基材層用グリーンシート1’の間に1枚の蛍光体層用グリーンシート2’を挟持することによりグリーンシート積層体20’を作製しているが、これに限定されない。例えば各層の厚みを調整するため、基材層用グリーンシート1’や蛍光体層用グリーンシート2’がそれぞれ複数枚のグリーンシートから構成されていてもよい。 Next, in the step (b), the green sheet laminate 20'is obtained by sandwiching the fluorescent material layer green sheet 2'between the plurality of base material layer green sheets 1'. Here, in order to improve the adhesion of each layer, it is preferable to pressurize with a press after laminating the green sheets. In the present embodiment, one green sheet 2'for the phosphor layer is sandwiched between two green sheets 1'for the base material layer to produce the green sheet laminate 20'. Not limited to. For example, in order to adjust the thickness of each layer, the green sheet 1'for the base material layer and the green sheet 2'for the phosphor layer may each be composed of a plurality of green sheets.
続いて工程(c)で、グリーンシート積層体20’を焼成することにより、ガラス粉末1aの焼結体からなる2つの基材層1の間に、ガラス粉末2a及び蛍光体粉末2bの焼結体からなる蛍光体層2が挟持されてなる焼結積層体20を得る。一般にグリーンシートは焼成時に大きく収縮するため、材料の異なる2種類のグリーンシートを積層して焼成すると、各材料の熱膨張係数差に起因する収縮量の違いが原因となり、反りやクラックが発生しやすい。一方、本実施形態では、2枚の基材層用グリーンシート1’の間に蛍光体層用グリーンシート2’を挟持した状態で焼成することにより、部材全体での応力のバランスが取れるため、焼成時における反りやクラックが発生しにくくなる。 Subsequently, in the step (c), by firing the green sheet laminate 20', the glass powder 2a and the phosphor powder 2b are sintered between the two base material layers 1 made of the sintered body of the glass powder 1a. A sintered laminated body 20 in which a phosphor layer 2 made of a body is sandwiched is obtained. In general, green sheets shrink significantly during firing, so when two types of green sheets made of different materials are laminated and fired, warpage and cracks occur due to the difference in the amount of shrinkage due to the difference in the coefficient of thermal expansion of each material. Cheap. On the other hand, in the present embodiment, the stress of the entire member can be balanced by firing with the green sheet 2'for the phosphor layer sandwiched between the two green sheets 1'for the base material layer. Warpage and cracks are less likely to occur during firing.
焼成温度はガラス粉末1a及びガラス粉末2aの軟化点±150℃以内であることが好ましく、ガラス粉末1a及びガラス粉末2aの軟化点±100℃以内であることがより好ましい。焼成温度が低すぎると、ガラス粉末1a及びガラス粉末2aが軟化流動せず、緻密な焼結体が得られない場合がある。一方、焼成温度が高すぎると、蛍光体粉末2bが劣化して発光強度が低下するおそれがある。 The firing temperature is preferably within ± 150 ° C., which is the softening point of the glass powder 1a and 2a, and more preferably within ± 100 ° C., which is the softening point of the glass powder 1a and the glass powder 2a. If the firing temperature is too low, the glass powder 1a and the glass powder 2a may not soften and flow, and a dense sintered body may not be obtained. On the other hand, if the firing temperature is too high, the phosphor powder 2b may deteriorate and the emission intensity may decrease.
最後に工程(d)で、焼結積層体20における基材層1のうちの一方を除去することにより、波長変換部材10を得る。基材層1は、例えば研磨や研削により除去することができる。焼成後の焼結積層体20において、基材層1と蛍光体層2の界面で両者の熱膨張係数差に起因する応力が残存している可能性があるが、焼結積層体20自体の機械的強度が比較的高いため、基材層1のうちの一方を研削等の後加工により除去しても、それに起因して反りやクラック等は発生しくにい。 Finally, in the step (d), one of the base material layers 1 in the sintered laminate 20 is removed to obtain the wavelength conversion member 10. The base material layer 1 can be removed by, for example, polishing or grinding. In the sintered laminate 20 after firing, there is a possibility that stress due to the difference in thermal expansion coefficient between the base material layer 1 and the phosphor layer 2 remains, but the sintered laminate 20 itself Since the mechanical strength is relatively high, even if one of the base material layers 1 is removed by post-processing such as grinding, warpage or cracks are unlikely to occur due to the removal.
