JP2003101078A - Light-emitting device - Google Patents

Light-emitting device

Info

Publication number
JP2003101078A
JP2003101078A JP2001291782A JP2001291782A JP2003101078A JP 2003101078 A JP2003101078 A JP 2003101078A JP 2001291782 A JP2001291782 A JP 2001291782A JP 2001291782 A JP2001291782 A JP 2001291782A JP 2003101078 A JP2003101078 A JP 2003101078A
Authority
JP
Japan
Prior art keywords
light
light emitting
phosphor
emitting element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001291782A
Other languages
Japanese (ja)
Inventor
Osamu Yamanaka
修 山中
Yoshimasa Tatewaki
慶真 帯刀
Hiroshi Sugihara
洋 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2001291782A priority Critical patent/JP2003101078A/en
Publication of JP2003101078A publication Critical patent/JP2003101078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Abstract

PROBLEM TO BE SOLVED: To improve the light guide-out efficiency of a light-emitting device, which converts the wavelength of part of light from a light emitting element by a phosphor and emits light. SOLUTION: The phosphor 30 and a diffusing material 31, having a refractive index distribution, are incorporated in a transmissive resin layer 27 arranged where it is irradiated with the light from a light-emitting element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光装置に関する。詳
しくは、発光素子と蛍光体とを組み合わせた発光装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device. Specifically, it relates to a light emitting device in which a light emitting element and a phosphor are combined.

【0002】[0002]

【従来の技術】発光素子の光の一部を蛍光体により波長
変換し、当該波長変換された光と波長変換されない発光
素子の光とを混合して放出することにより、発光素子本
来の発光色と異なる色の光を発光する発光装置が開発さ
れている。例えば、発光素子として青色系の光を発光す
るIII族窒化物系化合物半導体発光素子を用い、蛍光体
としてセリウム(Ce)を賦活したイットリウム・アル
ミニウム・ガーネット系蛍光体(YAG)を用いた発光
装置が市販されている。かかる発光装置では、リードフ
レームのカップ部に発光素子が載置され、そして蛍光体
(YAG)を分散した光透過性材料が発光素子を被覆す
るようにカップ部に充填されている。これにより発光素
子の光放出方向には蛍光体層が形成される。かかる構成
では、発光素子の光の一部は、蛍光体層を通過する際、
蛍光体(YAG)に吸収、波長変換された後放射され、
その他の光は蛍光体に吸収されることなく蛍光体層を透
過して放射される。そして、これら2種類の光が混合さ
れることにより白色系の発光が得られる。
2. Description of the Related Art A part of light emitted from a light-emitting element is wavelength-converted by a phosphor, and the wavelength-converted light and the light of the light-emitting element which is not wavelength-converted are mixed and emitted. A light emitting device that emits light of a different color has been developed. For example, a light emitting device using a group III nitride compound semiconductor light emitting element that emits blue light as a light emitting element and a yttrium-aluminum garnet-based phosphor (YAG) activated with cerium (Ce) as a phosphor. Is commercially available. In such a light emitting device, the light emitting element is mounted on the cup portion of the lead frame, and the light transmissive material in which the phosphor (YAG) is dispersed is filled in the cup portion so as to cover the light emitting element. As a result, a phosphor layer is formed in the light emitting direction of the light emitting element. In such a configuration, when a part of the light of the light emitting element passes through the phosphor layer,
Emitted after being absorbed by the phosphor (YAG) and converted in wavelength,
Other light is emitted through the phosphor layer without being absorbed by the phosphor. Then, white light emission is obtained by mixing these two types of light.

【0003】[0003]

【発明が解決しようとする課題】上記のごとき発光素子
及び蛍光体を用いた発光装置では、異なる波長の光を混
色して外部放射するため、光の混色を促進し発光色のム
ラを軽減することが要求される。そこで、蛍光体を分散
させる光透過性材料に、拡散材(酸化チタンなど)を含
有させた構成が提案されている(例えば、特開平10−
173240号公報、特開2000−208815号公
報等)。拡散材を用いることにより、発光素子の光ある
いは蛍光体からの光が拡散材によって拡散され、これに
より両者の混色が良好に行われる。しかしながら、従来
使用されている酸化チタンなどの拡散材はそれに照射す
る光を乱反射するため、一部の光は発光素子側に反射さ
れ、即ち光の取り出し方向と逆行する光となり、その結
果、光の取り出し効率(発光効率)が低下してしまう。
本発明は以上の課題を解決すべくなされたものであり、
蛍光体を用いて一部の光を波長変換して放出する発光装
置において、光の取り出し効率、即ち発光効率を向上す
ることを目的とする。
In the light emitting device using the light emitting element and the phosphor as described above, the lights of different wavelengths are mixed and emitted to the outside, so that the mixing of the lights is promoted and the unevenness of the emission color is reduced. Is required. Therefore, a configuration has been proposed in which a light-transmissive material that disperses the phosphor contains a diffusing material (titanium oxide or the like) (see, for example, JP-A-10-
173240, JP 2000-208815 A, etc.). By using the diffusing material, the light of the light emitting element or the light from the phosphor is diffused by the diffusing material, so that the two colors are mixed well. However, since the diffusion material such as titanium oxide that is conventionally used diffusely reflects the light irradiated on it, part of the light is reflected to the light emitting element side, that is, it becomes light that is opposite to the light extraction direction. The extraction efficiency (luminous efficiency) of is reduced.
The present invention has been made to solve the above problems,
An object of the present invention is to improve the light extraction efficiency, that is, the light emission efficiency, in a light emitting device that uses a phosphor to convert a part of light into a wavelength and emits the light.

【0004】[0004]

【課題を解決するための手段】本発明者らは、以上の目
的を達成すべく鋭意検討した結果、以下の構成に想到し
た。即ち、本発明は、発光素子と、前記発光素子の光を
受けて蛍光する蛍光体、及び屈折率分布を有する拡散材
を含む光透過性材料層と、を備える発光装置である。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the inventors of the present invention have come up with the following constitution. That is, the present invention is a light emitting device including a light emitting element, a phosphor that receives the light of the light emitting element and fluoresces, and a light transmissive material layer that includes a diffusing material having a refractive index distribution.

【0005】ここで、光透過性材料層に含有される、屈
折率分布を有する拡散材は、それに照射する光の多くを
進行方向側に反射する。したがって、上記の構成では、
拡散材に反射されることによって光の取り出し方向に逆
行する光が発生することを大幅に抑制できる。即ち、発
光素子からの光あるいは蛍光体により変換された光を、
効率よく光の取り出し方向に進行させることができる。
その結果、光の取り出し効率(発光効率)が高い発光装
置となる。
Here, the diffusing material having a refractive index distribution contained in the light transmissive material layer reflects most of the light irradiating it toward the traveling direction. Therefore, in the above configuration,
It is possible to significantly suppress the generation of light that is backward in the light extraction direction due to the reflection by the diffusing material. That is, the light from the light emitting element or the light converted by the phosphor is
It is possible to efficiently proceed in the light extraction direction.
As a result, a light emitting device with high light extraction efficiency (light emission efficiency) is obtained.

【0006】[0006]

【発明の実施の形態】発光素子は、その発光波長が36
0nm〜550nmの範囲にあるものが好適に用いられ
る。かかる波長範囲の光は、後述の蛍光体を高効率で励
起し、発光させることが可能である。発光素子の選択に
おいては、後述の蛍光体の励起ピーク及び発光色、並び
に発光装置全体から発光される光の色が考慮される。白
色系の発光を得ようとすれば、例えば、青色系の光を発
光する発光素子(例えば、発光ピーク波長が450nm
〜500nmの範囲にある発光素子)を採用することが
できる。この場合には、例えば、後述の蛍光体を青色系
の光との混色により白色系の光が得られるように、後述
の蛍光体として黄色系ないしは緑色系の蛍光色を有する
ものを採用することができる。白色系の発光を得る場合
の他の例としては、紫外領域の光を発光する発光素子
(例えば、発光ピーク波長が360nm〜400nmの
範囲にある発光素子)を採用し、それぞれが赤色系、緑
色系、及び青色系の蛍光を発する蛍光材料からなる蛍光
体を組み合わせて用いる態様を挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION A light emitting device has an emission wavelength of 36
Those in the range of 0 nm to 550 nm are preferably used. Light in such a wavelength range can excite the phosphor described below with high efficiency to cause it to emit light. In the selection of the light emitting element, the excitation peak and the emission color of the phosphor, which will be described later, and the color of the light emitted from the entire light emitting device are considered. In order to obtain white light emission, for example, a light emitting element that emits blue light (for example, an emission peak wavelength is 450 nm
It is possible to employ a light emitting device having a wavelength range of up to 500 nm. In this case, for example, a phosphor having a yellow or green fluorescent color is used as the fluorescent substance described below so that white fluorescent light can be obtained by mixing the fluorescent substance described later with blue light. You can As another example of obtaining white light emission, a light emitting element that emits light in the ultraviolet region (for example, a light emitting element having an emission peak wavelength in the range of 360 nm to 400 nm) is used, and each of them is red and green. An example is a mode in which a phosphor made of a fluorescent material that emits blue-based fluorescence is used in combination.

