JP2012031328A - Method for producing wavelength conversion member, wavelength conversion member and light source - Google Patents

Method for producing wavelength conversion member, wavelength conversion member and light source Download PDF

Info

Publication number
JP2012031328A
JP2012031328A JP2010173451A JP2010173451A JP2012031328A JP 2012031328 A JP2012031328 A JP 2012031328A JP 2010173451 A JP2010173451 A JP 2010173451A JP 2010173451 A JP2010173451 A JP 2010173451A JP 2012031328 A JP2012031328 A JP 2012031328A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
inorganic phosphor
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010173451A
Other languages
Japanese (ja)
Other versions
JP5678509B2 (en
Inventor
Yoshio Umayahara
芳夫 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2010173451A priority Critical patent/JP5678509B2/en
Priority to PCT/JP2011/065566 priority patent/WO2012017776A1/en
Priority to TW100125935A priority patent/TWI591862B/en
Publication of JP2012031328A publication Critical patent/JP2012031328A/en
Application granted granted Critical
Publication of JP5678509B2 publication Critical patent/JP5678509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/063Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction by hot-pressing powders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a wavelength conversion member, which can easily produce a high strength wavelength conversion member.SOLUTION: Preferably a sintered preform 30 is formed by: forming a compact containing an inorganic phosphor and glass powder but not containing a binder; and sintering the compact under reduced-pressure atmosphere. In this case, voids in the sintered preform 30 can be reduced, thereby producing the higher strength wavelength conversion member. The shape of the wavelength conversion member is not particularly limited. Also the wavelength conversion member may be in the form of a plate or rod. Specifically, the wavelength conversion member can be a plate form whose dimensional ratio of length to thickness is 100:1 or larger, for example.

Description

本発明は、波長変換部材の製造方法、その方法により製造された波長変換部材及びそれを備える光源に関する。特に、本発明は、ガラス母材中に無機蛍光体粉末が分散している波長変換部材を製造する方法、その方法により製造された波長変換部材及びそれを備える光源に関する。   The present invention relates to a method for manufacturing a wavelength conversion member, a wavelength conversion member manufactured by the method, and a light source including the same. In particular, the present invention relates to a method for manufacturing a wavelength conversion member in which an inorganic phosphor powder is dispersed in a glass base material, a wavelength conversion member manufactured by the method, and a light source including the same.

近年、例えば、液晶ディスプレイのバックライトなどの用途に用いられる白色光源の開発が盛んに行われている。そのような白色光源の一例として、例えば下記の特許文献1には、青色光を出射するLED(Light Emitting Diode)の光出射側にLEDからの光の一部を吸収し、黄色の光を出射する波長変換部材を配置した光源が開示されている。この光源は、青色光と黄色光の合成により白色光を発することができる。   In recent years, for example, a white light source used for applications such as a backlight of a liquid crystal display has been actively developed. As an example of such a white light source, for example, in Patent Document 1 below, a part of light from an LED is absorbed on the light emitting side of an LED (Light Emitting Diode) that emits blue light, and yellow light is emitted. A light source in which a wavelength conversion member is arranged is disclosed. This light source can emit white light by combining blue light and yellow light.

この波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体粉末を分散させたものが使用されていた。しかしながら、樹脂マトリクス中に無機蛍光体粉末を分散させた波長変換部材では、LEDからの光により樹脂が劣化し、白色光源の輝度が経時的に低くなりやすいという問題がある。特に、LEDからの光が、青色光などの波長の短く、エネルギーが強い光である場合は、樹脂が劣化しやすい。   As this wavelength conversion member, a material in which an inorganic phosphor powder is dispersed in a resin matrix has been conventionally used. However, in the wavelength conversion member in which the inorganic phosphor powder is dispersed in the resin matrix, there is a problem that the resin deteriorates due to the light from the LED, and the luminance of the white light source tends to decrease with time. In particular, when the light from the LED is a light having a short wavelength such as blue light and a strong energy, the resin is likely to deteriorate.

このような問題に鑑み、例えば、下記の特許文献2,3には、ガラス中に無機蛍光体粉末を分散させた波長変換部材が提案されている。特許文献2,3に記載の波長変換部材は、樹脂を含まず、無機固体のみから構成されるため、優れた耐熱性及び耐候性を有している。従って、この波長変換部材を用いることにより輝度が低下しにくい白色光源を実現することができる。   In view of such a problem, for example, Patent Documents 2 and 3 below propose a wavelength conversion member in which inorganic phosphor powder is dispersed in glass. The wavelength conversion members described in Patent Documents 2 and 3 do not contain a resin and are composed only of an inorganic solid, and thus have excellent heat resistance and weather resistance. Therefore, by using this wavelength conversion member, it is possible to realize a white light source whose luminance is not easily lowered.

特開2007−25285号公報JP 2007-25285 A 特開2005−11933号公報JP 2005-11933 A 特許第4158012号公報Japanese Patent No. 4158012 特開2007−182529号公報JP 2007-182529 A

しかしながら、ガラスを分散媒として用いた波長変換部材は、樹脂を分散媒として用いた波長変換部材と比べて、成形が困難であるという問題がある。特に、ガラスを分散媒として用いた波長変換部材を板状に成形することは、困難である。   However, a wavelength conversion member using glass as a dispersion medium has a problem that it is difficult to mold compared to a wavelength conversion member using resin as a dispersion medium. In particular, it is difficult to form a wavelength conversion member using glass as a dispersion medium into a plate shape.

例えば、上記特許文献4には、ガラス粉末と無機蛍光体粉末を含むペーストによりグリーンシートを作製し、そのグリーンシートを焼成することにより、板状の波長変換部材を製造する方法が提案されている。   For example, Patent Document 4 proposes a method of manufacturing a plate-shaped wavelength conversion member by producing a green sheet from a paste containing glass powder and inorganic phosphor powder, and firing the green sheet. .

しかしながら、特許文献4に記載の波長変換部材の製造方法では、高強度の波長変換部材を容易に製造することが困難であるという問題がある。   However, the method for manufacturing a wavelength conversion member described in Patent Document 4 has a problem that it is difficult to easily manufacture a high-intensity wavelength conversion member.

本発明は、係る点に鑑みてなされたものであり、その目的は、高強度の波長変換部材を容易に製造することができる波長変換部材の製造方法を提供することにある。   This invention is made | formed in view of the point which concerns, The objective is to provide the manufacturing method of the wavelength conversion member which can manufacture a high intensity | strength wavelength conversion member easily.

本発明者らは、鋭意研究の結果、無機蛍光体粉末とガラス粉末との焼結体プリフォームを加熱延伸することにより焼結体の強度を高めることができることを見出し、その結果、本発明を成すに至った。   As a result of diligent research, the present inventors have found that the strength of the sintered body can be increased by heating and stretching the sintered body preform of the inorganic phosphor powder and the glass powder. It came to be accomplished.

すなわち、本発明に係る波長変換部材の製造方法では、無機蛍光体粉末とガラス粉末との焼結体プリフォームを加熱延伸することにより波長変換部材を成形する。このため、高強度の波長変換部材を容易に製造することができる。   That is, in the method for producing a wavelength conversion member according to the present invention, the wavelength conversion member is formed by heating and stretching a sintered body preform of an inorganic phosphor powder and a glass powder. For this reason, a high intensity | strength wavelength conversion member can be manufactured easily.