なお、波長変換部材10全体の厚みを調整するため、あるいは波長変換部材10の表面粗さを調整するため、除去しないほうの基材層1に対しても研磨や研削の加工を施してもよい。例えば、除去しないほうの基材層1が光出射面となる場合、基材層1の表面粗さは0.01〜0.25μm、0.03〜0.24μm、0.05〜0.23μm、特に0.06〜0.22μmであることが好ましい。このようにすれば、励起光及び蛍光の光取出し効率が向上しやすくなる。 In addition, in order to adjust the thickness of the entire wavelength conversion member 10 or to adjust the surface roughness of the wavelength conversion member 10, the base material layer 1 that is not removed may also be polished or ground. .. For example, when the base material layer 1 that is not removed serves as a light emitting surface, the surface roughness of the base material layer 1 is 0.01 to 0.25 μm, 0.03 to 0.24 μm, and 0.05 to 0.23 μm. In particular, it is preferably 0.06 to 0.22 μm. In this way, the light extraction efficiency of the excitation light and the fluorescence can be easily improved.
(発光装置)
図3は、本発明の一実施形態に係る波長変換部材を用いた発光装置を示す模式的断面図である。
(Light emitting device)
FIG. 3 is a schematic cross-sectional view showing a light emitting device using the wavelength conversion member according to the embodiment of the present invention.
発光装置100は、基板3、光源4、波長変換部材10及び反射部材5を備えている。具体的には、基板3の上に光源4及び波長変換部材10が順に設置されており、光源4及び波長変換部材10の周囲を反射部材5が覆っている。このような構成とすることにより、光源4で発生した励起光が、波長変換部材10における蛍光体層2で波長変換されて蛍光となり、波長変換されなかった励起光とともに基材層1を通って外部に放出される。 The light emitting device 100 includes a substrate 3, a light source 4, a wavelength conversion member 10, and a reflection member 5. Specifically, the light source 4 and the wavelength conversion member 10 are sequentially installed on the substrate 3, and the reflection member 5 covers the periphery of the light source 4 and the wavelength conversion member 10. With such a configuration, the excitation light generated by the light source 4 is wavelength-converted by the phosphor layer 2 in the wavelength conversion member 10 to become fluorescence, and passes through the base material layer 1 together with the excitation light not wavelength-converted. It is released to the outside.
波長変換部材10は、蛍光体層2側が光源4と対向するように設置されている。具体的には、波長変換部材10は、蛍光体層2が光源4に接するように設置されている。あるいは、蛍光体層2が図示しない接着剤層を介して光源と接するように設置されていてもよい。光源4としては、通常LEDやLD等の半導体素子が使用されるが、当該半導体素子の光出射面にサファイア等の熱伝導性に優れる部材が使用されるため、蛍光体層2を光源4と直接または接着剤層を介して接するように配置すると、蛍光体層2で発生した熱が光源4の構成部材を伝導して、外部に効率よく放出することができる。 The wavelength conversion member 10 is installed so that the phosphor layer 2 side faces the light source 4. Specifically, the wavelength conversion member 10 is installed so that the phosphor layer 2 is in contact with the light source 4. Alternatively, the phosphor layer 2 may be installed so as to be in contact with the light source via an adhesive layer (not shown). A semiconductor element such as an LED or LD is usually used as the light source 4, but since a member having excellent thermal conductivity such as sapphire is used for the light emitting surface of the semiconductor element, the phosphor layer 2 is referred to as the light source 4. When arranged so as to be in contact with each other directly or through the adhesive layer, the heat generated in the phosphor layer 2 can be efficiently discharged to the outside by conducting the constituent members of the light source 4.