【0007】二以上の波長領域に発光ピークを有する発
光素子を採用することもできる。例えば、紫外領域の光
の他、可視領域の光をも発光する発光素子を用いれば、
紫外領域の光を蛍光体の励起に利用する一方で、可視領
域の光を外部放射光の光の一部として利用することがで
きる。このようにすれば、発光装置からは蛍光体の蛍光
と発光素子から放出される可視光とが混合された光が外
部放射される。例えば、紫外光と青色光とを発光可能な
発光素子を採用し、併せて紫外光により緑色系、赤色系
などの蛍光を発する蛍光体を組み合わせれば、様々な発
光色の発光装置を構成することができる。異なる発光波
長(発光色)を有する二以上の発光素子を組み合わせて
用いることもできる。このようにすれば、発光装置から
放射される光の色を変化、調整、又は補正することがで
きる。
It is also possible to employ a light emitting element having an emission peak in two or more wavelength regions. For example, if a light emitting element that emits light in the visible region as well as light in the ultraviolet region is used,
The light in the ultraviolet region can be used for exciting the phosphor, while the light in the visible region can be used as a part of the light of the external emission light. With this configuration, the light emitting device emits the light, which is a mixture of the fluorescent light of the phosphor and the visible light emitted from the light emitting element, to the outside. For example, by adopting a light-emitting element capable of emitting ultraviolet light and blue light, and combining phosphors that emit green-based or red-based fluorescence with ultraviolet light, light-emitting devices of various emission colors are configured. be able to. Two or more light emitting elements having different emission wavelengths (emission colors) can be used in combination. In this way, the color of the light emitted from the light emitting device can be changed, adjusted, or corrected.

【0008】発光素子の形成材料は特に限定されるもの
ではない。III族窒化物系化合物半導体層を備える発光
素子、即ち、III族窒化物系化合物半導体発光素子を好
適に用いることができる。III族窒化物系化合物半導体
は、一般式としてAlGa In1−X−YN(0≦
X≦1、0≦Y≦1、0≦X+Y≦1)で表され、Al
N、GaN及びInNのいわゆる2元系、AlGa
1−xN、AlIn −xN及びGaIn1−x
(以上において0<x<1)のいわゆる3元系を包含す
る。III族元素の少なくとも一部をボロン(B)、タリ
ウム(Tl)等で置換しても良く、また、窒素(N)の
少なくとも一部もリン(P)、ヒ素(As)、アンチモ
ン(Sb)、ビスマス(Bi)等で置換できる。発光素
子の素子機能部分は上記2元系若しくは3元系のIII族
窒化物系化合物半導体より構成することが好ましい。
Materials for forming the light emitting element are not particularly limited
is not. Light emission comprising a group III nitride compound semiconductor layer
A device, that is, a group III nitride compound semiconductor light emitting device is preferable.
It can be used appropriately. Group III nitride compound semiconductor
Is the general formula AlXGa YIn1-XYN (0 ≦
X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ X + Y ≦ 1), and Al
So-called binary system of N, GaN and InN, AlxGa
1-xN, AlxIn1 -XN and GaxIn1-xN
Includes so-called ternary system (0 <x <1 in the above)
It Boron (B) and at least part of Group III elements
It may be replaced with um (Tl), etc.
At least part of it is phosphorus (P), arsenic (As), antimony
(Sb), bismuth (Bi) or the like. Luminescent element
The element function part of the child is the group III of the above binary system or ternary system.
It is preferably composed of a nitride compound semiconductor.

【0009】III族窒化物系化合物半導体は任意のドー
パントを含むものであっても良い。n型不純物として、
Si、Ge、Se、Te、C等を用いることができる。
p型不純物として、Mg、Zn、Be、Ca、Sr、B
a等を用いることができる。なお、p型不純物をドープ
した後にIII族窒化物系化合物半導体を電子線照射、プ
ラズマ照射若しくは炉による加熱にさらすことができる
が必須ではない。III族窒化物系化合物半導体は、有機
金属気相成長法(MOCVD法)のほか、周知の分子線
結晶成長法(MBE法)、ハライド系気相成長法(HV
PE法)、スパッタ法、イオンプレーティング法、電子
シャワー法等によっても形成することができる。
The group III nitride compound semiconductor may contain any dopant. As an n-type impurity,
Si, Ge, Se, Te, C or the like can be used.
As p-type impurities, Mg, Zn, Be, Ca, Sr, B
a or the like can be used. Note that the group III nitride compound semiconductor can be exposed to electron beam irradiation, plasma irradiation, or heating by a furnace after being doped with p-type impurities, but it is not essential. Group III nitride compound semiconductors are well known in the art, including metalorganic vapor phase epitaxy (MOCVD), well-known molecular beam crystal growth (MBE), and halide vapor phase (HV).
It can also be formed by a PE method), a sputtering method, an ion plating method, an electron shower method, or the like.

【0010】III族窒化物系化合物半導体層を成長させ
る基板の材質はIII族窒化物系化合物半導体層を成長さ
せられるものであれば特に限定されないが、例えば、サ
ファイア、スピネル、シリコン、炭化シリコン、酸化亜
鉛、リン化ガリウム、ヒ化ガリウム、酸化マグネシウ
ム、酸化マンガン、III族窒化物系化合物半導体単結晶
などを基板の材料として挙げることができる。中でも、
サファイア基板を用いることが好ましく、サファイア基
板のa面を利用することが更に好ましい。
The material of the substrate on which the group III nitride compound semiconductor layer is grown is not particularly limited as long as it can grow the group III nitride compound semiconductor layer. For example, sapphire, spinel, silicon, silicon carbide, Examples of the substrate material include zinc oxide, gallium phosphide, gallium arsenide, magnesium oxide, manganese oxide, and group III nitride compound semiconductor single crystals. Above all,
It is preferable to use a sapphire substrate, and it is more preferable to use the a-plane of the sapphire substrate.

【0011】光透過性材料層の基材(光透過性材料)と
しては、エポキシ樹脂、シリコーン樹脂、シリコーンゴ
ム、シリコーンエラストマー、尿素樹脂、又はガラス等
を用いることができる。これらの材料は、単独で用いら
れるのは勿論のこと、これらの中から任意に選択される
二種以上の材料を用いることもできる。中でも、取り扱
い易さや汎用性などの観点からエポキシ樹脂を用いるこ
とが好ましい。また、シリコーン樹脂、シリコーンゴ
ム、又はシリコーンエラストマーを採用する場合には、
その表面(外部露出面)に耐衝撃性の高い材料によるコ
ーティングなどを施すことが好ましい。例えば、封止部
材の表面に成型したエポキシ樹脂などを被せることがで
きる。光透過性材料層は、発光素子からの光が照射する
位置に備えられる。これにより、その中に含有される蛍
光体への光の照射が行われる。好ましくは、発光素子の
光放出側を被覆するように光透過性材料層を形成し、蛍
光体に対して光を効率的に照射する。光透過性材料層に
より発光素子を封止することができる。また、発光素子
と光透過性材料層との間に、光透過性材料層と異なる材
料からなる層あるいは空間を設けてもよい。例えば、シ
リコーン樹脂を発光素子の表面に塗布し、その上にエポ
キシ樹脂等を基材とした光透過性材料層を形成すること
ができる。
As the base material (light-transmitting material) of the light-transmitting material layer, epoxy resin, silicone resin, silicone rubber, silicone elastomer, urea resin, glass or the like can be used. These materials may be used alone, or two or more kinds of materials arbitrarily selected from them may be used. Above all, it is preferable to use an epoxy resin from the viewpoint of easy handling and versatility. When silicone resin, silicone rubber, or silicone elastomer is used,
The surface (externally exposed surface) is preferably coated with a material having high impact resistance. For example, the surface of the sealing member can be covered with a molded epoxy resin or the like. The light transmissive material layer is provided at a position irradiated with light from the light emitting element. Thereby, the phosphor contained therein is irradiated with light. Preferably, a light transmissive material layer is formed so as to cover the light emitting side of the light emitting element, and the phosphor is efficiently irradiated with light. The light-emitting element can be sealed with the light-transmitting material layer. Further, a layer or a space made of a material different from the light transmissive material layer may be provided between the light emitting element and the light transmissive material layer. For example, a silicone resin can be applied to the surface of the light emitting element, and a light transmissive material layer having an epoxy resin or the like as a base material can be formed thereon.