本発明において、焼結体プリフォームの加熱延伸を、ガラス粉末の軟化点以上であって、ガラス粉末の軟化点よりも200℃高い温度以下の温度で行うことが好ましい。この場合、焼結体プリフォームの加熱延伸を好適に行うことができる。また、より高強度の波長変換部材を製造することができる。なお、焼結体プリフォーム中の無機蛍光体の含有量が多い場合、例えば、5質量%以上、特に8質量%以上である場合は、ガラス粉末の軟化点よりも100℃以上、特に150℃以上高い温度で加熱延伸を行うことが好ましい。   In the present invention, it is preferable to perform the heat stretching of the sintered body preform at a temperature not lower than the softening point of the glass powder and not higher than 200 ° C. higher than the softening point of the glass powder. In this case, heating and stretching of the sintered body preform can be suitably performed. In addition, a wavelength conversion member with higher strength can be manufactured. In addition, when there is much content of the inorganic fluorescent substance in a sintered compact preform, for example, when it is 5 mass% or more, especially 8 mass% or more, it is 100 degreeC or more from the softening point of glass powder, especially 150 degreeC. It is preferable to perform heat stretching at a higher temperature.

本発明において、無機蛍光体とガラス粉末を含み、バインダーを含まない成形体を形成し、成形体を減圧雰囲気中で焼成することにより、焼結体プリフォームを形成することが好ましい。この場合、焼結体プリフォーム内の空隙を少なくすることができる。従って、さらに高強度の波長変換部材を製造することができる。   In the present invention, it is preferable to form a sintered body preform by forming a molded body containing an inorganic phosphor and glass powder and not containing a binder, and firing the molded body in a reduced-pressure atmosphere. In this case, voids in the sintered body preform can be reduced. Accordingly, it is possible to manufacture a wavelength conversion member with higher strength.

本発明に係る波長変換部材は、無機蛍光体粉末とガラス粉末との焼結体プリフォームが加熱延伸成形されてなる。上述の通り、焼結体プリフォームを加熱延伸成形することにより、焼結体の強度を高めることができる。従って、本発明に係る波長変換部材は、高い強度を有する。   The wavelength conversion member according to the present invention is obtained by heat-stretching a sintered body preform of an inorganic phosphor powder and a glass powder. As described above, the strength of the sintered body can be increased by subjecting the sintered body preform to heat-stretching. Therefore, the wavelength conversion member according to the present invention has high strength.

本発明に係る波長変換部材の形状は、特に限定されない。本発明に係る波長変換部材は、例えば、板状または棒状であってもよい。具体的には、例えば、本発明に係る波長変換部材は、長さ寸法と厚み寸法との比が100:1以上の板状であってもよい。   The shape of the wavelength conversion member according to the present invention is not particularly limited. The wavelength conversion member according to the present invention may be, for example, a plate shape or a rod shape. Specifically, for example, the wavelength conversion member according to the present invention may have a plate shape in which the ratio of the length dimension to the thickness dimension is 100: 1 or more.

なお、本発明において、「板状」には、「シート状」や「フィルム状」が含まれるものとする。   In the present invention, “plate shape” includes “sheet shape” and “film shape”.

本発明の波長変換部材では、波長変換部材の表面において、長さ30μm以上かつ深さ0.05μm以上の線状溝の0.25mmあたりの平均存在数が100本以下であることが好ましく、50本以下であることがより好ましく、20本以下であることがさらに好ましく、10本以下であることがなお好ましく、実質的に存在しないことが特に好ましい。この場合、外部からの圧力により波長変換部材の表面に線状溝に起因するクラックが生じにくくなり、割れや強度低下の問題がより生じにくくなる。また、線状溝に起因する光散乱ロスが小さくなる。このため、波長変換部材の表面での損失が小さくなり、外部への光の取り出し効率が高くなる。その結果、高い発光強度を有し、かつ、色再現性や発光強度のばらつきが非常に小さい波長変換部材を得ることができる。 In the wavelength conversion member of the present invention, on the surface of the wavelength conversion member, the average number of linear grooves having a length of 30 μm or more and a depth of 0.05 μm or more per 0.25 mm 2 is preferably 100 or less, It is more preferably 50 or less, further preferably 20 or less, still more preferably 10 or less, and particularly preferably substantially absent. In this case, cracks due to the linear grooves are less likely to occur on the surface of the wavelength conversion member due to external pressure, and the problem of cracking and strength reduction is less likely to occur. In addition, light scattering loss due to the linear grooves is reduced. For this reason, the loss on the surface of the wavelength conversion member is reduced, and the light extraction efficiency is increased. As a result, it is possible to obtain a wavelength conversion member having a high light emission intensity and having very small variations in color reproducibility and light emission intensity.

線状溝の長さは、例えば、走査型電子顕微鏡(SEM)を用いて波長変換部材表面の画像を観察することにより測定することができる。また、線状溝の深さは、例えば触針式表面粗さ計を用いて測定することができる。ここで、線状溝の深さは、部材表面形状の測定曲線において平均線から線状溝先端までの距離を指す。   The length of the linear groove can be measured, for example, by observing an image on the surface of the wavelength conversion member using a scanning electron microscope (SEM). Further, the depth of the linear groove can be measured using, for example, a stylus type surface roughness meter. Here, the depth of the linear groove refers to the distance from the average line to the tip of the linear groove in the measurement curve of the member surface shape.

本発明において、無機蛍光体粉末は、要求される励起光や変換光などに応じて適宜選択することができる。無機蛍光体粉末は、例えば、酸化物無機蛍光体、窒化物無機蛍光体、酸窒化物無機蛍光体、硫化物無機蛍光体、酸硫化物無機蛍光体、希土類硫化物無機蛍光体、アルミン酸塩化物無機蛍光体及びハロリン酸塩化物無機蛍光体から選ばれた1種以上により構成することができる。   In the present invention, the inorganic phosphor powder can be appropriately selected according to required excitation light, converted light, and the like. Examples of inorganic phosphor powders include oxide inorganic phosphors, nitride inorganic phosphors, oxynitride inorganic phosphors, sulfide inorganic phosphors, oxysulfide inorganic phosphors, rare earth sulfide inorganic phosphors, and aluminate chlorides. 1 type or more selected from inorganic phosphors and halophosphate inorganic phosphors.

本発明に係る光源は、上記本発明に係る波長変換部材と、波長変換部材に対して、波長変換部材の励起光を出射する発光素子とを備えている。上述の通り、本発明に係る波長変換部材は、高い強度を有する。従って、本発明に係る光源は、高い機械的耐久性を有する。   The light source which concerns on this invention is equipped with the wavelength conversion member which concerns on the said invention, and the light emitting element which radiate | emits the excitation light of a wavelength conversion member with respect to a wavelength conversion member. As described above, the wavelength conversion member according to the present invention has high strength. Therefore, the light source according to the present invention has high mechanical durability.

本発明において、発光素子は、特に限定されず、例えば、LEDにより構成することができる。LEDを用いることにより、長い製品寿命、低消費電力を実現することができる。   In the present invention, the light emitting element is not particularly limited, and can be constituted by, for example, an LED. By using the LED, a long product life and low power consumption can be realized.

本発明に係る光源は、どのような色調の光を出射するものであってもよい。本発明に係る光源は、例えば、青色光を出射する発光素子と、そのLEDからの青色光を吸収し、黄色光を発する波長変換部材とを備え、青色光と黄色光の合成により白色光を出射するものであってもよい。   The light source according to the present invention may emit light of any color tone. The light source according to the present invention includes, for example, a light emitting element that emits blue light and a wavelength conversion member that absorbs blue light from the LED and emits yellow light, and emits white light by combining blue light and yellow light. It may be emitted.