基板3としては、例えば、光源4から発せられた光線を効率良く反射させることができる白色のLTCC(Low Temperature Co-fired Ceramics)などが用いられる。具体的には、酸化アルミニウムや酸化チタン、酸化ニオブ等の無機粉末とガラス粉末との焼結体が挙げられる。 As the substrate 3, for example, white LTCC (Low Temperature Co-fired Ceramics) that can efficiently reflect the light rays emitted from the light source 4 is used. Specific examples thereof include a sintered body of glass powder and an inorganic powder such as aluminum oxide, titanium oxide or niobium oxide.
また、基板3としては、光源4から発せられた熱を効率よく放出させるため、熱伝導率が高い材料を使用してもよい。特に耐熱性、耐候性に優れることからセラミックスからなる基板等を用いることが好ましい。具体的には、酸化アルミニウムや窒化アルミニウム等のセラミックス基板が挙げられる。 Further, as the substrate 3, a material having high thermal conductivity may be used in order to efficiently release the heat generated from the light source 4. In particular, it is preferable to use a substrate made of ceramics or the like because it is excellent in heat resistance and weather resistance. Specific examples thereof include ceramic substrates such as aluminum oxide and aluminum nitride.
反射部材5は、光源4及び波長変換部材10から漏れ出た光を反射するため設けられている。反射部材5は、例えば酸化チタン等の白色顔料を含む樹脂(高反射樹脂)から形成されている。 The reflection member 5 is provided to reflect the light leaked from the light source 4 and the wavelength conversion member 10. The reflective member 5 is formed of a resin (highly reflective resin) containing a white pigment such as titanium oxide.
以下、本発明を実施例に基づいて詳細に説明するが、本発明は当該実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.
(実施例)
(i)ガラス粉末の作製
モル%で、SiO2 61%、Al2O3 4%、B2O3 5%、CaO 16%、BaO 12%、ZnO 2%のガラス組成となるように原料を調合し、白金坩堝を用いて1200〜1700℃で1〜2時間溶融してガラス化した。溶融ガラスを一対の冷却ローラー間に流し出すことによりフィルム状に成形した。得られたフィルム状ガラス成形体をボールミルで粉砕した後、分級して平均粒子径D50が2.5μmのガラス粉末(軟化点850℃、屈折率(nd)1.58)を得た。なお、軟化点はファイバーエロンゲーション法を用い、粘度が107.6dPa・sとなる温度を採用した。
(Example)
(I) in Preparation mole% of the glass powder, SiO 2 61%, Al 2 O 3 4%, B 2 O 3 5%, CaO 16%, BaO 12%, the raw material so that ZnO 2% of the glass composition The mixture was prepared and melted at 1200 to 1700 ° C. for 1 to 2 hours using a platinum crucible to vitrify. The molten glass was formed into a film by flowing it between a pair of cooling rollers. The obtained film-shaped glass molded product was pulverized with a ball mill and then classified to obtain a glass powder having an average particle diameter D 50 of 2.5 μm (softening point 850 ° C., refractive index (nd) 1.58). As the softening point, the fiber elongation method was used, and a temperature at which the viscosity was 107.6 dPa · s was adopted.
(ii)基材層用グリーンシートの作製
ガラス粉末に対し、バインダー樹脂(共栄社化学株式会社製、オリコックス)と可塑剤(互応化学工業株式会社製、DOA)、分散剤(共栄社化学株式会社製、フローレンG−700)、有機溶剤(メチルエチルケトン)を添加して混練することによりスラリー状の混合物を得た。得られたスラリー状混合物をドクターブレード法によりシート状に成形し、室温で乾燥させることにより厚み220μmの基材層用グリーンシートを得た。
(Ii) Preparation of green sheet for base material layer For glass powder, binder resin (manufactured by Kyoeisha Chemical Co., Ltd., Oricox), plasticizer (manufactured by Kyoeisha Chemical Co., Ltd., DOA), dispersant (manufactured by Kyoeisha Chemical Co., Ltd.) , Floren G-700) and an organic solvent (methyl ethyl ketone) were added and kneaded to obtain a slurry-like mixture. The obtained slurry-like mixture was formed into a sheet by the doctor blade method and dried at room temperature to obtain a green sheet for a base material layer having a thickness of 220 μm.