【0012】光透過性樹脂層には蛍光体が添加されてい
る。ここでの蛍光体の種類は、発光素子の光により励起
し蛍光するものであれば特に限定されず、無機系、有機
系を問わず採用することができる。無機系蛍光体として
は、以下のものを採用することができる。例えば、赤色
系の発光色を有する6MgO・As:Mn4+
Y(PV)O:Eu、CaLa0.1Eu0.9Ga
、BaY0.9Sm0.1Ga、Ca(Y
0.5Eu0.5)(Ga0.5In0.5
:Eu、YVO:Eu、Y:Eu、
3.5MgO・0.5MgFGeO:Mn 4+、及
び(Y・Cd)BO:Eu等、青色系の発光色を有す
る(Ba,Ca,Mg)(POCl:E
2+、(Ba,Mg)Al1627:Eu2+
BaMgSi:Eu2+、BaMgAl16
27:Eu 、(Sr,Ca)10(PO
:Eu2+ 、(Sr,Ca)10(PO
・nB:Eu2+、Sr10(PO
:Eu2+、(Sr,Ba,Ca)(PO
Cl:Eu2+、Sr:Eu、Sr(PO
Cl:Eu、(Sr,Ca,Ba)(PO
Cl:Eu、SrO・P・B:Eu、
(BaCa)(POCl:Eu、SrLa
0.95Tm0.05Ga、ZnS:Ag、Ga
WO、YSiO:Ce、ZnS:Ag,Ga,C
l、CaOCl:Eu2+、BaMgAl
:Eu2+、及び一般式(M1,Eu)10(P
Cl(M1は、Mg,Ca,Sr,及びBa
からなる群から選択される少なくとも1種の元素)で表
される蛍光体等、緑色系の発光色を有するYAl
12:Ce3+(YAG)、YSiO:Ce3+
Tb3+、SrSi・2SrCl:Eu、B
aMgAl1627:Eu2+,Mn 、ZnS
iO:Mn、ZnSiO:Mn、LaPO:T
b、SrAl :Eu、SrLa0.2Tb0.8
Ga、CaY0.9Pr0.1Ga、Zn
Gd0.8Ho0.2Ga、SrLa0.6Tb
0.4Al、ZnS:Cu,Al、(Zn,C
d)S:Cu,Al、ZnS:Cu,Au,Al、Zn
SiO:Mn、ZnSiO:Mn、ZnS:A
g,Cu、(Zn・Cd)S:Cu、ZnS:Cu、G
dOS:Tb、LaOS:Tb、YSiO:Ce・T
b、ZnGeO:Mn、GeMgAlO:Tb、Sr
GaS:Eu2+、ZnS:Cu・Co、MgO・nB
:Ge,Tb、LaOBr:Tb,Tm、及びL
S:Tb等を用いることができる。また、白色
系の発光色を有するYVO:Dy、黄色系の発光色を
有するCaLu 0.5Dy0.5Gaを用いるこ
ともできる。
A phosphor is added to the light transmissive resin layer.
It The type of phosphor here is excited by the light of the light emitting element.
It is not particularly limited as long as it is fluorescent, and it is an inorganic type or an organic type.
It can be adopted regardless of system. As an inorganic phosphor
The following can be adopted. For example, red
-Based 6MgO · As with emission colorTwoO5: Mn4+,
Y (PV) OFour: Eu, CaLa0.1Eu0.9Ga
ThreeO7, BaY0.9Sm0.1GaThreeO7, Ca (Y
0.5Eu0.5) (Ga0.5In0.5)ThreeO7,
YThreeOThree: Eu, YVOFour: Eu, YTwoOTwo: Eu,
3.5MgO ・ 0.5MgFTwoGeOTwo: Mn 4+, And
(Y ・ Cd) BOTwo: Has a blue emission color such as Eu
(Ba, Ca, Mg)5(POFour)ThreeCl: E
u2+, (Ba, Mg)TwoAl16O27: Eu2+,
BaThreeMgSiTwoO8: Eu2+, BaMgTwoAl16
O27: EuTwo +, (Sr, Ca)10(POFour)6C
lTwo: Eu2+ , (Sr, Ca)10(POFour)6C
lTwo・ NBTwoOThree: Eu2+, Sr10(POFour)6C
lTwo: Eu2+, (Sr, Ba, Ca)5(POFour)Three
Cl: Eu2+, SrTwoPTwoO7: Eu, Sr5(PO
Four)ThreeCl: Eu, (Sr, Ca, Ba)Three(POFour)
6Cl: Eu, SrO · PTwoO5・ BTwoO5: Eu,
(BaCa)5(POFour)ThreeCl: Eu, SrLa
0.95Tm0.05GaThreeO7, ZnS: Ag, Ga
WOFour, YTwoSiO6: Ce, ZnS: Ag, Ga, C
l, CaTwoBFourOCl: Eu2+, BaMgAl
FourOThree: Eu2+, And the general formula (M1, Eu)10(P
O Four)6ClTwo(M1 is Mg, Ca, Sr, and Ba
At least one element selected from the group consisting of
Having a green-based emission color such as phosphorsThreeAl 5O
12: Ce3+(YAG), YTwoSiO5: Ce3+
Tb3+, SrTwoSiThreeO8・ 2SrClTwo: Eu, B
aMgTwoAl16O27: Eu2+, MnTwo +, ZnS
iOFour: Mn, ZnTwoSiOFour: Mn, LaPOFour: T
b, SrAl TwoOFour: Eu, SrLa0.2Tb0.8
GaThreeO7, CaY0.9Pr0.1GaThreeO7, Zn
Gd0.8Ho0.2GaThreeO7, SrLa0.6Tb
0.4AlThreeO7, ZnS: Cu, Al, (Zn, C
d) S: Cu, Al, ZnS: Cu, Au, Al, Zn
TwoSiOFour: Mn, ZnSiOFour: Mn, ZnS: A
g, Cu, (Zn · Cd) S: Cu, ZnS: Cu, G
dOS: Tb, LaOS: Tb, YSiOFour: Ce ・ T
b, ZnGeOFour: Mn, GeMgAlO: Tb, Sr
GaS: Eu2+, ZnS: Cu / Co, MgO / nB
TwoOThree: Ge, Tb, LaOBr: Tb, Tm, and L
aTwoOTwoS: Tb or the like can be used. Also white
YVO with system emission colorFour: Dy, yellowish emission color
Have CaLu 0.5Dy0.5GaThreeO7To use
I can do it.

【0013】有機系蛍光体としては、以下のものを採用
することができる。例えば、1,4−ビス(2−メチルス
チリル)ベンゼン(Bis−MSB)、トランス−4,
4’−ジフェニルスチルベン(DPS)等のスチルベン
系色素、及び7−ヒドロキシ−4−メチルクマリン(ク
マリン4)等のクマリン系色素、BOQP、PBBO、
BOT、POPOP等を用いることができる。これらの
蛍光体は青色系の発光色を有する。また、DPOT、ブ
リリアントサルフォフラビンFF(brilliantsulfoflav
ine FF)、ベーシックイエローHG(basic yellow H
G)、SINLOIHI COLOR FZ-5005(シンロイヒ社製)など
を用いることもできる。これらの蛍光体は黄色系〜緑色
系の蛍光色を有する。また、黄色系〜赤色系の蛍光体で
ある、エオシン(eosine)、ローダミン6G(rhodamin
e 6G)、ローダミンB(rhodamineB)、NKP-8303(日本
蛍光化学社製)などを用いることもできる。また、TB
(EDTA)SSA、EuTTAなどを例えばメチルメ
タクリレートに溶解、重合固化しポリメチルメタクリレ
ート(PMMA)としたものを用いることもできる。
尚、異なる種類の蛍光体を二以上組み合わせて用いるこ
ともできる。
The following can be adopted as the organic phosphor. For example, 1,4-bis (2-methylstyryl) benzene (Bis-MSB), trans-4,
Stilbene dyes such as 4'-diphenylstilbene (DPS), and coumarin dyes such as 7-hydroxy-4-methylcoumarin (coumarin 4), BOQP, PBBO,
BOT, POPOP, etc. can be used. These phosphors have a blue emission color. In addition, DPOT, brilliant sulfoflavin FF (brilliantsulfoflav
ine FF), basic yellow HG (basic yellow H)
G), SINLOIHI COLOR FZ-5005 (manufactured by Shinroyhi Co., Ltd.) and the like can also be used. These phosphors have a yellow to green fluorescent color. In addition, yellow to red phosphors such as eosin and rhodamine 6G (rhodamin)
e 6G), Rhodamine B (rhodamineB), NKP-8303 (manufactured by Nippon Fluorescent Chemical Co., Ltd.) and the like can also be used. Also, TB
It is also possible to use (EDTA) SSA, EuTTA, etc. dissolved in, for example, methyl methacrylate and polymerized and solidified to form polymethyl methacrylate (PMMA).
It should be noted that it is also possible to use two or more different types of phosphors in combination.

【0014】使用目的、使用条件等に応じて、光透過性
材料層内における蛍光体の濃度分布を変化させることが
できる。即ち、発光素子に近づくに従って蛍光体の量を
連続的又は段階的に変化させることができる。例えば、
発光素子に近い部分において蛍光体の濃度を大きくす
る。これにより、効率的に発光素子からの光を蛍光体に
照射することができる。その反面、発光素子で発生する
熱の影響を受けやすく、蛍光体の劣化が問題となる。他
方、発光素子に近づくに従って蛍光体の濃度を小さくす
ることにより、発光素子の発熱に起因する蛍光体の劣化
は抑制される。例えば、蛍光体を分散させた少量の光透
過性材料で発光素子の表面(光放出側)をコーティング
し、その上に蛍光体を含まない光透過性材料を積層する
ことにより、蛍光体樹脂層内における蛍光体量の濃度分
布を変化させることができる。ここで、蛍光体の添加量
が異なる封止部材を複数用意し、これらを順に積層する
ことにより、蛍光体添加量を発光素子側から遠ざかるに
従って徐変するように構成してもよい。尚、種類の異な
る蛍光体を添加された光透過性材料を複数用意し、これ
らを順に積層することもできる。
The concentration distribution of the phosphor in the light transmissive material layer can be changed according to the purpose of use, the conditions of use and the like. That is, the amount of the phosphor can be changed continuously or stepwise as it approaches the light emitting element. For example,
The concentration of the phosphor is increased in the portion close to the light emitting element. Thereby, the phosphor can be efficiently irradiated with the light from the light emitting element. On the other hand, it is easily affected by heat generated in the light emitting element, which causes deterioration of the phosphor. On the other hand, by decreasing the concentration of the phosphor as it approaches the light emitting element, deterioration of the phosphor due to heat generation of the light emitting element is suppressed. For example, by coating the surface (light emitting side) of the light emitting element with a small amount of a light-transmitting material in which a phosphor is dispersed, and stacking a light-transmitting material that does not contain a phosphor thereon, a phosphor resin layer It is possible to change the concentration distribution of the amount of the fluorescent substance inside. Here, a plurality of sealing members having different phosphor addition amounts may be prepared, and these may be laminated in order to gradually change the phosphor addition amount as the distance from the light emitting element side increases. It is also possible to prepare a plurality of light transmissive materials to which phosphors of different types are added and to stack these in order.

【0015】光透過性材料層には、蛍光体に加えて屈折
率分布を有する拡散材が含有される。このような拡散剤
を用いることにより、まず光透過性材料層内での光の拡
散が促進され、発光素子の光を効率的に蛍光体に照射で
きる。また、発光素子からの光と蛍光体の蛍光の混色を
促進でき、混色ムラ及び発光ムラの低減が図られる。し
かも、屈折率分布を有する拡散材を採用することによ
り、光の取り出し方向と逆方向への光の反射が抑えら
れ、光の取り出し効率(発光効率)が高くなる。
The light transmissive material layer contains a diffusing material having a refractive index distribution in addition to the phosphor. By using such a diffusing agent, diffusion of light in the light transmissive material layer is first promoted, and the light from the light emitting element can be efficiently applied to the phosphor. Further, the color mixture of the light from the light emitting element and the fluorescence of the phosphor can be promoted, and the color mixture unevenness and the light emission unevenness can be reduced. Moreover, by adopting the diffusing material having the refractive index distribution, the reflection of light in the direction opposite to the light extraction direction is suppressed, and the light extraction efficiency (light emission efficiency) is increased.

【0016】ここで、「屈折率分布を有する」とは、拡散
材中において屈折率が一様でないことを意味する。した
がって、拡散材中に屈折率の最大となる位置、及び最小
となる位置が存在する。このような屈折率分布を有する
拡散材としては、例えば特開平6−347616号公報
に開示されるものを採用することができる。当該公報に
は、屈折率が異なる二以上のラジカル重合性単量体(ス
チレン、スチレン誘導体、メタクリル酸エステル類、ア
クリル酸エステル類など)をラジカル共重合させて得ら
れる透明性の拡散材であって、拡散材内の屈折率の最大
値と最小値の差が0.005以上、50nm離れた任意
の2点の屈折率の差が0.01以下又は上記の屈折率の
最大値と最小値の差の1/2以下、屈折率の異なる領域
が偏在しない(拡散材中の任意の位置における径5mm
円内での屈折率の平均が、拡散材全体の屈折率の平均に
ほぼ等しい)といった特性の拡散材が開示されており、
本発明ではかかる特性を備えた拡散材を好適に採用する
ことができる。尚、以上の拡散材についての特性、製法
等については当該公報に詳述されるのでこれを参照され
たい。拡散材は、光透過性材料層に分散した状態で含有
させることもできるが、上記蛍光体と同様に、濃度分布
をつけてもよい。
Here, "having a refractive index distribution" means that the refractive index is not uniform in the diffusing material. Therefore, there are positions where the refractive index is maximum and positions where the refractive index is minimum in the diffusing material. As the diffusing material having such a refractive index distribution, for example, the one disclosed in JP-A-6-347616 can be adopted. The publication discloses a transparent diffusing material obtained by radically copolymerizing two or more radically polymerizable monomers (styrene, styrene derivatives, methacrylic acid esters, acrylic acid esters, etc.) having different refractive indexes. The difference between the maximum and minimum values of the refractive index in the diffusing material is 0.005 or more, the difference between the refractive indices of two arbitrary points 50 nm apart is 0.01 or less, or the above-mentioned maximum and minimum values of the refractive index. Is less than 1/2 of the difference between the two, and the regions having different refractive indices are not unevenly distributed (diameter 5 mm at any position in the diffusing material)
The average of the refractive index in the circle is almost equal to the average of the refractive index of the entire diffusing material) is disclosed,
In the present invention, a diffusing material having such characteristics can be preferably adopted. The characteristics and manufacturing method of the above diffusing material are described in detail in this publication, so please refer to them. The diffusing material may be contained in the light transmissive material layer in a dispersed state, but may have a concentration distribution like the phosphor.

【0017】光透過性材料層には、上記の蛍光体、及び
屈折率分布を有する拡散材の他に、他の拡散材(例え
ば、酸化チタン、窒化チタン、窒化タンタル、酸化アル
ミニウム、酸化珪素、チタン酸バリウム等)や着色剤等
を添加することもできる。着色剤は、蛍光体自体などが
特有の色を示すことを防止するために専ら用いられる。
In addition to the above-mentioned phosphor and the diffusing material having the refractive index distribution, other light diffusing materials (for example, titanium oxide, titanium nitride, tantalum nitride, aluminum oxide, silicon oxide, etc.) can be used in the light transmitting material layer. It is also possible to add a barium titanate or the like) or a coloring agent. The colorant is used exclusively to prevent the phosphor itself from exhibiting a unique color.

【0018】[0018]

【実施例】以下、実施例を用いて本発明の構成をより詳
細に説明する。 (実施例1)図1は本発明の一の実施例である砲弾型L
ED1を示す図である。LED1は白色系の発光をし、
例えば、導光体と組み合わせて面状光源、線状光源に利
用することができ、また、各種表示装置等にも利用する
ことができる。図2にはLED1に使用される発光素子
10の模式断面図が示される。発光素子10の発光波長
は約480nmであり、各層のスペックは次の通りであ
る。
EXAMPLES The constitution of the present invention will be described in more detail with reference to examples. (Embodiment 1) FIG. 1 shows a cannonball type L which is an embodiment of the present invention.
It is a figure which shows ED1. LED1 emits white light,
For example, it can be used for a planar light source or a linear light source in combination with a light guide, and can also be used for various display devices. FIG. 2 shows a schematic cross-sectional view of the light emitting element 10 used for the LED 1. The emission wavelength of the light emitting element 10 is about 480 nm, and the specifications of each layer are as follows.

【0019】基板11の上にはバッファ層12を介して
n型不純物としてSiをドープしたGaNからなるn型
層13を形成する。ここで、基板11にはサファイアを
用いたが、これに限定されることはなく、サファイア、
スピネル、シリコン、炭化シリコン、酸化亜鉛、リン化
ガリウム、ヒ化ガリウム、酸化マグネシウム、酸化マン
ガン、III族窒化物系化合物半導体単結晶等を用いるこ
とができる。さらにバッファ層はAlNを用いてMOC
VD法で形成されるがこれに限定されることはなく、材
料としてはGaN、InN、AlGaN、InGaN及
びAlInGaN等を用いることができ、製法としては
分子線結晶成長法(MBE法)、ハライド系気相成長法
(HVPE法)、スパッタ法、イオンプレーティング
法、電子シャワー法等を用いることができる。III族窒
化物系化合物半導体を基板として用いた場合は、当該バ
ッファ層を省略することができる。さらに基板とバッフ
ァ層は半導体素子形成後に、必要に応じて、除去するこ
ともできる。
An n-type layer 13 made of GaN doped with Si as an n-type impurity is formed on the substrate 11 via a buffer layer 12. Here, although sapphire is used for the substrate 11, it is not limited to this, and sapphire,
Spinel, silicon, silicon carbide, zinc oxide, gallium phosphide, gallium arsenide, magnesium oxide, manganese oxide, Group III nitride compound semiconductor single crystal, or the like can be used. Further, the buffer layer is made of AlN and is MOC.
Although it is formed by the VD method, the material is not limited to this, and GaN, InN, AlGaN, InGaN, AlInGaN, or the like can be used as the material, and a molecular beam crystal growth method (MBE method) or a halide-based method A vapor phase growth method (HVPE method), a sputtering method, an ion plating method, an electron shower method or the like can be used. When the group III nitride compound semiconductor is used as the substrate, the buffer layer can be omitted. Further, the substrate and the buffer layer can be removed as needed after the semiconductor element is formed.

【0020】ここでn型層13はGaNで形成したが、
AlGaN、InGaN若しくはAlInGaNを用い
ることができる。また、n型層13はn型不純物してS
iをドープしたが、このほかにn型不純物として、G
e、Se、Te、C等を用いることもできる。n型層1
3は発光する層を含む層14側の低電子濃度n-層とバ
ッファ層12側の高電子濃度n+層とからなる2層構造
とすることができる。発光する層を含む層14は量子井
戸構造(多重量子井戸構造、若しくは単一量子井戸構
造)を含んでいてもよく、また発光素子の構造としては
シングルへテロ型、ダブルへテロ型及びホモ接合型のも
のなどでもよい。発光する層を含む層14はp型層15
の側にマグネシウム等のアクセプタをドープしたバンド
ギャップの広いIII族窒化物系化合物半導体層を含むこ
ともできる。これは発光する層を含む層14中に注入さ
れた電子がp型層15に拡散するのを効果的に防止する
ためである。発光する層を含む層14の上にp型不純物
としてMgをドープしたGaNからなるp型層15を形
成する。このp型層はAlGaN、InGaN又はIn
AlGaNとすることもできる、また、p型不純物とし
てはZn、Be、Ca、Sr、Baを用いることもでき
る。さらに、p型層15を発光する層を含む層14側の
低ホール濃度p−層と電極側の高ホール濃度p+層とか
らなる2層構造とすることができる。上記構成の発光ダ
イオードにおいて、各III族窒化物系化合物半導体層は
一般的な条件でMOCVDを実行して形成するか、分子
線結晶成長法(MBE法)、ハライド系気相成長法(H
VPE法)、スパッタ法、イオンプレーティング法、電
子シャワー法等の方法で形成することもできる。
Although the n-type layer 13 is made of GaN,
AlGaN, InGaN or AlInGaN can be used. The n-type layer 13 is an n-type impurity and is S
i was doped, but in addition to this, G was added as an n-type impurity.
It is also possible to use e, Se, Te, C or the like. n-type layer 1
3 can have a two-layer structure composed of a low electron concentration n-layer on the layer 14 side including a light emitting layer and a high electron concentration n + layer on the buffer layer 12 side. The layer 14 including a layer that emits light may include a quantum well structure (multiple quantum well structure or single quantum well structure), and the structure of the light emitting element is a single hetero type, a double hetero type, and a homojunction. It may be a mold or the like. The layer 14 including the light emitting layer is a p-type layer 15
A group III nitride compound semiconductor layer having a wide bandgap doped with an acceptor such as magnesium may be included on the side of. This is to effectively prevent the electrons injected into the layer 14 including the light emitting layer from diffusing into the p-type layer 15. A p-type layer 15 made of GaN doped with Mg as a p-type impurity is formed on the layer 14 including a light emitting layer. This p-type layer is AlGaN, InGaN or In
AlGaN can also be used, and Zn, Be, Ca, Sr, and Ba can be used as the p-type impurities. Further, the p-type layer 15 may have a two-layer structure including a low hole concentration p− layer on the layer 14 side including a layer emitting light and a high hole concentration p + layer on the electrode side. In the light emitting diode having the above structure, each group III nitride compound semiconductor layer is formed by performing MOCVD under general conditions, or is formed by a molecular beam crystal growth method (MBE method) or a halide vapor phase growth method (H
VPE method), sputtering method, ion plating method, electron shower method, or the like.

【0021】n電極19はAlとVの2層で構成され、
p型層15を形成した後、p型層15、発光する層を含
む層14、及びn型層13の一部をエッチングにより除
去し、蒸着によりn型層13上に形成される。透光性電
極17は金を含む薄膜であり、p型層15の上に積層さ
れる。p電極18も金を含む材料で構成されており、蒸
着により透光性電極17の上に形成される。上記の工程
により各半導体層及び各電極を形成した後、各チップの
分離工程を行う。
The n-electrode 19 is composed of two layers of Al and V,
After the p-type layer 15 is formed, a part of the p-type layer 15, the layer 14 including a light emitting layer, and the n-type layer 13 is removed by etching, and the p-type layer 15 is formed on the n-type layer 13 by vapor deposition. The transparent electrode 17 is a thin film containing gold and is laminated on the p-type layer 15. The p-electrode 18 is also made of a material containing gold, and is formed on the translucent electrode 17 by vapor deposition. After each semiconductor layer and each electrode are formed by the above process, a separation process of each chip is performed.

【0022】発光する層を含む層14と基板11との
間、又は基板11の半導体層が形成されない面に反射層
を設けることもできる。反射層を設けることにより、発
光する層14で生じ、基板側に向かった光を効率的に光
の取り出し方向へ反射することができ、その結果、発光
効率の向上が図れる。反射層は、窒化チタン、窒化ジル
コニウム、及び窒化タンタルの中から選択される1種類
又は2種類以上により形成することができる。また、A
l、In、Cu、Ag、Pt、Ir、Pd、Rh、W、
Mo、Ti、Ni等の金属の単体又はこれらの中から任
意に選択される2種以上の金属からなる合金を用いて反
射層を形成することもできる。
A reflective layer may be provided between the layer 14 including a light emitting layer and the substrate 11 or on the surface of the substrate 11 on which the semiconductor layer is not formed. By providing the reflective layer, the light generated in the light emitting layer 14 and directed to the substrate side can be efficiently reflected in the light extraction direction, and as a result, the light emitting efficiency can be improved. The reflective layer can be formed of one kind or two or more kinds selected from titanium nitride, zirconium nitride, and tantalum nitride. Also, A
l, In, Cu, Ag, Pt, Ir, Pd, Rh, W,
The reflective layer can also be formed by using a single metal such as Mo, Ti, or Ni or an alloy composed of two or more kinds of metals arbitrarily selected from these.

【0023】発光素子10はリードフレーム20に設け
られるカップ状部25に接着剤を用いてマウントされ
る。接着剤はエポキシ樹脂の中に銀をフィラーとして混
合させた銀ペーストである。かかる銀ペーストを用いる
ことにより発光素子10からの熱の放散がよくなる。
尚、銀ペーストに換えて、透明ペースト、白色ペースト
等、他の公知の接着剤を用いてもよい。発光素子10の
p電極18及びn電極19は、それぞれワイヤ41及び
40によりリードフレーム21及び20にワイヤボンデ
ィングされる。
The light emitting element 10 is mounted on the cup-shaped portion 25 provided on the lead frame 20 using an adhesive. The adhesive is a silver paste in which silver is mixed as a filler in an epoxy resin. The use of such a silver paste improves heat dissipation from the light emitting element 10.
Instead of the silver paste, other known adhesives such as transparent paste and white paste may be used. The p electrode 18 and the n electrode 19 of the light emitting element 10 are wire-bonded to the lead frames 21 and 20 by wires 41 and 40, respectively.

【0024】カップ状部25には蛍光体30及び拡散材
31を一様に分散させたエポキシ樹脂(以下、「蛍光体
/拡散材含有層」という)27が充填される。後述のワ
イヤボンディング後に、この蛍光体/拡散材含有層27
をカップ状部25に充填することもできる。また、発光
素子10をカップ状部25にマウントする前に発光素子
10の表面に蛍光体/拡散材含有層を形成してもよい。
例えば、発光素子10を蛍光体30及び拡散材31を含
むエポキシ樹脂にディップすることにより、発光素子1
0の表面に蛍光体/拡散材含有層を形成し、その後、発
光素子10をカップ状部25に銀ペーストを用いてマウ
ントする。蛍光体/拡散材含有層27の形成方法として
は、上記ディップによる他、スパッタリング、塗布、又
は塗装等を用いることもできる。
The cup-shaped portion 25 is filled with an epoxy resin (hereinafter referred to as “phosphor / diffusing material-containing layer”) 27 in which the fluorescent material 30 and the diffusing material 31 are uniformly dispersed. After the wire bonding described later, this phosphor / diffusing material-containing layer 27
It is also possible to fill the cup-shaped portion 25 with. In addition, a phosphor / diffusing material-containing layer may be formed on the surface of the light emitting element 10 before mounting the light emitting element 10 on the cup-shaped portion 25.
For example, by dipping the light emitting element 10 in an epoxy resin containing the phosphor 30 and the diffusing material 31, the light emitting element 1
A phosphor / diffusing material-containing layer is formed on the surface of No. 0, and then the light emitting element 10 is mounted on the cup-shaped portion 25 using silver paste. As a method for forming the phosphor / diffusing material-containing layer 27, sputtering, coating, painting, or the like can be used in addition to the above dipping.

【0025】蛍光体30は、ZnS:Cu,Au,Al
(発光ピーク535nm)を用いる。拡散材31には、
メチルメタクリレートとビニルフェニルアクリレートと
のランダム共重合体であって、中心部から周辺部に向か
って屈折率が連続的に減少する粒子を用いる(製造方法
の詳細は特開平6−347616号公報を参照された
い)。その他、メチルメタクリレートとビニルベンゾエ
ートとのランダム共重合体などを用いることもできる。
The phosphor 30 is made of ZnS: Cu, Au, Al.
(Emission peak 535 nm) is used. The diffusing material 31 includes
A random copolymer of methyl methacrylate and vinylphenyl acrylate, in which particles whose refractive index continuously decreases from the central part to the peripheral part is used (for details of the manufacturing method, see JP-A-6-347616). I want to be). In addition, a random copolymer of methyl methacrylate and vinyl benzoate can be used.

【0026】本実施例では蛍光体30及び拡散材31を
分散させる基材としてエポキシ樹脂を用いるがこれに限
定されるわけではなく、シリコーン樹脂、尿素樹脂、又
はガラス等の透明な材料を用いることができる。また、
本実施例では蛍光体30及び拡散材31を蛍光体/拡散
材含有層27内に一様に分散させる構成としたが、蛍光
体/拡散材層内27で蛍光体30及び/又は拡散材31
の濃度分布に傾斜を設けることもできる。例えば、蛍光
体30及び拡散材31の含有濃度の異なるエポキシ樹脂
をカップ状部25内に積層することにより、カップ状部
25内で段階的に蛍光体30濃度及び拡散材31濃度を
変化させる。連続的に蛍光体30濃度及び/又は拡散材
31濃度を変化させることもできる。
In this embodiment, an epoxy resin is used as a base material in which the phosphor 30 and the diffusing material 31 are dispersed, but the base material is not limited to this, and a transparent material such as a silicone resin, a urea resin, or glass is used. You can Also,
Although the phosphor 30 and the diffusing material 31 are uniformly dispersed in the phosphor / diffusing material-containing layer 27 in the present embodiment, the phosphor 30 and / or the diffusing material 31 in the phosphor / diffusing material layer 27 is arranged.
It is also possible to provide a gradient in the concentration distribution of. For example, by stacking epoxy resins having different concentrations of the phosphor 30 and the diffusing material 31 in the cup-shaped portion 25, the phosphor 30 concentration and the diffusing material 31 concentration are changed stepwise in the cup-shaped portion 25. It is also possible to continuously change the concentration of the phosphor 30 and / or the concentration of the diffusing material 31.

【0027】蛍光体/拡散材含有層27に、酸化チタ
ン、窒化チタン、窒化タンタル、酸化アルミニウム、酸
化珪素、チタン酸バリウム等からなる第2の拡散材を更
に含ませることもできる。
The phosphor / diffusing material containing layer 27 may further contain a second diffusing material made of titanium oxide, titanium nitride, tantalum nitride, aluminum oxide, silicon oxide, barium titanate or the like.

【0028】発光素子10、リードフレーム20、21
の一部、及びワイヤ40、41はエポキシ樹脂からなる
封止レジン50により封止される。封止レジン50の材
料は透明であれば特に限定はされないが、エポキシ樹脂
の他、シリコーン樹脂、尿素樹脂、又はガラスが好適に
用いられる。また、蛍光体/拡散材含有層27との接着
性、屈折率等の観点から、蛍光体/拡散材含有層27の
基材と同じ材料で形成されることが好ましい。
Light emitting element 10, lead frames 20, 21
, And the wires 40 and 41 are sealed with a sealing resin 50 made of epoxy resin. The material of the sealing resin 50 is not particularly limited as long as it is transparent, but silicone resin, urea resin, or glass is preferably used in addition to epoxy resin. Further, from the viewpoint of the adhesiveness to the phosphor / diffusing material-containing layer 27, the refractive index, etc., it is preferably formed of the same material as the base material of the phosphor / diffusing material-containing layer 27.

【0029】封止レジン50は、素子構造の保護等の目
的で設けられるが、封止レジン50の形状を目的に応じ
て変更することにより封止レジン50にレンズ効果を付
与することができる。例えば、図1に示される砲弾型の
他、凹レンズ型、又は凸レンズ型等に成形することがで
きる。また、光の取り出し方向(図1において上方)か
ら見て封止レジン50の形状を円形、楕円形、又は矩形
とすることができる。
The sealing resin 50 is provided for the purpose of protecting the element structure and the like, but a lens effect can be imparted to the sealing resin 50 by changing the shape of the sealing resin 50 according to the purpose. For example, in addition to the cannonball type shown in FIG. 1, it can be molded into a concave lens type or a convex lens type. Further, the shape of the sealing resin 50 when viewed from the light extraction direction (upper side in FIG. 1) can be circular, elliptical, or rectangular.

【0030】以上のように構成されたLED1では、発
光素子10から放出される青色光の一部が蛍光体/拡散
材層27中の蛍光体30に照射し、蛍光体30から蛍光
が発せられる。この蛍光と、蛍光体の励起に利用されな
い青色光とが混色することにより、発光装置1からは白
色系の光が発光する。ここで、発光素子10から放出さ
れる光の一部は、蛍光体/拡散材層27を通る際に拡散
材31に照射する。これにより光の拡散が生じ、蛍光体
30に対する効率的な光の照射が行われる。また、発光
素子10からの青色光と、蛍光体30からの蛍光との混
色が促進される。一方、蛍光体30から発せられる蛍光
の一部も蛍光体/拡散材層27を通る際に拡散材31に
より拡散されることから、当該蛍光と青色光との混色が
一層促進される。このように、蛍光体30の励起に利用
されない青色光と、蛍光体30からの蛍光との混色が効
率的に行われることから、混色ムラ及び発光ムラが少な
くなる。一方、蛍光体/拡散材層27に含有される拡散
材31は、それに照射する光の多くを進行方向側に反射
する。したがって、上記の構成では、拡散材31での反
射に起因する、光の取り出し方向に逆行する光の発生を
大幅に抑制できる。即ち、発光素子10からの光あるい
は蛍光体30により変換された光を効率よく光の取り出
し方向に進行させることができ、高輝度の発光が得られ
る。
In the LED 1 configured as described above, a part of the blue light emitted from the light emitting element 10 irradiates the phosphor 30 in the phosphor / diffusing material layer 27, and the phosphor 30 emits fluorescence. . By mixing the fluorescence with the blue light that is not used for exciting the phosphor, white light is emitted from the light emitting device 1. Here, a part of the light emitted from the light emitting element 10 irradiates the diffusing material 31 when passing through the phosphor / diffusing material layer 27. As a result, light is diffused, and the phosphor 30 is efficiently irradiated with light. Further, color mixing of blue light from the light emitting element 10 and fluorescence from the phosphor 30 is promoted. On the other hand, since a part of the fluorescence emitted from the phosphor 30 is also diffused by the diffusion material 31 when passing through the phosphor / diffusion material layer 27, the color mixing of the fluorescence and the blue light is further promoted. As described above, since the blue light that is not used to excite the phosphor 30 and the fluorescence from the phosphor 30 are efficiently mixed in color, uneven color mixing and uneven light emission are reduced. On the other hand, the diffusing material 31 contained in the phosphor / diffusing material layer 27 reflects most of the light irradiating it toward the traveling direction. Therefore, with the above configuration, it is possible to significantly suppress the generation of light that is backward in the light extraction direction due to the reflection by the diffusing material 31. That is, the light from the light emitting element 10 or the light converted by the phosphor 30 can be efficiently advanced in the light extraction direction, and high-luminance light emission can be obtained.

【0031】上記発光素子10に加えて、他の発光素子
を併せて用いることもできる。他の発光素子としては発
光素子10と発光波長の異なる発光素子が用いられる。
好ましくは、蛍光体30を実質的に励起、発光させない
発光波長を有する発光素子が用いられる。かかる他の発
光素子を用いることにより、LED1の発光色を変化さ
せ、又は調整することができる。また、発光素子10を
複数個用いて輝度アップを図ることもできる。
In addition to the light emitting element 10, other light emitting elements can be used together. As the other light emitting element, a light emitting element having an emission wavelength different from that of the light emitting element 10 is used.
Preferably, a light emitting element having an emission wavelength that does not substantially excite the phosphor 30 to emit light is used. By using such another light emitting element, the emission color of the LED 1 can be changed or adjusted. Further, the brightness can be increased by using a plurality of light emitting elements 10.

【0032】図3に示すように、封止レジン50に蛍光
体30及び拡散材31を添加することにより、蛍光体/
拡散材含有層27を省略することもできる(LED
2)。尚、図3において図1と同一の部材には同一の符
号を付してある。この場合においても、上記蛍光体樹脂
層27における場合と同様に、封止レジン50内におい
て蛍光体30及び/又は拡散材31の濃度分布に傾斜を
設けることができる。
As shown in FIG. 3, by adding the phosphor 30 and the diffusing material 31 to the sealing resin 50, the phosphor /
The diffuser-containing layer 27 can be omitted (LED
2). In FIG. 3, the same members as those in FIG. 1 are designated by the same reference numerals. Also in this case, similarly to the case of the phosphor resin layer 27, the concentration distribution of the phosphor 30 and / or the diffusing material 31 in the sealing resin 50 can be inclined.

【0033】(実施例2)図4は、本発明の他の実施例
であるSMDタイプのLED3の概略断面図である。実
施例1のLED1と同一の部材には同一の符号を付して
その説明を省略する。LED3も実施例1と同様に白色
系の発光をし、例えば、導光体と組み合わせて面状光
源、線状光源に利用することができ、また、各種表示装
置等にも利用することができる。発光素子10は基板8
0に銀ペースト等を用いて固定される。ワイヤ40及び
41は発光素子10の各電極を基板80に設けられた電
極81及び82にそれぞれ接続する。符号90は、発光
素子の周囲に形成されるリフレクタであって、その表面
は鏡面化されている。
(Embodiment 2) FIG. 4 is a schematic sectional view of an SMD type LED 3 which is another embodiment of the present invention. The same members as those of the LED 1 of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. The LED 3 also emits white light as in the first embodiment, and can be used as, for example, a planar light source or a linear light source in combination with a light guide, and can also be used as various display devices. . The light emitting element 10 is the substrate 8
It is fixed to 0 using silver paste or the like. The wires 40 and 41 connect the respective electrodes of the light emitting element 10 to the electrodes 81 and 82 provided on the substrate 80, respectively. Reference numeral 90 denotes a reflector formed around the light emitting element, the surface of which is a mirror surface.

【0034】基板80及びリフレクタ90で形成される
カップ状部には、蛍光体/拡散材含有層100及び封止
レジン85が充填される。蛍光体/拡散材含有層100
は、蛍光体30及び拡散材31を分散したエポキシ樹脂
からなる。蛍光体/拡散材含有層100は、発光素子1
0をマウントした後、ポッティングなどの方法により形
成される。封止レジン85はエポキシ樹脂からなり、蛍
光体/拡散材含有層100を形成した後、蛍光体/拡散
材含有層100と同様の方法により形成される。
The phosphor / diffusing material-containing layer 100 and the sealing resin 85 are filled in the cup-shaped portion formed by the substrate 80 and the reflector 90. Phosphor / diffusing material-containing layer 100
Is made of an epoxy resin in which the phosphor 30 and the diffusing material 31 are dispersed. The phosphor / diffusing material-containing layer 100 is used as the light emitting element 1.
After mounting 0, it is formed by a method such as potting. The sealing resin 85 is made of an epoxy resin, and is formed by the same method as the phosphor / diffusing material containing layer 100 after forming the phosphor / diffusing material containing layer 100.

【0035】以上のように構成されたLED3では、発
光素子10から放出される青色光の一部が蛍光体/拡散
材層100中の蛍光体30に照射し、蛍光体30から蛍
光が発せられる。この蛍光と、蛍光体30の励起に利用
されない青色光とが混色することにより、LED3から
は白色系の光が発光する。ここで、上記のLED1の場
合と同様に、蛍光体/拡散材含有層100内の拡散材3
1の作用により、発光素子10からの青色光と蛍光体か
らの蛍光との混色が促進されるとともに、光の取り出し
方向に逆行する光の発生が抑制される。その結果、混色
ムラ及び発光ムラが少なく、高輝度に発光するLEDと
なる。
In the LED 3 configured as described above, a part of the blue light emitted from the light emitting element 10 irradiates the phosphor 30 in the phosphor / diffusing material layer 100, and the phosphor 30 emits fluorescence. . By mixing the fluorescence with the blue light that is not used for exciting the phosphor 30, white light is emitted from the LED 3. Here, as in the case of the LED 1, the diffusing material 3 in the phosphor / diffusing material-containing layer 100 is used.
By the action of 1, the color mixture of the blue light from the light emitting element 10 and the fluorescence from the phosphor is promoted, and the generation of the light which goes backward in the light extraction direction is suppressed. As a result, an LED that emits light with high brightness with less color mixture unevenness and uneven light emission is obtained.

【0036】図4のLED3では蛍光体/拡散材含有層
100と封止レジン85とを別個に設けたが、図5に示
されるように封止レジン101に蛍光体30及び拡散材
31を分散させてもよい。尚、図5において図4と同一
の部材には同一の符号を付してある。
In the LED 3 of FIG. 4, the phosphor / diffusing material-containing layer 100 and the sealing resin 85 are provided separately, but as shown in FIG. 5, the fluorescent material 30 and the diffusing material 31 are dispersed in the sealing resin 101. You may let me. In FIG. 5, the same members as those in FIG. 4 are designated by the same reference numerals.

【0037】また、リフレクタ90を用いないSMDタ
イプのLED5を構成した例を図6に示す。LED5で
は、発光素子10を被覆して断面略矩形の封止レジン1
02が形成される。封止レジン102は、蛍光体30及
び拡散材31を分散させたエポキシ樹脂からなる。この
ような封止レジン102は所望の型を用いた型成型によ
り形成することができる。また、予め所望の形状に成型
した封止レジン102を用意しておき、これを発光素子
10を覆うように基板80に接着させることによっても
形成できる。
Further, FIG. 6 shows an example in which the SMD type LED 5 without the reflector 90 is constructed. The LED 5 covers the light emitting element 10 and has a substantially rectangular cross section.
02 is formed. The sealing resin 102 is made of an epoxy resin in which the phosphor 30 and the diffusing material 31 are dispersed. Such a sealing resin 102 can be formed by molding using a desired mold. Alternatively, the sealing resin 102 molded in a desired shape may be prepared in advance, and the sealing resin 102 may be adhered to the substrate 80 so as to cover the light emitting element 10.

【0038】この発明は、上記発明の実施の形態及び実
施例の説明に何ら限定されるものではない。特許請求の
範囲の記載を逸脱せず、当業者が容易に想到できる範囲
で種々の変形態様もこの発明に含まれる。
The present invention is not limited to the description of the embodiments and examples of the invention. Various modifications are also included in the present invention within a range that can be easily conceived by those skilled in the art without departing from the scope of the claims.

【0039】以下、次の事項を開示する。10 前記発
光素子は、リードフレームに設けられたカップ状部に載
置され、前記光透過性材料層が前記カップ状部内に形成
されている、ことを特徴とする請求項1〜6のいずれか
に記載の発光装置。11 前記発光素子は、リードフレ
ームに設けられたカップ状部に載置され、前記光透過性
材料層により、前記発光素子、及び前記リードフレーム
の一部が被覆されている、ことを特徴とする請求項1〜
6のいずれかに記載の発光装置。12 前記発光素子は
基板に載置され、前記光透過性材料層が前記発光素子の
表面を被覆するように形成されている、ことを特徴とす
る請求項1〜6のいずれかに記載の発光装置。13 前
記発光素子は基板に載置され、前記光透過性材料層によ
り前記発光素子が封止されている、ことを特徴とする請
求項1〜6のいずれかに記載の発光装置。14 前記発
光素子は基板に設けられたカップ状部に載置され、前記
光透過性材料層が前記カップ状部内に形成されている、
ことを特徴とする請求項1〜6のいずれかに記載の発光
装置。
The following matters will be disclosed below. 10. The light emitting element is mounted on a cup-shaped portion provided on a lead frame, and the light-transmissive material layer is formed in the cup-shaped portion. The light-emitting device according to. 11. The light emitting element is placed on a cup-shaped portion provided on a lead frame, and the light emitting element and a part of the lead frame are covered with the light transmissive material layer. Claim 1
6. The light emitting device according to any one of 6. 12. The light emitting element according to claim 1, wherein the light emitting element is mounted on a substrate, and the light transmissive material layer is formed so as to cover the surface of the light emitting element. apparatus. 13. The light emitting device according to any one of claims 1 to 6, wherein the light emitting element is mounted on a substrate, and the light emitting element is sealed by the light transmissive material layer. 14 The light emitting element is mounted on a cup-shaped portion provided on a substrate, and the light transmissive material layer is formed in the cup-shaped portion.
The light emitting device according to claim 1, wherein the light emitting device is a light emitting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の一の実施例の砲弾型LED1
を示す図である。
FIG. 1 is a bullet LED 1 according to an embodiment of the present invention.
FIG.

【図2】図2は、LED1に使用される発光素子10の
概略断面図である。
FIG. 2 is a schematic cross-sectional view of a light emitting device 10 used for LED1.

【図3】図3は、封止レジン50に蛍光体30及び拡散
材31を分散させた例(LED2)を示す図である。
FIG. 3 is a diagram showing an example (LED 2) in which a phosphor 30 and a diffusing material 31 are dispersed in a sealing resin 50.

【図4】図4は、本発明の他の実施例であるSMDタイ
プのLED3を示す図である。
FIG. 4 is a diagram showing an SMD type LED 3 according to another embodiment of the present invention.

【図5】図5は、同じく本発明の他の実施例であるSM
DタイプのLED4を示す図である。
FIG. 5 is an SM according to another embodiment of the present invention.
It is a figure which shows D type LED4.

【図6】図6は、同じく本発明の他の実施例であるSM
DタイプのLED5を示す図である。
FIG. 6 is an SM of another embodiment of the present invention.
It is a figure which shows D type LED5.

【符号の説明】[Explanation of symbols]

1、2 砲弾型LED 3、4、5 SMDタイプLED 10 発光素子 27、100 蛍光体/拡散材含有層 30 蛍光体 31 拡散材 50、101、102 封止レジン 1, 2 shell type LED 3, 4, 5 SMD type LED 10 Light emitting element 27,100 Phosphor / diffusing material-containing layer 30 phosphor 31 Diffuser 50, 101, 102 Sealing resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉原 洋 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 Fターム(参考) 5F041 AA07 AA11 AA12 CA40 DA43 EE25    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Sugihara             Aichi Prefecture Kasuga-cho, Nishikasugai-gun Ochiai character Nagahata 1             Address within Toyoda Gosei Co., Ltd. F-term (reference) 5F041 AA07 AA11 AA12 CA40 DA43                       EE25

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 発光素子と、 前記発光素子の光を受けて蛍光する蛍光体、及び屈折率
分布を有する拡散材を含む光透過性材料層と、 を備える発光装置。
1. A light emitting device comprising: a light emitting element; and a light transmissive material layer including a phosphor that receives the light of the light emitting element and fluoresces, and a diffusion material having a refractive index distribution.
【請求項2】 前記発光素子が青色系の光を発光する、
請求項1に記載の発光装置。
2. The light emitting element emits blue light.
The light emitting device according to claim 1.
【請求項3】 前記発光素子が青色系の光を発光し、該
青色系の光と前記蛍光体からの蛍光とが混色することに
より、白色系の光を放射する、請求項1に記載の発光装
置。
3. The light emitting device according to claim 1, wherein the light emitting element emits blue light, and the blue light and fluorescence from the phosphor are mixed to emit white light. Light emitting device.
【請求項4】 前記発光素子が紫外領域の光を発光す
る、請求項1に記載の発光装置。
4. The light emitting device according to claim 1, wherein the light emitting element emits light in the ultraviolet region.
【請求項5】 前記発光素子が紫外領域の光を発光し、
且つ前記蛍光体がそれぞれ赤色系、緑色系、及び青色系
の蛍光を発する蛍光材料を含み、 前記蛍光体から発せられる蛍光が混色することにより、
白色系の光を放射する、請求項1に記載の発光装置。
5. The light emitting device emits light in the ultraviolet region,
And each of the phosphors includes a fluorescent material that emits red-based, green-based, and blue-based fluorescence, and by mixing the fluorescence emitted from the phosphors,
The light emitting device according to claim 1, which emits white light.
【請求項6】 前記発光素子がIII族窒化物系化合物半
導体発光素子である、請求項1〜5のいずれかに記載の
発光装置。
6. The light emitting device according to claim 1, wherein the light emitting element is a group III nitride compound semiconductor light emitting element.
JP2001291782A 2001-09-25 2001-09-25 Light-emitting device Pending JP2003101078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291782A JP2003101078A (en) 2001-09-25 2001-09-25 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291782A JP2003101078A (en) 2001-09-25 2001-09-25 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2003101078A true JP2003101078A (en) 2003-04-04

Family

ID=19113871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291782A Pending JP2003101078A (en) 2001-09-25 2001-09-25 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2003101078A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217386A (en) * 2004-01-27 2005-08-11 Super Nova Optoelectronics Corp White light emitting device and its manufacturing method
JP2007059378A (en) * 2005-07-25 2007-03-08 Toyoda Gosei Co Ltd Light source device
KR100693463B1 (en) * 2005-10-21 2007-03-12 한국광기술원 Light diffusion type light emitting diode
JP2008041917A (en) * 2006-08-04 2008-02-21 Nichia Chem Ind Ltd Light emitting device
KR100807015B1 (en) * 2005-08-16 2008-02-25 가부시끼가이샤 도시바 Light emitting device
CN100413107C (en) * 2005-08-16 2008-08-20 株式会社东芝 Light emitting device
JP2008283221A (en) * 2008-08-25 2008-11-20 Sharp Corp Led device, and portable telephone unit, digital camera and lcd display unit, using the led device
JP2009130298A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Light emitting device
JP2009200172A (en) * 2008-02-20 2009-09-03 Sharp Corp Manufacturing method of optical semiconductor device, and manufacturing device of optical semiconductor device
JP2009545888A (en) * 2006-08-03 2009-12-24 インテマティックス・コーポレーション LED lighting arrangement including light emitting phosphor
JP2010067641A (en) * 2008-09-08 2010-03-25 Nitto Denko Corp Sheet for sealing optical semiconductor element and optical semiconductor device using the same
JP2010114095A (en) * 2010-02-05 2010-05-20 Stanley Electric Co Ltd Light source module and luminaire having the same
JP2012138561A (en) * 2010-12-08 2012-07-19 Sharp Corp Light-emitting device and method for manufacturing the same
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
US8604678B2 (en) 2010-10-05 2013-12-10 Intematix Corporation Wavelength conversion component with a diffusing layer
US8610340B2 (en) 2010-10-05 2013-12-17 Intematix Corporation Solid-state light emitting devices and signage with photoluminescence wavelength conversion
US8610341B2 (en) 2010-10-05 2013-12-17 Intematix Corporation Wavelength conversion component
US8614539B2 (en) 2010-10-05 2013-12-24 Intematix Corporation Wavelength conversion component with scattering particles
JP2014015359A (en) * 2012-07-10 2014-01-30 Nippon Electric Glass Co Ltd Method of manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
US8766298B2 (en) 2006-09-01 2014-07-01 Cree, Inc. Encapsulant profile for light emitting diodes
US8785957B2 (en) 2011-09-14 2014-07-22 Sharp Kabushiki Kaisha Light-emitting device
US8957585B2 (en) 2010-10-05 2015-02-17 Intermatix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion
US9512970B2 (en) 2013-03-15 2016-12-06 Intematix Corporation Photoluminescence wavelength conversion components
US9546765B2 (en) 2010-10-05 2017-01-17 Intematix Corporation Diffuser component having scattering particles
WO2017209152A1 (en) * 2016-06-01 2017-12-07 キヤノン株式会社 Wavelength conversion element, light source device, and image projection device
US10557594B2 (en) 2012-12-28 2020-02-11 Intematix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765301U (en) * 1980-10-03 1982-04-19
JPH0463162U (en) * 1990-10-02 1992-05-29
JPH06347616A (en) * 1993-06-10 1994-12-22 Yasuhiro Koike Light diffusing body
JPH10173240A (en) * 1996-12-06 1998-06-26 Stanley Electric Co Ltd Led lamp containing fluorescent agent
JPH10284759A (en) * 1997-04-10 1998-10-23 Nichia Chem Ind Ltd Light-emitting device and display using the same
JPH11109113A (en) * 1997-10-06 1999-04-23 Reiko Co Ltd Light diffusing film and light diffusing film bead used therefor
JP2001022300A (en) * 1999-07-09 2001-01-26 Nichia Chem Ind Ltd Self luminescence type display plate
JP2001077433A (en) * 1999-06-30 2001-03-23 Nichia Chem Ind Ltd Light-emitting device and formation method thereof
JP2001119075A (en) * 1996-12-27 2001-04-27 Nichia Chem Ind Ltd Light emitting diode and led display comprising it
JP2001144331A (en) * 1999-09-02 2001-05-25 Toyoda Gosei Co Ltd Light-emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765301U (en) * 1980-10-03 1982-04-19
JPH0463162U (en) * 1990-10-02 1992-05-29
JPH06347616A (en) * 1993-06-10 1994-12-22 Yasuhiro Koike Light diffusing body
JPH10173240A (en) * 1996-12-06 1998-06-26 Stanley Electric Co Ltd Led lamp containing fluorescent agent
JP2001119075A (en) * 1996-12-27 2001-04-27 Nichia Chem Ind Ltd Light emitting diode and led display comprising it
JPH10284759A (en) * 1997-04-10 1998-10-23 Nichia Chem Ind Ltd Light-emitting device and display using the same
JPH11109113A (en) * 1997-10-06 1999-04-23 Reiko Co Ltd Light diffusing film and light diffusing film bead used therefor
JP2001077433A (en) * 1999-06-30 2001-03-23 Nichia Chem Ind Ltd Light-emitting device and formation method thereof
JP2001022300A (en) * 1999-07-09 2001-01-26 Nichia Chem Ind Ltd Self luminescence type display plate
JP2001144331A (en) * 1999-09-02 2001-05-25 Toyoda Gosei Co Ltd Light-emitting device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217386A (en) * 2004-01-27 2005-08-11 Super Nova Optoelectronics Corp White light emitting device and its manufacturing method
JP2007059378A (en) * 2005-07-25 2007-03-08 Toyoda Gosei Co Ltd Light source device
JP4640248B2 (en) * 2005-07-25 2011-03-02 豊田合成株式会社 Light source device
KR100807015B1 (en) * 2005-08-16 2008-02-25 가부시끼가이샤 도시바 Light emitting device
CN100413107C (en) * 2005-08-16 2008-08-20 株式会社东芝 Light emitting device
WO2007046664A1 (en) * 2005-10-21 2007-04-26 Korea Photonics Technology Institute Light diffusion type light emitting diode
KR100693463B1 (en) * 2005-10-21 2007-03-12 한국광기술원 Light diffusion type light emitting diode
JP2013254972A (en) * 2006-08-03 2013-12-19 Intematix Corp Led lighting arrangement including light emitting phosphor
JP2009545888A (en) * 2006-08-03 2009-12-24 インテマティックス・コーポレーション LED lighting arrangement including light emitting phosphor
US9045688B2 (en) 2006-08-03 2015-06-02 Intematix Corporation LED lighting arrangement including light emitting phosphor
US9595644B2 (en) 2006-08-03 2017-03-14 Intematix Corporation LED lighting arrangement including light emitting phosphor
JP2008041917A (en) * 2006-08-04 2008-02-21 Nichia Chem Ind Ltd Light emitting device
US8766298B2 (en) 2006-09-01 2014-07-01 Cree, Inc. Encapsulant profile for light emitting diodes
JP2009130298A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Light emitting device
JP2009200172A (en) * 2008-02-20 2009-09-03 Sharp Corp Manufacturing method of optical semiconductor device, and manufacturing device of optical semiconductor device
JP2008283221A (en) * 2008-08-25 2008-11-20 Sharp Corp Led device, and portable telephone unit, digital camera and lcd display unit, using the led device
JP2010067641A (en) * 2008-09-08 2010-03-25 Nitto Denko Corp Sheet for sealing optical semiconductor element and optical semiconductor device using the same
JP2010114095A (en) * 2010-02-05 2010-05-20 Stanley Electric Co Ltd Light source module and luminaire having the same
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
US8610341B2 (en) 2010-10-05 2013-12-17 Intematix Corporation Wavelength conversion component
US8604678B2 (en) 2010-10-05 2013-12-10 Intematix Corporation Wavelength conversion component with a diffusing layer
US8614539B2 (en) 2010-10-05 2013-12-24 Intematix Corporation Wavelength conversion component with scattering particles
US8610340B2 (en) 2010-10-05 2013-12-17 Intematix Corporation Solid-state light emitting devices and signage with photoluminescence wavelength conversion
US9546765B2 (en) 2010-10-05 2017-01-17 Intematix Corporation Diffuser component having scattering particles
US8957585B2 (en) 2010-10-05 2015-02-17 Intermatix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion
JP2012138561A (en) * 2010-12-08 2012-07-19 Sharp Corp Light-emitting device and method for manufacturing the same
US8785957B2 (en) 2011-09-14 2014-07-22 Sharp Kabushiki Kaisha Light-emitting device
JP2014015359A (en) * 2012-07-10 2014-01-30 Nippon Electric Glass Co Ltd Method of manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
US10557594B2 (en) 2012-12-28 2020-02-11 Intematix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components
US9512970B2 (en) 2013-03-15 2016-12-06 Intematix Corporation Photoluminescence wavelength conversion components
WO2017209152A1 (en) * 2016-06-01 2017-12-07 キヤノン株式会社 Wavelength conversion element, light source device, and image projection device
JPWO2017209152A1 (en) * 2016-06-01 2019-04-04 キヤノン株式会社 Wavelength conversion element, light source device, and image projection device
GB2568171A (en) * 2016-06-01 2019-05-08 Canon Kk Wavelength conversion element, light source device, and image projection device
US10884329B2 (en) 2016-06-01 2021-01-05 Canon Kabushiki Kaisha Wavelength conversion element, light source apparatus, and image projection apparatus
GB2568171B (en) * 2016-06-01 2021-11-03 Canon Kk Wavelength conversion element, light source apparatus, and image projection apparatus
JP2022025065A (en) * 2016-06-01 2022-02-09 キヤノン株式会社 Light source device and image projection device
US11347139B2 (en) 2016-06-01 2022-05-31 Canon Kabushiki Kaisha Wavelength conversion element, light source apparatus, and image projection apparatus

Similar Documents

Publication Publication Date Title
JP2003101078A (en) Light-emitting device
JP4114331B2 (en) Light emitting device
JP3972670B2 (en) Light emitting device
JP5224575B2 (en) Efficient light source using phosphor-converted LED
US6747406B1 (en) LED cross-linkable phospor coating
KR100638294B1 (en) Light emitting device
JP2007042668A (en) Led light emitting device
US6933535B2 (en) Light emitting devices with enhanced luminous efficiency
JP4932078B2 (en) Light emitting device and manufacturing method thereof
JP5066786B2 (en) Nitride phosphor and light emitting device using the same
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
JP2006253336A (en) Light source device
JP2006524425A (en) White semiconductor light emitting device
JP2002042525A (en) Planar light source
JP2007059378A (en) Light source device
JP2011082568A (en) Emitter package comprising saturated conversion material
JP2002076434A (en) Light emitting device
JP2009507936A (en) Light emitting device and alkaline earth metal sulfide phosphor for the same
JP2003234008A (en) Surface light emitting device
JP2006173564A (en) Mixed light emitting element, white light emitting device and backlight module
JP2005302920A (en) Light emitting device
JP4418685B2 (en) Light emitting device
JP4525650B2 (en) Light emitting device that emits white light
JP5606342B2 (en) Light emitting device
KR100684043B1 (en) White light emitting diode and method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220