また、本発明に係る光源は、発光素子を複数備えていてもよい。   The light source according to the present invention may include a plurality of light emitting elements.

なお、本発明において、「青色光」とは、440nm〜480nmの波長域の光をいう。「白色光」とは、色度xが0.25〜0.45、色度yが0.25〜0.45の光をいう。特にその中でも黒体輻射の軌跡に近い光が好ましい。   In the present invention, “blue light” refers to light in the wavelength range of 440 nm to 480 nm. “White light” refers to light having a chromaticity x of 0.25 to 0.45 and a chromaticity y of 0.25 to 0.45. In particular, light close to the locus of black body radiation is preferable.

本発明によれば、高強度の波長変換部材を容易に製造することができる波長変換部材の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the wavelength conversion member which can manufacture a high intensity | strength wavelength conversion member easily is provided.

本発明の一実施形態に係る光源の模式的側面図である。It is a typical side view of the light source which concerns on one Embodiment of this invention. 焼結体プリフォームの模式的斜視図である。It is a typical perspective view of a sintered compact preform. 加熱延伸工程を説明するための模式的側面図である。It is a typical side view for demonstrating a heating extending process.

以下、本発明を実施した好ましい形態について、図1に示す光源1を例に挙げて説明する。但し、光源1は、単なる例示である。本発明に係る光源及び波長変換部材は、光源1及び光源1に含まれる波長変換部材10に何ら限定されない。   Hereinafter, a preferred embodiment in which the present invention is implemented will be described using the light source 1 shown in FIG. 1 as an example. However, the light source 1 is merely an example. The light source and the wavelength conversion member according to the present invention are not limited to the light source 1 and the wavelength conversion member 10 included in the light source 1.

図1は、本実施形態に係る光源の模式的側面図である。図1に示すように、光源1は、波長変換部材10と、複数の発光素子20とを備えている。光源1では、発光素子20から出射された励起光20aの一部が波長変換部材10により吸収され、それに伴い波長変換部材10から蛍光10aが出射する。一方、励起光20aの一部は波長変換部材10に吸収されずにそのまま透過し、透過した励起光20aと蛍光10aの合成光2(例えば白色光)が出射される。   FIG. 1 is a schematic side view of a light source according to the present embodiment. As shown in FIG. 1, the light source 1 includes a wavelength conversion member 10 and a plurality of light emitting elements 20. In the light source 1, a part of the excitation light 20 a emitted from the light emitting element 20 is absorbed by the wavelength conversion member 10, and the fluorescence 10 a is emitted from the wavelength conversion member 10 accordingly. On the other hand, a part of the excitation light 20a is transmitted as it is without being absorbed by the wavelength conversion member 10, and a combined light 2 (for example, white light) of the transmitted excitation light 20a and fluorescence 10a is emitted.

発光素子20は、特に限定されず、例えば、LEDやプラズマ発光素子、エレクトロルミネッセンス発光素子などにより構成することができる。   The light emitting element 20 is not particularly limited, and can be constituted by, for example, an LED, a plasma light emitting element, an electroluminescence light emitting element, or the like.

本実施形態において、波長変換部材10は、無機蛍光体粉末がガラス中に分散されてなる。   In the present embodiment, the wavelength conversion member 10 is formed by dispersing inorganic phosphor powder in glass.

無機蛍光体粉末は、光源1から出射させようとする合成光2の波長や発光素子20から出射される励起光20aの波長などに応じて適宜選択することができる。無機蛍光体粉末は、例えば、酸化物無機蛍光体、窒化物無機蛍光体、酸窒化物無機蛍光体、硫化物無機蛍光体、酸硫化物無機蛍光体、希土類硫化物無機蛍光体、アルミン酸塩化物無機蛍光体及びハロリン酸塩化物無機蛍光体から選ばれた1種以上からなるものとすることができる。   The inorganic phosphor powder can be appropriately selected according to the wavelength of the synthesized light 2 to be emitted from the light source 1, the wavelength of the excitation light 20a emitted from the light emitting element 20, or the like. Examples of inorganic phosphor powders include oxide inorganic phosphors, nitride inorganic phosphors, oxynitride inorganic phosphors, sulfide inorganic phosphors, oxysulfide inorganic phosphors, rare earth sulfide inorganic phosphors, and aluminate chlorides. Inorganic phosphors and halophosphate inorganic phosphors can be used.

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体粉末としては、Sr(POCl:Eu2+、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+などが挙げられる。 Examples of inorganic phosphor powder that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光(波長が500nm〜540nmの蛍光)を発する無機蛍光体粉末としては、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、SrSiOn:Eu2+、ZnS:Al3+,Cu、CaS:Sn2+、CaS:Sn2+,F、CaSO:Ce3+,Mn2+、LiAlO:Mn2+、BaMgAl1017:Eu2+,Mn2+、ZnS:Cu,Cl、CaWO:U、CaSiOCl:Eu2+、Sr0.2Ba0.7Cl1.1Al3.45:Ce3+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、ZnO:S、ZnO:Zn、CaBa(POCl:Eu2+、BaAl:Eu2+などが挙げられる。 Inorganic phosphor powders that emit green fluorescence (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm, such as SrAl 2 O 4 : Eu 2+ and SrGa 2 S 4 : Eu. 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ , ZnS: Al 3+ , Cu + , CaS: Sn 2+ , CaS: Sn 2+ , F, CaSO 4 : Ce 3+ , Mn 2+ , LiAlO 2 : Mn 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , ZnS: Cu + , Cl -, Ca 3 WO 6: U , Ca 3 SiO 4 Cl 2: Eu 2+, Sr 0.2 Ba 0.7 Cl 1.1 Al 2 O 3.45 : Ce 3+ , Mn 2+ , Ba 2 MgSi 2 O 7 : Eu 2+ , Ba 2 SiO 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ , ZnO: S, ZnO: Zn, Ca 2 Ba 3 (PO 4) 3 Cl: Eu 2+, BaAl 2 O 4: Eu 2+.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光(波長が500nm〜540nmの蛍光)を発する無機蛍光体粉末としては、SrAl:Eu2+、SrGa:Eu2+、SrBaSiO:Eu2+、CdS:In、CaS:Ce3+、Y(Al,Gd)12:Ce2+、CaScSi12:Ce3+、SrSiOn:Eu2+などが挙げられる。 Inorganic phosphor powders that emit green fluorescence (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , CdS: In, CaS: Ce 3+ , Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ca 3 Sc 2 Si 3 O 12 : Ce 3+ , SrSiOn: Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光(波長が540nm〜595nmの蛍光)を発する無蛍光体粉末としては、ZnS:Eu2+、Ba(POCl:U、SrWO:U、CaGa:Eu2+、SrSO:Eu2+,Mn2+、ZnS:P、ZnS:P3−,Cl、ZnS:Mn2+などが挙げられる。 As the non-fluorescent powder that emits yellow fluorescence (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm, ZnS: Eu 2+ , Ba 5 (PO 4 ) 3 Cl: U, Sr 3 WO 6 : U, CaGa 2 S 4 : Eu 2+ , SrSO 4 : Eu 2+ , Mn 2+ , ZnS: P, ZnS: P 3− , Cl , ZnS: Mn 2+ and the like.