(iii)蛍光体層用グリーンシートの作製
ガラス粉末に対し、蛍光体粉末(Y3Al5O12:Ce、平均粒子径D50=15μm)を混合して、バインダー樹脂(共栄社化学株式会社製、オリコックス)と可塑剤(互応化学工業株式会社製、DOA)、分散剤(共栄社化学株式会社製、フローレンG−700)、有機溶剤(メチルエチルケトン)を添加して混練することによりスラリー状の混合物を得た。得られたスラリー状混合物をドクターブレード法によりシート状に成形し、室温で乾燥させることにより厚み120μmの蛍光体層用のグリーンシートを得た。なお、蛍光体粉末の添加量は、ガラス粉末と蛍光体粉末の合量に対して60体積%となるよう(下記の特性評価試験にて、励起光源を照射した際に白色光が得られる蛍光体濃度)に調整した。
(Iii) Preparation of green sheet for phosphor layer A binder resin (manufactured by Kyoeisha Chemical Co., Ltd.) is mixed with a glass powder by mixing a phosphor powder (Y 3 Al 5 O 12 : Ce, average particle size D 50 = 15 μm). , Oricox), plasticizer (manufactured by Kyoeisha Chemical Co., Ltd., DOA), dispersant (manufactured by Kyoeisha Chemical Co., Ltd., Floren G-700), and organic solvent (methyl ethyl ketone) are added and kneaded to form a slurry mixture. Got The obtained slurry-like mixture was molded into a sheet by the doctor blade method and dried at room temperature to obtain a green sheet for a phosphor layer having a thickness of 120 μm. The amount of the phosphor powder added should be 60% by volume with respect to the total amount of the glass powder and the phosphor powder (in the following characteristic evaluation test, fluorescence obtained by irradiating an excitation light source with white light). Body concentration) was adjusted.
なお、本実施例における「白色光」は以下のように定義される。即ち、CIE 1931 2−deg, x(_)、y(_)、z(_)等色関数からエネルギー分布スペクトルを積分し、三刺激値XYZを求め、この三刺激値XYZより、色度x=X/(X+Y+Z)、色度y=Y/(X+Y+Z)を算出した際に、これらの値がそれぞれ、x=0.33、y=0.33となる色の光を指すこととする。 The "white light" in this embodiment is defined as follows. That is, the energy distribution spectrum is integrated from the CIE 1931 2-deg, x (_), y (_), z (_) color matching functions to obtain the tristimulus value XYZ, and the chromaticity x is obtained from this tristimulus value XYZ. When = X / (X + Y + Z) and chromaticity y = Y / (X + Y + Z) are calculated, it is assumed that these values refer to light of a color such that x = 0.33 and y = 0.33, respectively.
(iv)波長変換部材の作製
基材層用グリーンシートと蛍光体層用グリーンシートを所定のサイズに切断した後、2枚の基材層用グリーンシートの間に蛍光体層用グリーンシートを挟持し、プレス機で熱圧着することによりグリーンシート積層体を得た。グリーンシート積層体を電気炉中にて脱脂処理を施した後、真空ガス置換炉にて、ガラス粉末の軟化点付近で真空焼成を実施した。これにより、ガラス粉末の焼結体からなる2つの基材層の間に、ガラス粉末及び蛍光体粉末の焼結体からなる蛍光体層が挟持されてなる焼結積層体を得た。
(Iv) Preparation of wavelength conversion member After cutting the green sheet for the base material layer and the green sheet for the phosphor layer to a predetermined size, the green sheet for the phosphor layer is sandwiched between the two green sheets for the base material layer. Then, a green sheet laminate was obtained by thermocompression bonding with a press machine. After degreasing the green sheet laminate in an electric furnace, vacuum firing was performed in a vacuum gas replacement furnace near the softening point of the glass powder. As a result, a sintered laminate in which a phosphor layer composed of a sintered body of glass powder and a phosphor powder was sandwiched between two base material layers made of a sintered body of glass powder was obtained.
