WO2017209152A1 - Wavelength conversion element, light source device, and image projection device - Google Patents

Wavelength conversion element, light source device, and image projection device Download PDF

Info

Publication number
WO2017209152A1
WO2017209152A1 PCT/JP2017/020163 JP2017020163W WO2017209152A1 WO 2017209152 A1 WO2017209152 A1 WO 2017209152A1 JP 2017020163 W JP2017020163 W JP 2017020163W WO 2017209152 A1 WO2017209152 A1 WO 2017209152A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
wavelength conversion
conversion element
light
volume density
Prior art date
Application number
PCT/JP2017/020163
Other languages
French (fr)
Japanese (ja)
Inventor
山口 裕
阿部 雅之
大古場 稔
小川 大輔
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to JP2018520939A priority Critical patent/JP6957463B2/en
Priority to CN201780032682.6A priority patent/CN109313294B/en
Priority to DE112017002755.1T priority patent/DE112017002755T5/en
Priority to GB1821316.5A priority patent/GB2568171B/en
Publication of WO2017209152A1 publication Critical patent/WO2017209152A1/en
Priority to PH12018502321A priority patent/PH12018502321A1/en
Priority to US16/193,228 priority patent/US10884329B2/en
Priority to US17/103,095 priority patent/US11347139B2/en
Priority to JP2021155126A priority patent/JP2022025065A/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources

Definitions

  • the present invention relates to a wavelength conversion element that emits excitation light with wavelength conversion to emit fluorescence light and a light source device using the same, and more particularly to a light source device suitable for an image projection device.
  • fluorescent light is efficiently emitted by condensing excitation light such as laser light at a high density and irradiating the light to the phosphor layer of the wavelength conversion element.
  • the phosphor layer is composed of a binder and phosphor particles dispersed in the binder.
  • the phosphor layer tends to have a high temperature, and there is a concern that the phosphor layer may be deteriorated or the luminous efficiency of the phosphor in the phosphor layer may be reduced.
  • Patent Document 1 discloses a method in which a phosphor layer in which phosphor particles are dispersed is formed in a binder made of an inorganic material, and the phosphor particles are brought into contact with a metal substrate to promote heat dissipation.
  • the problem is that the generation of the temperature gradient of the phosphor layer (phosphor portion) due to the irradiation of the excitation light can not be suppressed.
  • the wavelength conversion element as one aspect of the present invention has a phosphor portion in which phosphor particles are dispersed in a binder, and the phosphor portion has a first surface and a second surface opposite to each other in the thickness direction , And is a wavelength conversion element irradiated with excitation light from the second surface side.
  • the wavelength conversion element has a first portion at the time when the phosphor portion is bisected in the thickness direction into a first portion on the first surface side and a second portion on the second surface side.
  • the volume density of the phosphor particles is characterized by being higher than the volume density in the second part.
  • a light source device having a light source for emitting excitation light and the above wavelength conversion element also constitutes another aspect of the present invention.
  • an image projection apparatus including the light source device and an optical system that projects an image by modulating light from the light source device with a light modulation element also constitutes another aspect of the present invention.
  • the manufacturing method includes a phosphor portion in which phosphor particles are dispersed in a binder, and the phosphor portion has a first surface and a second surface opposite to each other in the thickness direction. It is a manufacturing method of the wavelength conversion element which has a field and where excitation light is irradiated from the 2nd field side.
  • a first material in which phosphor particles are dispersed at a first volume density in a binder, and phosphor particles at a second volume density higher than the first volume density in a binder are dispersed.
  • a second material is prepared, and the first material and the second material are laminated such that the second material is located on the first surface side.
  • the present invention by controlling the density of the phosphor particles in the phosphor portion, it is possible to suppress the generation of the temperature gradient due to the irradiation of the excitation light and prevent the generation of the stress caused by the temperature gradient. It can be realized. Then, by using such a wavelength conversion element, it is possible to realize a light source device capable of stably generating fluorescent light and an image projection device capable of stably displaying a good projected image.
  • FIG. 6 is a view showing excitation light traveling in the phosphor layer and temperature distribution in the phosphor layer in the light source device of Example 1.
  • FIG. 6 is a view showing a modified example of the first embodiment.
  • FIG. 1 shows the configuration of a light source device 100 according to a first embodiment of the present invention.
  • the light source device 100 includes a light emitting element (laser diode) 1 as a light source, a wavelength conversion element 20, and a light source optical system 2.
  • the light emitting element 1 emits a blue laser (about 450 nm wavelength) as the excitation light 6.
  • the wavelength conversion element 20 has a substrate 3 and a phosphor layer (phosphor portion) 10 formed on the substrate 3 and supported by the substrate 3.
  • the light source optical system 2 guides the excitation light 6 emitted from the light emitting element 1 to the wavelength conversion element 20 (phosphor layer 10).
  • the phosphor layer 10 is composed of a binder 4 and a plurality of phosphor particles 5 dispersed in the binder 4.
  • the phosphor particles 5 absorb the excitation light 6 for wavelength conversion, and emit light of a longer wavelength (500 nm to 650 nm) than the excitation light 6 as fluorescent light 7.
  • the phosphor layer 10 diffuses (reflects or transmits) a part of the excitation light without wavelength conversion.
  • the light source device 100 emits combined light (white light) of the fluorescent light 7 emitted from the phosphor layer 10 and a diffusion component (not shown) which is unconverted light in the excitation light.
  • the excitation light 6 emitted from the light emitting element 1 is condensed at high density by the light source optical system 2 and opposite to the substrate contact surface (first surface) in the phosphor layer 10 in contact with the substrate 3 in the layer thickness direction It is irradiated to the area of a fixed area on the side incident surface (second surface).
  • the excitation light 6 that has entered the phosphor layer 10 from the incident surface travels while diffusing in the phosphor layer 10, and when absorbed by the phosphor particles 5, part of the energy becomes fluorescence light 7 and becomes fluorescence It is released from body particles 5 and other energy is released as heat.
  • the substrate 3 is formed of a material having high reflectance and thermal conductivity, such as metal (aluminum or the like) or sapphire or spinel coated with a reflection increasing coating for a fluorescent wavelength.
  • the substrate 3 has the function of reflecting the excitation light 6 that has passed through the phosphor layer 10 and reached the substrate 3 and the fluorescent light 7 emitted from the phosphor particles 5 to the incident surface side.
  • the substrate 3 is cooled on its back surface side (opposite to the phosphor layer 10) to promote heat dissipation from the phosphor layer 10.
  • the half portion (first portion) on the substrate contact surface side when the phosphor layer 10 is bisected in the layer thickness direction is referred to as the substrate side portion 10b, and the half portion (second portion) on the incident surface side Is referred to as the incident surface side portion 10a.
  • the volume density of the phosphor particles 5 in the substrate side portion 10b is higher than the volume density of the incident surface side portion 10a. Is formed.
  • the volume density (vol%: hereinafter referred to as phosphor volume density) of the phosphor particles 5 referred to here is the ratio of the volume occupied by the phosphor particles 5 in the unit volume of the phosphor layer 10 (binder 4 and phosphor particles 5) It is.
  • FIG. 1 shows an example in which the phosphor volume density of the substrate side portion 10b is 58% while the phosphor volume density of the light incident surface side portion 10a is 38%.
  • FIG. 2 shows, as a comparative example, a wavelength conversion element 20 'whose phosphor volume density in the phosphor layer 10' is uniform in the layer thickness direction.
  • the heat distribution generated in the respective phosphor layers 10 and 10 'of FIGS. 1 and 2 is schematically shown on the lower side of FIGS. 3 and 4, respectively.
  • the dark part indicates high heat generation (high temperature) and the thin part indicates low heat generation (low temperature).
  • Most of the heat generated in the phosphor layer is generated by the phosphor particles absorbing the excitation light and releasing part of it as heat rather than fluorescence. For this reason, the magnitude of heat generation per unit volume depends on the intensity of the incident excitation light and the phosphor volume density.
  • the intensity distribution of the intensity of excitation light in the layer thickness direction also depends on the phosphor volume density.
  • each of FIG. 3 and FIG. 4 shows a state where the excitation light 6 incident on the phosphor layers 10 and 10 'travels in the phosphor layers 10 and 10'.
  • the arrows in the figure indicate the traveling excitation light, and the thickness of the arrows indicates the intensity.
  • the excitation light travels in each phosphor layer, it travels while being diffused by diffusion factors such as phosphor particles and pores inside it, and a part is absorbed by the phosphor particles and converted into fluorescence light . That is, the excitation light travels while being attenuated in the depth direction under the two effects of the influence of internal diffusion and the absorption by the phosphor particles.
  • the intensity of the excitation light 6 incident as shown in FIG. 3 is the same as that of the phosphor layer 10 'of the comparative example, but the fluorescence of the incident surface side portion 10a Since the body volume density is lower than that of the substrate side portion 10b, the amount of heat generation at the incident surface side portion 10a is suppressed. Furthermore, the excitation light reaches the substrate side portion having a high volume density of phosphors while being attenuated gradually in the phosphor layer 10 compared to FIG. 4 and is absorbed by many phosphor particles there. As a result, as also shown in FIG.
  • the temperature difference (temperature gradient in the depth direction) between the light incident surface side portion and the substrate side portion of the phosphor layer 10 is higher than that of the phosphor layer 10 'of the comparative example. It becomes smaller and the temperature distribution in the phosphor layer 10 becomes closer to uniformity than the phosphor layer 10 'of the comparative example.
  • the cooling effect of the phosphor layer 10 can be further enhanced by cooling the back surface side of the substrate 3.
  • the phosphor layer 10 of this example in which the volume density of the phosphor particles and the intensity of the excitation light are both higher, is the comparative example. Higher heat dissipation effects can be expected compared to.
  • the wavelength conversion element 20 By configuring the wavelength conversion element 20 as described above, the occurrence of the temperature gradient in the phosphor layer 10 can be suppressed, and a high heat dissipation effect can be obtained.
  • the density of the excitation light irradiated to the phosphor layer 10 is very high, it is effective to use the wavelength conversion element 20 of this embodiment.
  • the maximum intensity of the excitation light on the incident surface of the phosphor layer 10 is 10 W / mm 2 or more, the effect obtained by the wavelength conversion element 20 of the present embodiment is large. More desirably, when the maximum intensity of the excitation light is 15 W / mm 2 or more (more preferably 25 W / mm 2 or more), the effect obtained is larger.
  • the phosphor volume density changes depending on the process of coating the phosphor layer 10 on the substrate 3 and the treatment such as baking, but can be determined from the weight ratio or mixing ratio of the phosphor particles to be used and the binder.
  • obtain a surface SEM in a plane parallel to the incident surface or a cross-sectional SEM in the depth direction and roughly obtain it from the area ratio of the region of phosphor particles to the binder or other regions. You can also.
  • As a standard of the evaluation area in the case of using this evaluation method it suffices to be sufficiently wider than the average particle diameter ⁇ of the phosphor particles.
  • particle diameter is a diameter when it converts into a sphere by the same volume.
  • the “average particle size” is an average value of the particle sizes of all particles, but the average value of the particle sizes of all particles may be determined statistically from the particle sizes of some particles.
  • the evaluation area that is sufficiently wide relative to the average particle size ⁇ of the phosphor particles is, for example, an area whose side is about 2 to 100 times that of ⁇ or an area whose area is 50 ⁇ 2 or more. Furthermore, it is desirable to evaluate using the average value in several evaluation area
  • the phosphor layer 10 is described as equally divided into the incident surface side portion 10a and the substrate side portion 10b, but in the phosphor layer 10, the phosphor volume density is gradually increased in the depth direction It is more desirable to change.
  • the volume density of the phosphor gradually changes in the depth direction to 35%, 45% and 65% over the incident surface side portion 10a, the intermediate portion 10c and the substrate side portion 10b (increase )doing.
  • the density distribution of the phosphor particles 5 fluctuates strictly depending on the particle size and the particle size distribution of the phosphor particles, the dispersion of the density in the range of the average particle size ⁇ of the phosphor particles is neglected It is also good.
  • the phosphor volume density of the substrate side portion 10b may be higher than that of the light incident surface side portion 10a.
  • the phosphor volume density of the substrate side portion 10b is preferably 10% or more higher than the phosphor volume density of the light incident surface side portion 10a, and more preferably 15% or more.
  • the phosphor volume density of the substrate side portion 10b exceeds twice the volume density of the phosphor of the light incident surface side portion 10a, the density difference lowers the stability as a phosphor layer, resulting in cracking or breakage from the substrate 3. It is not desirable because peeling may occur.
  • the volume density of the phosphor is less than 15%, it is necessary to increase the thickness of the entire phosphor layer in order to obtain sufficient brightness as the phosphor layer.
  • the thickness is increased, the size of the light source image formed by the light from the phosphor layer 10 (with respect to the optical system of the projector described later) is increased, which is not preferable because it becomes disadvantageous on the light capturing efficiency of the optical system.
  • the volume density of the phosphor exceeds 70%, the ratio of the phosphor particles to the binder becomes too high, and the stability as the phosphor layer (film) decreases to cause cracking and peeling, which is not desirable. .
  • the phosphor volume density (second volume density) of the incident surface side portion 10a is ⁇ 0 and the phosphor volume density (first volume density) of the substrate side portion 10b is ⁇ 1, 1.1 ⁇ ⁇ 1 / ⁇ 0 ⁇ 3.5 It is desirable to satisfy the following conditions. Also, with or without this condition, 25% ⁇ ⁇ 1 ⁇ 70% 15% ⁇ ⁇ 0 ⁇ 50% It is desirable to satisfy the following conditions.
  • the above conditional expression is 1.3 (more preferably 1.5) ⁇ 1/1/0 ⁇ 3.0 (more preferably 2.0) 45% ⁇ ⁇ 1 ⁇ 70% 15% ⁇ ⁇ 0 ⁇ 40% It is better to satisfy one or more of them.
  • a phosphor based on YAG (yttrium aluminum garnet) doped with Ce can be used as the phosphor particles.
  • any phosphor material such as LuAG type or sialon phosphor that absorbs ultraviolet to blue wavelength and emits light in green to red region in visible region can be appropriately selected and used.
  • Various methods can be used as a method of manufacturing the wavelength conversion element 20 (phosphor layer 10) in the present embodiment.
  • a method of dispersing phosphor particles in an inorganic binder made of silica, alumina, or a titania-based sol-gel material and coating and drying.
  • a method of dispersing phosphor particles in glass or ceramics by mixing and sintering (sintering) glass ceramics and phosphor particles. At this time, if a high firing temperature is used, the characteristics of the phosphor particles may be degraded. Therefore, it is desirable to use a material such as low melting point glass as a binder.
  • the following manufacturing method can be used.
  • a first method two or more materials in which phosphor particles are dispersed in a binder before curing with different phosphor volume densities are prepared in advance, and those materials are viewed from the substrate 3 (or a base surface not shown) side.
  • the first material and the second material may be stacked so that the second material is located on the substrate side.
  • the first material and the second material may be stacked so that the second material is located on the substrate side.
  • the phosphor particles are dispersed in the binder at the third volume density.
  • the third to third materials may be prepared, and the first to third materials may be stacked.
  • the phosphor layer 10 having the substrate side portion 10 b having the phosphor volume density higher than that of the incident surface side portion 10 a thereby, it is possible to easily manufacture the phosphor layer 10 having the substrate side portion 10 b having the phosphor volume density higher than that of the incident surface side portion 10 a.
  • the other particles 8 different from the phosphor particles 5 are mixed into each material, and the density ratio of the phosphor particles 5 to the other particles 8 is made different depending on those materials. May be
  • the phosphor layer 10 may be manufactured by a method of providing a difference in the volume density of the phosphor in the depth direction by precipitating the phosphor particles in a binder or glass before curing.
  • a mixture of materials having different specific gravities causes density deviation in the direction of gravity.
  • the phosphor layer of this example can also be disposed by setting the side with the higher volume density of the phosphor as the substrate side after controlling the coating conditions and the baking and cooling conditions to cause the density of the phosphor particles 5 to be uneven. 10 can be manufactured.
  • the phosphor layer 10 be made of only an inorganic material.
  • the binder be formed of oxide or nitride of silica or metal, or a mixture thereof.
  • the average particle diameter ⁇ of the phosphor particles 5 is preferably in the range of about 1 to 10 ⁇ m. It is known that, when the average particle diameter ⁇ of the phosphor particles is reduced, the light emission efficiency generally decreases due to the influence of the surface state of the phosphor layer. In the case of using phosphor particles having an average particle diameter ⁇ of 1 ⁇ m or less, it is desirable to use after performing an improvement treatment such as surface modification for efficiency reduction. When the average particle diameter ⁇ exceeds 10 ⁇ m, it is not desirable because the film thickness controllability and the variation in the in-plane density in the minute region may be concerned.
  • the layer thickness of the phosphor layer 10 is preferably in the range of 0.02 mm or more and 0.5 mm or less. If it is less than 0.02 mm, it is difficult to efficiently convert high density excitation light into fluorescent light. Further, if it exceeds 0.5 mm, there is a concern that the light capturing efficiency by the optical system of the projector may be reduced, and the phosphor layer 10 may be easily cracked. Further, the phosphor layer 10 desirably has a layer thickness of 5 times or more of the average particle diameter ⁇ in terms of providing a volume density gradient in the layer thickness direction (depth direction).
  • inorganic particles may be mixed in the binder 4 as other particles 8 different from the phosphor particles 5.
  • stress unevenness due to the difference in linear expansion between the phosphor particles 5 and the binder 4 or glass can be alleviated, the thermal conductivity can be improved, or the diffusion intensity of excitation light can be reduced. An effect such as control can be expected.
  • the inorganic particles used for such purpose it is desirable to use those having an extremely low absorption at the wavelength of excitation light and a refractive index at the wavelength of excitation light different from that of the binder or glass material.
  • the difference in refractive index is too small, the interface reflectance of the inorganic particles is reduced, and the diffusion effect of the excitation light is reduced.
  • the material of the inorganic particles When using inorganic particles for the purpose of relieving linear expansion, it is desirable that the material of the inorganic particles have a smaller linear expansion coefficient than, for example, the material of the phosphor particles or the binder. Furthermore, if a material having a negative linear expansion coefficient is used, it is possible to further suppress the bias of the stress generated in the phosphor layer. Thus, appropriate materials may be selected according to various purposes.
  • the wavelength conversion element 20 of a present Example may use the wavelength conversion element which has another structure.
  • the reflection type wavelength conversion element 20 in which the phosphor layer 10 is formed on the metal substrate 3 is shown in FIG. 1, the substrate 3 may have translucency other than metal, in this case It can also be used as a transmission type wavelength conversion element.
  • it may be a dielectric material (sapphire or spinel) having high heat dissipation and close linear expansion coefficient.
  • the substrate 3 may be omitted. Even in this case, the effect of relaxing the temperature gradient can be obtained by making the phosphor volume density different in the phosphor layer 10 as in the present embodiment.
  • a coating or a concavo-convex structure may be provided on the incident surface of the phosphor layer 10 or the substrate contact surface.
  • a reflection increasing film, a dichroic mirror or the like improvement in light utilization efficiency, narrowing of the utilization wavelength, and the like can be expected.
  • the shape may change due to temperature change (linear expansion change) of the surface of the phosphor layer, and the effect of the uneven structure may be affected.
  • the stress of the phosphor layer can be relaxed, and in addition to the suppression of cracks and the like, the change in the uneven structure of the surface can be suppressed, and the light emission characteristics of the phosphor layer can be further enhanced. It can be stabilized.
  • the wavelength conversion element 20 may be configured as a general rotating wheel body, micro driving with a piezo element may be performed, or a local cooling mechanism with a Peltier element may be used.
  • the present embodiment by controlling the density of the phosphor particles in the phosphor layer 10, it is possible to suppress the generation of the temperature gradient due to the irradiation of the excitation light and prevent the generation of the stress due to the temperature gradient. Can be realized.
  • the thickness Th (mm) of the phosphor layer 10 in the present embodiment the width in the radial direction of the phosphor layer formed in the annular shape is Wd (mm), the inner diameter (radius) of the annular shape, and the outer shape (radius) ) Is Ri (mm) and Ro (mm).
  • the area of the phosphor layer (the area of the surface having a ring shape, or the area when viewed from the light incident side) is Aph (square millimeter), and the substrate 3 on which this phosphor layer is formed.
  • the area (area as viewed from the light incident side) is taken as Asu (square millimeter).
  • the energy of light incident on the phosphor layer 10 is Li (watts).
  • the thickness Th (mm) of the phosphor layer is preferably 30 ⁇ m to 200 ⁇ m (more preferably 35 ⁇ m to 120 ⁇ m, and further preferably 50 ⁇ m to 100 ⁇ m).
  • the phosphor layer has an annular shape, and the width Wd of the annular shape and the thickness Th of the phosphor layer are 20 ⁇ Wd / Th ⁇ 1000 (More preferably, 50 ⁇ Wd / Th ⁇ 300, more preferably 120 or more) It is desirable to satisfy By this configuration, heat can be efficiently dissipated from the phosphor layer toward the substrate.
  • the width Wd of the annular shape of the phosphor layer is desirably 5 mm or more and 20 mm or less (more preferably 5 mm or more and 12 mm or less, and further preferably 8 mm or less).
  • the outer diameter of the annular shape of the phosphor layer is Ro and the inner diameter is Ri, 1.05 ⁇ Ro / Ri ⁇ 2.00 (More preferably, 1.10 ⁇ Ro / Ri ⁇ 1.70, more preferably less than 1.40) It is desirable to satisfy When the upper limit is satisfied, the substrate in the region inside the inner diameter can be secured at a certain level or more, and heat can be dissipated to the outside and the inside inside the substrate, which is advantageous from the viewpoint of heat dissipation. When the lower limit value is satisfied, it is possible to prevent the phosphor layer from being enlarged in the radial direction in order to dissipate heat.
  • the inner diameter of the phosphor layer is desirably 40 mm or more and 100 mm or less (more preferably 40 mm or more and 80 mm or less, and further preferably 70 mm or less).
  • the outer diameter of the phosphor layer is desirably 50 mm or more and 130 mm or less (more preferably 50 mm or more and 105 mm or less, and further preferably 85 mm or less).
  • the light intensity incident on the phosphor layer is Li (watts) and the area of the phosphor layer is Aph (square millimeter), 5 ⁇ Aph / Li ⁇ 120 (mm 2 / W) (More preferably 5 ⁇ A / Li ⁇ 60, still more preferably 6 ⁇ A / Li ⁇ 40) It is desirable to satisfy Here, it is desirable that the light intensity Li incident on the phosphor layer is 50 W or more and 500 W or less, more preferably 100 W or more and 500 W or less, and further preferably 250 W or more.
  • the area Aph (square millimeter) of the phosphor layer is preferably 1000 or more and 10000 or less (more preferably 1500 or more and 6500 or less, and further preferably 3700 or less).
  • the light intensity Li (watt) incident on the phosphor layer and the area Asu (square millimeter) of the substrate on which the phosphor layer is formed is 10 ⁇ Asu / Li ⁇ 500 (mm 2 / W) (More preferably 20 ⁇ A / Li ⁇ 260, still more preferably 30 ⁇ A / Li ⁇ 100) It is desirable to satisfy Further, the area Asu (square millimeter) of the substrate is desirably 5,000 or more and 100,000 or less (more preferably, 6,000 or more and 41,000 or less, and further preferably 10,000 or less).
  • the area Aph of the phosphor layer, the thickness Th of the phosphor layer, and the area Asus of the substrate are 3000 (mm) ⁇ Aph / Th ⁇ 1,000,000 (mm) (More preferably 8000 ⁇ Aph / Th ⁇ 200000, more preferably 10000 ⁇ Aph / Th ⁇ 58000) 1.50 ⁇ Huawei / Aph ⁇ 8.00 (More preferably 1.80 ⁇ Huawei / Aph ⁇ 7.00, more preferably 2.00 ⁇ Huawei / Aph ⁇ 4.00) It is desirable to satisfy
  • the projector 200 includes the light source device 100 described in the first embodiment.
  • White light 102 (red light 102r, green light 102g, and blue light 102b indicated by a dotted line) emitted from the light source device 100 is incident on a projector optical system described below.
  • red, green and blue lights 102r and 102g and blue light 102b are incident on the polarization conversion element 103, where red, green and blue illumination lights (shown by dotted lines) 104r as linearly polarized light having a uniform polarization direction. , 104g, 104b.
  • These illumination lights 104r, 104g, and 104b are separated by the dichroic mirror 105 into red illumination light 104r, blue illumination light 104b, and green illumination light 104g.
  • the green illumination light 104 g passes through the polarization separation element (hereinafter referred to as PBS) 108 and the phase compensation plate 112 and reaches the light modulation element 111 g.
  • the red and blue illumination lights 104 r and 104 b pass through the polarizing plate 106 and enter the color selective phase plate 107.
  • the color selective phase plate 107 rotates the polarization direction of the blue illumination light 104 b by 90 ° while maintaining the polarization direction of the red illumination light 104 r as it is.
  • the red illumination light 104r emitted from the color selective phase plate 107 passes through the PBS 109 and the phase compensation plate 112r to reach the light modulation element 111r.
  • the blue illumination light 104b emitted from the color selective phase plate 107 is reflected by the PBS 109, passes through the phase compensation plate 112b, and reaches the light modulation element 111b.
  • Each light modulation element is configured by a reflective liquid crystal panel or a digital micro mirror device. It is also possible to use a transmissive liquid crystal panel as the light modulation element.
  • the light modulation elements 111g, 111r, and 111b perform image modulation on the incident green, red, and blue illumination lights 104g, 104r, and 104b to convert them into green, red, and blue image lights 115g, 115b, and 115r.
  • These image lights 115g, 115b and 115r are synthesized via the PBSs 108 and 109 and the synthesis prism 118, and are projected by the projection lens 120 onto a projection surface such as a screen. Thereby, a color image as a projection image is displayed.
  • the projector 200 capable of stably displaying a bright projected image can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Optical Filters (AREA)
  • Semiconductor Lasers (AREA)
  • Liquid Crystal (AREA)