波長440〜480nmの青色の励起光を照射すると黄色の蛍光(波長が540nm〜595nmの蛍光)を発する無機蛍光体粉末としては、Y(Al,Gd)12:Ce2+、Ba(POCl:U、CaGa:Eu2+、SrSiO:Eu2+が挙げられる。 As an inorganic phosphor powder that emits yellow fluorescence (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm, Y 3 (Al, Gd) 5 O 12 : Ce 2+ , Ba 5 ( PO 4 ) 3 Cl: U, CaGa 2 S 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光(波長が600nm〜700nmの蛍光)を発する無機蛍光体粉末としては、CaS:Yb2+,Cl、GdGa12:Cr3+、CaGa:Mn2+、Na(Mg,Mn)LiSi10:Mn、ZnS:Sn2+、YAl12:Cr3+、SrB13:Sm2+、MgSrSi:Eu2+,Mn2+、α−SrO・3B:Sm2+、ZnS−CdS、ZnSe:Cu,Cl、ZnGa:Mn2+、ZnO:Bi3+、BaS:Au,K、ZnS:Pb2+、ZnS:Sn2+,Li、ZnS:Pb,Cu、CaTiO:Pr3+、CaTiO:Eu3+、Y:Eu3+、(Y、Gd):Eu3+、CaS:Pb2+,Mn2+、YPO:Eu3+、CaMgSi:Eu2+,Mn2+、Y(P、V)O:Eu3+、YS:Eu3+、SrAl:Eu3+、CaYAlO:Eu3+、LaOS:Eu3+、LiW:Eu3+,Sm3+、(Sr,Ca,Ba,Mg)10(POCl:Eu2+,Mn2+、BaMgSi:Eu2+,Mn2+などが挙げられる。 Examples of the inorganic phosphor powder that emits red fluorescence (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm are CaS: Yb 2+ , Cl, Gd 3 Ga 4 O 12 : Cr 3+ , CaGa 2 S 4 : Mn 2+ , Na (Mg, Mn) 2 LiSi 4 O 10 F 2 : Mn, ZnS: Sn 2+ , Y 3 Al 5 O 12 : Cr 3+ , SrB 8 O 13 : Sm 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , α-SrO.3B 2 O 3 : Sm 2+ , ZnS-CdS, ZnSe: Cu + , Cl, ZnGa 2 S 4 : Mn 2+ , ZnO: Bi 3+ , BaS : Au, K, ZnS: Pb 2+, ZnS: Sn 2+, Li +, ZnS: Pb, Cu, CaTiO 3: Pr 3+, CaTiO 3 Eu 3+, Y 2 O 3: Eu 3+, (Y, Gd) 2 O 3: Eu 3+, CaS: Pb 2+, Mn 2+, YPO 4: Eu 3+, Ca 2 MgSi 2 O 7: Eu 2+, Mn 2+, Y (P, V) O 4 : Eu 3+ , Y 2 O 2 S: Eu 3+ , SrAl 4 O 7 : Eu 3+ , CaYAlO 4 : Eu 3+ , LaO 2 S: Eu 3+ , LiW 2 O 8 : Eu 3+ , Sm 3+ , (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , Mn 2+ , Ba 3 MgSi 2 O 8 : Eu 2+ , Mn 2+ and the like.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光(波長が600nm〜700nmの蛍光)を発する無機蛍光体粉末としては、ZnS:Mn2+,Te2+、MgTiO:Mn4+、KSiF:Mn4+、SrS:Eu2+、CaS:Eu2+、Na1.230.42Eu0.12TiSi11、Na1.230.42Eu0.12TiSi13:Eu3+、CdS:In,Te、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、Euなどが挙げられる。 Examples of inorganic phosphor powder that emits red fluorescence (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include ZnS: Mn 2+ , Te 2+ , Mg 2 TiO 4 : Mn 4+ , K 2 SiF 6 : Mn 4+ , SrS: Eu 2+ , CaS: Eu 2+ , Na 1.23 K 0.42 Eu 0.12 TiSi 4 O 11 , Na 1.23 K 0.42 Eu 0.12 TiSi 5 O 13 : Eu 3+ , CdS: In, Te, CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , Eu 2 W 2 O 7 and the like.

励起光や発光の波長域に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、赤色の蛍光を発する無機蛍光体粉末を混合して使用すればよい。   A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders emitting blue, green, and red fluorescence may be mixed and used.

発光素子20として青色光を出射するLEDを用い、青色光を吸収し、黄色光を発光する波長変換部材10を用いることにより、例えば、液晶ディスプレイの光源として有用な白色光光源1を実現することができる。   For example, a white light source 1 useful as a light source of a liquid crystal display is realized by using an LED that emits blue light as the light emitting element 20 and using a wavelength conversion member 10 that absorbs blue light and emits yellow light. Can do.

分散媒としてのガラスは、無機蛍光体粉末を安定して保持できるものである限りにおいて特に限定されない。分散媒として用いることのできるガラスの具体例としては、例えば、珪酸塩系ガラス、硼酸塩系ガラス、SiO−B−RO系ガラス(Rは、Mg、Ca、Sr及びBaの少なくとも一種)などの硼珪酸塩系ガラス、SnO−P系ガラスなどのリン酸塩系ガラス、硼リン酸塩系ガラスなどが挙げられる。なかでも、SiO−B−RO系ガラスやSnO−P系ガラスが好ましく用いられる。 The glass as the dispersion medium is not particularly limited as long as it can stably hold the inorganic phosphor powder. Specific examples of the glass that can be used as the dispersion medium include, for example, silicate glass, borate glass, SiO 2 —B 2 O 3 —RO glass (R is at least Mg, Ca, Sr, and Ba). Borosilicate glass such as SnO—P 2 O 5 glass, borophosphate glass, and the like. Of these, SiO 2 -B 2 O 3 -RO based glass or SnO-P 2 O 5 based glass is preferably used.

SiO−B−RO系ガラスは、例えば、モル%で、SiO 30〜80%、B 1〜30%、MgO 0〜10%、CaO 0〜30%、SrO 0〜20%、BaO 0〜40%、MgO+CaO+SrO+BaO 5〜45%、Al 0〜10%及びZnO 0〜10%の組成を含有するガラスであってもよい。 SiO 2 -B 2 O 3 -RO based glass, for example, in mol%, SiO 2 30~80%, B 2 O 3 1~30%, 0~10% MgO, CaO 0~30%, SrO 0~ The glass may contain 20%, BaO 0-40%, MgO + CaO + SrO + BaO 5-45%, Al 2 O 3 0-10% and ZnO 0-10%.

SiO−B−RO系ガラスは、上記の成分以外にも、LiO、NaO、KOなどのアルカリ金属酸化物等のガラスの軟化点を低下させ、低温での焼成を可能にする成分、Pなどのガラスの溶融性を向上させる成分、Ta、TiO、Nb、Gd、Laなどのガラスの化学的耐久性を向上させる成分などをさらに含有するものであってもよい。 In addition to the above components, SiO 2 —B 2 O 3 —RO-based glass reduces the softening point of glass such as alkali metal oxides such as Li 2 O, Na 2 O, K 2 O, etc. Components that enable firing, components that improve the meltability of glass such as P 2 O 5, and chemicals of glasses such as Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , and La 2 O 3 It may further contain a component for improving durability.