焼結積層体に対して研削加工を施すことにより、基材層のうちの一方を除去した。残りの基材層と蛍光体層を鏡面状態に仕上げ、これにより、厚み90μmの基材層と、その一方の主面に形成された厚み30μmの蛍光体層を備える波長変換部材を得た。 One of the substrate layers was removed by grinding the sintered laminate. The remaining base material layer and the phosphor layer were finished in a mirror surface state, whereby a wavelength conversion member including a base material layer having a thickness of 90 μm and a phosphor layer having a thickness of 30 μm formed on one of the main surfaces was obtained.
(v)特性評価試験
得られた波長変換部材について、全光束値及び色度の経時変化を以下のようにして測定した。
(V) Characteristic evaluation test For the obtained wavelength conversion member, the changes over time in total luminous flux value and chromaticity were measured as follows.
励起波長450nmのLED光源上に波長変換部材をシリコーン樹脂接着剤により接着し、LED光源及び波長変換部材の外周部を反射部材で覆うことで発光装置を得た。ここで波長変換部材は、蛍光体層側が光源に対向するように配置した。この発光装置に1.0Aの直流電流を印加して光源を点灯した。波長変換部材から発せられる光を積分球内部に取り込んだ後、標準光源によって校正された分光器へ導光し、光のエネルギー分布スペクトルを測定した。得られたスペクトルに標準比視感度を掛け合わせることにより、全光束値を算出した。全光束値について光源の点灯から180秒経過後まで連続的に測定したところ、全光束値の変化率は点灯直後を1としたとき、0.96であった。 A light emitting device was obtained by adhering a wavelength conversion member on an LED light source having an excitation wavelength of 450 nm with a silicone resin adhesive and covering the outer periphery of the LED light source and the wavelength conversion member with a reflection member. Here, the wavelength conversion member is arranged so that the phosphor layer side faces the light source. A direct current of 1.0 A was applied to this light emitting device to turn on the light source. After taking the light emitted from the wavelength conversion member into the integrating sphere, the light was guided to a spectroscope calibrated by a standard light source, and the energy distribution spectrum of the light was measured. The total luminous flux value was calculated by multiplying the obtained spectrum by the standard luminosity function. When the total luminous flux value was continuously measured from the lighting of the light source to 180 seconds later, the rate of change of the total luminous flux value was 0.96 when 1 was set immediately after lighting.
また既述の式から算出される色度xについて、光源の点灯から180秒経過後まで連続的に測定したところ、その変化量(低下量)は0.002であった。 Further, when the chromaticity x calculated from the above-mentioned formula was continuously measured from the lighting of the light source to the lapse of 180 seconds, the amount of change (decrease) was 0.002.
(比較例)
実施例1と同様の方法で厚み320μmの蛍光体層用のグリーンシートを得た。なお、蛍光体粉末の添加量は、ガラス粉末と蛍光体粉末の合量に対して8.5体積%となるよう(特性評価試験にて、励起光源を照射した際に白色光が得られる蛍光体濃度)に調整した。
(Comparison example)
A green sheet for a phosphor layer having a thickness of 320 μm was obtained by the same method as in Example 1. The amount of the phosphor powder added should be 8.5% by volume based on the total amount of the glass powder and the phosphor powder (in the characteristic evaluation test, white light is obtained when the excitation light source is irradiated). Body concentration) was adjusted.