Abstract

[Problem] To inhibit the occurrence of a temperature gradient in a phosphor part due to irradiation with excitation light. [Solution] A wavelength conversion element 20 has a phosphor part 10 in which phosphor particles 5 are dispersed in a binder 4. The phosphor part has a first surface and a second surface located on opposite sides from each other in the thickness direction. The phosphor part is irradiated with excitation light from the second surface side. When the phosphor part is bisected in the thickness direction into a first portion on the first surface side and a second portion on the second surface side, the volume density of phosphor particles in the first portion is higher than the volume density in the second portion.

Description

波長変換素子、光源装置および画像投射装置Wavelength conversion element, light source device and image projection device
本発明は、励起光を波長変換して蛍光光を発する波長変換素子およびこれを用いた光源装置に関し、特に画像投射装置に好適なものに関する。 The present invention relates to a wavelength conversion element that emits excitation light with wavelength conversion to emit fluorescence light and a light source device using the same, and more particularly to a light source device suitable for an image projection device.
上記のような光源装置では、レーザ光等の励起光を高密度に集光して波長変換素子の蛍光体層に照射することで、効率良く蛍光光を発光させる。蛍光体層は、バインダと該バインダ内に分散した蛍光体粒子とにより構成される。 In the light source device as described above, fluorescent light is efficiently emitted by condensing excitation light such as laser light at a high density and irradiating the light to the phosphor layer of the wavelength conversion element. The phosphor layer is composed of a binder and phosphor particles dispersed in the binder.
ただし、励起光を高密度に集光して照射することで蛍光体層が高温になりやすく、蛍光体層の劣化や蛍光体層内の蛍光体の発光効率の低下が懸念される。 However, when the excitation light is condensed and irradiated at a high density, the phosphor layer tends to have a high temperature, and there is a concern that the phosphor layer may be deteriorated or the luminous efficiency of the phosphor in the phosphor layer may be reduced.
特許文献1には、無機材料からなるバインダ内に蛍光体粒子が分散した蛍光体層を形成し、金属基板に蛍光体粒子が接触するようにして放熱を促進させる方法が開示されている。 Patent Document 1 discloses a method in which a phosphor layer in which phosphor particles are dispersed is formed in a binder made of an inorganic material, and the phosphor particles are brought into contact with a metal substrate to promote heat dissipation.
 特許文献1にて開示された方法では、蛍光体層のうち基板近傍の蛍光体の放熱促進効果は期待できるものの、励起光が照射される入射面付近の蛍光体粒子の放熱促進効果については不明である。また、照射される励起光の強度は入射面側の方が高いため、蛍光体層における入射面側部分と基板側部分との間で局所的に大きな温度差(温度勾配)が生じ、この結果生じた応力による割れ等が発生するおそれがある。 In the method disclosed in Patent Document 1, although the heat radiation promoting effect of the phosphor in the vicinity of the substrate in the phosphor layer can be expected, the heat radiation promoting effect of the phosphor particles in the vicinity of the incident surface irradiated with the excitation light is unknown. It is. Further, since the intensity of the excitation light to be irradiated is higher on the incident surface side, a locally large temperature difference (temperature gradient) occurs between the incident surface side portion and the substrate side portion in the phosphor layer, and this result There is a possibility that a crack etc. may occur due to the generated stress.
特開2015-94777号公報JP, 2015-94777, A
課題は、励起光の照射による蛍光体層(蛍光体部)の温度勾配の発生を抑制することができないことである。 The problem is that the generation of the temperature gradient of the phosphor layer (phosphor portion) due to the irradiation of the excitation light can not be suppressed.
本発明の一側面としての波長変換素子は、バインダ内に蛍光体粒子が分散した蛍光体部を有し、蛍光体部は厚み方向において互いに反対側にある第1の面と第2の面とを有し、第2の面側から励起光が照射される波長変換素子である。該波長変換素子は、蛍光体部を第1の面側にある第1の部分と第2の面側にある第2の部分とに厚み方向に2等分したときの第1の部分での蛍光体粒子の体積密度が、第2の部分での体積密度よりも高いことを特徴とする。 The wavelength conversion element as one aspect of the present invention has a phosphor portion in which phosphor particles are dispersed in a binder, and the phosphor portion has a first surface and a second surface opposite to each other in the thickness direction , And is a wavelength conversion element irradiated with excitation light from the second surface side. The wavelength conversion element has a first portion at the time when the phosphor portion is bisected in the thickness direction into a first portion on the first surface side and a second portion on the second surface side. The volume density of the phosphor particles is characterized by being higher than the volume density in the second part.
また、励起光を発する光源と上記波長変換素子とを有する光源装置も、本発明の他の一側面を構成する。 A light source device having a light source for emitting excitation light and the above wavelength conversion element also constitutes another aspect of the present invention.
また、上記光源装置と、該光源装置からの光を光変調素子により変調することで画像を投射する光学系とを有する画像投射装置も、本発明の他の一側面を構成する。 In addition, an image projection apparatus including the light source device and an optical system that projects an image by modulating light from the light source device with a light modulation element also constitutes another aspect of the present invention.
さらに、本発明の他の一側面としての製造方法は、バインダ内に蛍光体粒子が分散した蛍光体部を有し、蛍光体部は厚み方向において互いに反対側の第1の面と第2の面とを有し、第2の面側から励起光が照射される波長変換素子の製造方法である。該製造方法は、バインダ内に第1の体積密度で蛍光体粒子を分散させた第1の材料と、バインダ内に第1の体積密度より高い第2の体積密度で蛍光体粒子を分散させた第2の材料とを用意し、第2の材料が第1の面側に位置するように第1の材料と第2の材料とを積層することを特徴とする。 Furthermore, the manufacturing method according to another aspect of the present invention includes a phosphor portion in which phosphor particles are dispersed in a binder, and the phosphor portion has a first surface and a second surface opposite to each other in the thickness direction. It is a manufacturing method of the wavelength conversion element which has a field and where excitation light is irradiated from the 2nd field side. In the manufacturing method, a first material in which phosphor particles are dispersed at a first volume density in a binder, and phosphor particles at a second volume density higher than the first volume density in a binder are dispersed. A second material is prepared, and the first material and the second material are laminated such that the second material is located on the first surface side.
本発明によれば、蛍光体部内の蛍光体粒子の密度を制御することで、励起光の照射による温度勾配の発生を抑え、温度勾配に伴う応力の発生を回避できるようにした波長変換素子を実現することができる。そして、このような波長変換素子を用いることで、安定的に蛍光光を発生可能な光源装置や安定的に良好な投射画像を表示可能な画像投射装置を実現することができる。 According to the present invention, by controlling the density of the phosphor particles in the phosphor portion, it is possible to suppress the generation of the temperature gradient due to the irradiation of the excitation light and prevent the generation of the stress caused by the temperature gradient. It can be realized. Then, by using such a wavelength conversion element, it is possible to realize a light source device capable of stably generating fluorescent light and an image projection device capable of stably displaying a good projected image.
本発明の実施例1である光源装置の構成を示す図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows the structure of the light source device which is Example 1 of this invention. 比較例である光源装置の構成を示す図。The figure which shows the structure of the light source device which is a comparative example. 実施例1の光源装置において蛍光体層内を進行する励起光と蛍光体層内の温度分布を示す図。FIG. 6 is a view showing excitation light traveling in the phosphor layer and temperature distribution in the phosphor layer in the light source device of Example 1. 比較例において蛍光体層内を進行する励起光と蛍光体層内の温度分布を示す図。The figure which shows the temperature distribution in the excitation light which travels the inside of a fluorescent substance layer in a comparative example, and a fluorescent substance layer. 実施例1と比較例の蛍光体層内の温度分布を比較した図。The figure which compared the temperature distribution in the fluorescent substance layer of Example 1 and a comparative example. 実施例1の変形例を示す図。FIG. 6 is a view showing a modified example of the first embodiment. 本発明の実施例2である画像投射装置の構成を示す図。The figure which shows the structure of the image projection apparatus which is Example 2 of this invention.
以下、本発明の実施例について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1には、本発明の実施例1である光源装置100の構成を示す。光源装置100は、光源としての発光素子(レーザダイオード)1と、波長変換素子20と、光源光学系2とを有する。発光素子1は、青色レーザ(波長450nm付近)を励起光6として発する。波長変換素子20は、基板3と、基板3上に形成されて該基板3により支持された蛍光体層(蛍光体部)10とを有する。光源光学系2は、発光素子1から発せられた励起光6を波長変換素子20(蛍光体層10)に導く。 FIG. 1 shows the configuration of a light source device 100 according to a first embodiment of the present invention. The light source device 100 includes a light emitting element (laser diode) 1 as a light source, a wavelength conversion element 20, and a light source optical system 2. The light emitting element 1 emits a blue laser (about 450 nm wavelength) as the excitation light 6. The wavelength conversion element 20 has a substrate 3 and a phosphor layer (phosphor portion) 10 formed on the substrate 3 and supported by the substrate 3. The light source optical system 2 guides the excitation light 6 emitted from the light emitting element 1 to the wavelength conversion element 20 (phosphor layer 10).
蛍光体層10は、バインダ4と、該バインダ4内に分散した複数の蛍光体粒子5とにより構成されている。蛍光体粒子5は、励起光6を吸収して波長変換し、該励起光6よりも長波長(500nm~650nm)の光を蛍光光7として放出する。また、蛍光体層10は、励起光の一部を波長変換せずに拡散(反射または透過)させる。光源装置100は、蛍光体層10から放出された蛍光光7と励起光のうち非変換光である拡散成分(図示せず)との合成光(白色光)を出射する。 The phosphor layer 10 is composed of a binder 4 and a plurality of phosphor particles 5 dispersed in the binder 4. The phosphor particles 5 absorb the excitation light 6 for wavelength conversion, and emit light of a longer wavelength (500 nm to 650 nm) than the excitation light 6 as fluorescent light 7. Moreover, the phosphor layer 10 diffuses (reflects or transmits) a part of the excitation light without wavelength conversion. The light source device 100 emits combined light (white light) of the fluorescent light 7 emitted from the phosphor layer 10 and a diffusion component (not shown) which is unconverted light in the excitation light.
発光素子1から発せられた励起光6は、光源光学系2により高密度に集光され、蛍光体層10における基板3に接する基板接触面(第1の面)とは層厚み方向にて反対側の入射面(第2の面)上の一定面積の領域に照射される。入射面から蛍光体層10内に入射した励起光6は、蛍光体層10内で拡散しながら進行し、蛍光体粒子5により吸収されるとそのエネルギの一部が蛍光光7となって蛍光体粒子5から放出され、他のエネルギは熱として放出される。 The excitation light 6 emitted from the light emitting element 1 is condensed at high density by the light source optical system 2 and opposite to the substrate contact surface (first surface) in the phosphor layer 10 in contact with the substrate 3 in the layer thickness direction It is irradiated to the area of a fixed area on the side incident surface (second surface). The excitation light 6 that has entered the phosphor layer 10 from the incident surface travels while diffusing in the phosphor layer 10, and when absorbed by the phosphor particles 5, part of the energy becomes fluorescence light 7 and becomes fluorescence It is released from body particles 5 and other energy is released as heat.
基板3は、金属(アルミ等)もしくはサファイアやスピネルに蛍光波長に対する増反射コートを施したもの等の反射率および熱伝導性が高い材料により形成されている。基板3は、蛍光体層10を通過して基板3に到達した励起光6や蛍光体粒子5から放出された蛍光光7を入射面側に反射する作用を有する。また、基板3は、その裏面側(蛍光体層10とは反対側)において冷却され、蛍光体層10からの放熱を促進する。 The substrate 3 is formed of a material having high reflectance and thermal conductivity, such as metal (aluminum or the like) or sapphire or spinel coated with a reflection increasing coating for a fluorescent wavelength. The substrate 3 has the function of reflecting the excitation light 6 that has passed through the phosphor layer 10 and reached the substrate 3 and the fluorescent light 7 emitted from the phosphor particles 5 to the incident surface side. In addition, the substrate 3 is cooled on its back surface side (opposite to the phosphor layer 10) to promote heat dissipation from the phosphor layer 10.