SnO−P系ガラスは、例えば、モル%で、SnO 35〜80%、P 5〜40%、B 0〜30%、Al 0〜10%、SiO 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%及びBaO 0〜10%の組成を含有するガラスであってもよい。 SnO-P 2 O 5 based glass, for example, in mol%, SnO 35~80%, P 2 O 5 5~40%, B 2 O 3 0~30%, Al 2 O 3 0~10%, SiO 2 0~10%, Li 2 O 0~10 %, Na 2 O 0~10%, K 2 O 0~10%, 0~10% MgO, CaO 0~10%, SrO 0~10% and BaO 0 It may be a glass containing 10% to 10% composition.

SnO−P系ガラスは、上記の成分以外にも、Ta、TiO、Nb、Gd、Laなどの耐候性を向上させる成分や、ZnOなどのガラスを安定化させる成分などをさらに含有するものであってもよい。 In addition to the above components, SnO—P 2 O 5 glass is composed of components that improve weather resistance such as Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 , ZnO It may further contain a component that stabilizes the glass.

SnO−P系ガラスの軟化点を低下させ、かつガラスを安定化させる観点から、SnOとPのモル比(SnO/P)は、0.9〜16の範囲内であることが好ましく、1.5〜10の範囲内であることがより好ましく、2〜5の範囲内であることがさらに好ましい。モル比(SnO/P)が小さすぎると、低温での焼成が困難になり、無機蛍光体粉末が焼成時に劣化しやすくなる場合がある。また、モル比(SnO/P)が小さすぎると、耐候性が低くなりすぎる場合がある。一方、モル比(SnO/P)が大きすぎると、ガラスが失透しやすくなり、ガラスの透過率が低くなりすぎる場合がある。 From the viewpoint of lowering the softening point of SnO—P 2 O 5 glass and stabilizing the glass, the molar ratio of SnO to P 2 O 5 (SnO / P 2 O 5 ) is in the range of 0.9 to 16. It is preferable that it is in the range, more preferably in the range of 1.5 to 10, and still more preferably in the range of 2 to 5. When the molar ratio (SnO / P 2 O 5 ) is too small, firing at a low temperature becomes difficult, and the inorganic phosphor powder may be easily deteriorated during firing. On the other hand, if the molar ratio (SnO / P 2 O 5 ) is too small, the weather resistance may be too low. On the other hand, if the molar ratio (SnO / P 2 O 5 ) is too large, the glass tends to be devitrified, and the transmittance of the glass may be too low.

波長変換部材10における無機蛍光体粉末の含有量は、特に限定されないが、例えば、0.01質量%〜30質量%であることが好ましく、0.1質量%〜25質量%であることがより好ましく、1質量%〜20質量%であることが特に好ましい。   Although content of the inorganic fluorescent substance powder in the wavelength conversion member 10 is not specifically limited, For example, it is preferable that it is 0.01 mass%-30 mass%, and it is more preferable that it is 0.1 mass%-25 mass%. The content is preferably 1% by mass to 20% by mass.

波長変換部材10の形状は特に限定されない。波長変換部材10は、例えば、板状または棒状であってもよい。本実施形態では、波長変換部材10が、長さ寸法と厚み寸法との比が100:1以上の板状である例について説明する。   The shape of the wavelength conversion member 10 is not particularly limited. The wavelength conversion member 10 may be, for example, a plate shape or a rod shape. In the present embodiment, an example in which the wavelength conversion member 10 has a plate shape in which the ratio of the length dimension to the thickness dimension is 100: 1 or more will be described.

次に、図2及び図3を主として参照しながら、本実施形態の波長変換部材10の製造方法について説明する。   Next, the manufacturing method of the wavelength conversion member 10 of this embodiment is demonstrated, mainly referring FIG.2 and FIG.3.

まず、無機蛍光体粉末と、ガラス粉末とを含み、バインダーを含まない所謂バインダーフリーの成形体を作製する。具体的には、成形体は、例えば、無機蛍光体粉末とガラス粉末の混合粉末を金型を用いてプレス成型することにより作製することができる。   First, a so-called binder-free molded body containing inorganic phosphor powder and glass powder and not containing a binder is prepared. Specifically, the molded body can be produced, for example, by press-molding a mixed powder of inorganic phosphor powder and glass powder using a mold.

なお、無機蛍光体粉末の平均粒子径D50は、1μm〜50μmであることが好ましく、5μm〜25μmであることがより好ましい。無機蛍光体粉末の平均粒子径D50が小さすぎると、発光強度が低下する傾向がある。一方、無機蛍光体粉末の平均粒子径D50が大きすぎると、発光色の均一性が低下する傾向がある。   In addition, it is preferable that the average particle diameter D50 of inorganic fluorescent substance powder is 1 micrometer-50 micrometers, and it is more preferable that they are 5 micrometers-25 micrometers. If the average particle diameter D50 of the inorganic phosphor powder is too small, the emission intensity tends to decrease. On the other hand, if the average particle diameter D50 of the inorganic phosphor powder is too large, the uniformity of the luminescent color tends to decrease.

また、ガラス粉末の平均粒子径D50は、0.1μm〜100μmであることが好ましく、1μm〜50μmであることがより好ましい。ガラス粉末の平均粒子径D50が小さすぎると、焼成時に気泡が発生しやすくなる。このため、得られる波長変換部材10の強度が低下する場合がある。また、波長変換部材10において光散乱が低くなり、発光効率が低下する場合がある。一方、ガラス粉末の平均粒子径D50が大きすぎると、無機蛍光体粉末が均一に分散されにくくなり、その結果、得られる波長変換部材10の発光効率が低くなる場合がある。   The average particle diameter D50 of the glass powder is preferably 0.1 μm to 100 μm, and more preferably 1 μm to 50 μm. If the average particle diameter D50 of the glass powder is too small, bubbles are likely to be generated during firing. For this reason, the intensity | strength of the wavelength conversion member 10 obtained may fall. In addition, light scattering in the wavelength conversion member 10 is lowered, and the light emission efficiency may be reduced. On the other hand, when the average particle diameter D50 of the glass powder is too large, the inorganic phosphor powder is difficult to be uniformly dispersed, and as a result, the light emission efficiency of the obtained wavelength conversion member 10 may be lowered.

なお、本明細書において、平均粒子径D50は、島津製作所製SALD200Jを用いて、JIS−R1629に準拠して測定した値である。   In the present specification, the average particle diameter D50 is a value measured according to JIS-R1629 using SALD200J manufactured by Shimadzu Corporation.

次に、作製した成形体を減圧雰囲気中で焼成することにより、図2に示す焼結体プリフォーム30を形成する。焼成工程における雰囲気の圧力は、例えば、1気圧未満であると、焼結体プリフォーム中に気泡が残存しにくいため好ましい。焼成最高温度は、例えば、ガラス粉末の軟化点〜軟化点+100℃程度とすることができる。   Next, the formed compact is fired in a reduced-pressure atmosphere to form a sintered compact preform 30 shown in FIG. The pressure of the atmosphere in the firing step is preferably less than 1 atm, for example, because bubbles hardly remain in the sintered body preform. The maximum firing temperature can be, for example, about the softening point of the glass powder to the softening point + 100 ° C.

なお、本実施形態では、波長変換部材10が板状であるため、焼結体プリフォーム30も板状、または直方体状や立方体状であることが好ましい。   In addition, in this embodiment, since the wavelength conversion member 10 is plate shape, it is preferable that the sintered compact preform 30 is also plate shape, a rectangular parallelepiped shape, or a cube shape.

次に、得られた焼結体プリフォーム30を加熱延伸することにより、波長変換部材10を形成する。具体的には、図3に示すように、焼結体プリフォーム30を、ヒーター31により加熱して軟化させた状態で、焼結体プリフォーム30の端部をローラー32により引っ張る。これにより、軟化した焼結体プリフォーム30が延伸され、波長変換部材10が形成される。   Next, the wavelength conversion member 10 is formed by heating and stretching the obtained sintered body preform 30. Specifically, as shown in FIG. 3, the end of the sintered body preform 30 is pulled by a roller 32 in a state where the sintered body preform 30 is heated and softened by the heater 31. Thereby, the softened sintered body preform 30 is stretched, and the wavelength conversion member 10 is formed.

この焼結体プリフォーム30の加熱延伸は、ガラス粉末の軟化点以上であって、ガラス粉末の軟化点よりも200℃高い温度以下の温度で行うことが好ましい。   The heating and stretching of the sintered body preform 30 is preferably performed at a temperature not lower than the softening point of the glass powder and not higher than 200 ° C. higher than the softening point of the glass powder.

延伸前の焼結体プリフォーム30の厚みt0に対する延伸後の厚みt1の比(t1/t0)は、特に限定されないが、例えば、5〜50程度とすることができる。   Although ratio (t1 / t0) of thickness t1 after extending | stretching with respect to thickness t0 of the sintered compact preform 30 before extending | stretching is not specifically limited, For example, it can be set as about 5-50.

以上説明したように、本実施形態では、焼結体プリフォーム30を加熱延伸することにより波長変換部材10を成形する。このため、高強度の波長変換部材10を容易に製造することができる。なお、加熱延伸により高強度の波長変換部材10が容易に得られる理由は以下の理由1〜3によるものと考えられる。   As described above, in this embodiment, the wavelength conversion member 10 is formed by heating and stretching the sintered body preform 30. For this reason, the high intensity | strength wavelength conversion member 10 can be manufactured easily. In addition, it is considered that the reason why the high-intensity wavelength conversion member 10 is easily obtained by heat stretching is due to the following reasons 1 to 3.

理由1:加熱延伸により、波長変換部材10の表層に圧縮応力層(例えば、0.1MPa〜10MPa程度の圧縮応力を有する層)が形成されている。   Reason 1: A compressive stress layer (for example, a layer having a compressive stress of about 0.1 MPa to 10 MPa) is formed on the surface layer of the wavelength conversion member 10 by heat stretching.

理由2:無機蛍光体粉末の表層とガラスとの反応が進行し、無機蛍光体粉末とガラスの密着強度が高くなる。   Reason 2: The reaction between the surface layer of the inorganic phosphor powder and the glass proceeds, and the adhesion strength between the inorganic phosphor powder and the glass increases.

理由3:焼結体プリフォーム30の表層が軟化することにより、表層の傷が修復される。従って、製造される波長変換部材10では、波長変換部材10の表面において、長さ30μm以上かつ深さ0.05μm以上の線状溝の0.25mmあたりの平均存在数が100本以下であることが好ましく、50本以下であることがより好ましく、20本以下であることがさらに好ましく、10本以下であることがなお好ましく、実質的に存在しないことが特に好ましい。 Reason 3: The surface layer of the sintered body preform 30 is softened, so that the surface layer is repaired. Accordingly, in the manufactured wavelength conversion member 10, the average number of linear grooves having a length of 30 μm or more and a depth of 0.05 μm or more per 0.25 mm 2 is 100 or less on the surface of the wavelength conversion member 10. It is preferably 50 or less, more preferably 20 or less, still more preferably 10 or less, and particularly preferably substantially absent.

また、本実施形態では、焼結体プリフォーム30の加熱延伸を、ガラス粉末の軟化点以上であって、ガラス粉末の軟化点よりも200℃高い温度以下の温度で行う。このため、より高強度の波長変換部材10を製造することができる。焼結体プリフォーム30の加熱延伸温度が低すぎると、加熱延伸を好適に行うことができず、得られる波長変換部材10の強度が低くなる場合がある。一方、焼結体プリフォーム30の加熱延伸温度が高すぎると、所望の形状の波長変換部材10が得られなくなる場合がある。   Moreover, in this embodiment, the heat-stretching of the sintered compact preform 30 is performed at a temperature not lower than the softening point of the glass powder and not higher than 200 ° C. higher than the softening point of the glass powder. For this reason, the wavelength conversion member 10 of higher intensity | strength can be manufactured. When the heating and stretching temperature of the sintered body preform 30 is too low, the heating and stretching cannot be suitably performed, and the strength of the obtained wavelength conversion member 10 may be lowered. On the other hand, if the heating and stretching temperature of the sintered body preform 30 is too high, the wavelength conversion member 10 having a desired shape may not be obtained.

また、本実施形態では、バインダーフリーの成形体を減圧雰囲気中において焼成する。このため、焼結体プリフォーム30、ひいては波長変換部材10の気孔率を低くすることができる。従って、さらに高強度であり、かつ発光効率が高い波長変換部材10を製造することができる。なお、焼結体プリフォーム30及び波長変換部材10における気孔率は、2体積%以下であることが好ましく、1体積%以下であることがより好ましい。   In this embodiment, the binder-free molded body is fired in a reduced-pressure atmosphere. For this reason, the porosity of the sintered compact preform 30 and by extension, the wavelength conversion member 10 can be made low. Therefore, it is possible to manufacture the wavelength conversion member 10 having higher strength and higher luminous efficiency. The porosity of the sintered body preform 30 and the wavelength conversion member 10 is preferably 2% by volume or less, and more preferably 1% by volume or less.

なお、本実施形態では、板状の焼結体プリフォーム30を加熱延伸することにより板状の波長変換部材10を製造する例について説明した。但し、焼結体プリフォーム30及び波長変換部材10のそれぞれの形状は、板状に限定されない。例えば、棒状の焼結体プリフォームを加熱延伸することにより、棒状の波長変換部材を製造してもよい。   In the present embodiment, the example in which the plate-like wavelength conversion member 10 is manufactured by heating and stretching the plate-like sintered body preform 30 has been described. However, each shape of the sintered compact preform 30 and the wavelength conversion member 10 is not limited to a plate shape. For example, you may manufacture a rod-shaped wavelength conversion member by heat-drawing a rod-shaped sintered compact preform.

以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.

(実施例)
下記のガラス粉末と、無機蛍光体粉末とを、質量比(ガラス粉末:無機蛍光体粉末)が9:1となるように、混合し、金型を用いてプレス成型することにより、成形体を作製した。その後、その成形体を、下記の条件で焼成することにより、焼結体プリフォームを作製した。
(Example)
The following glass powder and inorganic phosphor powder are mixed so that the mass ratio (glass powder: inorganic phosphor powder) is 9: 1, and press molded using a mold to obtain a molded body. Produced. Thereafter, the compact was fired under the following conditions to produce a sintered body preform.

ガラス粉末の組成(質量比):SiO 50%、BaO 25%、CaO 10%、B 5%、Al 5%、ZnO 5%
ガラス粉末の平均粒子径(D50):3μm
ガラス粉末の軟化点:850℃
無機蛍光体粉末の組成:Y(Al,Gd)12:Ce2+
無機蛍光体粉末の平均粒子径(D50):20μm
焼成最高温度:850℃
焼成時の雰囲気:空気
焼成時の雰囲気の圧力:100Pa
Composition (mass ratio) of glass powder: SiO 2 50%, BaO 25%, CaO 10%, B 2 O 3 5%, Al 2 O 3 5%, ZnO 5%
Average particle diameter of glass powder (D50): 3 μm
Softening point of glass powder: 850 ° C
Composition of inorganic phosphor powder: Y 3 (Al, Gd) 5 O 12 : Ce 2+
Average particle size (D50) of inorganic phosphor powder: 20 μm
Maximum firing temperature: 850 ° C
Firing atmosphere: Air Firing atmosphere pressure: 100 Pa

次に、得られた焼結体を、幅15mm、厚み4.5mm、長さ100mmの直方体状に切断し、母材を作製した。次に、この母材を延伸成型機にセットし、1020℃(軟化点+170℃)に保持された成型炉へ1mm/分の送り速度で搬入し、成型炉出口より225mm/分の速度で引き出した。引き出した成型体を自動切断機で切断することにより、幅1mm、厚み0.3mm、長さ300mmの矩形長尺状の波長変換部材を作製した。この波長変換部材に、青色LED(発光波長:460nm)の光を照射したところ、白色の発光が確認された。   Next, the obtained sintered body was cut into a rectangular parallelepiped shape having a width of 15 mm, a thickness of 4.5 mm, and a length of 100 mm to produce a base material. Next, this base material is set in a stretch molding machine, carried into a molding furnace held at 1020 ° C. (softening point + 170 ° C.) at a feed rate of 1 mm / min, and pulled out from the molding furnace outlet at a rate of 225 mm / min. It was. The drawn molded body was cut with an automatic cutting machine to prepare a rectangular long wavelength conversion member having a width of 1 mm, a thickness of 0.3 mm, and a length of 300 mm. When this wavelength conversion member was irradiated with light from a blue LED (emission wavelength: 460 nm), white light emission was confirmed.

本実施例において得られた波長変換部材の三点曲げ強度を、島津製作所製オートグラフAG−10kNISを用いて、JIS−R1601に準拠して測定したところ、250MPaであった。   The three-point bending strength of the wavelength conversion member obtained in this example was 250 MPa when measured according to JIS-R1601 using an autograph AG-10kNIS manufactured by Shimadzu Corporation.

(比較例)
上記実施例において用いたガラス粉末と、無機蛍光体粉末とを、質量比9:1で含有するガラスペーストを作製した。そのガラスペーストを、PETフィルム上に塗布することにより、グリーンシートを作製した。その後、そのグリーンシートを、上記実施例と同様の焼成条件で焼成することにより、上記実施例と同様の寸法を有する波長変換部材を作製した。
(Comparative example)
A glass paste containing the glass powder used in the above examples and the inorganic phosphor powder at a mass ratio of 9: 1 was prepared. The glass paste was applied on a PET film to produce a green sheet. After that, the green sheet was fired under the same firing conditions as in the above example to produce a wavelength conversion member having the same dimensions as in the above example.

得られた波長変換部材の三点曲げ強度を、上記実施例と同様の方法で測定したところ、130MPaであった。   The three-point bending strength of the obtained wavelength conversion member was measured by the same method as in the above example, and found to be 130 MPa.

以上の結果から、焼結体プリフォームの加熱延伸により高強度な波長変換部材を作製できることが分かる。   From the above results, it can be seen that a high-intensity wavelength conversion member can be produced by heating and stretching the sintered body preform.

1…光源
2…合成光
10…波長変換部材
10a…蛍光
20…発光素子
20a…励起光
30…焼結体プリフォーム
31…ヒーター
32…ローラー
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Synthetic light 10 ... Wavelength conversion member 10a ... Fluorescence 20 ... Light emitting element 20a ... Excitation light 30 ... Sintered body preform 31 ... Heater 32 ... Roller

Claims (12)

無機蛍光体粉末とガラス粉末との焼結体プリフォームを加熱延伸することにより波長変換部材を成形する、波長変換部材の製造方法。   The manufacturing method of the wavelength conversion member which shape | molds a wavelength conversion member by heat-stretching the sintered compact preform of inorganic fluorescent substance powder and glass powder. 前記焼結体プリフォームの加熱延伸を、前記ガラス粉末の軟化点以上であって、前記ガラス粉末の軟化点よりも200℃高い温度以下の温度で行う、請求項1に記載の波長変換部材の製造方法。   The wavelength conversion member according to claim 1, wherein the heating and stretching of the sintered body preform is performed at a temperature not lower than the softening point of the glass powder and not higher than 200 ° C higher than the softening point of the glass powder. Production method. 前記無機蛍光体と前記ガラス粉末とを含み、バインダーを含まない成形体を形成し、前記成形体を減圧雰囲気中で焼成することにより、前記焼結体プリフォームを形成する、請求項1または2に記載の波長変換部材の製造方法。   The sintered body preform is formed by forming a molded body that includes the inorganic phosphor and the glass powder, does not include a binder, and is fired in a reduced-pressure atmosphere. A manufacturing method of the wavelength conversion member given in 2. 無機蛍光体粉末とガラス粉末との焼結体プリフォームが加熱延伸成形されてなる、波長変換部材。   A wavelength conversion member formed by heat-stretching a sintered body preform of inorganic phosphor powder and glass powder. 板状または棒状である、請求項4に記載の波長変換部材。   The wavelength conversion member according to claim 4 which is plate shape or rod shape. 長さ寸法と厚み寸法との比が100:1以上の板状である、請求項5に記載の波長変換部材。   The wavelength conversion member according to claim 5, wherein the ratio between the length dimension and the thickness dimension is a plate shape having a ratio of 100: 1 or more. 前記無機蛍光体粉末は、酸化物無機蛍光体、窒化物無機蛍光体、酸窒化物無機蛍光体、硫化物無機蛍光体、酸硫化物無機蛍光体、希土類硫化物無機蛍光体、アルミン酸塩化物無機蛍光体及びハロリン酸塩化物無機蛍光体から選ばれた1種以上からなる、請求項4〜6のいずれか一項に記載の波長変換部材。   The inorganic phosphor powder includes oxide inorganic phosphor, nitride inorganic phosphor, oxynitride inorganic phosphor, sulfide inorganic phosphor, oxysulfide inorganic phosphor, rare earth sulfide inorganic phosphor, and aluminate chloride. The wavelength conversion member according to any one of claims 4 to 6, comprising at least one selected from an inorganic phosphor and a halophosphate chloride inorganic phosphor. 前記波長変換部材の表面において、長さ30μm以上かつ深さ0.05μm以上の線状溝の0.25mmあたりの平均存在数が100本以下である、請求項4〜7のいずれか一項に記載の波長変換部材。 8. The average number of existing linear grooves per 0.25 mm 2 having a length of 30 μm or more and a depth of 0.05 μm or more on the surface of the wavelength conversion member is 100 or less. The wavelength conversion member as described in 2. 請求項4〜8のいずれか一項に記載の波長変換部材と、
前記波長変換部材に対して、前記波長変換部材の励起光を出射する発光素子と、
を備える光源。
The wavelength conversion member according to any one of claims 4 to 8,
A light emitting element that emits excitation light of the wavelength conversion member with respect to the wavelength conversion member,
A light source comprising
前記発光素子は、LEDである、請求項9に記載の光源。   The light source according to claim 9, wherein the light emitting element is an LED. 前記発光素子は、青色光を出射し、
前記波長変換部材は、前記青色光の一部を吸収して黄色光を発し、前記青色光と前記黄色光との合成により白色光を発する、請求項9または10に記載の光源。
The light emitting element emits blue light,
The light source according to claim 9 or 10, wherein the wavelength conversion member absorbs part of the blue light to emit yellow light, and emits white light by combining the blue light and the yellow light.
前記発光素子を複数備える、請求項9〜11のいずれか一項に記載の光源。   The light source according to any one of claims 9 to 11, comprising a plurality of the light emitting elements.
JP2010173451A 2010-08-02 2010-08-02 Method for manufacturing wavelength conversion member, wavelength conversion member and light source Active JP5678509B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010173451A JP5678509B2 (en) 2010-08-02 2010-08-02 Method for manufacturing wavelength conversion member, wavelength conversion member and light source
PCT/JP2011/065566 WO2012017776A1 (en) 2010-08-02 2011-07-07 Process for production of wavelength conversion member, wavelength conversion member, and light source
TW100125935A TWI591862B (en) 2010-08-02 2011-07-22 Manufactoring method of wavelength conversion component,wavelength conversion component and light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173451A JP5678509B2 (en) 2010-08-02 2010-08-02 Method for manufacturing wavelength conversion member, wavelength conversion member and light source

Publications (2)

Publication Number Publication Date
JP2012031328A true JP2012031328A (en) 2012-02-16
JP5678509B2 JP5678509B2 (en) 2015-03-04

Family

ID=45559286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173451A Active JP5678509B2 (en) 2010-08-02 2010-08-02 Method for manufacturing wavelength conversion member, wavelength conversion member and light source

Country Status (3)

Country Link
JP (1) JP5678509B2 (en)
TW (1) TWI591862B (en)
WO (1) WO2012017776A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015359A (en) * 2012-07-10 2014-01-30 Nippon Electric Glass Co Ltd Method of manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
US8822032B2 (en) 2010-10-28 2014-09-02 Corning Incorporated Phosphor containing glass frit materials for LED lighting applications
US9011720B2 (en) 2012-03-30 2015-04-21 Corning Incorporated Bismuth borate glass encapsulant for LED phosphors
US9202996B2 (en) 2012-11-30 2015-12-01 Corning Incorporated LED lighting devices with quantum dot glass containment plates
JP2016524344A (en) * 2013-07-08 2016-08-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Wavelength conversion type semiconductor light emitting device
US10017849B2 (en) 2012-11-29 2018-07-10 Corning Incorporated High rate deposition systems and processes for forming hermetic barrier layers
US10158057B2 (en) 2010-10-28 2018-12-18 Corning Incorporated LED lighting devices
US10439109B2 (en) 2013-08-05 2019-10-08 Corning Incorporated Luminescent coatings and devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436317A (en) * 1977-08-06 1979-03-17 Nippon Electric Glass Co Method of making thin glass plates
JP2007311743A (en) * 2006-04-19 2007-11-29 Nippon Electric Glass Co Ltd Method of manufacturing emission color conversion member, and emission color conversion member
JP2008021868A (en) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite member
JP2008508179A (en) * 2004-07-29 2008-03-21 コーニング インコーポレイテッド Glass sheet manufacturing method and manufacturing apparatus
JP2008285344A (en) * 2007-05-15 2008-11-27 Shinetsu Quartz Prod Co Ltd Copper-containing silica glass, method for manufacturing the same and xenon flash lamp using the same
JP2010132923A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Light emission color conversion member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950014690B1 (en) * 1988-02-22 1995-12-13 닛뽄 덴기 가라스 가부시기가이샤 Method of and apparatus for manufacturing thin glass plates
JP5311281B2 (en) * 2008-02-18 2013-10-09 日本電気硝子株式会社 Wavelength conversion member and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436317A (en) * 1977-08-06 1979-03-17 Nippon Electric Glass Co Method of making thin glass plates
JP2008508179A (en) * 2004-07-29 2008-03-21 コーニング インコーポレイテッド Glass sheet manufacturing method and manufacturing apparatus
JP2007311743A (en) * 2006-04-19 2007-11-29 Nippon Electric Glass Co Ltd Method of manufacturing emission color conversion member, and emission color conversion member
JP2008021868A (en) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd Phosphor composite member
JP2008285344A (en) * 2007-05-15 2008-11-27 Shinetsu Quartz Prod Co Ltd Copper-containing silica glass, method for manufacturing the same and xenon flash lamp using the same
JP2010132923A (en) * 2010-02-25 2010-06-17 Nippon Electric Glass Co Ltd Light emission color conversion member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8822032B2 (en) 2010-10-28 2014-09-02 Corning Incorporated Phosphor containing glass frit materials for LED lighting applications
US10158057B2 (en) 2010-10-28 2018-12-18 Corning Incorporated LED lighting devices
US9011720B2 (en) 2012-03-30 2015-04-21 Corning Incorporated Bismuth borate glass encapsulant for LED phosphors
US9624124B2 (en) 2012-03-30 2017-04-18 Corning Incorporated Bismuth borate glass encapsulant for LED phosphors
US10023492B2 (en) 2012-03-30 2018-07-17 Corning Incorporated Bismuth borate glass encapsulant for LED phosphors
JP2014015359A (en) * 2012-07-10 2014-01-30 Nippon Electric Glass Co Ltd Method of manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
US10017849B2 (en) 2012-11-29 2018-07-10 Corning Incorporated High rate deposition systems and processes for forming hermetic barrier layers
US9202996B2 (en) 2012-11-30 2015-12-01 Corning Incorporated LED lighting devices with quantum dot glass containment plates
JP2016524344A (en) * 2013-07-08 2016-08-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Wavelength conversion type semiconductor light emitting device
JP2020074419A (en) * 2013-07-08 2020-05-14 ルミレッズ ホールディング ベーフェー Wavelength conversion semiconductor light emitting device
US10439109B2 (en) 2013-08-05 2019-10-08 Corning Incorporated Luminescent coatings and devices

Also Published As

Publication number Publication date
TWI591862B (en) 2017-07-11
TW201222884A (en) 2012-06-01
JP5678509B2 (en) 2015-03-04
WO2012017776A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5678509B2 (en) Method for manufacturing wavelength conversion member, wavelength conversion member and light source
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP6740616B2 (en) Wavelength conversion member and light emitting device
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
CN109415622B (en) Wavelength conversion member and light emitting device using same
JP5242905B2 (en) Luminescent color conversion member manufacturing method and luminescent color conversion member
JP6222452B2 (en) Wavelength conversion member and light emitting device
JP2013219123A (en) Wavelength conversion member and method for producing the same
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
WO2017047412A1 (en) Wavelength conversion member and light-emitting device
JP2012059893A (en) Wavelength conversion member, light source, and manufacturing method for wavelength conversion member
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
JP7022367B2 (en) Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
JP2018002492A (en) Wavelength conversion member and light-emitting device using the same
JP2018010188A (en) Manufacturing method for wavelength conversion member, and wavelength conversion member group
JP6617948B2 (en) Wavelength conversion member and light emitting device
JP7205808B2 (en) WAVELENGTH CONVERSION MEMBER AND LIGHT-EMITTING DEVICE USING THE SAME
JP7339609B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2013030536A (en) Light-emitting color conversion member and light-emitting device using the same
JP2020023438A (en) Wavelength conversion member and light-emitting device using the same
JP2014203900A (en) Method for manufacturing wavelength conversion member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5678509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150