所定のサイズに切断した蛍光体層用グリーンシートを電気炉中にて脱脂処理を施した後、真空ガス置換炉にて、ガラス粉末の軟化点付近で真空焼成を実施した。これにより得られたガラス粉末及び蛍光体粉末の焼結体を、研削加工により鏡面状態にし、厚み120μmの波長変換部材を得た。 The green sheet for the phosphor layer cut to a predetermined size was degreased in an electric furnace, and then vacuum fired in a vacuum gas replacement furnace near the softening point of the glass powder. The sintered body of the glass powder and the phosphor powder thus obtained was ground into a mirror surface state to obtain a wavelength conversion member having a thickness of 120 μm.
得られた波長変換部材について、実施例と同様の特性評価試験を行った。その結果、全光束値の変化率は、点灯直後を1としたとき、0.91であり、色度xの変化量(低下量)は0.012であった。 The obtained wavelength conversion member was subjected to the same characteristic evaluation test as in the examples. As a result, the rate of change of the total luminous flux value was 0.91 when the value immediately after lighting was 1, and the amount of change (decrease) in the chromaticity x was 0.012.
以上より、本発明の波長変換部材は、点灯後における経時的な光束値の低下や色度の変化が少なく、所望の光束値や色度が得やすいことがわかる。 From the above, it can be seen that the wavelength conversion member of the present invention has little decrease in luminous flux value and change in chromaticity with time after lighting, and it is easy to obtain a desired luminous flux value and chromaticity.
1 基材層
1a ガラス粉末
1’ 基材層用グリーンシート
2 蛍光体層
2a ガラス粉末
2b 蛍光体粉末
2’ 蛍光体層用グリーンシート
3 基板
4 光源
5 反射部材
10 波長変換部材
20 焼結積層体
20’ グリーンシート積層体
100 発光装置
1 Base material layer 1a Glass powder 1'Green sheet for base material layer 2 Fluorescent material layer 2a Glass powder 2b Fluorescent material powder 2'Green sheet for phosphor layer 3 Substrate 4 Light source 5 Reflective member 10 Wavelength conversion member 20 Sintered laminate 20'Green Sheet Laminated Body 100 Light Source
Claims (14)
前記基材層の一方の主面に形成されており、ガラス粉末と蛍光体粉末の焼結体からなる蛍光体層と、
を備えることを特徴とする波長変換部材。 A base material layer made of a sintered glass powder and
A phosphor layer formed on one main surface of the base material layer and composed of a sintered body of glass powder and phosphor powder,
A wavelength conversion member comprising.
(a)ガラス粉末を含む基材層用グリーンシート、及び、ガラス粉末及び蛍光体粉末を含む蛍光体層用グリーンシートを準備する工程、
(b)複数の前記基材層用グリーンシートの間に前記蛍光体層用グリーンシートを挟持することによりグリーンシート積層体を得る工程、
(c)前記グリーンシート積層体を焼成することにより、前記ガラス粉末の焼結体からなる2つの基材層の間に、前記ガラス粉末及び蛍光体粉末の焼結体からなる蛍光体層が挟持されてなる焼結積層体を得る工程、及び、
(d)前記焼結積層体における前記基材層のうちの一方を除去する工程、
を備えることを特徴とする波長変換部材の製造方法。 A method for producing the wavelength conversion member according to any one of claims 1 to 10.
(A) A step of preparing a green sheet for a base material layer containing glass powder and a green sheet for a phosphor layer containing glass powder and a phosphor powder.
(B) A step of obtaining a green sheet laminate by sandwiching the fluorescent material layer green sheet between a plurality of the base material layer green sheets.