蛍光体層10を層厚み方向に2等分したときの基板接触面側の半分の部分(第1の部分)を基板側部分10bといい、入射面側の半分の部分(第2の部分)を入射面側部分10aという。このとき、蛍光体層10は、図1中の枠内に拡大して示すように、基板側部分10bにおける蛍光体粒子5の体積密度が入射面側部分10aの該体積密度よりも高くなるように形成されている。ここにいう蛍光体粒子5の体積密度(vol%:以下、蛍光体体積密度という)は、蛍光体層10(バインダ4および蛍光体粒子5)の単位体積において蛍光体粒子5が占める体積の割合である。例えば図1には、入射面側部分10aの蛍光体体積密度が38%であるのに対して、基板側部分10bの蛍光体体積密度が58%である例を示している。このように蛍光体層10内の蛍光体体積密度を制御(設定)することで、蛍光体層10の内の温度勾配を緩和して、つまりは温度分布を均一に近づけて、応力による割れ等を抑制することができる。 The half portion (first portion) on the substrate contact surface side when the phosphor layer 10 is bisected in the layer thickness direction is referred to as the substrate side portion 10b, and the half portion (second portion) on the incident surface side Is referred to as the incident surface side portion 10a. At this time, as the phosphor layer 10 is enlarged and shown in the frame in FIG. 1, the volume density of the phosphor particles 5 in the substrate side portion 10b is higher than the volume density of the incident surface side portion 10a. Is formed. The volume density (vol%: hereinafter referred to as phosphor volume density) of the phosphor particles 5 referred to here is the ratio of the volume occupied by the phosphor particles 5 in the unit volume of the phosphor layer 10 (binder 4 and phosphor particles 5) It is. For example, FIG. 1 shows an example in which the phosphor volume density of the substrate side portion 10b is 58% while the phosphor volume density of the light incident surface side portion 10a is 38%. Thus, by controlling (setting) the volume density of the phosphor in the phosphor layer 10, the temperature gradient in the phosphor layer 10 is relaxed, that is, the temperature distribution is made to be uniform, cracking due to stress, etc. Can be suppressed.
図2には、比較例として、蛍光体層10′内における蛍光体体積密度が層厚み方向にて均一である波長変換素子20′を示す。また図3および図4のそれぞれの下側には、図1および図2のそれぞれの蛍光体層10,10′で発生する熱分布を模式的に示している。これらの図において、濃い部分は発熱が大きく(温度が高く)、薄い部分は発熱が小さい(温度が低い)ことを表す。蛍光体層で発生する熱の大部分は、蛍光体粒子が励起光を吸収して、その一部を蛍光ではなく熱として放出することにより発生する。このため、単位体積当たりの発熱の大きさは入射する励起光の強度および蛍光体体積密度に依存する。さらに、励起光の強度の層厚み方向(入射面からの深さ方向)での強度分布も、蛍光体体積密度に依存する。 FIG. 2 shows, as a comparative example, a wavelength conversion element 20 'whose phosphor volume density in the phosphor layer 10' is uniform in the layer thickness direction. Further, the heat distribution generated in the respective phosphor layers 10 and 10 'of FIGS. 1 and 2 is schematically shown on the lower side of FIGS. 3 and 4, respectively. In these figures, the dark part indicates high heat generation (high temperature) and the thin part indicates low heat generation (low temperature). Most of the heat generated in the phosphor layer is generated by the phosphor particles absorbing the excitation light and releasing part of it as heat rather than fluorescence. For this reason, the magnitude of heat generation per unit volume depends on the intensity of the incident excitation light and the phosphor volume density. Furthermore, the intensity distribution of the intensity of excitation light in the layer thickness direction (the depth direction from the incident surface) also depends on the phosphor volume density.
図3および図4のそれぞれの上側には、蛍光体層10,10′に入射した励起光6が蛍光体層10,10′内を進行する様子を示している。図中の矢印が進行する励起光を示し、矢印の太さがその強度を示している。励起光は、各蛍光体層内を進むにしたがってその内部の蛍光体粒子や空孔等の拡散要因によって拡散を受けながら進行し、一部が蛍光体粒子により吸収されて蛍光光に変換される。すなわち、励起光は、内部拡散による影響と蛍光体粒子による吸収の2つの影響を受けて、その強度が深さ方向に減衰しながら進行していく。 The upper side of each of FIG. 3 and FIG. 4 shows a state where the excitation light 6 incident on the phosphor layers 10 and 10 'travels in the phosphor layers 10 and 10'. The arrows in the figure indicate the traveling excitation light, and the thickness of the arrows indicates the intensity. As the excitation light travels in each phosphor layer, it travels while being diffused by diffusion factors such as phosphor particles and pores inside it, and a part is absorbed by the phosphor particles and converted into fluorescence light . That is, the excitation light travels while being attenuated in the depth direction under the two effects of the influence of internal diffusion and the absorption by the phosphor particles.
蛍光体体積密度が深さ方向に均一な図2に示した比較例の蛍光体層10′では、まず入射面の近傍で励起光の高い強度に応じて強い発熱が起こる。そして、励起光が深さ方向に進行するに従ってその強度が減衰していく。このため、図4に示すように、蛍光体層10′内には、基板3側に比べて入射面側の発熱が非常に大きい熱分布が発生する。この結果、図5に蛍光体層10′内での深さと温度との関係を示すように、蛍光体層10′内での深さ方向での温度勾配が大きくなる。 In the phosphor layer 10 ′ of the comparative example shown in FIG. 2 in which the volume density of the phosphor is uniform in the depth direction, strong heat generation occurs in the vicinity of the incident surface according to the high intensity of the excitation light. Then, as the excitation light travels in the depth direction, its intensity is attenuated. For this reason, as shown in FIG. 4, a heat distribution is generated in the phosphor layer 10 'that heat generation on the incident surface side is much larger than that on the substrate 3 side. As a result, as the relationship between the depth and the temperature in the phosphor layer 10 'is shown in FIG. 5, the temperature gradient in the depth direction in the phosphor layer 10' becomes large.
これに対して、本実施例の蛍光体層10では、図3に示すように入射する励起光6の強度は比較例の蛍光体層10′と同じであるが、入射面側部分10aの蛍光体体積密度が基板側部分10bよりも低いため、入射面側部分10aでの発熱量が抑制される。しかも、励起光は、蛍光体層10内にて強度が図4に比べて緩やかに減衰しながら蛍光体体積密度が高い基板側部分に到達し、そこで多くの蛍光体粒子に吸収される。この結果、図5にも示すように、蛍光体層10のうち入射面側部分と基板側部分との温度差(深さ方向での温度勾配)が比較例の蛍光体層10′に比べて小さくなり、蛍光体層10内での温度分布が比較例の蛍光体層10′よりも均一に近くなる。 On the other hand, in the phosphor layer 10 of this example, the intensity of the excitation light 6 incident as shown in FIG. 3 is the same as that of the phosphor layer 10 'of the comparative example, but the fluorescence of the incident surface side portion 10a Since the body volume density is lower than that of the substrate side portion 10b, the amount of heat generation at the incident surface side portion 10a is suppressed. Furthermore, the excitation light reaches the substrate side portion having a high volume density of phosphors while being attenuated gradually in the phosphor layer 10 compared to FIG. 4 and is absorbed by many phosphor particles there. As a result, as also shown in FIG. 5, the temperature difference (temperature gradient in the depth direction) between the light incident surface side portion and the substrate side portion of the phosphor layer 10 is higher than that of the phosphor layer 10 'of the comparative example. It becomes smaller and the temperature distribution in the phosphor layer 10 becomes closer to uniformity than the phosphor layer 10 'of the comparative example.
さらに、基板3には金属基板を用いており、該基板3の裏面側を冷却することにより、蛍光体層10の冷却効果をより高めることができる。このとき、蛍光体層10内において基板3に近いほうが高い冷却効果が得られることから、蛍光体粒子の体積密度および励起光の強度がともに高い本実施例の蛍光体層10の方が比較例に比べて、より高い放熱効果が期待できる。 Furthermore, a metal substrate is used as the substrate 3, and the cooling effect of the phosphor layer 10 can be further enhanced by cooling the back surface side of the substrate 3. At this time, since a higher cooling effect is obtained in the phosphor layer 10 closer to the substrate 3, the phosphor layer 10 of this example, in which the volume density of the phosphor particles and the intensity of the excitation light are both higher, is the comparative example. Higher heat dissipation effects can be expected compared to.
以上のように波長変換素子20を構成することにより、蛍光体層10内での温度勾配の発生を抑制し、かつ高い放熱効果を得ることができる。特に、蛍光体層10に照射される励起光の密度が非常に高い場合に本実施例の波長変換素子20を用いることが有効である。具体的には、蛍光体層10の入射面上での励起光の最大強度が10W/mm以上である場合に本実施例の波長変換素子20によって得られる効果が大きい。更に望ましくは、励起光の最大強度が15W/mm以上(更に望ましくは25W/mm以上)である場合には、得られる効果がより大きくなる。 By configuring the wavelength conversion element 20 as described above, the occurrence of the temperature gradient in the phosphor layer 10 can be suppressed, and a high heat dissipation effect can be obtained. In particular, when the density of the excitation light irradiated to the phosphor layer 10 is very high, it is effective to use the wavelength conversion element 20 of this embodiment. Specifically, when the maximum intensity of the excitation light on the incident surface of the phosphor layer 10 is 10 W / mm 2 or more, the effect obtained by the wavelength conversion element 20 of the present embodiment is large. More desirably, when the maximum intensity of the excitation light is 15 W / mm 2 or more (more preferably 25 W / mm 2 or more), the effect obtained is larger.
蛍光体体積密度は、蛍光体層10を基板3に塗布するプロセスや焼成等の処理によって変化するが、使用する蛍光体粒子とバインダの重量比や混合比等から求められる。これ以外の実際的な評価方法としては、入射面と平行な面における表面SEMまたは深さ方向の断面SEMを取得し、蛍光体粒子の領域とバインダまたはその他の領域との面積比からおおよそ求めることもできる。この評価方法を用いる場合の評価領域の目安としては、蛍光体粒子の平均粒径σに対して十分に広ければよい。なお、「粒径」とは、同一体積で球に換算したときの直径である。「平均粒径」は、全粒子の粒径の平均値であるが、一部の粒子の粒径から統計的に全粒子の粒径の平均値を求めてもよい。蛍光体粒子の平均粒径σに対して十分に広い評価領域とは、例えば、一辺がσの2倍から100倍程度の領域や、面積が50σ以上の領域である。さらに、複数の評価領域での平均値を用いて評価することが望ましい。 The phosphor volume density changes depending on the process of coating the phosphor layer 10 on the substrate 3 and the treatment such as baking, but can be determined from the weight ratio or mixing ratio of the phosphor particles to be used and the binder. As another practical evaluation method, obtain a surface SEM in a plane parallel to the incident surface or a cross-sectional SEM in the depth direction, and roughly obtain it from the area ratio of the region of phosphor particles to the binder or other regions. You can also. As a standard of the evaluation area in the case of using this evaluation method, it suffices to be sufficiently wider than the average particle diameter σ of the phosphor particles. In addition, "particle diameter" is a diameter when it converts into a sphere by the same volume. The “average particle size” is an average value of the particle sizes of all particles, but the average value of the particle sizes of all particles may be determined statistically from the particle sizes of some particles. The evaluation area that is sufficiently wide relative to the average particle size σ of the phosphor particles is, for example, an area whose side is about 2 to 100 times that of σ or an area whose area is 50 σ 2 or more. Furthermore, it is desirable to evaluate using the average value in several evaluation area | regions.
図1では、簡単のために、蛍光体層10を入射面側部分10aと基板側部分10bの2等分して説明したが、蛍光体層10は蛍光体体積密度が深さ方向に徐々に変化することがより望ましい。例えば、図6(a)に示す例では、入射面側部分10a、中間部分10cおよび基板側部分10bにかけて蛍光体体積密度が35%、45%および65%と深さ方向に徐々に変化(増加)している。ただし、蛍光体粒子5の密度分布は厳密には蛍光体粒子の粒径や粒度分布に依存して変動するため、蛍光体粒子の平均粒径σ程度の範囲での密度のばらつきは無視してもよい。言い換えれば、図1に示すように蛍光体層10を深さ方向に2等分したときに、入射面側部分10aよりも基板側部分10bの蛍光体体積密度が高くなっていればよい。 In FIG. 1, for the sake of simplicity, the phosphor layer 10 is described as equally divided into the incident surface side portion 10a and the substrate side portion 10b, but in the phosphor layer 10, the phosphor volume density is gradually increased in the depth direction It is more desirable to change. For example, in the example shown in FIG. 6A, the volume density of the phosphor gradually changes in the depth direction to 35%, 45% and 65% over the incident surface side portion 10a, the intermediate portion 10c and the substrate side portion 10b (increase )doing. However, since the density distribution of the phosphor particles 5 fluctuates strictly depending on the particle size and the particle size distribution of the phosphor particles, the dispersion of the density in the range of the average particle size σ of the phosphor particles is neglected It is also good. In other words, as shown in FIG. 1, when the phosphor layer 10 is divided into two in the depth direction, the phosphor volume density of the substrate side portion 10b may be higher than that of the light incident surface side portion 10a.
より具体的には、基板側部分10bの蛍光体体積密度が入射面側部分10aの蛍光体体積密度より10%以上高いことが望ましく、さらには15%以上高いことがより望ましい。なお、基板側部分10bの蛍光体体積密度が入射面側部分10aの蛍光体体積密度の2倍を超えると、この密度差によって蛍光体層としての安定性が低下し、割れや基板3からの剥れが発生するおそれがあるため、望ましくない。 More specifically, the phosphor volume density of the substrate side portion 10b is preferably 10% or more higher than the phosphor volume density of the light incident surface side portion 10a, and more preferably 15% or more. When the phosphor volume density of the substrate side portion 10b exceeds twice the volume density of the phosphor of the light incident surface side portion 10a, the density difference lowers the stability as a phosphor layer, resulting in cracking or breakage from the substrate 3. It is not desirable because peeling may occur.
また、蛍光体体積密度が15%を下回ると、蛍光体層として十分な輝度を得るために蛍光体層全体の厚みを増やす必要が生じる。厚みが大きくなると、蛍光体層10からの光が(後述するプロジェクタの光学系に対して)形成する光源像のサイズが増大して、該光学系の光取り込み効率上、不利になるため望ましくない。一方、蛍光体体積密度が70%を超えると、バインダに対する蛍光体粒子の比率が高くなりすぎ、蛍光体層(膜)としての安定性が低下して割れや剥れが発生するため、望ましくない。 In addition, if the volume density of the phosphor is less than 15%, it is necessary to increase the thickness of the entire phosphor layer in order to obtain sufficient brightness as the phosphor layer. When the thickness is increased, the size of the light source image formed by the light from the phosphor layer 10 (with respect to the optical system of the projector described later) is increased, which is not preferable because it becomes disadvantageous on the light capturing efficiency of the optical system. . On the other hand, when the volume density of the phosphor exceeds 70%, the ratio of the phosphor particles to the binder becomes too high, and the stability as the phosphor layer (film) decreases to cause cracking and peeling, which is not desirable. .
以上のことから、入射面側部分10aの蛍光体体積密度(第2の体積密度)をρ0とし、基板側部分10bの蛍光体体積密度(第1の体積密度)をρ1とするとき、
1.1≦ρ1/ρ0≦3.5
なる条件を満足することが望ましい。また、この条件とともに又はこの条件とは別に、
25%≦ρ1≦70%
15%≦ρ0≦50%
なる条件を満足することが望ましい。なお、上記条件式は、
1.3(更に好ましくは1.5)≦ρ1/ρ0≦3.0(更に好ましくは2.0)
45%≦ρ1≦70%
15%≦ρ0≦40%
のうち1つ以上を満足するとより良い。
From the above, when the phosphor volume density (second volume density) of the incident surface side portion 10a is ρ0 and the phosphor volume density (first volume density) of the substrate side portion 10b is ρ1,
1.1 ≦ ρ1 / ρ0 ≦ 3.5
It is desirable to satisfy the following conditions. Also, with or without this condition,
25% ≦ ρ1 ≦ 70%
15% ≦ ρ0 ≦ 50%
It is desirable to satisfy the following conditions. The above conditional expression is
1.3 (more preferably 1.5) ≦≦ 1/1/0 ≦ 3.0 (more preferably 2.0)
45% ≦ ρ1 ≦ 70%
15% ≦ ρ0 ≦ 40%
It is better to satisfy one or more of them.
蛍光体粒子としては、CeがドープされたYAG(イットリウム・アルミニウム・ガーネット)系の蛍光体を用いることができる。それ以外にも、LuAGタイプやサイアロン蛍光体など、無機材料で紫外~青色波長を吸収して可視域の緑~赤色領域を発光する蛍光体材料であれば適宜選択して用いることができる。 As the phosphor particles, a phosphor based on YAG (yttrium aluminum garnet) doped with Ce can be used. Other than that, any phosphor material such as LuAG type or sialon phosphor that absorbs ultraviolet to blue wavelength and emits light in green to red region in visible region can be appropriately selected and used.
本実施例における波長変換素子20(蛍光体層10)の製造方法としては、様々な方法を用いることができる。例えば、シリカやアルミナ、チタニア系ゾルゲル材料からなる無機バインダ内に蛍光体粒子を分散させて塗布、乾燥する方法がある。他には、ガラスセラミクスと蛍光体粒子を混合して焼成(焼結)することで、ガラスやセラミクス内に蛍光体粒子を分散させる方法もある。この際は高い焼成温度を用いると蛍光体粒子の特性が劣化することがあるため、バインダとして低融点ガラス等の材料を用いることが望ましい。 Various methods can be used as a method of manufacturing the wavelength conversion element 20 (phosphor layer 10) in the present embodiment. For example, there is a method of dispersing phosphor particles in an inorganic binder made of silica, alumina, or a titania-based sol-gel material, and coating and drying. Besides, there is also a method of dispersing phosphor particles in glass or ceramics by mixing and sintering (sintering) glass ceramics and phosphor particles. At this time, if a high firing temperature is used, the characteristics of the phosphor particles may be degraded. Therefore, it is desirable to use a material such as low melting point glass as a binder.
深さ方向において蛍光体体積密度が異なる蛍光体層10を得るためには、例えば以下の製造方法を用いることができる。第1の方法として、予め異なる蛍光体体積密度で硬化前のバインダ内に蛍光体粒子を分散させた2以上の材料を用意し、それらの材料を基板3(または不図示のベース面)側から蛍光体体積密度が高い順に塗布して積層する方法がある。すなわち、バインダ内に第1の体積密度で蛍光体粒子を分散させた第1の材料と、バインダ内に第1の体積密度より高い第2の体積密度で蛍光体粒子を分散させた第2の材料とを用意する。そして、第2の材料が基板側に位置するようにこれら第1の材料と第2の材料とを積層すればよい。図6(a)に示したように第1および第2の体積密度の中間の第3の体積密度を有する中間部分10cがある場合は、バインダ内に第3の体積密度で蛍光体粒子を分散させた第3の材料も用意して、第1から第3の材料を積層すればよい。 In order to obtain phosphor layers 10 having different phosphor volume densities in the depth direction, for example, the following manufacturing method can be used. As a first method, two or more materials in which phosphor particles are dispersed in a binder before curing with different phosphor volume densities are prepared in advance, and those materials are viewed from the substrate 3 (or a base surface not shown) side. There is a method of applying and laminating in the order of high phosphor volume density. That is, a first material having phosphor particles dispersed at a first volume density in a binder, and a second material having phosphor particles dispersed at a second volume density higher than the first volume density in a binder Prepare the ingredients. Then, the first material and the second material may be stacked so that the second material is located on the substrate side. As shown in FIG. 6A, when there is an intermediate portion 10c having a third volume density intermediate between the first and second volume densities, the phosphor particles are dispersed in the binder at the third volume density. The third to third materials may be prepared, and the first to third materials may be stacked.
これにより、容易に入射面側部分10aよりも蛍光体体積密度が高い基板側部分10bを有した蛍光体層10を製造することができる。この際、図6(b)に示すように、蛍光体体積密度が高い材料に分散させる蛍光体粒子5として粒子径が互いに異なるものを混合してもよい。また、図6(c)に示すように、各材料に蛍光体粒子5とは異なる他の粒子8を混合し、蛍光体粒子5と他の粒子8との密度比率をそれらの材料で異ならせてもよい。 Thereby, it is possible to easily manufacture the phosphor layer 10 having the substrate side portion 10 b having the phosphor volume density higher than that of the incident surface side portion 10 a. Under the present circumstances, as shown in FIG.6 (b), you may mix the thing from which a particle diameter mutually differs as fluorescent substance particle 5 disperse | distributed to the material with high fluorescent substance volume density. Further, as shown in FIG. 6C, the other particles 8 different from the phosphor particles 5 are mixed into each material, and the density ratio of the phosphor particles 5 to the other particles 8 is made different depending on those materials. May be
第2の方法として、蛍光体粒子を硬化前のバインダやガラス内で沈降させることで、深さ方向に蛍光体体積密度に差を設ける方法で蛍光体層10を製造してもよい。一般に、比重が異なる材質の混合物は重力方向に密度の偏りが生じる。このため、塗布条件や焼成および冷却条件を制御して蛍光体粒子5の密度の偏りを生じさせた後、蛍光体体積密度が高い側を基板側として配置することでも本実施例の蛍光体層10を製造することができる。ただし、励起光の密度が非常に高強度となる場合には、有機材料のバインダを用いるとこれが熱により劣化して波長変換素子20の安定性や寿命が低下するおそれがある。このため、蛍光体層10は無機材料のみにより構成されることが望ましい。具体的には、バインダは、シリカまたは金属の酸化物や窒化物、もしくはそれらの混合体により形成されることが望ましい。 As a second method, the phosphor layer 10 may be manufactured by a method of providing a difference in the volume density of the phosphor in the depth direction by precipitating the phosphor particles in a binder or glass before curing. In general, a mixture of materials having different specific gravities causes density deviation in the direction of gravity. For this reason, the phosphor layer of this example can also be disposed by setting the side with the higher volume density of the phosphor as the substrate side after controlling the coating conditions and the baking and cooling conditions to cause the density of the phosphor particles 5 to be uneven. 10 can be manufactured. However, when the density of the excitation light becomes very high, if a binder of an organic material is used, it may be thermally deteriorated and the stability and the life of the wavelength conversion element 20 may be reduced. Therefore, it is desirable that the phosphor layer 10 be made of only an inorganic material. Specifically, it is desirable that the binder be formed of oxide or nitride of silica or metal, or a mixture thereof.
蛍光体粒子5の平均粒径σは、1~10μm程度の範囲のものであることが望ましい。蛍光体粒子の平均粒径σを小さくすると、一般には蛍光体層の表面状態の影響を受けて発光効率が低下することが知られている。平均粒径σが1μm以下の蛍光体粒子を用いる場合には、効率低下に対する表面修飾等の改良処理を施した上で使用することが望ましい。平均粒径σが10μmを超えると、膜厚制御性や微小領域における面内の密度のばらつきが懸念されるので、望ましくない。 The average particle diameter σ of the phosphor particles 5 is preferably in the range of about 1 to 10 μm. It is known that, when the average particle diameter σ of the phosphor particles is reduced, the light emission efficiency generally decreases due to the influence of the surface state of the phosphor layer. In the case of using phosphor particles having an average particle diameter σ of 1 μm or less, it is desirable to use after performing an improvement treatment such as surface modification for efficiency reduction. When the average particle diameter σ exceeds 10 μm, it is not desirable because the film thickness controllability and the variation in the in-plane density in the minute region may be concerned.
また、蛍光体層10の層厚みは、0.02mm以上0.5mm以下の範囲であることが望ましい。0.02mmを下回ると高密度の励起光を効率良く蛍光光に変換することが難しい。また、0.5mmを上回るとプロジェクタの光学系による光取り込み効率が低下し、また蛍光体層10の割れが発生しやすくなる等の懸念がある。また、蛍光体層10は、層厚み方向(深さ方向)に体積密度勾配を付与する点から、平均粒径σの5倍以上の層厚みを有することが望ましい。 The layer thickness of the phosphor layer 10 is preferably in the range of 0.02 mm or more and 0.5 mm or less. If it is less than 0.02 mm, it is difficult to efficiently convert high density excitation light into fluorescent light. Further, if it exceeds 0.5 mm, there is a concern that the light capturing efficiency by the optical system of the projector may be reduced, and the phosphor layer 10 may be easily cracked. Further, the phosphor layer 10 desirably has a layer thickness of 5 times or more of the average particle diameter σ in terms of providing a volume density gradient in the layer thickness direction (depth direction).
さらに、図6(c)に示したように、バインダ4内には蛍光体粒子5とは異なる他の粒子8として無機粒子を混合してもよい。これにより、蛍光体体積密度が異なる蛍光体層10において蛍光体粒子5とバインダ4またはガラスの線膨張差による応力の偏りを緩和したり、熱伝導性を改善したり、励起光の拡散強度を制御したりする等の効果が期待できる。このような目的に用いられる無機粒子としては、励起光の波長における吸収が限りなく少なく、かつ励起光の波長における屈折率がバインダまたはガラスの材料に対して異なるものを用いることが望ましい。この屈折率差が小さすぎると、無機粒子の界面反射率が低下して励起光の拡散効果が低下する。具体的には、励起光または蛍光の波長において、屈折率差が少なくとも0.05以上(更に望ましくは0.10以上)の無機粒子を選択することが望ましい。 Furthermore, as shown in FIG. 6C, inorganic particles may be mixed in the binder 4 as other particles 8 different from the phosphor particles 5. As a result, in the phosphor layer 10 having different phosphor volume densities, stress unevenness due to the difference in linear expansion between the phosphor particles 5 and the binder 4 or glass can be alleviated, the thermal conductivity can be improved, or the diffusion intensity of excitation light can be reduced. An effect such as control can be expected. As the inorganic particles used for such purpose, it is desirable to use those having an extremely low absorption at the wavelength of excitation light and a refractive index at the wavelength of excitation light different from that of the binder or glass material. When the difference in refractive index is too small, the interface reflectance of the inorganic particles is reduced, and the diffusion effect of the excitation light is reduced. Specifically, it is desirable to select inorganic particles having a refractive index difference of at least 0.05 (more preferably 0.10 or more) at the wavelength of excitation light or fluorescence.
線膨張を緩和する目的で無機粒子を使用する場合には、無機粒子の材料は、例えば蛍光体粒子またはバインダの材料よりも小さな線膨張係数を有することが望ましい。さらには負の線膨張係数を有する材料を用いれば、蛍光体層に発生する応力の偏りをさらに抑制することができる。このように、様々な目的に応じて適切な材料を選択すればよい。 When using inorganic particles for the purpose of relieving linear expansion, it is desirable that the material of the inorganic particles have a smaller linear expansion coefficient than, for example, the material of the phosphor particles or the binder. Furthermore, if a material having a negative linear expansion coefficient is used, it is possible to further suppress the bias of the stress generated in the phosphor layer. Thus, appropriate materials may be selected according to various purposes.
以上、本実施例の波長変換素子20について説明したが、他の構成を有する波長変換素子を用いてもよい。例えば、図1では金属基板3上に蛍光体層10を形成した反射型の波長変換素子20を示したが、基板3は金属以外の透光性を有するものであってもよく、この場合は透過型の波長変換素子としても使用可能である。例えば、放熱性が高く線膨張係数が近い誘電体材質(サファイアやスピネル)であってもよい。 As mentioned above, although the wavelength conversion element 20 of a present Example was demonstrated, you may use the wavelength conversion element which has another structure. For example, although the reflection type wavelength conversion element 20 in which the phosphor layer 10 is formed on the metal substrate 3 is shown in FIG. 1, the substrate 3 may have translucency other than metal, in this case It can also be used as a transmission type wavelength conversion element. For example, it may be a dielectric material (sapphire or spinel) having high heat dissipation and close linear expansion coefficient.
また、蛍光体層10単体で支持可能であれば基板3がない構成であってもよい。この場合であっても、本実施例と同様に蛍光体層10内で蛍光体体積密度を異ならせることで、温度勾配を緩和する効果が得られる。 In addition, as long as it can be supported by the phosphor layer 10 alone, the substrate 3 may be omitted. Even in this case, the effect of relaxing the temperature gradient can be obtained by making the phosphor volume density different in the phosphor layer 10 as in the present embodiment.
また、蛍光体層10の入射面や基板接触面には、コーティングや凹凸構造を設けてもよい。増反射膜やダイクロイックミラー等を設けることで、光利用効率の向上や利用波長の狭帯域化等が期待できる。ただし、微細な凹凸構造では蛍光体層の表面の温度変化(線膨張変化)によって形状(周期、屈折率および占有率)が変化し、凹凸構造による効果に影響が出る場合がある。本実施例で説明した構成を採用することで、蛍光体層の応力を緩和し、割れ等の抑制に加えて表面の凹凸構造の変化を抑制することができ、蛍光体層の発光特性をより安定化することができる。 Further, a coating or a concavo-convex structure may be provided on the incident surface of the phosphor layer 10 or the substrate contact surface. By providing a reflection increasing film, a dichroic mirror or the like, improvement in light utilization efficiency, narrowing of the utilization wavelength, and the like can be expected. However, in a fine uneven structure, the shape (period, refractive index and occupancy rate) may change due to temperature change (linear expansion change) of the surface of the phosphor layer, and the effect of the uneven structure may be affected. By adopting the configuration described in the present embodiment, the stress of the phosphor layer can be relaxed, and in addition to the suppression of cracks and the like, the change in the uneven structure of the surface can be suppressed, and the light emission characteristics of the phosphor layer can be further enhanced. It can be stabilized.
基板3の冷却手段については、波長変換素子20を一般的な回転ホイール体として構成したり、ピエゾ素子による微小駆動を行ったり、ペルチェ素子による局所冷却機構を用いたりすればよい。 As for the cooling means of the substrate 3, the wavelength conversion element 20 may be configured as a general rotating wheel body, micro driving with a piezo element may be performed, or a local cooling mechanism with a Peltier element may be used.
本実施例によれば、蛍光体層10内の蛍光体粒子の密度を制御することで、励起光の照射による温度勾配の発生を抑え、温度勾配に伴う応力の発生を回避できる波長変換素子20を実現することができる。 According to the present embodiment, by controlling the density of the phosphor particles in the phosphor layer 10, it is possible to suppress the generation of the temperature gradient due to the irradiation of the excitation light and prevent the generation of the stress due to the temperature gradient. Can be realized.
本実施例における蛍光体層10の厚みTh(mm)と、この円環形状に構成された蛍光体層の半径方向の幅をWd(mm)、円環形状の内径(半径)と外形(半径)をRi(mm)、Ro(mm)とする。次に、蛍光体層の面積(円環形状になっている面の面積、或いは光入射側から見たときの面積)をAph(平方ミリメートル)、またこの蛍光体層が形成された基板3の面積(光入射側から見たときの面積)をAsu(平方ミリメートル)とする。また、蛍光体層10に入射する光のエネルギーをLi(ワット)とする。 The thickness Th (mm) of the phosphor layer 10 in the present embodiment, the width in the radial direction of the phosphor layer formed in the annular shape is Wd (mm), the inner diameter (radius) of the annular shape, and the outer shape (radius) ) Is Ri (mm) and Ro (mm). Next, the area of the phosphor layer (the area of the surface having a ring shape, or the area when viewed from the light incident side) is Aph (square millimeter), and the substrate 3 on which this phosphor layer is formed. The area (area as viewed from the light incident side) is taken as Asu (square millimeter). Further, the energy of light incident on the phosphor layer 10 is Li (watts).
このとき、蛍光体層の厚みTh(mm)は、30μm以上200μm以下(より好ましくは35μm以上120μm以下、更に望ましくは50μm以上100μm以下)であることが望ましい。また、蛍光体層は円環形状をしており、該円環形状の幅Wdと、蛍光体層の厚みThとが、
20<Wd/Th<1000
(より好ましくは、50<Wd/Th<300、更に望ましくは120以上)
を満足することが望ましい。このように構成することにより、蛍光体層から基板に向かって効率よく熱を逃がすことができる。
At this time, the thickness Th (mm) of the phosphor layer is preferably 30 μm to 200 μm (more preferably 35 μm to 120 μm, and further preferably 50 μm to 100 μm). In addition, the phosphor layer has an annular shape, and the width Wd of the annular shape and the thickness Th of the phosphor layer are
20 <Wd / Th <1000
(More preferably, 50 <Wd / Th <300, more preferably 120 or more)
It is desirable to satisfy By this configuration, heat can be efficiently dissipated from the phosphor layer toward the substrate.
ここで、蛍光体層の円環形状の幅Wdは、5mm以上20mm以下(より好ましくは5mm以上12mm以下、更に望ましくは8mm以下)であることが望ましい。 Here, the width Wd of the annular shape of the phosphor layer is desirably 5 mm or more and 20 mm or less (more preferably 5 mm or more and 12 mm or less, and further preferably 8 mm or less).
また、蛍光体層の円環形状の外径をRo、内径をRiとするとき、
1.05<Ro/Ri<2.00
(より好ましくは、1.10<Ro/Ri<1.70、さらに望ましくは1.40未満)
を満足することが望ましい。上限値を満足すると、内径の内側の領域の基板を一定以上確保でき、基板内部で熱が外側と内側の両方に逃げられるため、放熱の観点から有利となる。下限値を満足すると、熱を逃がすために、蛍光体層が径方向に大型化するのを防ぐことができる。蛍光体層の内径は40mm以上100mm以下(より好ましくは、40mm以上80mm以下、更に好ましくは70mm以下)であることが望ましい。また、蛍光体層の外径は、50mm以上130mm以下(より好ましくは50mm以上105mm以下、更に望ましくは85mm以下)であることが望ましい。
When the outer diameter of the annular shape of the phosphor layer is Ro and the inner diameter is Ri,
1.05 <Ro / Ri <2.00
(More preferably, 1.10 <Ro / Ri <1.70, more preferably less than 1.40)
It is desirable to satisfy When the upper limit is satisfied, the substrate in the region inside the inner diameter can be secured at a certain level or more, and heat can be dissipated to the outside and the inside inside the substrate, which is advantageous from the viewpoint of heat dissipation. When the lower limit value is satisfied, it is possible to prevent the phosphor layer from being enlarged in the radial direction in order to dissipate heat. The inner diameter of the phosphor layer is desirably 40 mm or more and 100 mm or less (more preferably 40 mm or more and 80 mm or less, and further preferably 70 mm or less). The outer diameter of the phosphor layer is desirably 50 mm or more and 130 mm or less (more preferably 50 mm or more and 105 mm or less, and further preferably 85 mm or less).
次に、蛍光体層に入射する光強度をLi(ワット)、蛍光体層の面積をAph(平方ミリメートル)とするとき、
5<Aph/Li<120(mm/W)
(より好ましくは5<A/Li<60、更に望ましくは6<A/Li<40)
を満足することが望ましい。尚、ここで、蛍光体層に入射する光強度Liは、50W以上500W以下、より好ましくは、100W以上500W以下、更に望ましくは250W以上)であることが望ましい。また、蛍光体層の面積Aph(平方ミリメートル)は、1000以上10000以下(より好ましくは、1500以上6500以下、更に望ましくは3700以下)であることが望ましい。
Next, when the light intensity incident on the phosphor layer is Li (watts) and the area of the phosphor layer is Aph (square millimeter),
5 <Aph / Li <120 (mm 2 / W)
(More preferably 5 <A / Li <60, still more preferably 6 <A / Li <40)
It is desirable to satisfy Here, it is desirable that the light intensity Li incident on the phosphor layer is 50 W or more and 500 W or less, more preferably 100 W or more and 500 W or less, and further preferably 250 W or more. The area Aph (square millimeter) of the phosphor layer is preferably 1000 or more and 10000 or less (more preferably 1500 or more and 6500 or less, and further preferably 3700 or less).
また、蛍光体層に入射する光強度Li(ワット)と、蛍光体層が形成された基板の面積Asu(平方ミリメートル)とが
10<Asu/Li<500(mm/W)
(より好ましくは20<A/Li<260、更に望ましくは30<A/Li<100)
を満足することが望ましい。更に、基板の面積Asu(平方ミリメートル)は、5000以上100000以下(より好ましくは、6000以上41000以下、更に望ましくは、10000以下)であることが望ましい。
Also, the light intensity Li (watt) incident on the phosphor layer and the area Asu (square millimeter) of the substrate on which the phosphor layer is formed is 10 <Asu / Li <500 (mm 2 / W)
(More preferably 20 <A / Li <260, still more preferably 30 <A / Li <100)
It is desirable to satisfy Further, the area Asu (square millimeter) of the substrate is desirably 5,000 or more and 100,000 or less (more preferably, 6,000 or more and 41,000 or less, and further preferably 10,000 or less).
 また、蛍光体層の面積Aphと蛍光体層の厚みTh、及び基板の面積Asusが、
3000(mm)<Aph/Th<1000000(mm)
(より好ましくは8000<Aph/Th<200000、更に望ましくは、10000<Aph/Th<58000)
1.50<Asus/Aph<8.00
(より好ましくは1.80<Asus/Aph<7.00、更に望ましくは、2.00<Asus/Aph<4.00)
を満足することが望ましい。
In addition, the area Aph of the phosphor layer, the thickness Th of the phosphor layer, and the area Asus of the substrate are
3000 (mm) <Aph / Th <1,000,000 (mm)
(More preferably 8000 <Aph / Th <200000, more preferably 10000 <Aph / Th <58000)
1.50 <Asus / Aph <8.00
(More preferably 1.80 <Asus / Aph <7.00, more preferably 2.00 <Asus / Aph <4.00)
It is desirable to satisfy
 上記各パラメータの値については、表1に詳細に示している。
Figure JPOXMLDOC01-appb-T000001
The values of the above parameters are shown in detail in Table 1.
Figure JPOXMLDOC01-appb-T000001
次に、図7を用いて、本発明の第2の実施例であるプロジェクタ(画像投射装置)200について説明する。プロジェクタ200は、実施例1で説明した光源装置100を備えている。光源装置100から発せられた白色光102(点線で示す赤色光102r、緑色光102gおよび青色光102b)は以下に説明するプロジェクタ用光学系に入射する。まず、赤色、緑色および青色光102r,102g,青色光102bは偏光変換素子103に入射し、ここで一様な偏光方向を有する直線偏光としての赤色、緑色および青色照明光(点線で示す)104r,104g,104bに変換される。 Next, a projector (image projection apparatus) 200 according to a second embodiment of the present invention will be described with reference to FIG. The projector 200 includes the light source device 100 described in the first embodiment. White light 102 (red light 102r, green light 102g, and blue light 102b indicated by a dotted line) emitted from the light source device 100 is incident on a projector optical system described below. First, red, green and blue lights 102r and 102g and blue light 102b are incident on the polarization conversion element 103, where red, green and blue illumination lights (shown by dotted lines) 104r as linearly polarized light having a uniform polarization direction. , 104g, 104b.
これら照明光104r,104g,104bはダイクロイックミラー105により赤色照明光104rおよび青色照明光104bと緑色照明光104gとに分離される。緑色照明光104gは、偏光分離素子(以下、PBSという)108および位相補償板112を透過して光変調素子111gに到達する。赤色および青色照明光104r,104bは、偏光板106を透過して色選択性位相板107に入射する。色選択性位相板107は、赤色照明光104rの偏光方向をそのまま維持しつつ青色照明光104bの偏光方向を90°回転させる。色選択性位相板107から出射した赤色照明光104rは、PBS109および位相補償板112rを透過して光変調素子111rに到達する。色選択性位相板107から出射した青色照明光104bは、PBS109で反射して位相補償板112bを透過して光変調素子111bに到達する。各光変調素子は、反射型液晶パネルまたはデジタルマイクロミラーデバイスにより構成される。光変調素子として、透過型液晶パネルを用いることも可能である。 These illumination lights 104r, 104g, and 104b are separated by the dichroic mirror 105 into red illumination light 104r, blue illumination light 104b, and green illumination light 104g. The green illumination light 104 g passes through the polarization separation element (hereinafter referred to as PBS) 108 and the phase compensation plate 112 and reaches the light modulation element 111 g. The red and blue illumination lights 104 r and 104 b pass through the polarizing plate 106 and enter the color selective phase plate 107. The color selective phase plate 107 rotates the polarization direction of the blue illumination light 104 b by 90 ° while maintaining the polarization direction of the red illumination light 104 r as it is. The red illumination light 104r emitted from the color selective phase plate 107 passes through the PBS 109 and the phase compensation plate 112r to reach the light modulation element 111r. The blue illumination light 104b emitted from the color selective phase plate 107 is reflected by the PBS 109, passes through the phase compensation plate 112b, and reaches the light modulation element 111b. Each light modulation element is configured by a reflective liquid crystal panel or a digital micro mirror device. It is also possible to use a transmissive liquid crystal panel as the light modulation element.
光変調素子111g,111r,111bは入射した緑色、赤色および青色照明光104g,104r,104bを画像変調して緑色、赤色および青色画像光115g,115b,115rに変換する。これら画像光115g,115b,115rは、PBS108,109および合成プリズム118を介して合成され、投射レンズ120によりスクリーン等の被投射面に投射される。これにより、投射画像としてのカラー画像が表示される。 The light modulation elements 111g, 111r, and 111b perform image modulation on the incident green, red, and blue illumination lights 104g, 104r, and 104b to convert them into green, red, and blue image lights 115g, 115b, and 115r. These image lights 115g, 115b and 115r are synthesized via the PBSs 108 and 109 and the synthesis prism 118, and are projected by the projection lens 120 onto a projection surface such as a screen. Thereby, a color image as a projection image is displayed.
このように実施例1で説明した光源装置100を用いることにより、安定的に明るい投射画像を表示可能なプロジェクタ200を実現することができる。 As described above, by using the light source device 100 described in the first embodiment, the projector 200 capable of stably displaying a bright projected image can be realized.
以上説明した各実施例は代表的な例にすぎず、本発明の実施に際しては、各実施例に対して種々の変形や変更が可能である。
 
The embodiments described above are only representative examples, and various modifications and changes can be made to the embodiments when the present invention is implemented.

Claims (11)

  1.  バインダ内に蛍光体粒子が分散した蛍光体部を有し、
    前記蛍光体部は厚み方向において互いに反対側にある第1の面と第2の面とを有し、前記第2の面側から励起光が照射される波長変換素子であって、
    前記蛍光体部を前記第1の面側にある第1の部分と前記第2面側にある第2の部分とに前記厚み方向に2等分したときの前記第1の部分での前記蛍光体粒子の体積密度が、前記第2の部分での前記体積密度よりも高いことを特徴とする波長変換素子。
    Having a phosphor portion in which phosphor particles are dispersed in a binder;
    The phosphor portion has a first surface and a second surface opposite to each other in a thickness direction, and is a wavelength conversion element irradiated with excitation light from the second surface side,
    The fluorescence at the first portion when the phosphor portion is bisected in the thickness direction into a first portion at the first surface side and a second portion at the second surface side A wavelength conversion element characterized in that a volume density of body particles is higher than the volume density in the second portion.
  2.  前記蛍光体部を支持する基板を有し、
     前記第1の面は、前記基板に接していることを特徴とする請求項1に記載の波長変換素子。
    A substrate supporting the phosphor portion;
    The wavelength conversion element according to claim 1, wherein the first surface is in contact with the substrate.
  3.  前記基板は、金属により形成されていることを特徴とする請求項2に記載の波長変換素子。 The wavelength conversion element according to claim 2, wherein the substrate is made of metal.
  4.  前記第1の部分での前記体積密度をρ1とし、前記第2の部分での前記体積密度をρ0とするとき、
    1.1≦ρ1/ρ0≦2.0
    なる条件を満足することを特徴とする請求項1に記載の波長変換素子。
    When the volume density in the first part is ρ1 and the volume density in the second part is ρ0,
    1.1 ≦ ρ1 / ρ0 ≦ 2.0
    The wavelength conversion element according to claim 1, wherein the following condition is satisfied.
  5.  前記第1の部分での前記体積密度をρ1とし、前記第2の部分での前記体積密度をρ0とするとき、
    25%≦ρ1≦70%
    15%≦ρ0≦50%
    なる条件を満足することを特徴とする請求項1に記載の波長変換素子。
    When the volume density in the first part is ρ1 and the volume density in the second part is ρ0,
    25% ≦ ρ1 ≦ 70%
    15% ≦ ρ0 ≦ 50%
    The wavelength conversion element according to claim 1, wherein the following condition is satisfied.
  6.  前記蛍光体部の厚みが、前記蛍光体粒子の平均粒径の5倍以上であることを特徴とする請求項1に記載の波長変換素子。 The wavelength conversion element according to claim 1, wherein a thickness of the phosphor portion is five or more times an average particle diameter of the phosphor particles.
  7.  前記バインダ内に前記蛍光体粒子とは異なる無機粒子が分散しており、
    前記無機粒子と前記バインダとの屈折率差が0.05以上であることを特徴とする請求項1に記載の波長変換素子。
    Inorganic particles different from the phosphor particles are dispersed in the binder,
    The wavelength conversion element according to claim 1, wherein the refractive index difference between the inorganic particles and the binder is 0.05 or more.
  8.  励起光を発する光源と、
     請求項1に記載の波長変換素子とを有することを特徴とする光源装置。
    A light source emitting excitation light;
    A light source device comprising the wavelength conversion element according to claim 1.
  9.  前記蛍光体部の前記第2の面上での前記励起光の強度が、10W/mm以上であることを特徴とする請求項8に記載の光源装置。 The light source device according to claim 8, wherein the intensity of the excitation light on the second surface of the phosphor portion is 10 W / mm 2 or more.
  10.  請求項8に記載の光源装置と、
    該光源装置からの光を光変調素子により変調することで画像を投射する光学系とを有することを特徴とする画像投射装置。
    A light source device according to claim 8;
    And an optical system for projecting an image by modulating light from the light source device with a light modulation element.
  11.  バインダ内に蛍光体粒子が分散した蛍光体部を有し、前記蛍光体部は厚み方向において互いに反対側にある第1の面と第2の面とを有し、前記第2の面側から励起光が照射される波長変換素子の製造方法であって、
     前記バインダ内に第1の体積密度で前記蛍光体粒子を分散させた第1の材料と、前記バインダ内に前記第1の体積密度より高い第2の体積密度で前記蛍光体粒子を分散させた第2の材料とを用意し、
     前記第2の材料が前記第1の面側に位置するように前記第1の材料と前記第2の材料とを積層することを特徴とする波長変換素子の製造方法。
     
    The binder has a phosphor portion in which phosphor particles are dispersed, and the phosphor portion has a first surface and a second surface opposite to each other in the thickness direction, and from the second surface side A method of manufacturing a wavelength conversion element to which excitation light is irradiated, comprising:
    The first material in which the phosphor particles are dispersed with a first volume density in the binder, and the phosphor particles with a second volume density higher than the first volume density are dispersed in the binder Prepare the second material and
    A method of manufacturing a wavelength conversion element, comprising laminating the first material and the second material such that the second material is positioned on the first surface side.
PCT/JP2017/020163 2016-06-01 2017-05-30 Wavelength conversion element, light source device, and image projection device WO2017209152A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2018520939A JP6957463B2 (en) 2016-06-01 2017-05-30 Wavelength converter, light source device and image projection device
CN201780032682.6A CN109313294B (en) 2016-06-01 2017-05-30 Wavelength conversion element, light source device, and image projection device
DE112017002755.1T DE112017002755T5 (en) 2016-06-01 2017-05-30 WAVE LENGTH CONVERSION ELEMENT, LIGHT SOURCE DEVICE AND IMAGE PROJECTION DEVICE
GB1821316.5A GB2568171B (en) 2016-06-01 2017-05-30 Wavelength conversion element, light source apparatus, and image projection apparatus
PH12018502321A PH12018502321A1 (en) 2016-06-01 2018-11-05 Wavelength conversion element, light source apparatus, and image projection apparatus
US16/193,228 US10884329B2 (en) 2016-06-01 2018-11-16 Wavelength conversion element, light source apparatus, and image projection apparatus
US17/103,095 US11347139B2 (en) 2016-06-01 2020-11-24 Wavelength conversion element, light source apparatus, and image projection apparatus
JP2021155126A JP2022025065A (en) 2016-06-01 2021-09-24 Light source device and image projection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109932 2016-06-01
JP2016-109932 2016-06-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/193,228 Continuation US10884329B2 (en) 2016-06-01 2018-11-16 Wavelength conversion element, light source apparatus, and image projection apparatus

Publications (1)

Publication Number Publication Date
WO2017209152A1 true WO2017209152A1 (en) 2017-12-07

Family

ID=60477514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020163 WO2017209152A1 (en) 2016-06-01 2017-05-30 Wavelength conversion element, light source device, and image projection device

Country Status (7)

Country Link
US (2) US10884329B2 (en)
JP (2) JP6957463B2 (en)
CN (1) CN109313294B (en)
DE (1) DE112017002755T5 (en)
GB (1) GB2568171B (en)
PH (1) PH12018502321A1 (en)
WO (1) WO2017209152A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230934A1 (en) * 2018-05-31 2019-12-05 シャープ株式会社 Wavelength conversion element and light source device
WO2019230935A1 (en) * 2018-05-31 2019-12-05 シャープ株式会社 Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, and projection device
JP2019211670A (en) * 2018-06-06 2019-12-12 ウシオ電機株式会社 Fluorescent light-emitting element
CN113677932A (en) * 2019-04-16 2021-11-19 无限关节镜有限公司 Light source converter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782516B (en) * 2017-11-15 2021-10-22 中强光电股份有限公司 Projector and wavelength conversion element
CN209248238U (en) * 2019-01-15 2019-08-13 中强光电股份有限公司 Lighting system and projection arrangement
CN113448157B (en) * 2020-03-24 2023-09-05 台达电子工业股份有限公司 wavelength conversion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101078A (en) * 2001-09-25 2003-04-04 Toyoda Gosei Co Ltd Light-emitting device
WO2013190778A1 (en) * 2012-06-21 2013-12-27 パナソニック株式会社 Light emitting device and projection device
WO2014006987A1 (en) * 2012-07-04 2014-01-09 シャープ株式会社 Florescent material, florescent coating, phosphor substrate, electronic instrument, and led package
JP2016099558A (en) * 2014-11-25 2016-05-30 セイコーエプソン株式会社 Wavelength conversion element, light source unit, projector and manufacturing method of wavelength conversion element
JP2016218151A (en) * 2015-05-15 2016-12-22 シャープ株式会社 Wavelength conversion substrate, light-emitting device and display device comprising the same, lighting device, and electronic apparatus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI291770B (en) * 2003-11-14 2007-12-21 Hon Hai Prec Ind Co Ltd Surface light source device and light emitting diode
CN102023464A (en) * 2009-09-09 2011-04-20 孙润文 Projection display device and manufacturing method thereof
JP5767444B2 (en) * 2010-06-16 2015-08-19 ソニー株式会社 Light source device and image projection device
WO2012026757A2 (en) * 2010-08-25 2012-03-01 삼성엘이디 주식회사 Phosphor film, method for manufacturing same, method for depositing a phosphor layer, method for manufacturing a light-emitting device package, and light-emitting device package
JP5936056B2 (en) 2011-07-28 2016-06-15 カシオ計算機株式会社 Rotating wheel, light source device, projector, and manufacturing method of rotating wheel
CN102636947A (en) * 2012-04-19 2012-08-15 海信集团有限公司 Fluorescent powder wheel system
JP6225338B2 (en) 2012-11-07 2017-11-08 パナソニックIpマネジメント株式会社 Light source and image projection device
JP6283932B2 (en) * 2013-01-28 2018-02-28 パナソニックIpマネジメント株式会社 Lighting device and video display device
CN104141926A (en) * 2013-05-07 2014-11-12 台达电子工业股份有限公司 Method for regulating light emitting wave length of projection device
JP2015034867A (en) * 2013-08-08 2015-02-19 日本電気硝子株式会社 Projector fluorescent wheel and projector light-emitting device
JP6232951B2 (en) 2013-11-08 2017-11-22 日本電気硝子株式会社 Fluorescent wheel for projector, manufacturing method thereof, and light emitting device for projector
JP6503710B2 (en) * 2013-12-27 2019-04-24 日本電気硝子株式会社 Fluorescent wheel for projector, method of manufacturing the same, and light emitting device for projector
CN103900035A (en) * 2014-02-25 2014-07-02 扬州吉新光电有限公司 Fluorescent powder color wheel base plate with demarcation structures and manufacturing method thereof
CN105045022B (en) * 2014-04-25 2017-07-04 台达电子工业股份有限公司 Light-source system and its Wavelength converter
CN105182610A (en) * 2015-10-19 2015-12-23 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101078A (en) * 2001-09-25 2003-04-04 Toyoda Gosei Co Ltd Light-emitting device
WO2013190778A1 (en) * 2012-06-21 2013-12-27 パナソニック株式会社 Light emitting device and projection device
WO2014006987A1 (en) * 2012-07-04 2014-01-09 シャープ株式会社 Florescent material, florescent coating, phosphor substrate, electronic instrument, and led package
JP2016099558A (en) * 2014-11-25 2016-05-30 セイコーエプソン株式会社 Wavelength conversion element, light source unit, projector and manufacturing method of wavelength conversion element
JP2016218151A (en) * 2015-05-15 2016-12-22 シャープ株式会社 Wavelength conversion substrate, light-emitting device and display device comprising the same, lighting device, and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230934A1 (en) * 2018-05-31 2019-12-05 シャープ株式会社 Wavelength conversion element and light source device
WO2019230935A1 (en) * 2018-05-31 2019-12-05 シャープ株式会社 Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, and projection device
CN112166354A (en) * 2018-05-31 2021-01-01 夏普株式会社 Wavelength conversion element and light source device
JPWO2019230934A1 (en) * 2018-05-31 2021-06-17 シャープ株式会社 Wavelength conversion element and light source device
JP6997869B2 (en) 2018-05-31 2022-01-18 シャープ株式会社 Wavelength conversion element and light source device
JP2019211670A (en) * 2018-06-06 2019-12-12 ウシオ電機株式会社 Fluorescent light-emitting element
JP7119600B2 (en) 2018-06-06 2022-08-17 ウシオ電機株式会社 fluorescent light emitting element
CN113677932A (en) * 2019-04-16 2021-11-19 无限关节镜有限公司 Light source converter

Also Published As

Publication number Publication date
US20210080815A1 (en) 2021-03-18
JP6957463B2 (en) 2021-11-02
US20190101814A1 (en) 2019-04-04
US11347139B2 (en) 2022-05-31
CN109313294B (en) 2022-05-10
JPWO2017209152A1 (en) 2019-04-04
US10884329B2 (en) 2021-01-05
GB201821316D0 (en) 2019-02-13
DE112017002755T5 (en) 2019-02-21
GB2568171A (en) 2019-05-08
GB2568171B (en) 2021-11-03
JP2022025065A (en) 2022-02-09
CN109313294A (en) 2019-02-05
PH12018502321A1 (en) 2019-09-09

Similar Documents

Publication Publication Date Title
WO2017209152A1 (en) Wavelength conversion element, light source device, and image projection device
US9609293B2 (en) Wavelength converting member and projector including the wavelength converting member
WO2014024218A1 (en) Fluorescent optical element, method for manufacturing same and light source device
JP6323020B2 (en) Light source device and projector
US20160147136A1 (en) Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
US10599026B2 (en) Wavelength conversion module, forming method of wavelength conversion module, and projection device
JP2016070947A (en) Wavelength conversion element, light source device, and projector
US10585276B2 (en) Wavelength-converting wheel, illumination system, and projection apparatus
JP2021081733A (en) Light-emitting element, light source device, and projection display device
JP2017215507A (en) Wavelength conversion element, light source device, and image projection device
JP2018028647A (en) Wavelength conversion element, light source device, and projector
JP2013162021A (en) Wavelength conversion element, light source device, and projector
US11114590B2 (en) Wavelength conversion module, method of forming the same and projection apparatus
JPWO2019035307A1 (en) Light source device and projection type display device
JP2018205599A (en) Wavelength conversion element, wavelength conversion device, light source device, and projector
US11868034B2 (en) Phosphor particle, wavelength conversion element, light source device, method of manufacturing phosphor particle, method of manufacturing wavelength conversion element, and projector
CN112782922B (en) Wavelength conversion element, light source device, and projector
US20220325855A1 (en) Wavelength conversion device
JP2017151350A (en) Wavelength conversion device, method for manufacturing wavelength conversion device, illumination device, and projector
WO2019107100A1 (en) Phosphor member and light source device
US20220311978A1 (en) Light source device and projector
JP6701793B2 (en) Wavelength conversion element, wavelength conversion device, lighting device, and projector
CN115703964A (en) Fluorescent sheet, method for producing same, and light-emitting device
JP2020101576A (en) Light source device and projector
JP2020112757A (en) Light source device and projector

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520939

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201821316

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170530

122 Ep: pct application non-entry in european phase

Ref document number: 17806705

Country of ref document: EP

Kind code of ref document: A1