(C) By firing the green sheet laminate, the phosphor layer made of the sintered body of the glass powder and the phosphor powder is sandwiched between the two base material layers made of the sintered body of the glass powder. The process of obtaining a sintered laminate made of powder, and
(D) A step of removing one of the base material layers in the sintered laminate,
A method for manufacturing a wavelength conversion member, which comprises.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019049503A JP7480472B2 (en) | 2019-03-18 | 2019-03-18 | Wavelength conversion member, manufacturing method thereof, and light emitting device |
PCT/JP2020/009670 WO2020189338A1 (en) | 2019-03-18 | 2020-03-06 | Wavelength conversion member and method for manufacturing same, and light emission device |
TW109108586A TW202046521A (en) | 2019-03-18 | 2020-03-16 | Wavelength conversion member and method for manufacturing same, and light emission device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019049503A JP7480472B2 (en) | 2019-03-18 | 2019-03-18 | Wavelength conversion member, manufacturing method thereof, and light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020154012A true JP2020154012A (en) | 2020-09-24 |
JP7480472B2 JP7480472B2 (en) | 2024-05-10 |
Family
ID=72519286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019049503A Active JP7480472B2 (en) | 2019-03-18 | 2019-03-18 | Wavelength conversion member, manufacturing method thereof, and light emitting device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7480472B2 (en) |
TW (1) | TW202046521A (en) |
WO (1) | WO2020189338A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014031488A (en) * | 2012-07-10 | 2014-02-20 | Nippon Electric Glass Co Ltd | Wavelength conversion member, light-emitting device, and method of manufacturing wavelength conversion member |
CN105470370A (en) * | 2015-11-25 | 2016-04-06 | 南京大学 | Manufacturing method of fluorescent glass light conversion material and application thereof |
WO2019021846A1 (en) * | 2017-07-27 | 2019-01-31 | 日本電気硝子株式会社 | Wavelength conversion member and light emitting device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063930A1 (en) | 2014-10-24 | 2016-04-28 | デンカ株式会社 | Wavelength converter, light-emitting device using same, and production method for wavelength converter |
-
2019
- 2019-03-18 JP JP2019049503A patent/JP7480472B2/en active Active
-
2020
- 2020-03-06 WO PCT/JP2020/009670 patent/WO2020189338A1/en active Application Filing
- 2020-03-16 TW TW109108586A patent/TW202046521A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014031488A (en) * | 2012-07-10 | 2014-02-20 | Nippon Electric Glass Co Ltd | Wavelength conversion member, light-emitting device, and method of manufacturing wavelength conversion member |
CN105470370A (en) * | 2015-11-25 | 2016-04-06 | 南京大学 | Manufacturing method of fluorescent glass light conversion material and application thereof |
WO2019021846A1 (en) * | 2017-07-27 | 2019-01-31 | 日本電気硝子株式会社 | Wavelength conversion member and light emitting device |
Also Published As
Publication number | Publication date |
---|---|
TW202046521A (en) | 2020-12-16 |
JP7480472B2 (en) | 2024-05-10 |
WO2020189338A1 (en) | 2020-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10557614B2 (en) | Projector light source including wavelength conversion member having porous ceramic substrate | |
EP3477187B1 (en) | Wavelength conversion member, and light emitting device using same | |
US20130049575A1 (en) | Phosphor composite member, led device and method for manufacturing phosphor composite member | |
JP7212319B2 (en) | Wavelength conversion member and light emitting device | |
WO2014106923A1 (en) | Glass used in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device | |
TW201817043A (en) | Wavelength conversion member, and light emitting device using same | |
JP5854367B2 (en) | Method for manufacturing phosphor composite member | |
JP2012036367A (en) | Phosphor composite member | |
US20240014357A1 (en) | Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device | |
JP2012052061A (en) | Phosphor composite member | |
WO2012008306A1 (en) | Phosphor composite member, led device and method for manufacturing phosphor composite member | |
JP2019019011A (en) | Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device | |
TWI757521B (en) | Wavelength conversion member and light-emitting device | |
WO2020189338A1 (en) | Wavelength conversion member and method for manufacturing same, and light emission device | |
CN110494776B (en) | Wavelength conversion member and light emitting device | |
WO2020059499A1 (en) | Powder material for wavelength conversion member | |
TW202039389A (en) | Wavelength-conversion member and light-emitting device | |
JP7004235B2 (en) | Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device | |
JP2022063277A (en) | Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device | |
CN117120886A (en) | Wavelength conversion member and light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230125 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230320 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230621 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231101 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20231221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240408 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7480472 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |