WO2014024218A1 - Fluorescent optical element, method for manufacturing same and light source device - Google Patents

Fluorescent optical element, method for manufacturing same and light source device Download PDF

Info

Publication number
WO2014024218A1
WO2014024218A1 PCT/JP2012/004984 JP2012004984W WO2014024218A1 WO 2014024218 A1 WO2014024218 A1 WO 2014024218A1 JP 2012004984 W JP2012004984 W JP 2012004984W WO 2014024218 A1 WO2014024218 A1 WO 2014024218A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
optical element
light source
wavelength
Prior art date
Application number
PCT/JP2012/004984
Other languages
French (fr)
Japanese (ja)
Inventor
山中 一彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014529152A priority Critical patent/JPWO2014024218A1/en
Priority to PCT/JP2012/004984 priority patent/WO2014024218A1/en
Publication of WO2014024218A1 publication Critical patent/WO2014024218A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum

Definitions

  • the present invention relates to a light source device used in a thin television such as a projector or a rear projection television, and a phosphor optical element used in the light source device.
  • the semiconductor light emitting elements such as light emitting diodes (LEDs) and laser diodes (LDs) have come to be used in light source devices used in image display devices such as projectors and flat-screen televisions.
  • the semiconductor light emitting device can efficiently emit light at a specific wavelength.
  • the light source device of the above-described image display device has so-called B (blue) and G (green) of blue light having a wavelength of 430 nm to 490 nm, green light having a wavelength of 490 nm to 570 nm, and red light having a wavelength of 570 nm to 650 nm. ), R (red) three primary colors need to be included.
  • Patent Document 1 and Patent Document 2 as light source devices using semiconductor light-emitting elements, semiconductor light-emitting elements that emit blue-violet to blue light having a wavelength of 380 nm to 470 nm and the light of these semiconductor light-emitting elements are absorbed.
  • a combination of phosphors emitting fluorescence having a wavelength of 430 nm to 650 nm has been proposed.
  • FIG. 14 is a schematic plan view of a conventional light source device 1063.
  • FIG. 15 is a plan view of a phosphor wheel 1071 according to a conventional light source device 1063.
  • the light source device 1063 includes a plurality of blue laser light emitters 1072 arranged so that the central axis and the optical axis of the light guide device 1075 are parallel to each other, and a plurality of collimator lenses 1149 arranged in front of the blue laser light emitter 1072. And a reflection mirror group 1150 that converts the optical axis direction of the light beam transmitted through the collimator lens 1149 by 90 degrees.
  • the light source device 1063 rotates the phosphor wheel 1071 disposed on the optical axis of the excitation light and the phosphor wheel 1071 so that the optical axis of the excitation light reflected by the reflecting mirror group 1150 and the rotation axis are parallel to each other. And a wheel motor 1073 for driving. Further, the light source device 1063 includes a light emitting element 1074 that emits light in the red wavelength region.
  • the phosphor wheel 1071 is a circular light emitting plate, and its rotation is controlled by a wheel motor 1073.
  • the phosphor wheel 1071 includes a segment as a diffusion region 1001 for diffusing light emitted from the blue laser light emitter 1072 and a segment as a fluorescent light emission region 1002 in parallel in the circumferential direction.
  • the diffusion region 1001 is configured by providing fine irregularities on the surface of a member such as glass.
  • the fluorescent light emitting region 1002 is formed by laying a green phosphor layer 1004 on the surface of a metal material or the like.
  • the green phosphor layer 1004 is formed of a green phosphor and a binder.
  • the light emitted from the blue laser light emitter 1072 is reflected by the reflection mirror group 1150, passes through the lens 1153 a and the mirror 1151 a, and is collected by the condenser lens group 1155 to the phosphor wheel 1071.
  • the light is condensed on a predetermined surface.
  • the blue light collected on a predetermined surface of the phosphor wheel 1071 is condensed and diffused on the diffusion region 1001 in a predetermined time zone.
  • the blue light diffused in the diffusion region 1001 propagates through the mirror 1151b, the lens 1153b, and the mirror 1151d, and enters the light guide device 1075 through the lens 1154.
  • the blue light is collected in the fluorescent light emitting region 1002 and becomes reflected light of the green light in the green phosphor in the fluorescent light emitting region 1002.
  • the light propagates through the mirror 1151a, the lens 1153c, the mirror 1151c, the lens 1153d, and the mirror 1151d, and enters the light guide device 1075 through the lens 1154.
  • the blue light collected on a predetermined surface of the phosphor wheel 1071 outside the predetermined time period is reflected by the fluorescent light emitting region 1002 to be reflected into green light and enters the light guide device 1075.
  • the red light emitted from the light emitting element 1074 passes through the mirror 1151a, enters the light guide device 1075 through the same optical axis as the green light.
  • blue light, green light, and red light are incident on the light guide device 1075.
  • Blue light, green light, and red light whose light distribution has been shaped after passing through the light guide device 1075 is transmitted or reflected to an image display element (not shown) that is a DMD (Digital Micromirror Device).
  • an image display element not shown
  • DMD Digital Micromirror Device
  • Patent Document 3 discloses ⁇ -SiAlON: Eu phosphor as another green phosphor material that can be excited by light having a wavelength of 380 nm to 470 nm, and Patent Document 4 discloses a red phosphor that can emit red light.
  • CaAlSiN 3 : Eu phosphors have been proposed.
  • the conventional light source device has the following problems.
  • an image display device such as a projector generally requires about 3000 lumens as the screen brightness.
  • the laser light having an energy of several tens of watts emitted from the excitation light source is condensed on the green phosphor of the phosphor wheel and used as green light.
  • the light density irradiated to the phosphor in the condensing region becomes very large, and so-called light saturation occurs in which the conversion efficiency in the phosphor is saturated.
  • the phosphor electrons in the activated rare earth ions are excited by the excitation light, and fluorescence is emitted by being relaxed to the ground level.
  • the density is so great that the excited electrons are depleted.
  • the excitation light is reflected as it is on the surface of the phosphor particles without being converted into fluorescence, so that the light conversion efficiency in the phosphor is lowered.
  • the emission area of the fluorescence is increased and is the product of the emission area and the emission angle.
  • the so-called etendue increases, and as a result, the loss in the subsequent optical system increases and the brightness of the image display device decreases.
  • the conventional light source device is configured to convert polarized laser light into non-polarized fluorescence, it is necessary to use a DMD that does not require polarization of incident light as an image display element. There is also a problem that the image display device cannot be simply configured using a panel or the like.
  • the present invention has been made to solve the above-described problems, and provides a phosphor optical element and a light source device that can efficiently improve the luminance of an image display device by a simple method.
  • the phosphor optical element according to the present invention includes a phosphor-containing layer containing phosphor particles that absorb light having a wavelength of excitation light emitted from an excitation light source, and the phosphor-containing layer.
  • the excitation light incident surface of the phosphor-containing layer has a concavo-convex shape.
  • the effective surface area of the phosphor-containing layer can be increased without increasing the etendue, and the light saturation of the phosphor can be suppressed. Further, the excitation light can be diffusely reflected near the surface of the phosphor-containing layer, and as a result, the excitation light can be efficiently converted into fluorescence. That is, the luminance can be improved efficiently by a simple method.
  • the concavo-convex shape is a shape in which the concave portion and the convex portion change periodically, and the pitch of the concavo-convex shape may be larger than the particle diameter of the phosphor particles.
  • the effective surface area of the phosphor-containing layer can be easily increased, the light saturation of the phosphor-containing layer is suppressed, and at the same time, the excitation light is diffusely reflected in the vicinity of the surface of the phosphor-containing layer. Light can be converted to fluorescence.
  • a transparent substrate transparent to the wavelength of the excitation light may be further provided on the excitation light incident surface side of the phosphor-containing layer.
  • the surface shape of the phosphor-containing layer can be easily deformed.
  • the surface of the transparent substrate on the phosphor-containing layer side may be formed in an uneven shape corresponding to the uneven shape.
  • the density of the phosphor particles contained in the phosphor-containing layer may increase toward the uneven shape.
  • the incident excitation light can be easily absorbed by the phosphor-containing layer near the uneven interface.
  • the substrate may be made of metal.
  • the fluorescence generated in the phosphor-containing layer can be efficiently reflected to the incident side, and the heat generated in the phosphor-containing layer can be efficiently exhausted.
  • the outer shape of the phosphor-containing layer viewed from the stacking direction may be circular.
  • the phosphor optical element can be easily rotated, and light can be prevented from being continuously incident on a specific phosphor region.
  • the concavo-convex shape is configured by a plurality of grooves formed concentrically with respect to the outer shape of the phosphor-containing layer viewed from the stacking direction, or a plurality of grooves formed in a normal direction with respect to the outer shape. May be.
  • the fluorescence emitted from the phosphor optical element can have a certain degree of polarization.
  • Such a phosphor optical element can realize a light source device suitable for a polarizing optical system image display device.
  • the width of the concavo-convex convex portion formed on the excitation light incident surface of the phosphor-containing layer is larger than the particle size of the phosphor particles, and the wavelength of the fluorescence emitted from the phosphor particles May be smaller.
  • This configuration can further increase the polarization of fluorescence emitted from the phosphor optical element.
  • the phosphor particles may be quantum dot phosphors.
  • the method for producing a phosphor optical element according to the present invention includes a phosphor-containing resin in which phosphor particles that absorb light having a wavelength of excitation light emitted from an excitation light source and a solvent that is cured by heat or light are mixed.
  • a step of applying the solution on the upper surface of the transparent optical element having an uneven surface and a phosphor-containing layer having an uneven shape on the lower surface by curing the phosphor-containing resin solution with heat or light Including the step of.
  • the density of the phosphor particles contained in the phosphor-containing layer can be increased toward the uneven shape, and as a result, the incident excitation light can be easily absorbed by the phosphor-containing layer near the uneven surface. Can do.
  • a light source device includes the phosphor optical element, an excitation light source, a dichroic mirror, and a condenser lens.
  • the present invention it is possible to provide a phosphor optical element and a light source device that can efficiently improve the luminance of an image display device by a simple method.
  • FIG. 1A is a front view showing the structure of the phosphor optical element according to the first embodiment.
  • FIG. 1B is a cross-sectional view showing the structure of the phosphor optical element according to the first embodiment.
  • FIG. 2A is a partially enlarged view in which a part of the front surface of the phosphor optical element according to the first embodiment is enlarged.
  • 2B is a cross-sectional view taken along line Ia-Ia in FIG. 2A.
  • FIG. 2C is an enlarged cross-sectional view of the vicinity of the phosphor layer in FIG. 2B.
  • FIG. 3 is a cross-sectional view showing the method for manufacturing the phosphor optical element according to the first embodiment.
  • FIG. 1A is a front view showing the structure of the phosphor optical element according to the first embodiment.
  • FIG. 1B is a cross-sectional view showing the structure of the phosphor optical element according to the first embodiment.
  • FIG. 2A is a partially enlarged view in which a part
  • FIG. 4A is a diagram for explaining the function of the phosphor optical element in the comparative example.
  • FIG. 4B is a diagram for explaining the function of the phosphor optical element according to the first embodiment.
  • FIG. 5A is a table showing parameters used in the simulation.
  • FIG. 5B is a graph showing a simulation result.
  • FIG. 6 is a diagram for explaining the configuration and operation of the light source device using the phosphor optical element according to the first embodiment.
  • FIG. 7A is a graph showing a spectrum of outgoing light emitted from the light source device.
  • FIG. 7B is a chromaticity diagram of outgoing light emitted from the light source device.
  • FIG. 8A is a front view showing the structure of the phosphor optical element according to the second embodiment.
  • FIG. 8B is a cross-sectional view taken along line Ia-Ia in FIG. 8A.
  • FIG. 9A is a diagram for explaining an example of the operation of the light source device according to the second embodiment.
  • FIG. 9B is a diagram for explaining another example of the operation of the light source device according to the second embodiment.
  • FIG. 9C is a diagram for explaining the function of the light source device according to the second embodiment.
  • FIG. 10 is a diagram for explaining the configuration and operation of the light source device according to the second embodiment.
  • FIG. 11A is a front view showing the structure of the phosphor optical element according to the third embodiment.
  • 11B is a cross-sectional view taken along line Ia-Ia in FIG. 11A.
  • FIG. 12A is a diagram for explaining the function of the dichroic mirror.
  • FIG. 12B is a graph showing the transmission characteristics of the dichroic mirror.
  • FIG. 13A is a graph showing a spectrum of outgoing light emitted from the light source device.
  • FIG. 13B is a chromaticity diagram of outgoing light emitted from the light source device.
  • FIG. 14 is a schematic plan view showing the structure of a conventional light source device.
  • FIG. 15 is a plan view showing a structure of a fluorescent wheel according to a conventional light source device.
  • FIG. 1A and 1B are views showing the structure of the phosphor optical element 1 of the present embodiment
  • FIG. 1A is a view of the phosphor optical element 1 from the front
  • FIG. 1B is Ia in FIG. 1A
  • FIG. 2A is a partially enlarged view in which a part of the front surface of the phosphor optical element 1 is enlarged
  • FIG. 2B is a sectional view taken along line Ia-Ia in FIG. 2A
  • FIG. 2C is an enlarged view of the vicinity of the phosphor layer in FIG.
  • FIG. 3 is a cross-sectional view showing a method for manufacturing a phosphor optical element according to the present embodiment.
  • FIG. 1A is a view of the phosphor optical element 1 from the front
  • FIG. 1B is Ia in FIG. 1A
  • FIG. 2A is a partially enlarged view in which a part of the front surface of the phosphor optical element 1 is enlarged
  • FIG. 2B is a sectional view taken along
  • FIG. 4A is a diagram for explaining the function of the phosphor optical element in the comparative example
  • FIG. 4B is a diagram for explaining the function of the phosphor optical element 1 according to the present embodiment
  • FIG. 5A is a table showing parameters used in the simulation
  • FIG. 5B is a graph showing the simulation results.
  • FIG. 6 is a diagram for explaining the configuration and operation of the light source device 100 using the phosphor optical element 1 according to the present embodiment.
  • 7A is a graph showing a spectrum of outgoing light emitted from the light source device 100 shown in FIG. 6, and
  • FIG. 7B is a chromaticity diagram of outgoing light.
  • the phosphor optical element 1 is made of a heat radiation substrate 30 such as an aluminum alloy or a magnesium alloy having a thickness of 0.3 mm to 0.5 mm, a fluorescent material with a binder (solvent) as a transparent material.
  • a phosphor layer 20 having a thickness of 0.05 mm to 0.4 mm containing body particles and a transparent substrate 10 having a thickness of 0.1 mm to 1 mm made of glass such as B270 or BK7 are sequentially laminated.
  • An uneven portion 15 having an uneven shape is formed on the surface on the phosphor layer 20 side.
  • the uneven portion 15 formed on the transparent substrate 10 has, for example, a pitch p of 0.2 ⁇ m and a depth d of 0.2 ⁇ m, and is perpendicular to the stacking direction of the phosphor optical element 1. It is formed in a dot shape in a flat direction.
  • the uneven portion 15 includes a first plane 15a, an inclined surface 15b, and a second plane 15c.
  • the phosphor layer 20 includes a blue phosphor layer 20B containing blue phosphor particles, a green phosphor layer 20G containing green phosphor particles, and a red phosphor containing red phosphor particles.
  • the body layer 20R is formed so as to divide the phosphor optical element 1 into three different regions.
  • the transparent material constituting the binder is, for example, an organic transparent material such as dimethyl silicone.
  • the transparent substrate 10 is an example of the transparent base material of the present invention
  • the phosphor layer 20 is an example of the phosphor-containing layer of the present invention
  • the heat dissipation substrate 30 is an example of the substrate of the present invention.
  • the red phosphor layer 20R has a configuration in which red phosphor particles 21R, which are red phosphors, are mixed in a binder 22, and the density of the red phosphor particles 21R included in the red phosphor layer 20R is directed toward the uneven surface. Become higher.
  • the blue phosphor layer 20B has a configuration in which blue phosphor particles 21B, which are blue phosphors, are mixed in a binder 22, and the green phosphor layer 20G has green phosphor particles 21G, which are green phosphors. Is mixed with the binder 22.
  • the density of the blue phosphor particles 21B and the density of the green phosphor particles 21G increase toward the uneven surface.
  • the wavelength cut filter film 40 that reflects light of a predetermined wavelength is formed on the surface of the transparent substrate 10 of the phosphor optical element 1 on the opposite side of the concavo-convex portion 15.
  • the wavelength cut filter film 40 is composed of a dielectric multilayer film in which dielectric films such as ZrO, TiO 2 , and CaF are laminated in multiple layers.
  • the external shape of the phosphor optical element 1 is a circular shape as shown in FIG. 1A, and a shaft hole 50 is formed at the center for use in rotation.
  • the phosphor constituting the blue phosphor layer 20B is, for example, a BaMgAl 10 O 17 : Eu phosphor, and converts excitation light having a wavelength of 405 nm to fluorescence having a peak wavelength of 440 to 500 nm, for example.
  • the phosphor constituting the green phosphor layer 20G is, for example, Y 3 (Al, Ga) 5 O 12 : Ce phosphor, ⁇ -SiAlON: Eu phosphor, (Sr, Ba) 2 SiO 4 : Eu phosphor, Alternatively, it is a BaMgAl 10 O 17 : Eu, Mn phosphor, which converts excitation light having a wavelength of 405 nm into fluorescence having a peak wavelength of 500 nm to 600, for example.
  • the phosphor of the red phosphor layer 20R is, for example, a CaAlSiN 3 : Eu phosphor, a (Sr, Ca) AlSiN 3 : Eu phosphor, or a (Sr, Ba) 2 SiO 4 : Eu phosphor, and has a wavelength of 405 nm.
  • the excitation light is converted into fluorescence having a peak wavelength of 600 nm to 660 nm, for example.
  • the colon (:) means so-called “activated”.
  • Y 3 (Al, Ga) 5 O 12 : Ce is activated by Ce. Meaning.
  • Table 1 below shows the types of phosphors used in the present embodiment.
  • composition and material of the phosphor are not limited to those in Table 1 above, and other materials and compositions can be used.
  • a resist pattern shape adapted to the concavo-convex portion 15 is formed on a transparent substrate 10 made of, for example, circular glass having a thickness of 0.8 mm by using semiconductor lithography (not shown).
  • a transparent substrate 10 made of, for example, circular glass having a thickness of 0.8 mm by using semiconductor lithography (not shown).
  • the shaft hole 50 is formed by machining.
  • the red phosphor layer 20R, the green phosphor layer 20G, and the blue phosphor layer 20B, which are three kinds of phosphor layers, are formed on the transparent substrate 10, A phosphor-containing resin solution (for blue, green, and red) containing each of the three types of phosphors corresponding to blue, green, and red is prepared.
  • a phosphor-containing resin solution 23G in which, for example, a ⁇ -SiAlON: Eu phosphor is mixed with a liquid dimethylsilicone resin solution is applied to the surface of the uneven portion 15 in a predetermined region of the transparent substrate 10. Dripping. Subsequently, for red, for example, a phosphor-containing resin solution 23R mixed with CaAlSiN 3 : Eu is dropped onto the surface of the uneven portion 15 in a predetermined region. Subsequently, the same operation is performed for blue.
  • the concavo-convex portion 15 of the transparent substrate 10 is left by leaving the transparent substrate 10 to which the phosphor-containing resin solutions 23B, 23G, and 23R are dropped in a vacuum for about 1 hour. And the phosphor-containing resin solutions 23B, 23G, and 23R are removed, and the phosphor particles contained in the phosphor-containing resin solutions 23B, 23G, and 23R are precipitated on the uneven portion 15 side. At this time, it is possible to form a configuration in which the concentration of the red phosphor particles 21R shown in FIG. As a result, incident light can be easily absorbed by the phosphor layer 20 near the uneven interface.
  • the heat-radiating substrate 30, which is an aluminum substrate having a thickness of 0.5 mm, corresponding to the outer shape of the transparent substrate 10 and the shaft hole 50 is replaced with the phosphor-containing resin of the transparent substrate 10.
  • the concentration of the phosphor particles is low on the side of the heat dissipation substrate 30 of the phosphor-containing resin solutions 23B, 23G, and 23R, it can be easily adhered.
  • the phosphor layer 20 having a predetermined thickness is formed by leaving it in a high-temperature furnace at 160 ° C., for example.
  • a wavelength cut filter film 40 which is a dielectric multilayer film, is formed on the surface of the transparent substrate 10 opposite to the phosphor layer 20 in a vacuum deposition apparatus.
  • the phosphor optical element 1 according to the present embodiment can be easily manufactured by the above manufacturing method.
  • FIG. 4A is a diagram for explaining the function of the phosphor optical element of the comparative example. Specifically, this phosphor optical element has an uneven surface formed at the interface between the transparent substrate 10 and the phosphor layer 20. It has a configuration that is not.
  • FIG. 4B is a diagram for explaining the function of the phosphor optical element 1 according to the present embodiment. Specifically, the phosphor optical element 1 according to the present embodiment includes a transparent substrate 10 and a phosphor. An uneven surface is formed at the interface with the layer 20.
  • incident light 60 that is excitation light enters the phosphor layer 20 from the transparent substrate 10 side toward the phosphor layer 20.
  • part of the light incident on the phosphor layer 20 is absorbed by the phosphor in the light conversion region 70 of the phosphor layer 20, and part of the light is not absorbed by the phosphor, but the phosphor and binder in the phosphor layer 20.
  • refractive index from for example, silicone resin
  • a part of the incident light 60 absorbed by the phosphor in the light conversion region 70 of the phosphor layer 20 is converted into fluorescence 80 by the phosphor, and the rest is converted into fluorescence without being converted into fluorescence.
  • the fluorescent light 80 converted by the fluorescent material is multiple-reflected by the difference in refractive index between the fluorescent material and the silicone resin, or reflected by the heat dissipation substrate 30, and is extracted from the incident side of the incident light 60 with a Lambertian divergence angle distribution. It is.
  • the effective light emission area S which is the effective light emission area of the fluorescence 80
  • the irradiation area of the incident light 60 is fixed and the incident light quantity is increased.
  • the ratio of the amount of excitation light to the amount of rare earth ions activated by the phosphor particles (red phosphor particles 21R, green phosphor particles 21G, and blue phosphor particles 21B) in the body layer 20 increases rapidly.
  • the excited electrons in the rare earth ions activated by the phosphor particles (red phosphor particles 21R, green phosphor particles 21G, and blue phosphor particles 21B) are depleted, and the ratio of incident light 60 absorbed by the phosphors is reduced. It decreases and the ratio of the reflected light 61 increases. As a result, the conversion efficiency of excitation light into fluorescence in the phosphor optical element decreases.
  • the effective surface area S ′ of the phosphor layer 20 can be increased without increasing the effective light emitting area S.
  • the inclined surface 15b on the surface of the phosphor layer 20 when a part of the reflected light 61 is reflected, it does not go directly to the incident side of the incident light 60, but changes its angle, and the fluorescence is again emitted. It can enter the body layer 20.
  • a region having a high density of phosphor particles (red phosphor particles 21R, green phosphor particles 21G, and blue phosphor particles 21B) is formed in the vicinity of the concavo-convex interface of the phosphor layer 20, so that it is efficiently performed. Incident light can be converted to fluorescence.
  • the phosphor optical element 1 according to the present embodiment is compared with the comparative example.
  • the effective surface area S ′ can be increased by the uneven surface formed on the surface of the phosphor layer 20 on the transparent substrate 10 side. Furthermore, due to the uneven surface formed on the phosphor layer 20, a part of the reflected light can be further incident on the phosphor layer 20 and converted into fluorescence.
  • the phosphor optical element 1 according to the present embodiment can efficiently convert incident excitation light into fluorescence as compared with the comparative example.
  • the effective light emission area S is the light emission area when the phosphor layer 20 is viewed from the stacking direction
  • the effective surface area S ′ is the surface area of the region emitting light in the phosphor layer 20.
  • ⁇ (0) is the absorption coefficient of the phosphor when the photoexcitation density is very low
  • is the light saturation coefficient
  • S ′ is the effective surface area of the phosphor layer 20
  • d is the incident light. The invasion length.
  • two effects obtained by forming irregularities on the surface of the phosphor layer 20, that is, an effect of increasing the effective surface area S and an effect of re-incident reflection light 61 to the phosphor layer 20 are represented as follows.
  • the effect of increasing the effective surface area S ′ can be calculated by increasing S ′ in Equation 2.
  • the absorption coefficient ⁇ ′ (x) in consideration of the effect of re-incidence of the reflected light 61 on the phosphor layer 20 is It becomes.
  • the results of numerically determining these effects are shown in FIGS. 5A and 5B.
  • FIG. 5A is a table showing parameters used in the simulation
  • FIG. 5B is a graph in which the dependence of the conversion efficiency on the excitation light density is calculated for each simulation condition.
  • the excitation light density is the incident light amount P / the effective light emission area S.
  • the comparative example shows the result calculated by Equation 1 and Equation 2
  • Study 1 shows the result of doubling the effective surface area
  • Study 2 shows the re-incidence with respect to the study 1 calculation result.
  • the result of calculating the effect up to the second order without considering the increase in light density is shown.
  • the present embodiment shows the calculation result when the increase in light density at re-incidence is taken into consideration with respect to the calculation result of Study 2.
  • the phosphor optical element 1 according to the present embodiment has a slightly lower conversion efficiency due to the increase of the light density at the re-incidence as compared with the study 2.
  • the surface of the phosphor layer 20 on the transparent substrate 10 side is flat due to the above two effects, that is, an increase in the effective surface area of the phosphor layer 20 and re-incidence of the reflected light 61 to the phosphor layer 20. It can be seen that the conversion efficiency is sufficiently good as compared with the comparative example.
  • the phosphor optical element 1 is a phosphor particle that absorbs light having the wavelength of the incident light 60 that is excitation light emitted from the excitation light source (red phosphor particles 21R, green fluorescence).
  • the phosphor layer 20 containing the body particles 21G and the blue phosphor particles 21B) and the heat dissipation substrate 30 holding the phosphor layer 20 are provided, and the excitation light incident surface of the phosphor layer 20 has an uneven shape. .
  • the effective surface area S ′ of the phosphor layer 20 can be increased and the light saturation of the phosphor can be suppressed.
  • the excitation light can be diffusely reflected in the vicinity of the uneven surface of the phosphor layer 20, and as a result, the excitation light can be efficiently converted into fluorescence. That is, the luminance can be improved efficiently by a simple method.
  • the uneven shape formed on the surface of the phosphor layer 20 on the transparent substrate 10 side is a shape in which the concave portion and the convex portion change periodically, and the pitch (period) of the concave and convex shape is the shape of the phosphor particles. Greater than particle size.
  • the effective surface area S ′ of the phosphor layer 20 is easily increased, the light saturation of the phosphor layer 20 is suppressed, and at the same time, the excitation light is diffusely reflected near the concavo-convex surface of the phosphor layer 20, thereby exciting the phosphor layer 20. Light can be efficiently converted into fluorescence.
  • a transparent substrate 10 transparent to the wavelength of the excitation light is provided on the side of the phosphor layer 20 where the excitation light is incident. Thereby, the surface by the side of the transparent substrate 10 of the fluorescent substance layer 20 can be changed easily.
  • the surface of the transparent substrate 10 on the phosphor layer 20 side is formed in an uneven shape corresponding to the uneven shape formed on the surface of the phosphor layer 20 on the transparent substrate 10 side. That is, the concavo-convex shape formed on the surface of the phosphor layer 20 on the transparent substrate 10 side is fitted with the concavo-convex portion 15 of the transparent substrate 10. Thereby, an uneven shape can be easily formed on the surface of the phosphor layer 20 on the transparent substrate 10 side.
  • the density of the phosphor particles (red phosphor particles 21R, green phosphor particles 21G, blue phosphor particles 21B) included in the phosphor layer 20 increases toward the uneven shape. Thereby, the incident excitation light can be easily absorbed by the phosphor layer 20 in the vicinity of the uneven interface.
  • the heat dissipation board 30 is made of metal. Thereby, the fluorescence generated in the phosphor layer 20 can be efficiently reflected to the incident side, and the heat generated in the phosphor layer 20 can be efficiently exhausted.
  • the manufacturing method of the phosphor optical element 1 includes phosphor particles (red phosphor particles 21R, green phosphor particles 21G, blue phosphor particles 21B) that absorb light having the wavelength of the excitation light emitted from the excitation light source, and A step of applying the phosphor-containing resin solutions 23B, 23G, and 23R mixed with the binder 22 that is cured by heat or light to the upper surface of the transparent substrate 10 that has an uneven upper surface; and the phosphor-containing resin solution 23B , 23G and 23R are cured by heat to form a phosphor layer 20 having an uneven shape on the lower surface.
  • the phosphor-containing resin solutions 23B, 23G, and 23R may be referred to as the phosphor-containing resin solution 23 without being particularly distinguished.
  • the density of the phosphor particles (the red phosphor particles 21R, the green phosphor particles 21G, and the blue phosphor particles 21B) included in the phosphor layer 20 can be increased toward the concavo-convex shape.
  • the excited light can be easily absorbed by the phosphor layer 20 in the vicinity of the uneven interface.
  • the difference between the refractive index of the transparent substrate 10 and the refractive index of the silicone resin contained in the phosphor layer 20 should be small.
  • the transparent substrate 10 quartz glass having a refractive index of 1.46, Dimethyl silicone having a refractive index of 1.46 can be used as the silicone resin.
  • the resin (binder) included in the phosphor layer 20 is a silicone resin such as dimethyl silicone.
  • the present invention is not limited to this, and other transparent materials such as an epoxy resin and an acrylic resin may be used.
  • other transparent materials such as an epoxy resin and an acrylic resin may be used.
  • the refractive index difference with the transparent substrate 10 can be adjusted more freely by using the said material.
  • an inorganic transparent material such as low-melting glass can also be used. In this case, a glass material having a glass transition temperature lower than that of the glass material used for the transparent substrate 10 is used.
  • attachment is used, for example. With this configuration, it is possible to prevent the uneven shape formed on the transparent substrate 10 from being deformed and to prevent the binder from being deteriorated by light.
  • the light source device 100 includes, for example, a semiconductor light emitting element 120 that is a plurality of semiconductor lasers having an emission wavelength of 405 nm, a plurality of collimating lenses 130, a dichroic mirror 131, a condenser lens 132, and the phosphor optical element 1.
  • the phosphor optical element 1 is fixed to the rotating shaft 111 of the motor 110 and rotates at a predetermined rotational speed.
  • the phosphor of the blue phosphor layer 20B of the phosphor optical element 1 is, for example, BaMgAl 10 O 17 : Eu phosphor
  • the phosphor of the green phosphor layer 20G is, for example, ⁇ -SiAlON: Eu phosphor, and red.
  • a CaAlSiN 3 : Eu phosphor is used as the phosphor of the phosphor layer 20R will be described.
  • the emitted light 190 having a wavelength of 405 nm emitted from the semiconductor light emitting element 120 is converted into parallel light by the collimator lens 130 and combined to become the emitted light 190, passes through the dichroic mirror 131, and is fluorescent by the condenser lens 132.
  • the light is condensed at a predetermined position of the body optical element 1.
  • the light that is directed so as to be condensed at a predetermined position of the phosphor optical element 1 passes through the wavelength cut filter film 40 and is efficiently converted into fluorescence as shown in FIG. 4B.
  • the converted fluorescence is directed toward the wavelength cut filter film 40, and a part of light having an unnecessary wavelength is reflected, and is emitted from the phosphor optical element 1 as fluorescence having high color purity, and is condensed again.
  • the lens 132 After being converted into parallel light by the lens 132, it is then separated from the outgoing light 190 by the dichroic mirror 131 and emitted as wavelength-converted light 192.
  • FIGS. 7A and 7B The spectrum and chromaticity coordinates of the emitted light emitted from the light source device 100 by the above operation are shown in FIGS. 7A and 7B.
  • the spectrum shown in FIG. 7A shows that the phosphor of the blue phosphor layer 20B is BaMgAl 10 O 17 : Eu phosphor, the phosphor of the green phosphor layer 20G is ⁇ -SiAlON: Eu phosphor, and the red phosphor layer 20R.
  • CaAlSiN phosphor 3 spectrum using the Eu.
  • a dielectric multilayer film that reflects light having a wavelength of 500 nm or more is formed on the surface of the blue phosphor layer 20B, and light having a wavelength of 590 nm or more is reflected on the surface of the green phosphor layer 20G.
  • a dielectric multilayer film that reflects light with a wavelength of 590 nm or less is formed on the surface of the red phosphor layer 20R.
  • the wavelength converted light (blue light) 191B obtained by improving the color purity of the fluorescence 80B emitted from the blue phosphor layer 20B by the wavelength cut filter film 40, the green fluorescence Wavelength converted light (green light) 191G whose color purity is improved by the wavelength cut filter film 40 from the fluorescent light 80G emitted from the body layer 20G, and the wavelength cut filter film 40 from the fluorescent light 80R emitted from the red phosphor layer 20R.
  • the wavelength-converted light (red light) 191R whose color purity has been improved in the above becomes light with good color reproducibility that sufficiently covers the sRGB standard as shown by each chromaticity coordinate in the chromaticity diagram of FIG. 7B. That is, the light source device 100 using the phosphor optical element 1 can emit monochromatic light that sufficiently covers the sRGB standard.
  • the light source device 100 includes the phosphor optical element 1, the semiconductor light emitting element 120, the dichroic mirror 131, and the condenser lens 132.
  • the light source device 100 can be realized with a simple configuration. That is, the phosphor of the phosphor optical element 1 can efficiently convert light from the semiconductor light emitting element 120 into fluorescence, and can emit blue light, green light, and red light with high color purity, and thus has high luminance.
  • the light source device 100 can be realized.
  • the light source device 100 according to the present embodiment can realize a configuration suitable for the image display device with a simple configuration.
  • the semiconductor light emitting device 120 is an example of an excitation light source according to the present invention.
  • the phosphor optical element 1 can be easily rotated, and light can be prevented from continuously entering a specific phosphor region. can do.
  • the light source device is suitable for an image display device using a polarization optical system such as a liquid crystal panel as an image display element.
  • FIG. 8A is a front view showing the structure of the phosphor optical element according to the present embodiment
  • FIG. 8B is a cross-sectional view taken along the line Ia-Ia in FIG. 8A.
  • 9A and 9B are diagrams for explaining the operation of the light source device according to the present embodiment.
  • FIG. 9C is a diagram for explaining functions of the light source device according to the present embodiment.
  • FIG. 10 is a diagram for explaining the configuration and operation of the light source device according to the present embodiment.
  • the phosphor optical element according to the present embodiment has substantially the same configuration as that of the phosphor optical element 1 according to the first embodiment, but has an uneven shape at the interface between the transparent substrate and the phosphor layer. However, the difference is that the concave and convex portions are formed in concentric circles that repeat at a constant period. The following description will focus on differences from the first embodiment.
  • the phosphor optical element 201 is formed on a heat dissipation substrate 230 such as an aluminum alloy or a magnesium alloy having a thickness of 0.3 mm to 0.5 mm, for example. It is formed by sequentially laminating a 4 mm blue phosphor layer 220B, a green phosphor layer 220G, a red phosphor layer 220R, and a transparent substrate 210 having a thickness of 0.1 mm to 1 mm, for example, glass such as B270 or BK7. ing.
  • a heat dissipation substrate 230 such as an aluminum alloy or a magnesium alloy having a thickness of 0.3 mm to 0.5 mm, for example. It is formed by sequentially laminating a 4 mm blue phosphor layer 220B, a green phosphor layer 220G, a red phosphor layer 220R, and a transparent substrate 210 having a thickness of 0.1 mm to 1 mm, for example, glass such as B270 or BK7. ing
  • the blue phosphor layer 220B for example, a BaMgAl 10 O 17 : Eu phosphor is used for blue fluorescence
  • a ⁇ -SiAlON: Eu phosphor is used for green fluorescence
  • a red phosphor layer for example, a CaAlSiN 3 : Eu phosphor for red fluorescence is contained in a binder such as silicone.
  • the blue phosphor layer 220 ⁇ / b> B, the green phosphor layer 220 ⁇ / b> G, and the red phosphor layer 220 ⁇ / b> R may be described as the phosphor layer 220 without being particularly distinguished.
  • an uneven portion 215 having an uneven shape is formed on the surface on the transparent substrate 210 side of the interface between the transparent substrate 210 and the phosphor layer 220.
  • grooved part 215 formed in the transparent substrate 210 is comprised by the some groove
  • a wavelength cut filter film 240 that is a dielectric multilayer film in which dielectric films such as ZrO, TiO 2 , and CaF are laminated in multiple layers is provided on the surface of the phosphor optical element 201 on the opposite side of the uneven portion 215 of the transparent substrate 210. Is formed.
  • the outer shape of the phosphor optical element 201 is a circular shape as shown in FIG. 8A, and a shaft hole 250 is formed at the center for rotation.
  • the uneven portion 215 of the phosphor optical element 201 is set such that a groove is formed in a direction perpendicular to the electric field component in the polarization direction of the emitted light 190.
  • FIG. 9A shows an operation until the emitted light emitted from the semiconductor light emitting element 120 reaches the phosphor optical element 201 in the light source device using the phosphor optical element 201 according to the present embodiment.
  • FIG. 9B shows the operation until the fluorescence emitted from the phosphor optical element 201 is reflected by the dichroic mirror 131 and emitted outside the light source device.
  • the emitted light 290a emitted from the semiconductor light emitting device 120 which is a semiconductor laser that emits light having a wavelength of 405 nm, is polarized light having an electric field component in the horizontal direction in the figure.
  • the outgoing light 290a becomes parallel outgoing light 290b with the collimating lens 130 while the polarization direction is maintained, and passes through the dichroic mirror 131.
  • the outgoing light 290 c that has passed through the dichroic mirror 131 is condensed on the phosphor layer 220 of the phosphor optical element 201 by the condenser lens 132.
  • the emitted light 290c collected on the phosphor layer 220 is converted to fluorescence in the phosphor of the phosphor layer 220, but the surface is reflected a plurality of times by the unevenness formed on the phosphor optical element 201, and phosphor optics.
  • the light is emitted from the element 201.
  • the uneven portion 215 has a periodic structure having a refractive index interface in a direction perpendicular to the polarization direction of the incident light.
  • the fluorescence emitted from the element 201 becomes fluorescence 292a having a large polarization component whose polarization direction is rotated by 90 ° from the polarization of the incident light, and is emitted from the phosphor optical element 201 toward the condenser lens 132.
  • the fluorescent light 292a becomes parallel light 292b again by the condenser lens 132, is reflected by the dichroic mirror 131 in the vertical direction, and is emitted from the light source device.
  • Light emitted from such a light source device emits a part of incident light and blue, green, and red at regular intervals. It is easy to project an image using these emitted highly polarized fluorescence.
  • the light source device can be configured with a simple configuration, and the decrease in the efficiency of the phosphor optical element can be suppressed and the luminance can be improved. Furthermore, since the light emitted from the phosphor optical element is polarized light, when a polarizing optical system such as a liquid crystal panel is used for the display element, fluorescence can be used efficiently.
  • the light source device 300 of FIG. 10 has, for example, an LCOS (Liquid Crystal) that uses a monitor element 325, a polarizing beam splitter 340, a monitor lens 343, a diffraction grating 346, a control IC 350, and polarization in addition to the configuration shown in FIGS. 9A and 9B.
  • a reflective display element 380 which is an On Si element is provided.
  • the light source device 300 shown in FIG. 9 performs the operation described with reference to FIGS. 9A and 9B and emits blue, green, and red wavelength-converted light 292 from the dichroic mirror 131.
  • the wavelength-converted light 292 is mostly transmitted by the polarization beam splitter 340 and irradiated on the reflective display element 380.
  • a small part of the wavelength converted light 294 that has not passed through the polarization beam splitter 340 is divided by the diffraction grating 346 for each wavelength, and is irradiated to the monitor element 325 having the divided light receiving elements.
  • each of the divided light receiving elements in the monitor element 325 can read the luminance change of the wavelength converted light 294 divided into blue, green and red, and feed back the result to the control IC 350.
  • the wavelength-converted light 292 emitted to the reflective display element 380 is reflected with the polarization direction changed by the liquid crystal formed for each matrix pixel.
  • the wavelength-converted light 292 reflected by the reflective display element 380 becomes image light 396 for each pixel by the polarization beam splitter 340, is emitted from the light source device 300, and is projected by a projection lens (not shown).
  • the phosphor optical element 201 can constitute the light source device 300 with a simple configuration as described above, and the conversion efficiency of the phosphor optical element 201 in the phosphor can be improved. The decrease can be suppressed and the luminance of the light source device 300 can be improved. Furthermore, the polarization property of the wavelength-converted light (emitted light) 292 from the phosphor optical element 201 can be increased, and by using such a phosphor optical element 201, a light source device that emits light with high polarization property 300 can be configured.
  • the uneven shape of the interface between the transparent substrate 210 and the phosphor layer 220 is formed in a concentric shape in which the concave portion and the convex portion are repeated at a constant period. That is, the concavo-convex portion 215 is formed concentrically with respect to the outer shape of the phosphor layer 220 viewed from the stacking direction.
  • the fluorescence emitted from the phosphor optical element 201 that is, the wavelength-converted light from the phosphor optical element 201 can have a certain polarization property.
  • a light source device 300 suitable for a polarization optical system image display device can be realized.
  • a semiconductor laser is used as the semiconductor light emitting device 120.
  • a super luminescent diode which is an edge emitting light emitting device in which the same waveguide as the semiconductor laser is formed may be used.
  • the emission wavelength of the semiconductor laser is 405 nm, for example, a semiconductor laser that emits light having a wavelength of 380 nm to 440 nm may be used.
  • the unevenness of the phosphor optical element 201 (the uneven shape of the interface between the transparent substrate 210 and the phosphor layer 220) is composed of a plurality of concentric grooves.
  • the groove formed in the normal direction from the center of the phosphor layer 220 may be composed of a plurality of grooves formed in a predetermined orientation. That is, it may be constituted by a plurality of grooves formed at predetermined angular intervals from the center of the phosphor layer 220.
  • the polarization direction of the fluorescence 292a changes by 90 degrees, the position of the phosphor optical element 201 and the configuration of the dichroic mirror 131 are changed to an optimum one according to the uneven shape.
  • the pitch (period) of the concave and convex portions 215 is sufficiently larger than the emission wavelength of fluorescence, for example, the pitch is 0.05 mm and the depth is 0.1 mm.
  • the pitch of the concavo-convex portions 215 is set to be about the same as or smaller than the emission wavelength of the fluorescence from the phosphor.
  • the width may be 0.06 ⁇ m, which is about half the pitch, and the depth may be 0.2 ⁇ m.
  • the polarization can be further increased.
  • the particle diameters of the phosphor particles contained in the blue phosphor layer 220B, the green phosphor layer 220G, and the red phosphor layer 220R must be set smaller than the groove width, and the uneven pitch is 0.1 ⁇ m.
  • the width of the groove (the concave portion of the concave and convex portion 215 formed on the transparent substrate 210) is 0.06 ⁇ m
  • the particle size of the phosphor particles is, for example, about 10 to 50 nm.
  • the width of the concavo-convex convex portion formed on the excitation light incident surface of the phosphor layer 220 that is, the width of the concave portion of the concavo-convex portion 215 formed on the transparent substrate 210 is larger than the particle size of the phosphor particles. And, it is smaller than the fluorescence emitted from the phosphor particles, that is, the wavelength of the wavelength converted light 292 (emitted light). Thereby, the polarization property of the wavelength conversion light 292 emitted from the phosphor optical element 201 can be further increased.
  • a BaMgAl 10 O 17 : Eu phosphor, a ⁇ -SiAlON: Eu phosphor, or a CaAlSiN 3 : Eu phosphor having the above size can be used as the phosphor.
  • a phosphor having a particle size of the same or less than the emission wavelength such as a CdSe / ZnS core-shell quantum dot phosphor, can be used.
  • quantum dot phosphors are used for the blue phosphor layer 220B, the green phosphor layer 220G, and the red phosphor layer 220R, and the particle diameter is changed in accordance with the emission wavelength.
  • the phosphor optical element 201 can be configured.
  • Quantum dot phosphors other than CdSe / ZnS core-shell type quantum dot phosphors can be used.
  • Quantum dot phosphor materials include, for example, II-V group compound semiconductors such as InN, InP, InAs, InSb, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb and BN, and II-VI group compound semiconductors. It can be selected from the group consisting of certain HgS, HgSe, HgTe, CdS, CdSe, CdTe, ZnS, ZnSe and ZnTe, and mixed crystal crystals thereof.
  • the phosphor is a non-doped quantum dot phosphor, but a doped quantum dot phosphor may be used.
  • a doped quantum dot phosphor may be used.
  • ZnS: Mn 2+ , CdS: Mn 2+, and YVO 4: Eu 3+ can be used as the doped quantum dot phosphor.
  • FIG. 11A is a front view showing the structure of the phosphor optical element 401 according to the present embodiment
  • FIG. 11B is a cross-sectional view taken along the line Ia-Ia in FIG. 11A.
  • FIG. 12A is a diagram for explaining the function of the dichroic mirror 131
  • FIG. 12B is a graph showing the transmission characteristics of the dichroic mirror 131
  • FIG. 13A is emitted from the light source device according to the present embodiment.
  • FIG. 13B is a graph showing a spectrum of outgoing light
  • FIG. 13B is a chromaticity diagram of outgoing light.
  • This embodiment is almost the same as the second embodiment, but the wavelength of light emitted from the semiconductor light emitting element is different.
  • the semiconductor light emitting element a so-called semiconductor laser element that emits visible blue light having a wavelength of emitted light of 435 nm to 480 nm is used.
  • the phosphor optical element 401 is divided into a reflection layer 425 that reflects the polarization direction of the emitted light and reflects it, and a phosphor layer 420 that converts the fluorescence having the polarization shown in the second embodiment. ing.
  • the transparent substrate 410, the uneven portion 415, the heat dissipation substrate 430, and the shaft hole 450 are the same as the transparent substrate 210, the uneven portion 215, the heat dissipation substrate 230, and the shaft hole 250, respectively, in the second embodiment.
  • the phosphor layer 420 includes a green phosphor layer 420G containing green phosphor particles and a red phosphor layer 420R containing red phosphor particles.
  • Y 3 (Al, Ga) 5 O 12 : Ce phosphor is used as the green phosphor
  • CaAlSiN 3 : Eu phosphor is used as the red phosphor.
  • the reflective layer 425 can be easily realized by replacing the phosphor particles of the phosphor layer 420 with a highly reflective material such as TiO 2 particles, for example.
  • the dichroic mirror 131 As shown in FIG. 12A, for example, only the outgoing light 290c in the horizontal direction (left and right direction on the paper surface) is transmitted to the wavelength of the outgoing light 290b emitted from the semiconductor light emitting element. It can be easily realized without changing the number of components by designing to reflect the fluorescent light on the long wavelength side and the light having the wavelength of the emitted light in the vertical direction (up and down direction on the paper surface).
  • FIG. 12B shows the transmission characteristics when the dielectric multilayer film of the dichroic mirror 131 is designed for a wavelength of 450 nm.
  • the light emitted from the light source device having such a configuration has high color purity and excellent color reproducibility, such as blue light 292B, green light 292G, and red light 292R. Become. Further, since the blue light 292B, the green light 292G, and the red light 292R have high polarization and are aligned in directions, they can be used in an image display device or the like using a display element of a polarization optical system.
  • the phosphor optical element 401 according to the present embodiment can be configured as a light source device with a simple configuration as described above, and the conversion efficiency of the phosphor of the phosphor optical element 401 is reduced. Can be suppressed, and the luminance of the light source device can be improved. Furthermore, since the light emitted from the phosphor optical element can be changed to light having high polarization, a light source device that emits light having high polarization can be configured.
  • the phosphor optical element and the light source device according to the present invention have been described based on the embodiments.
  • the present invention is not limited to the above-described embodiments, and for each embodiment.
  • the present invention also includes forms obtained by making various modifications conceived by those skilled in the art and forms realized by arbitrarily combining the components and functions in the respective embodiments without departing from the spirit of the present invention.
  • the phosphor optical element and the light source device according to the present invention can be used as a light source for a backlight such as a liquid crystal television and a liquid crystal monitor and a light source for a projection display such as a projector.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Projection Apparatus (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A fluorescent optical element (1) according to the present invention is provided with a fluorescent layer (20) including fluorescent particles for absorbing light having the wavelength of excitation light emitted by an excitation light source, and a heat-radiating substrate (30) for holding the fluorescent layer (20), and the face of the fluorescent layer (20) on which excitation light is incident has a concavo-convex shape.

Description

蛍光体光学素子、その製造方法及び光源装置Phosphor optical element, manufacturing method thereof, and light source device
 本発明は、プロジェクタや、リアプロジェクションテレビなどの薄型テレビに用いられる光源装置と、その光源装置に用いられる蛍光体光学素子とに関する。 The present invention relates to a light source device used in a thin television such as a projector or a rear projection television, and a phosphor optical element used in the light source device.
 近年、プロジェクタや薄型テレビなどの画像表示装置に用いられる光源装置に、発光ダイオード(LED:Light Emitting Diode)やレーザダイオード(LD:Laser Diode)などの半導体発光素子が用いられるようになってきた。半導体発光素子は、従来の冷陰極管ランプや超高圧水銀ランプと異なり、特定の波長を効率よく発光させることができる。しかしながら、上述の画像表示装置の光源装置は、発光スペクトルとして波長430nm~490nmの青色光と、波長490nm~570nmの緑色光と波長570nm~650nmの赤色光の、いわゆるB(青)、G(緑)、R(赤)の3原色の光を含む必要がある。そこで、例えば特許文献1及び特許文献2には、半導体発光素子を用いた光源装置として、波長380nm~470nmの青紫色から青色の光を発光する半導体発光素子とこれらの半導体発光素子の光を吸収し、波長430nm~650nmの蛍光を出射する蛍光体を組み合わせたものが提案されている。 In recent years, semiconductor light emitting elements such as light emitting diodes (LEDs) and laser diodes (LDs) have come to be used in light source devices used in image display devices such as projectors and flat-screen televisions. Unlike conventional cold cathode tube lamps or ultrahigh pressure mercury lamps, the semiconductor light emitting device can efficiently emit light at a specific wavelength. However, the light source device of the above-described image display device has so-called B (blue) and G (green) of blue light having a wavelength of 430 nm to 490 nm, green light having a wavelength of 490 nm to 570 nm, and red light having a wavelength of 570 nm to 650 nm. ), R (red) three primary colors need to be included. Thus, for example, in Patent Document 1 and Patent Document 2, as light source devices using semiconductor light-emitting elements, semiconductor light-emitting elements that emit blue-violet to blue light having a wavelength of 380 nm to 470 nm and the light of these semiconductor light-emitting elements are absorbed. A combination of phosphors emitting fluorescence having a wavelength of 430 nm to 650 nm has been proposed.
 以下、図14および図15を用いて、従来の光源装置の構成について説明する。 Hereinafter, the configuration of a conventional light source device will be described with reference to FIGS. 14 and 15.
 図14は、従来の光源装置1063の平面模式図である。図15は、従来の光源装置1063にかかる蛍光体ホイール1071についての平面図である。光源装置1063は、導光装置1075の中心軸と光軸が平行となるように配置された複数の青色レーザ発光器1072と、青色レーザ発光器1072の前方に配置された複数のコリメートレンズ1149と、コリメートレンズ1149を透過した光線束の光軸方向を90度変換する反射ミラー群1150とが備えられている。 FIG. 14 is a schematic plan view of a conventional light source device 1063. FIG. 15 is a plan view of a phosphor wheel 1071 according to a conventional light source device 1063. The light source device 1063 includes a plurality of blue laser light emitters 1072 arranged so that the central axis and the optical axis of the light guide device 1075 are parallel to each other, and a plurality of collimator lenses 1149 arranged in front of the blue laser light emitter 1072. And a reflection mirror group 1150 that converts the optical axis direction of the light beam transmitted through the collimator lens 1149 by 90 degrees.
 また、光源装置1063は、反射ミラー群1150で反射した励起光の光軸と回転軸が平行となるように励起光の光軸上に配置された蛍光体ホイール1071と、蛍光体ホイール1071を回転駆動するホイールモータ1073とを備えている。さらに、光源装置1063には、赤色波長領域光を射出する発光素子1074が備えられる。 Further, the light source device 1063 rotates the phosphor wheel 1071 disposed on the optical axis of the excitation light and the phosphor wheel 1071 so that the optical axis of the excitation light reflected by the reflecting mirror group 1150 and the rotation axis are parallel to each other. And a wheel motor 1073 for driving. Further, the light source device 1063 includes a light emitting element 1074 that emits light in the red wavelength region.
 蛍光体ホイール1071は、円形の発光板であって、ホイールモータ1073によって回転を制御される。この蛍光体ホイール1071は、青色レーザ発光器1072からの射出光を拡散する拡散領域1001としてのセグメントと蛍光発光領域1002としてのセグメントとが周方向に並設されてなる。この拡散領域1001は、ガラス等の部材の表面に微細な凹凸が施されることで構成される。 The phosphor wheel 1071 is a circular light emitting plate, and its rotation is controlled by a wheel motor 1073. The phosphor wheel 1071 includes a segment as a diffusion region 1001 for diffusing light emitted from the blue laser light emitter 1072 and a segment as a fluorescent light emission region 1002 in parallel in the circumferential direction. The diffusion region 1001 is configured by providing fine irregularities on the surface of a member such as glass.
 蛍光発光領域1002は、金属材料等の表面に緑色蛍光体層1004が敷設されることでなる。この緑色蛍光体層1004は、緑色蛍光体とバインダとにより形成されている。 The fluorescent light emitting region 1002 is formed by laying a green phosphor layer 1004 on the surface of a metal material or the like. The green phosphor layer 1004 is formed of a green phosphor and a binder.
 このような従来の光源装置1063において、青色レーザ発光器1072から射出された光は、反射ミラー群1150により反射されたあと、レンズ1153a及びミラー1151aを通り、集光レンズ群1155により蛍光体ホイール1071の所定の一面に集光される。 In such a conventional light source device 1063, the light emitted from the blue laser light emitter 1072 is reflected by the reflection mirror group 1150, passes through the lens 1153 a and the mirror 1151 a, and is collected by the condenser lens group 1155 to the phosphor wheel 1071. The light is condensed on a predetermined surface.
 蛍光体ホイール1071の所定の一面に集光された青色光は、所定の時間帯においては、拡散領域1001に集光されて拡散された光となる。拡散領域1001で拡散された青色光は、ミラー1151b、レンズ1153b、ミラー1151dを伝搬し、レンズ1154にて導光装置1075に入射される。一方、上記拡散領域1001において拡散されない時間帯においては、青色光は蛍光発光領域1002に集光されて、蛍光発光領域1002の緑色蛍光体において、緑色光の反射光となり、集光レンズ群1155、ミラー1151a、レンズ1153c、ミラー1151c、レンズ1153d及びミラー1151dを伝搬し、レンズ1154により導光装置1075に入射される。つまり、所定の時間帯以外において、蛍光体ホイール1071の所定の一面に集光された青色光は、蛍光発光領域1002で反射されて緑色光の反射光となり、導光装置1075に入射される。さらに発光素子1074から射出された赤色光はミラー1151aを通り、緑色光と同じ光軸を通り導光装置1075に入射される。 The blue light collected on a predetermined surface of the phosphor wheel 1071 is condensed and diffused on the diffusion region 1001 in a predetermined time zone. The blue light diffused in the diffusion region 1001 propagates through the mirror 1151b, the lens 1153b, and the mirror 1151d, and enters the light guide device 1075 through the lens 1154. On the other hand, in the time zone in which the diffusion region 1001 is not diffused, the blue light is collected in the fluorescent light emitting region 1002 and becomes reflected light of the green light in the green phosphor in the fluorescent light emitting region 1002. The light propagates through the mirror 1151a, the lens 1153c, the mirror 1151c, the lens 1153d, and the mirror 1151d, and enters the light guide device 1075 through the lens 1154. In other words, the blue light collected on a predetermined surface of the phosphor wheel 1071 outside the predetermined time period is reflected by the fluorescent light emitting region 1002 to be reflected into green light and enters the light guide device 1075. Further, the red light emitted from the light emitting element 1074 passes through the mirror 1151a, enters the light guide device 1075 through the same optical axis as the green light.
 このような構成で、青色光、緑色光及び赤色光が導光装置1075に入射される。導光装置1075を通過し光分布が整形された青色光、緑色光及び赤色光は、DMD(Digital Micromirror Device:デジタル・マイクロミラー・デバイス)である画像表示素子(図示なし)に透過もしくは反射することで所定の画像となり、投影される。 In such a configuration, blue light, green light, and red light are incident on the light guide device 1075. Blue light, green light, and red light whose light distribution has been shaped after passing through the light guide device 1075 is transmitted or reflected to an image display element (not shown) that is a DMD (Digital Micromirror Device). Thus, a predetermined image is obtained and projected.
 上記、従来技術において、緑色蛍光体層に含まれる蛍光体材料として、Y(Al,Ga)12:Ce蛍光体が用いられている。また、特許文献3には、波長380nm~470nmの光で励起できる他の緑色蛍光体材料として、β―SiAlON:Eu蛍光体が、特許文献4には、赤色光を発光できる赤色蛍光体として、CaAlSiN:Eu蛍光体が提案されている。 In the above prior art, Y 3 (Al, Ga) 5 O 12 : Ce phosphor is used as the phosphor material contained in the green phosphor layer. Patent Document 3 discloses β-SiAlON: Eu phosphor as another green phosphor material that can be excited by light having a wavelength of 380 nm to 470 nm, and Patent Document 4 discloses a red phosphor that can emit red light. CaAlSiN 3 : Eu phosphors have been proposed.
特開2004-341105号公報JP 2004-341105 A 特開2011-53320号公報JP 2011-53320 A 特開2005-255895号公報JP 2005-255895 A 特開2005-235934号公報JP 2005-235934 A
 しかしながら従来の光源装置においては、以下のような課題が挙げられる。 However, the conventional light source device has the following problems.
 まず、プロジェクタなどの画像表示装置においては画面の輝度としては一般的に3000ルーメン程度が必要とされる。この場合、従来の光源装置においては、励起光源から放射された数10ワットのエネルギーを有するレーザ光を蛍光体ホイールの緑色蛍光体に集光させ、緑色光として利用される。このため、集光領域の蛍光体に照射される光密度が非常に大きくなり、蛍光体における変換効率が飽和する、いわゆる光飽和が発生する。具体的に、蛍光体においては、励起光により、賦活された希土類イオンにおける電子が励起され、基底準位に緩和されることにより蛍光が発せられるが、従来の光源装置の蛍光体においては、光密度が非常に大きいため、励起される電子が枯渇する。このような励起準位が枯渇した蛍光体においては、励起光が蛍光に変換されずにそのまま蛍光体粒子の表面で反射されるため蛍光体における光の変換効率が低下する。このような光飽和を抑制するため、集光領域の面積を拡大し、光密度を低減させることが考えられるが、この場合、蛍光の発光面積が拡大し、発光面積と放射角の積である、所謂、エテンデュが大きくなり、その結果、後段の光学系でのロスが大きくなり画像表示装置の輝度が低下する。また、従来の光源装置は、偏光であるレーザ光を、無偏光である蛍光に変換する構成のため、画像表示素子として入射光の偏光が不要なDMDを画像表示素子として用いる必要があり、液晶パネル等を用いて画像表示装置を簡単な構成にできないという課題もある。 First, an image display device such as a projector generally requires about 3000 lumens as the screen brightness. In this case, in the conventional light source device, the laser light having an energy of several tens of watts emitted from the excitation light source is condensed on the green phosphor of the phosphor wheel and used as green light. For this reason, the light density irradiated to the phosphor in the condensing region becomes very large, and so-called light saturation occurs in which the conversion efficiency in the phosphor is saturated. Specifically, in the phosphor, electrons in the activated rare earth ions are excited by the excitation light, and fluorescence is emitted by being relaxed to the ground level. However, in the phosphor of the conventional light source device, The density is so great that the excited electrons are depleted. In such a phosphor depleted in excitation levels, the excitation light is reflected as it is on the surface of the phosphor particles without being converted into fluorescence, so that the light conversion efficiency in the phosphor is lowered. In order to suppress such light saturation, it is conceivable to increase the area of the condensing region and reduce the light density. In this case, the emission area of the fluorescence is increased and is the product of the emission area and the emission angle. In other words, the so-called etendue increases, and as a result, the loss in the subsequent optical system increases and the brightness of the image display device decreases. Further, since the conventional light source device is configured to convert polarized laser light into non-polarized fluorescence, it is necessary to use a DMD that does not require polarization of incident light as an image display element. There is also a problem that the image display device cannot be simply configured using a panel or the like.
 本発明は、上記の課題を解決するためになされたものであり、画像表示装置の輝度を、簡便な方法で効率よく向上させることができる蛍光体光学素子及び光源装置を提供するものである。 The present invention has been made to solve the above-described problems, and provides a phosphor optical element and a light source device that can efficiently improve the luminance of an image display device by a simple method.
 上記の課題に対して、本発明に係る蛍光体光学素子は、励起光源から放射される励起光の波長の光を吸収する蛍光体粒子が含有された蛍光体含有層と、前記蛍光体含有層を保持する基板とを備え、前記蛍光体含有層の前記励起光の入射面は、凹凸形状である。 In response to the above problems, the phosphor optical element according to the present invention includes a phosphor-containing layer containing phosphor particles that absorb light having a wavelength of excitation light emitted from an excitation light source, and the phosphor-containing layer. The excitation light incident surface of the phosphor-containing layer has a concavo-convex shape.
 この構成により、エテンデュを大きくすることなしに、蛍光体含有層の実効的な表面積を増加させ、蛍光体の光飽和を抑制することができる。また、励起光を蛍光体含有層の表面付近で乱反射させることができ、その結果、励起光を蛍光へ効率良く変換することができる。つまり、簡便な方法で、効率よく輝度を向上させることができる。 With this configuration, the effective surface area of the phosphor-containing layer can be increased without increasing the etendue, and the light saturation of the phosphor can be suppressed. Further, the excitation light can be diffusely reflected near the surface of the phosphor-containing layer, and as a result, the excitation light can be efficiently converted into fluorescence. That is, the luminance can be improved efficiently by a simple method.
 また、前記凹凸形状は、凹部と凸部とが周期的に変化する形状であり、当該凹凸形状のピッチは、前記蛍光体粒子の粒径より大きくてもよい。 Further, the concavo-convex shape is a shape in which the concave portion and the convex portion change periodically, and the pitch of the concavo-convex shape may be larger than the particle diameter of the phosphor particles.
 この構成により、蛍光体含有層の実効的な表面積を容易に増加させ、蛍光体含有層の光飽和を抑制すると同時に、励起光が蛍光体含有層の表面付近で乱反射させることで効率良く、励起光を蛍光へ変換することができる。 With this configuration, the effective surface area of the phosphor-containing layer can be easily increased, the light saturation of the phosphor-containing layer is suppressed, and at the same time, the excitation light is diffusely reflected in the vicinity of the surface of the phosphor-containing layer. Light can be converted to fluorescence.
 また、さらに、前記蛍光体含有層の前記励起光の入射面側に、前記励起光の波長に対して透明な透明基材を備えてもよい。 Furthermore, a transparent substrate transparent to the wavelength of the excitation light may be further provided on the excitation light incident surface side of the phosphor-containing layer.
 この構成により、蛍光体含有層の表面形状を容易に変形させることができる。 With this configuration, the surface shape of the phosphor-containing layer can be easily deformed.
 また、前記透明基材の前記蛍光体含有層側の面は、前記凹凸形状に応じた凹凸形状に形成されてもよい。 Further, the surface of the transparent substrate on the phosphor-containing layer side may be formed in an uneven shape corresponding to the uneven shape.
 この構成により、蛍光体含有層の表面に凹凸形状を容易に形成することができる。 With this configuration, it is possible to easily form an uneven shape on the surface of the phosphor-containing layer.
 また、前記蛍光体含有層に含まれる前記蛍光体粒子の密度は、前記凹凸形状に向かって高くなってもよい。 Moreover, the density of the phosphor particles contained in the phosphor-containing layer may increase toward the uneven shape.
 この構成により、入射した励起光を、凹凸界面付近の蛍光体含有層で吸収しやすくすることができる。 With this configuration, the incident excitation light can be easily absorbed by the phosphor-containing layer near the uneven interface.
 また、前記基板は金属で構成されていてもよい。 Further, the substrate may be made of metal.
 この構成により、蛍光体含有層で発生した蛍光を効率良く入射側へ反射させることができるとともに蛍光体含有層で発生した熱を効率良く排熱させることができる。 With this configuration, the fluorescence generated in the phosphor-containing layer can be efficiently reflected to the incident side, and the heat generated in the phosphor-containing layer can be efficiently exhausted.
 また、前記蛍光体含有層を積層方向から見た外形は、円形であってもよい。 The outer shape of the phosphor-containing layer viewed from the stacking direction may be circular.
 この構成により、蛍光体光学素子を、容易に回転させることが可能となり、特定の蛍光体領域に連続して光が入射することを防止することができる。 With this configuration, the phosphor optical element can be easily rotated, and light can be prevented from being continuously incident on a specific phosphor region.
 また、前記凹凸形状は、前記蛍光体含有層を積層方向から見た外形に対して同心円状に形成された複数の溝、もしくは外形に対して法線方向に形成された複数の溝により構成されてもよい。 In addition, the concavo-convex shape is configured by a plurality of grooves formed concentrically with respect to the outer shape of the phosphor-containing layer viewed from the stacking direction, or a plurality of grooves formed in a normal direction with respect to the outer shape. May be.
 この構成により、蛍光体光学素子から発せられる蛍光が一定の偏光性を有することができる。このような蛍光体光学素子は、偏光光学系の画像表示装置に適した光源装置を実現できる。 With this configuration, the fluorescence emitted from the phosphor optical element can have a certain degree of polarization. Such a phosphor optical element can realize a light source device suitable for a polarizing optical system image display device.
 また、前記蛍光体含有層の前記励起光の入射面に形成された凹凸形状の凸部の幅は、前記蛍光体粒子の粒径よりも大きく、かつ、前記蛍光体粒子から発せられる蛍光の波長よりも小さくてもよい。 In addition, the width of the concavo-convex convex portion formed on the excitation light incident surface of the phosphor-containing layer is larger than the particle size of the phosphor particles, and the wavelength of the fluorescence emitted from the phosphor particles May be smaller.
 この構成により、蛍光体光学素子から発せられる蛍光の偏光性をより高くすることができる。 This configuration can further increase the polarization of fluorescence emitted from the phosphor optical element.
 また、前記蛍光体粒子は量子ドット蛍光体であってもよい。 Further, the phosphor particles may be quantum dot phosphors.
 また、本発明に係る蛍光体光学素子の製造方法は、励起光源から放射される励起光の波長の光を吸収する蛍光体粒子と熱もしくは光によって硬化する溶媒とが混合された蛍光体含有樹脂溶液を、上面が凹凸形状に形成された透明光学素子の上面に塗布する工程と、前記蛍光体含有樹脂溶液を熱もしくは光により硬化することにより、下面に凹凸形状を有する蛍光体含有層を形成する工程とを含む。 In addition, the method for producing a phosphor optical element according to the present invention includes a phosphor-containing resin in which phosphor particles that absorb light having a wavelength of excitation light emitted from an excitation light source and a solvent that is cured by heat or light are mixed. A step of applying the solution on the upper surface of the transparent optical element having an uneven surface and a phosphor-containing layer having an uneven shape on the lower surface by curing the phosphor-containing resin solution with heat or light Including the step of.
 これにより、蛍光体含有層に含まれる蛍光体粒子の密度を凹凸形状に向かって高くすることができ、その結果、入射した励起光を、凹凸界面付近の蛍光体含有層で吸収しやすくすることができる。 Thereby, the density of the phosphor particles contained in the phosphor-containing layer can be increased toward the uneven shape, and as a result, the incident excitation light can be easily absorbed by the phosphor-containing layer near the uneven surface. Can do.
 また、本発明に係る光源装置は、上記蛍光体光学素子と、励起光源と、ダイクロイックミラーと、集光レンズとを備える。 A light source device according to the present invention includes the phosphor optical element, an excitation light source, a dichroic mirror, and a condenser lens.
 この構成により、画像表示装置に適した光源装置を、簡単な構成で実現することができる。 With this configuration, a light source device suitable for an image display device can be realized with a simple configuration.
 本発明によれば、画像表示装置の輝度を、簡便な方法で効率よく向上させることができる蛍光体光学素子及び光源装置を提供することができる。 According to the present invention, it is possible to provide a phosphor optical element and a light source device that can efficiently improve the luminance of an image display device by a simple method.
図1Aは、第1の実施の形態に係る蛍光体光学素子の構造を示す正面図である。FIG. 1A is a front view showing the structure of the phosphor optical element according to the first embodiment. 図1Bは、第1の実施の形態に係る蛍光体光学素子の構造を示す断面図である。FIG. 1B is a cross-sectional view showing the structure of the phosphor optical element according to the first embodiment. 図2Aは、第1の実施の形態に係る蛍光体光学素子の正面の一部を拡大した部分拡大図である。FIG. 2A is a partially enlarged view in which a part of the front surface of the phosphor optical element according to the first embodiment is enlarged. 図2Bは、図2AのIa-Ia線における断面図である。2B is a cross-sectional view taken along line Ia-Ia in FIG. 2A. 図2Cは、図2Bの蛍光体層付近を拡大した断面図である。FIG. 2C is an enlarged cross-sectional view of the vicinity of the phosphor layer in FIG. 2B. 図3は、第1の実施の形態に係る蛍光体光学素子の製造方法を示す断面図である。FIG. 3 is a cross-sectional view showing the method for manufacturing the phosphor optical element according to the first embodiment. 図4Aは、比較例における蛍光体光学素子の機能を説明するための図である。FIG. 4A is a diagram for explaining the function of the phosphor optical element in the comparative example. 図4Bは、第1の実施の形態に係る蛍光体光学素子の機能を説明するための図である。FIG. 4B is a diagram for explaining the function of the phosphor optical element according to the first embodiment. 図5Aは、シミュレーションに用いたパラメータを示す表である。FIG. 5A is a table showing parameters used in the simulation. 図5Bは、シミュレーション結果を示すグラフである。FIG. 5B is a graph showing a simulation result. 図6は、第1の実施の形態に係る蛍光体光学素子を用いた光源装置の構成と動作を説明するための図である。FIG. 6 is a diagram for explaining the configuration and operation of the light source device using the phosphor optical element according to the first embodiment. 図7Aは、光源装置から出射される出射光のスペクトルを示すグラフである。FIG. 7A is a graph showing a spectrum of outgoing light emitted from the light source device. 図7Bは、光源装置から出射される出射光の色度図である。FIG. 7B is a chromaticity diagram of outgoing light emitted from the light source device. 図8Aは、第2の実施の形態に係る蛍光体光学素子の構造を示す正面図である。FIG. 8A is a front view showing the structure of the phosphor optical element according to the second embodiment. 図8Bは、図8AのIa-Ia線における断面図である。8B is a cross-sectional view taken along line Ia-Ia in FIG. 8A. 図9Aは、第2の実施の形態に係る光源装置の動作の一例を説明するための図である。FIG. 9A is a diagram for explaining an example of the operation of the light source device according to the second embodiment. 図9Bは、第2の実施の形態に係る光源装置の動作の他の一例を説明するための図である。FIG. 9B is a diagram for explaining another example of the operation of the light source device according to the second embodiment. 図9Cは、第2の実施の形態に係る光源装置の機能を説明するための図である。FIG. 9C is a diagram for explaining the function of the light source device according to the second embodiment. 図10は、第2の実施の形態に係る光源装置の構成および動作を説明するための図である。FIG. 10 is a diagram for explaining the configuration and operation of the light source device according to the second embodiment. 図11Aは、第3の実施の形態に係る蛍光体光学素子の構造を示す正面図である。FIG. 11A is a front view showing the structure of the phosphor optical element according to the third embodiment. 図11Bは、図11AのIa-Ia線における断面図である。11B is a cross-sectional view taken along line Ia-Ia in FIG. 11A. 図12Aは、ダイクロイックミラーの機能を説明するための図である。FIG. 12A is a diagram for explaining the function of the dichroic mirror. 図12Bは、ダイクロイックミラーの透過特性を示すグラフである。FIG. 12B is a graph showing the transmission characteristics of the dichroic mirror. 図13Aは、光源装置から出射される出射光のスペクトルを示すグラフである。FIG. 13A is a graph showing a spectrum of outgoing light emitted from the light source device. 図13Bは、光源装置から出射される出射光の色度図である。FIG. 13B is a chromaticity diagram of outgoing light emitted from the light source device. 図14は、従来の光源装置の構造を示す平面模式図である。FIG. 14 is a schematic plan view showing the structure of a conventional light source device. 図15は、従来の光源装置に係る蛍光ホイールの構造を示す平面図である。FIG. 15 is a plan view showing a structure of a fluorescent wheel according to a conventional light source device.
 以下、本発明の好ましい実施の形態について説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, preferred embodiments of the present invention will be described. Each of the embodiments described below shows a preferred specific example of the present invention. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are described as optional constituent elements.
 なお、各図は、模式図であり、必ずしも厳密に図示したものではない。また、各図において、同じ構成要素には同じ符号を付している場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol may be attached | subjected to the same component.
(第1の実施の形態)
 図1Aから図7Bを用いて本発明の第1の実施の形態にかかる蛍光体光学素子1及び光源装置100について説明する。
(First embodiment)
The phosphor optical element 1 and the light source device 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1A to 7B.
 図1Aおよび図1Bは、本実施の形態の蛍光体光学素子1の構造を示す図であり、図1Aは、蛍光体光学素子1を正面から見た図であり、図1Bは図1AのIa-Ia線における断面図である。図2Aは蛍光体光学素子1の正面の一部を拡大した部分拡大図であり、図2Bは図2AのIa-Ia線における断面図であり、図2Cは図2Bの蛍光体層付近を拡大した断面図である。図3は本実施の形態に係る蛍光体光学素子の製造方法を示す断面図である。図4Aは、比較例における蛍光体光学素子の機能を説明するための図であり、図4Bは本実施の形態に係る蛍光体光学素子1の機能を説明するための図である。図5Aはシミュレーションに用いたパラメータを示す表であり、図5Bはシミュレーション結果を示すグラフである。図6は本実施の形態に係る蛍光体光学素子1を用いた光源装置100の構成と動作を説明するための図である。図7Aは、図6に示した光源装置100から出射される出射光のスペクトルを示すグラフであり、図7Bは出射光の色度図である。 1A and 1B are views showing the structure of the phosphor optical element 1 of the present embodiment, FIG. 1A is a view of the phosphor optical element 1 from the front, and FIG. 1B is Ia in FIG. 1A. FIG. 2A is a partially enlarged view in which a part of the front surface of the phosphor optical element 1 is enlarged, FIG. 2B is a sectional view taken along line Ia-Ia in FIG. 2A, and FIG. 2C is an enlarged view of the vicinity of the phosphor layer in FIG. FIG. FIG. 3 is a cross-sectional view showing a method for manufacturing a phosphor optical element according to the present embodiment. FIG. 4A is a diagram for explaining the function of the phosphor optical element in the comparative example, and FIG. 4B is a diagram for explaining the function of the phosphor optical element 1 according to the present embodiment. FIG. 5A is a table showing parameters used in the simulation, and FIG. 5B is a graph showing the simulation results. FIG. 6 is a diagram for explaining the configuration and operation of the light source device 100 using the phosphor optical element 1 according to the present embodiment. 7A is a graph showing a spectrum of outgoing light emitted from the light source device 100 shown in FIG. 6, and FIG. 7B is a chromaticity diagram of outgoing light.
 以下、蛍光体光学素子1及び光源装置100について具体的に説明する。まず図1A~図2Cに示すように、蛍光体光学素子1は例えば、厚み0.3mm~0.5mmのアルミ合金やマグネシウム合金などの放熱基板30に、透明材料であるバインダ(溶媒)に蛍光体粒子が含有された、厚み0.05mm~0.4mmの蛍光体層20と、例えばB270やBK7などのガラスである厚み0.1mm~1mmの透明基板10が順に積層され、透明基板10の蛍光体層20側の表面には凹凸形状を有する凹凸部15が形成される。 Hereinafter, the phosphor optical element 1 and the light source device 100 will be specifically described. First, as shown in FIGS. 1A to 2C, the phosphor optical element 1 is made of a heat radiation substrate 30 such as an aluminum alloy or a magnesium alloy having a thickness of 0.3 mm to 0.5 mm, a fluorescent material with a binder (solvent) as a transparent material. A phosphor layer 20 having a thickness of 0.05 mm to 0.4 mm containing body particles and a transparent substrate 10 having a thickness of 0.1 mm to 1 mm made of glass such as B270 or BK7 are sequentially laminated. An uneven portion 15 having an uneven shape is formed on the surface on the phosphor layer 20 side.
 透明基板10に形成された凹凸部15は、図2Aおよび図2Bに示すように例えば、ピッチpが0.2μm、深さdが0.2μmであり、蛍光体光学素子1の積層方向に垂直な平面方向にドット形状で形成される。凹凸部15は、詳細には、第1平面15a、傾斜面15b、及び、第2平面15cにより構成される。 As shown in FIGS. 2A and 2B, the uneven portion 15 formed on the transparent substrate 10 has, for example, a pitch p of 0.2 μm and a depth d of 0.2 μm, and is perpendicular to the stacking direction of the phosphor optical element 1. It is formed in a dot shape in a flat direction. Specifically, the uneven portion 15 includes a first plane 15a, an inclined surface 15b, and a second plane 15c.
 蛍光体層20は、図1Aに示すように、青色蛍光体粒子が含まれる青色蛍光体層20Bと、緑色蛍光体粒子が含まれる緑色蛍光体層20Gと、赤色蛍光体粒子が含まれる赤色蛍光体層20Rとが、異なる領域に蛍光体光学素子1を3分割するように形成される。バインダを構成する透明材料は、例えば、ジメチルシリコーンなどの有機透明材料である。 As shown in FIG. 1A, the phosphor layer 20 includes a blue phosphor layer 20B containing blue phosphor particles, a green phosphor layer 20G containing green phosphor particles, and a red phosphor containing red phosphor particles. The body layer 20R is formed so as to divide the phosphor optical element 1 into three different regions. The transparent material constituting the binder is, for example, an organic transparent material such as dimethyl silicone.
 なお、透明基板10は本発明の透明基材の一例であり、蛍光体層20は本発明の蛍光体含有層の一例であり、放熱基板30は本発明の基板の一例である。 The transparent substrate 10 is an example of the transparent base material of the present invention, the phosphor layer 20 is an example of the phosphor-containing layer of the present invention, and the heat dissipation substrate 30 is an example of the substrate of the present invention.
 ここで蛍光体層20の詳細構成を、図2Cの赤色蛍光体層20R付近の一部を拡大した図で説明する。赤色蛍光体層20Rは、赤色の蛍光体である赤色蛍光体粒子21Rがバインダ22に混合された構成であり、赤色蛍光体層20Rに含まれる赤色蛍光体粒子21Rの密度は、凹凸面に向かって高くなる。同様に、青色蛍光体層20Bは、青色の蛍光体である青色蛍光体粒子21Bがバインダ22に混合された構成であり、緑色蛍光体層20Gは、緑色の蛍光体である緑色蛍光体粒子21Gがバインダ22に混合された構成である。また、同様に、青色蛍光体粒子21Bの密度、及び、緑色蛍光体粒子21Gの密度は、凹凸面に向かって高くなる。 Here, the detailed configuration of the phosphor layer 20 will be described with an enlarged view of a part near the red phosphor layer 20R in FIG. 2C. The red phosphor layer 20R has a configuration in which red phosphor particles 21R, which are red phosphors, are mixed in a binder 22, and the density of the red phosphor particles 21R included in the red phosphor layer 20R is directed toward the uneven surface. Become higher. Similarly, the blue phosphor layer 20B has a configuration in which blue phosphor particles 21B, which are blue phosphors, are mixed in a binder 22, and the green phosphor layer 20G has green phosphor particles 21G, which are green phosphors. Is mixed with the binder 22. Similarly, the density of the blue phosphor particles 21B and the density of the green phosphor particles 21G increase toward the uneven surface.
 そして、蛍光体光学素子1の透明基板10の、凹凸部15の反対側の表面には、所定の波長の光を反射する、波長カットフィルタ膜40が形成される。ここで波長カットフィルタ膜40は、例えばZrO、TiO、CaF等の誘電膜が多層に積層された誘電体多層膜で構成される。 Then, a wavelength cut filter film 40 that reflects light of a predetermined wavelength is formed on the surface of the transparent substrate 10 of the phosphor optical element 1 on the opposite side of the concavo-convex portion 15. Here, the wavelength cut filter film 40 is composed of a dielectric multilayer film in which dielectric films such as ZrO, TiO 2 , and CaF are laminated in multiple layers.
 また、蛍光体光学素子1の外形は、図1Aに示すように円形の形状であり、回転させて用いるために、中央部に軸穴50が形成されている。 Further, the external shape of the phosphor optical element 1 is a circular shape as shown in FIG. 1A, and a shaft hole 50 is formed at the center for use in rotation.
 上記において、青色蛍光体層20Bを構成する蛍光体は、例えばBaMgAl1017:Eu蛍光体であり、波長405nmの励起光を例えばピーク波長440~500nmの蛍光に変換する。緑色蛍光体層20Gを構成する蛍光体は、例えば、Y(Al,Ga)12:Ce蛍光体、β-SiAlON:Eu蛍光体、(Sr、Ba)SiO:Eu蛍光体、もしくは、BaMgAl1017:Eu、Mn蛍光体であり、波長405nmの励起光を例えばピーク波長500nm~600の蛍光に変換する。赤色蛍光体層20Rの蛍光体は、例えばCaAlSiN:Eu蛍光体、(Sr、Ca)AlSiN:Eu蛍光体、もしくは、(Sr、Ba)SiO:Eu蛍光体であり、波長405nmの励起光を例えばピーク波長600nm~660nmの蛍光に変換する。 In the above, the phosphor constituting the blue phosphor layer 20B is, for example, a BaMgAl 10 O 17 : Eu phosphor, and converts excitation light having a wavelength of 405 nm to fluorescence having a peak wavelength of 440 to 500 nm, for example. The phosphor constituting the green phosphor layer 20G is, for example, Y 3 (Al, Ga) 5 O 12 : Ce phosphor, β-SiAlON: Eu phosphor, (Sr, Ba) 2 SiO 4 : Eu phosphor, Alternatively, it is a BaMgAl 10 O 17 : Eu, Mn phosphor, which converts excitation light having a wavelength of 405 nm into fluorescence having a peak wavelength of 500 nm to 600, for example. The phosphor of the red phosphor layer 20R is, for example, a CaAlSiN 3 : Eu phosphor, a (Sr, Ca) AlSiN 3 : Eu phosphor, or a (Sr, Ba) 2 SiO 4 : Eu phosphor, and has a wavelength of 405 nm. The excitation light is converted into fluorescence having a peak wavelength of 600 nm to 660 nm, for example.
 なお、ここで蛍光体の名称または組成においてコロン(:)は、いわゆる「賦活された」という意味であり、例えばY(Al,Ga)12:CeとはCeによって賦活された、という意味である。 Here, in the name or composition of the phosphor, the colon (:) means so-called “activated”. For example, Y 3 (Al, Ga) 5 O 12 : Ce is activated by Ce. Meaning.
 本実施の形態において用いられる蛍光体の種類を、以下の表1に示す。 Table 1 below shows the types of phosphors used in the present embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、蛍光体の組成や材料は、上記表1に限られず、他の材料や組成のものも使用可能である。 In addition, the composition and material of the phosphor are not limited to those in Table 1 above, and other materials and compositions can be used.
 続いて図3を用いて本実施の形態に係る蛍光体光学素子1の製造方法について説明する。 Then, the manufacturing method of the fluorescent substance optical element 1 which concerns on this Embodiment using FIG. 3 is demonstrated.
 まず図3の(a)に示すように厚みが0.8mmの例えば円形状のガラスである透明基板10に、半導体リソグラフィーを用いて凹凸部15に適応したレジストパターン形状を形成し(図示せず)、図3の(b)に示すように、例えばドライエッチングにより凹凸部15を形成した後、機械加工により軸穴50を形成する。 First, as shown in FIG. 3A, a resist pattern shape adapted to the concavo-convex portion 15 is formed on a transparent substrate 10 made of, for example, circular glass having a thickness of 0.8 mm by using semiconductor lithography (not shown). 3), as shown in FIG. 3B, for example, after the concave and convex portion 15 is formed by dry etching, the shaft hole 50 is formed by machining.
 続いて図3の(c)に示すように、透明基板10上に、3種類の蛍光体層である赤色蛍光体層20R、緑色蛍光体層20G、青色蛍光体層20Bを形成するため、上記に示した蛍光体のうち青色用、緑色用、赤色用に対応した3種類の蛍光体のそれぞれを含有する蛍光体含有樹脂溶液(青色用、緑色用、赤色用)を作製する。 Subsequently, as shown in FIG. 3C, the red phosphor layer 20R, the green phosphor layer 20G, and the blue phosphor layer 20B, which are three kinds of phosphor layers, are formed on the transparent substrate 10, A phosphor-containing resin solution (for blue, green, and red) containing each of the three types of phosphors corresponding to blue, green, and red is prepared.
 具体的には、緑色用には、例えばβ―SiAlON:Eu蛍光体を液状のジメチルシリコーン樹脂溶液に混合させた蛍光体含有樹脂溶液23Gを、透明基板10の所定の領域の凹凸部15表面に滴下する。続いて、赤色用に、例えばCaAlSiN:Euを混合させた蛍光体含有樹脂溶液23Rを所定の領域の凹凸部15表面に滴下する。続いて、青色用に関しても同様の作業を行う。 Specifically, for green, a phosphor-containing resin solution 23G in which, for example, a β-SiAlON: Eu phosphor is mixed with a liquid dimethylsilicone resin solution is applied to the surface of the uneven portion 15 in a predetermined region of the transparent substrate 10. Dripping. Subsequently, for red, for example, a phosphor-containing resin solution 23R mixed with CaAlSiN 3 : Eu is dropped onto the surface of the uneven portion 15 in a predetermined region. Subsequently, the same operation is performed for blue.
 続いて図3の(d)に示すように、蛍光体含有樹脂溶液23B、23G、23Rを滴下された透明基板10を真空中に1時間程度、放置することにより、透明基板10の凹凸部15と蛍光体含有樹脂溶液23B、23G、23Rとの間にある空隙21を除去するとともに、蛍光体含有樹脂溶液23B、23G、23Rに含まれる蛍光体粒子を凹凸部15側に沈殿させる。このとき図2Cに示した赤色蛍光体粒子21Rの濃度が凹凸部に向かって高くなる構成を形成することが出来る。この結果、入射光を、凹凸界面付近の蛍光体層20で吸収しやすくすることができる。 Subsequently, as shown in FIG. 3D, the concavo-convex portion 15 of the transparent substrate 10 is left by leaving the transparent substrate 10 to which the phosphor-containing resin solutions 23B, 23G, and 23R are dropped in a vacuum for about 1 hour. And the phosphor-containing resin solutions 23B, 23G, and 23R are removed, and the phosphor particles contained in the phosphor-containing resin solutions 23B, 23G, and 23R are precipitated on the uneven portion 15 side. At this time, it is possible to form a configuration in which the concentration of the red phosphor particles 21R shown in FIG. As a result, incident light can be easily absorbed by the phosphor layer 20 near the uneven interface.
 続いて図3の(e)に示すように、透明基板10の外形および軸穴50に対応した形状の、厚み0.5mmのアルミ基板である放熱基板30を、透明基板10の蛍光体含有樹脂溶液23B、23G、23R側から接着し、加圧する。このとき、蛍光体含有樹脂溶液23B、23G、23Rの放熱基板30側には蛍光体粒子の濃度が低いため、容易に接着させることができる。つづいて、例えば160℃の高温炉中に放置することにより、所定の厚みの蛍光体層20を形成する。 Subsequently, as shown in FIG. 3E, the heat-radiating substrate 30, which is an aluminum substrate having a thickness of 0.5 mm, corresponding to the outer shape of the transparent substrate 10 and the shaft hole 50 is replaced with the phosphor-containing resin of the transparent substrate 10. Glue and pressurize from the solution 23B, 23G, 23R side. At this time, since the concentration of the phosphor particles is low on the side of the heat dissipation substrate 30 of the phosphor-containing resin solutions 23B, 23G, and 23R, it can be easily adhered. Subsequently, the phosphor layer 20 having a predetermined thickness is formed by leaving it in a high-temperature furnace at 160 ° C., for example.
 続いて図3の(f)に示すように、真空蒸着装置中で、透明基板10の蛍光体層20と反対の面に誘電体多層膜である波長カットフィルタ膜40を形成する。 Subsequently, as shown in FIG. 3F, a wavelength cut filter film 40, which is a dielectric multilayer film, is formed on the surface of the transparent substrate 10 opposite to the phosphor layer 20 in a vacuum deposition apparatus.
 上記の製造方法により、本実施の形態に係る蛍光体光学素子1を簡単に製造することができる。 The phosphor optical element 1 according to the present embodiment can be easily manufactured by the above manufacturing method.
 続いて、図4A及び図4Bを用いて蛍光体光学素子1の機能について説明する。 Subsequently, the function of the phosphor optical element 1 will be described with reference to FIGS. 4A and 4B.
 図4Aは、比較例の蛍光体光学素子の機能を説明するための図であり、この蛍光体光学素子は、具体的には透明基板10と蛍光体層20との界面に凹凸面が形成されていない構成を有する。図4Bは、本実施の形態に係る蛍光体光学素子1の機能を説明するための図であり、本実施の形態に係る蛍光体光学素子1は、具体的には、透明基板10と蛍光体層20との界面に凹凸面が形成されている構成を有する。 FIG. 4A is a diagram for explaining the function of the phosphor optical element of the comparative example. Specifically, this phosphor optical element has an uneven surface formed at the interface between the transparent substrate 10 and the phosphor layer 20. It has a configuration that is not. FIG. 4B is a diagram for explaining the function of the phosphor optical element 1 according to the present embodiment. Specifically, the phosphor optical element 1 according to the present embodiment includes a transparent substrate 10 and a phosphor. An uneven surface is formed at the interface with the layer 20.
 図4A及び図4Bにおいて、透明基板10側から蛍光体層20に向けて、励起光である入射光60が蛍光体層20へ入射する。このとき蛍光体層20へ入射した光の一部は蛍光体層20の光変換領域70の蛍光体で吸収され、一部は蛍光体で吸収されずに、蛍光体層20における蛍光体とバインダ(例えば、シリコーン樹脂)との屈折率の差などにより、そのまま反射されて反射光61となり、入射側に反射される。 4A and 4B, incident light 60 that is excitation light enters the phosphor layer 20 from the transparent substrate 10 side toward the phosphor layer 20. At this time, part of the light incident on the phosphor layer 20 is absorbed by the phosphor in the light conversion region 70 of the phosphor layer 20, and part of the light is not absorbed by the phosphor, but the phosphor and binder in the phosphor layer 20. Due to the difference in refractive index from (for example, silicone resin), the light is reflected as it is to become reflected light 61 and reflected to the incident side.
 蛍光体層20の光変換領域70の蛍光体で吸収された入射光60の一部は蛍光体で蛍光80に変換され、残りは蛍光に変換されずに熱となり、蛍光体層20を伝熱する。蛍光体で変換された蛍光80は、蛍光体とシリコーン樹脂との屈折率の差により多重反射され、もしくは放熱基板30で反射され、ランバーシアンの拡がり角分布をもって、入射光60の入射側から取り出される。 A part of the incident light 60 absorbed by the phosphor in the light conversion region 70 of the phosphor layer 20 is converted into fluorescence 80 by the phosphor, and the rest is converted into fluorescence without being converted into fluorescence. To do. The fluorescent light 80 converted by the fluorescent material is multiple-reflected by the difference in refractive index between the fluorescent material and the silicone resin, or reflected by the heat dissipation substrate 30, and is extracted from the incident side of the incident light 60 with a Lambertian divergence angle distribution. It is.
 上記図4Aに示す比較例の構成において、蛍光80の実効的な発光面積である実効発光面積Sを小さくするために、入射光60の照射面積を固定して入射光量を増加させた場合、蛍光体層20の蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)に賦活された希土類イオンの量に対する励起光量の比率が急激に増加する。この結果、蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)に賦活される希土類イオンにおける励起電子が枯渇し、蛍光体に吸収される入射光60の比率が低下して反射光61の比率が増加する。その結果、蛍光体光学素子における励起光の蛍光への変換効率が低下する。 In the configuration of the comparative example shown in FIG. 4A, when the effective light emission area S, which is the effective light emission area of the fluorescence 80, is reduced, the irradiation area of the incident light 60 is fixed and the incident light quantity is increased. The ratio of the amount of excitation light to the amount of rare earth ions activated by the phosphor particles (red phosphor particles 21R, green phosphor particles 21G, and blue phosphor particles 21B) in the body layer 20 increases rapidly. As a result, the excited electrons in the rare earth ions activated by the phosphor particles (red phosphor particles 21R, green phosphor particles 21G, and blue phosphor particles 21B) are depleted, and the ratio of incident light 60 absorbed by the phosphors is reduced. It decreases and the ratio of the reflected light 61 increases. As a result, the conversion efficiency of excitation light into fluorescence in the phosphor optical element decreases.
 一方、図4Bに示す本実施の形態の蛍光体光学素子1においては、蛍光体層20と透明基板10との界面に凹凸が形成されている。このため、比較例と比較して、実効発光面積Sを大きくすることなく、蛍光体層20の実効的な表面積S’を増加させることができる。また、蛍光体層20の表面に傾斜面15bをつけることで、反射光61の一部は、反射される際に、そのまま入射光60の入射側へ向かわずに、角度を変えて、再び蛍光体層20へと入射することができる。ここで、蛍光体層20の凹凸界面近傍には蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)の密度の高い領域が形成されているため、効率的に入射光を蛍光へ変換することが出来る。 On the other hand, in the phosphor optical element 1 of the present embodiment shown in FIG. 4B, irregularities are formed at the interface between the phosphor layer 20 and the transparent substrate 10. For this reason, compared with the comparative example, the effective surface area S ′ of the phosphor layer 20 can be increased without increasing the effective light emitting area S. In addition, by providing the inclined surface 15b on the surface of the phosphor layer 20, when a part of the reflected light 61 is reflected, it does not go directly to the incident side of the incident light 60, but changes its angle, and the fluorescence is again emitted. It can enter the body layer 20. Here, a region having a high density of phosphor particles (red phosphor particles 21R, green phosphor particles 21G, and blue phosphor particles 21B) is formed in the vicinity of the concavo-convex interface of the phosphor layer 20, so that it is efficiently performed. Incident light can be converted to fluorescence.
 つまり、本実施の形態に係る蛍光体光学素子1における実効発光面積Sと比較例における実効発光面積Sとが同じ場合、本実施の形態に係る蛍光体光学素子1は、比較例と比較して、蛍光体層20の透明基板10側の面に形成された凹凸面により実効的な表面積S’を増加させることができる。さらに、蛍光体層20に形成された凹凸面により、反射光の一部をさらに蛍光体層20に入射させて蛍光へ変換することができる。 That is, when the effective light emitting area S in the phosphor optical element 1 according to the present embodiment and the effective light emitting area S in the comparative example are the same, the phosphor optical element 1 according to the present embodiment is compared with the comparative example. The effective surface area S ′ can be increased by the uneven surface formed on the surface of the phosphor layer 20 on the transparent substrate 10 side. Furthermore, due to the uneven surface formed on the phosphor layer 20, a part of the reflected light can be further incident on the phosphor layer 20 and converted into fluorescence.
 よって、本実施の形態に係る蛍光体光学素子1は、比較例と比較して、入射した励起光を蛍光へ効率良く変換することができる。なお、実効発光面積Sとは、蛍光体層20を積層方向から見た場合の発光面積であり、実効的な表面積S’とは、蛍光体層20において発光している領域の表面積である。 Therefore, the phosphor optical element 1 according to the present embodiment can efficiently convert incident excitation light into fluorescence as compared with the comparative example. The effective light emission area S is the light emission area when the phosphor layer 20 is viewed from the stacking direction, and the effective surface area S ′ is the surface area of the region emitting light in the phosphor layer 20.
 続いて具体的に、蛍光体層20の凹凸の効果を、下記理論式と図5A及び図5Bとに示す計算結果を用いて説明する。まず、入射光密度の増加による蛍光体における変換効率の低下(光飽和)は、実験的に次の式で表すことができる。蛍光体の外部領域効率をηext、蛍光体の内部量子効率をηini、励起光密度をxとすると、外部領域効率ηextと吸収係数α(x)とはそれぞれ、式1及び式2で表すことができる。 Subsequently, the effect of the unevenness of the phosphor layer 20 will be specifically described using the following theoretical formula and the calculation results shown in FIGS. 5A and 5B. First, a decrease in conversion efficiency (light saturation) in a phosphor due to an increase in incident light density can be experimentally expressed by the following equation. When the external region efficiency of the phosphor is η ext , the internal quantum efficiency of the phosphor is η ini , and the excitation light density is x, the external region efficiency η ext and the absorption coefficient α (x) are expressed by Equations 1 and 2, respectively. Can be represented.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
ここで、α(0)は光励起密度が非常に低いときの蛍光体の吸収係数であり、βは光飽和係数、S’は上述の蛍光体層20の実効的な表面積、dは入射光の侵入長である。このとき、蛍光体層20の表面に凹凸を形成することで得られる2つの効果、すなわち、実効的な表面積Sを増加させる効果と、反射光61の蛍光体層20への再入射の効果とは、それぞれ以下のように表される。
Figure JPOXMLDOC01-appb-M000002
Here, α (0) is the absorption coefficient of the phosphor when the photoexcitation density is very low, β is the light saturation coefficient, S ′ is the effective surface area of the phosphor layer 20, and d is the incident light. The invasion length. At this time, two effects obtained by forming irregularities on the surface of the phosphor layer 20, that is, an effect of increasing the effective surface area S and an effect of re-incident reflection light 61 to the phosphor layer 20 Are represented as follows.
 まず、実効的な表面積S’を増加させる効果に関しては式2のS’を大きくすることで計算できる。一方、反射光61の蛍光体層20への再入射の効果を考慮した吸収係数α’(x)は、
Figure JPOXMLDOC01-appb-M000003
となる。上記において、反射光61が蛍光体層20へ再入射した場合、蛍光体表面における光密度も増加するため、上記の2つの効果が相殺される可能性がある。したがって、これらの効果を数値的に求めた結果が図5Aおよび図5Bとなる。図5Aはシミュレーションに用いたパラメータを示す表であり、図5Bは変換効率の励起光密度依存性を、シミュレーション条件ごとに計算したものである。なお、励起光密度とは入射光量P/実効発光面積Sである。
First, the effect of increasing the effective surface area S ′ can be calculated by increasing S ′ in Equation 2. On the other hand, the absorption coefficient α ′ (x) in consideration of the effect of re-incidence of the reflected light 61 on the phosphor layer 20 is
Figure JPOXMLDOC01-appb-M000003
It becomes. In the above, when the reflected light 61 re-enters the phosphor layer 20, the light density on the phosphor surface also increases, and thus the above two effects may be offset. Therefore, the results of numerically determining these effects are shown in FIGS. 5A and 5B. FIG. 5A is a table showing parameters used in the simulation, and FIG. 5B is a graph in which the dependence of the conversion efficiency on the excitation light density is calculated for each simulation condition. The excitation light density is the incident light amount P / the effective light emission area S.
 図5Bにおいて、比較例は式1及び式2で計算された結果を示し、検討1は実効的な表面積を2倍にした結果を示し、検討2は検討1の計算結果に対して再入射の効果を光密度の増加を考慮しないで2次まで計算した結果を示す。さらに本実施の形態は、検討2の計算結果に対して再入射における光密度の増加を考慮した場合の計算結果を示す。 In FIG. 5B, the comparative example shows the result calculated by Equation 1 and Equation 2, Study 1 shows the result of doubling the effective surface area, and Study 2 shows the re-incidence with respect to the study 1 calculation result. The result of calculating the effect up to the second order without considering the increase in light density is shown. Furthermore, the present embodiment shows the calculation result when the increase in light density at re-incidence is taken into consideration with respect to the calculation result of Study 2.
 図5Bの結果から、本実施の形態に係る蛍光体光学素子1は、検討2と比較して、再入射における光密度の増加により変換効率が若干低下する。しかしながら、上記2つの効果、すなわち、蛍光体層20の実効的な表面積の増加、及び、反射光61の蛍光体層20への再入射により、蛍光体層20の透明基板10側の面が平面である比較例と比較して、十分に良好な変換効率を有することがわかる。 5B, from the result of FIG. 5B, the phosphor optical element 1 according to the present embodiment has a slightly lower conversion efficiency due to the increase of the light density at the re-incidence as compared with the study 2. However, the surface of the phosphor layer 20 on the transparent substrate 10 side is flat due to the above two effects, that is, an increase in the effective surface area of the phosphor layer 20 and re-incidence of the reflected light 61 to the phosphor layer 20. It can be seen that the conversion efficiency is sufficiently good as compared with the comparative example.
 以上のように、本実施の形態に係る蛍光体光学素子1は、励起光源から放射される励起光である入射光60の波長の光を吸収する蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)が含有された蛍光体層20と、蛍光体層20を保持する放熱基板30とを備え、蛍光体層20の励起光の入射面は、凹凸形状である。これにより、エテンデュを大きくすることなしに、蛍光体層20の実効的な表面積S’を増加させ、蛍光体の光飽和を抑制することができる。また、励起光を蛍光体層20の凹凸面付近で乱反射させることができ、その結果、励起光を蛍光へ効率良く変換することができる。つまり、簡便な方法で、効率よく輝度を向上させることができる。 As described above, the phosphor optical element 1 according to the present embodiment is a phosphor particle that absorbs light having the wavelength of the incident light 60 that is excitation light emitted from the excitation light source (red phosphor particles 21R, green fluorescence). The phosphor layer 20 containing the body particles 21G and the blue phosphor particles 21B) and the heat dissipation substrate 30 holding the phosphor layer 20 are provided, and the excitation light incident surface of the phosphor layer 20 has an uneven shape. . Thereby, without increasing the etendue, the effective surface area S ′ of the phosphor layer 20 can be increased and the light saturation of the phosphor can be suppressed. Further, the excitation light can be diffusely reflected in the vicinity of the uneven surface of the phosphor layer 20, and as a result, the excitation light can be efficiently converted into fluorescence. That is, the luminance can be improved efficiently by a simple method.
 また、蛍光体層20の透明基板10側の面に形成された凹凸形状は、凹部と凸部とが周期的に変化する形状であり、当該凹凸形状のピッチ(周期)は、蛍光体粒子の粒径よりも大きい。これにより、蛍光体層20の実効的な表面積S’を容易に増加させ、蛍光体層20の光飽和を抑制すると同時に、励起光を蛍光体層20の凹凸面付近で乱反射させることで、励起光を蛍光へ効率良く変換することができる。 In addition, the uneven shape formed on the surface of the phosphor layer 20 on the transparent substrate 10 side is a shape in which the concave portion and the convex portion change periodically, and the pitch (period) of the concave and convex shape is the shape of the phosphor particles. Greater than particle size. As a result, the effective surface area S ′ of the phosphor layer 20 is easily increased, the light saturation of the phosphor layer 20 is suppressed, and at the same time, the excitation light is diffusely reflected near the concavo-convex surface of the phosphor layer 20, thereby exciting the phosphor layer 20. Light can be efficiently converted into fluorescence.
 また、蛍光体層20の励起光の入射面側には、励起光の波長に対して透明な透明基板10が設けられている。これにより、蛍光体層20の透明基板10側の面を、容易に変形させることができる。 Further, a transparent substrate 10 transparent to the wavelength of the excitation light is provided on the side of the phosphor layer 20 where the excitation light is incident. Thereby, the surface by the side of the transparent substrate 10 of the fluorescent substance layer 20 can be changed easily.
 この透明基板10の蛍光体層20側の面は、蛍光体層20の透明基板10側の面に形成されている凹凸形状に応じた凹凸形状に形成されている。つまり、蛍光体層20の透明基板10側の面に形成されている凹凸形状は、透明基板10の凹凸部15と嵌合する。これにより、蛍光体層20の透明基板10側の面に凹凸形状を容易に形成することができる。 The surface of the transparent substrate 10 on the phosphor layer 20 side is formed in an uneven shape corresponding to the uneven shape formed on the surface of the phosphor layer 20 on the transparent substrate 10 side. That is, the concavo-convex shape formed on the surface of the phosphor layer 20 on the transparent substrate 10 side is fitted with the concavo-convex portion 15 of the transparent substrate 10. Thereby, an uneven shape can be easily formed on the surface of the phosphor layer 20 on the transparent substrate 10 side.
 また、蛍光体層20に含まれる蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)の密度は、凹凸形状に向かって高くなる。これにより、入射した励起光を、凹凸界面付近の蛍光体層20で吸収しやすくすることができる。 Further, the density of the phosphor particles (red phosphor particles 21R, green phosphor particles 21G, blue phosphor particles 21B) included in the phosphor layer 20 increases toward the uneven shape. Thereby, the incident excitation light can be easily absorbed by the phosphor layer 20 in the vicinity of the uneven interface.
 また、放熱基板30は金属で形成されている。これにより、蛍光体層20で発生した蛍光を効率良く入射側へ反射させることができ、さらに、蛍光体層20で発生した熱を効率よく排熱することができる。 Further, the heat dissipation board 30 is made of metal. Thereby, the fluorescence generated in the phosphor layer 20 can be efficiently reflected to the incident side, and the heat generated in the phosphor layer 20 can be efficiently exhausted.
 また、蛍光体光学素子1の製造方法は、励起光源から放射される励起光の波長の光を吸収する蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)と熱もしくは光によって硬化するバインダ22とが混合された蛍光体含有樹脂溶液23B、23G、23Rを、上面が凹凸形状に形成された透明基板10の上面に塗布する工程と、蛍光体含有樹脂溶液23B、23G、23Rを熱により硬化することにより、下面に凹凸形状を有する蛍光体層20を形成する工程とを含む。以下、蛍光体含有樹脂溶液23B、23G、23Rを特に区別せず、蛍光体含有樹脂溶液23と記載する場合がある。 Moreover, the manufacturing method of the phosphor optical element 1 includes phosphor particles (red phosphor particles 21R, green phosphor particles 21G, blue phosphor particles 21B) that absorb light having the wavelength of the excitation light emitted from the excitation light source, and A step of applying the phosphor-containing resin solutions 23B, 23G, and 23R mixed with the binder 22 that is cured by heat or light to the upper surface of the transparent substrate 10 that has an uneven upper surface; and the phosphor-containing resin solution 23B , 23G and 23R are cured by heat to form a phosphor layer 20 having an uneven shape on the lower surface. Hereinafter, the phosphor-containing resin solutions 23B, 23G, and 23R may be referred to as the phosphor-containing resin solution 23 without being particularly distinguished.
 これにより、蛍光体層20に含まれる蛍光体粒子(赤色蛍光体粒子21R、緑色蛍光体粒子21G、青色蛍光体粒子21B)の密度を凹凸形状に向かって高くすることができ、その結果、入射した励起光を、凹凸界面付近の蛍光体層20で吸収しやすくすることができる。 Thereby, the density of the phosphor particles (the red phosphor particles 21R, the green phosphor particles 21G, and the blue phosphor particles 21B) included in the phosphor layer 20 can be increased toward the concavo-convex shape. The excited light can be easily absorbed by the phosphor layer 20 in the vicinity of the uneven interface.
 なお、上記において、好ましくは、透明基板10の屈折率と蛍光体層20に含まれるシリコーン樹脂の屈折率との差は小さい方がよく、例えば透明基板10として屈折率1.46の石英ガラス、シリコーン樹脂として屈折率1.46のジメチルシリコーンを用いることができる。 In the above, preferably, the difference between the refractive index of the transparent substrate 10 and the refractive index of the silicone resin contained in the phosphor layer 20 should be small. For example, as the transparent substrate 10, quartz glass having a refractive index of 1.46, Dimethyl silicone having a refractive index of 1.46 can be used as the silicone resin.
 また、上記において、蛍光体層20に含まれる樹脂(バインダ)をジメチルシリコーンなどのシリコーン樹脂としたが、この限りではない、例えば、エポキシ樹脂、アクリル樹脂等の他の透明材料を用いてもよい。この結果、製造時の液状の蛍光体含有樹脂溶液23を硬化させるときに、紫外線照射による硬化を用いることができる。また、上記材料を用いることで、透明基板10との屈折率差をより自由に調整することができる。また、低融点ガラスなどの無機透明材料を用いることもできる。この場合、透明基板10に用いられるガラス材料よりもガラス転移温度が低いものを用いる。そして製造方法としては、例えば、透明基板10の凹凸面に蛍光体粒子を混合させた低融点ガラスを滴下させ、放熱基板30を接着下のちに冷却する方法を用いる。この構成により、透明基板10に形成された凹凸の形状が変形することを防止するとともに、バインダが光により劣化することを防止することができる。 In the above description, the resin (binder) included in the phosphor layer 20 is a silicone resin such as dimethyl silicone. However, the present invention is not limited to this, and other transparent materials such as an epoxy resin and an acrylic resin may be used. . As a result, when the liquid phosphor-containing resin solution 23 at the time of manufacture is cured, curing by ultraviolet irradiation can be used. Moreover, the refractive index difference with the transparent substrate 10 can be adjusted more freely by using the said material. In addition, an inorganic transparent material such as low-melting glass can also be used. In this case, a glass material having a glass transition temperature lower than that of the glass material used for the transparent substrate 10 is used. And as a manufacturing method, the method of dripping the low melting glass which mixed the fluorescent substance particle on the uneven | corrugated surface of the transparent substrate 10, and cooling the thermal radiation board | substrate 30 after adhesion | attachment is used, for example. With this configuration, it is possible to prevent the uneven shape formed on the transparent substrate 10 from being deformed and to prevent the binder from being deteriorated by light.
 続いて図1A、図1B、図6、図7A及び図7Bを用いて本実施の形態に係る蛍光体光学素子1を用いた光源装置100について説明する。 Subsequently, the light source device 100 using the phosphor optical element 1 according to the present embodiment will be described with reference to FIGS. 1A, 1B, 6, 7A, and 7B.
 光源装置100は、例えば、発光波長405nmの複数の半導体レーザである半導体発光素子120と、複数のコリメートレンズ130、ダイクロイックミラー131、集光レンズ132、蛍光体光学素子1とで構成される。蛍光体光学素子1はモータ110の回転軸111に固定されており、所定の回転数で回転する。ここで蛍光体光学素子1の青色蛍光体層20Bの蛍光体には例えばBaMgAl1017:Eu蛍光体を、緑色蛍光体層20Gの蛍光体には例えばβ―SiAlON:Eu蛍光体を、赤色蛍光体層20Rの蛍光体には例えばCaAlSiN:Eu蛍光体を用いた場合について説明する。 The light source device 100 includes, for example, a semiconductor light emitting element 120 that is a plurality of semiconductor lasers having an emission wavelength of 405 nm, a plurality of collimating lenses 130, a dichroic mirror 131, a condenser lens 132, and the phosphor optical element 1. The phosphor optical element 1 is fixed to the rotating shaft 111 of the motor 110 and rotates at a predetermined rotational speed. Here, the phosphor of the blue phosphor layer 20B of the phosphor optical element 1 is, for example, BaMgAl 10 O 17 : Eu phosphor, the phosphor of the green phosphor layer 20G is, for example, β-SiAlON: Eu phosphor, and red. A case where, for example, a CaAlSiN 3 : Eu phosphor is used as the phosphor of the phosphor layer 20R will be described.
 半導体発光素子120から出射された波長405nmの出射光190は、コリメートレンズ130にて平行光に変換され合波されることで出射光190となり、ダイクロイックミラー131を通過し、集光レンズ132により蛍光体光学素子1の所定の位置に集光される。蛍光体光学素子1の所定の位置に集光されるように向かった光は、波長カットフィルタ膜40を透過し、図4Bに示すように効率良く蛍光へ変換される。そして、変換された蛍光は、波長カットフィルタ膜40の方向に向かい不要な波長の一部の光は反射され、色純度が高くなった蛍光として、蛍光体光学素子1を出射し、再び集光レンズ132にて平行光に変換され、その後、ダイクロイックミラー131により、出射光190と分離され、波長変換光192として放射される。 The emitted light 190 having a wavelength of 405 nm emitted from the semiconductor light emitting element 120 is converted into parallel light by the collimator lens 130 and combined to become the emitted light 190, passes through the dichroic mirror 131, and is fluorescent by the condenser lens 132. The light is condensed at a predetermined position of the body optical element 1. The light that is directed so as to be condensed at a predetermined position of the phosphor optical element 1 passes through the wavelength cut filter film 40 and is efficiently converted into fluorescence as shown in FIG. 4B. Then, the converted fluorescence is directed toward the wavelength cut filter film 40, and a part of light having an unnecessary wavelength is reflected, and is emitted from the phosphor optical element 1 as fluorescence having high color purity, and is condensed again. After being converted into parallel light by the lens 132, it is then separated from the outgoing light 190 by the dichroic mirror 131 and emitted as wavelength-converted light 192.
 上記の動作により光源装置100より出射された出射光のスペクトルおよび色度座標を図7Aおよび図7Bに示す。図7Aに示すスペクトルは、青色蛍光体層20Bの蛍光体にBaMgAl1017:Eu蛍光体を、緑色蛍光体層20Gの蛍光体にβ―SiAlON:Eu蛍光体を、赤色蛍光体層20Rの蛍光体にCaAlSiN:Euを用いた場合のスペクトルである。また波長カットフィルタ膜40に関しては、青色蛍光体層20Bの表面には波長500nm以上の光を反射する誘電体多層膜が形成され、緑色蛍光体層20Gの表面には波長590nm以上の光を反射する誘電体多層膜が形成され、赤色蛍光体層20Rの表面には波長590nm以下の光を反射する誘電体多層膜が形成される。 The spectrum and chromaticity coordinates of the emitted light emitted from the light source device 100 by the above operation are shown in FIGS. 7A and 7B. The spectrum shown in FIG. 7A shows that the phosphor of the blue phosphor layer 20B is BaMgAl 10 O 17 : Eu phosphor, the phosphor of the green phosphor layer 20G is β-SiAlON: Eu phosphor, and the red phosphor layer 20R. CaAlSiN phosphor 3: spectrum using the Eu. For the wavelength cut filter film 40, a dielectric multilayer film that reflects light having a wavelength of 500 nm or more is formed on the surface of the blue phosphor layer 20B, and light having a wavelength of 590 nm or more is reflected on the surface of the green phosphor layer 20G. A dielectric multilayer film that reflects light with a wavelength of 590 nm or less is formed on the surface of the red phosphor layer 20R.
 このとき、波長405nmの出射光190のスペクトルに対して、青色蛍光体層20Bから出射された蛍光80Bを波長カットフィルタ膜40で色純度を向上させた波長変換光(青色光)191B、緑色蛍光体層20Gから出射された蛍光80Gを波長カットフィルタ膜40で色純度を向上させた波長変換光(緑色光)191G、及び、赤色蛍光体層20Rから出射された蛍光80Rを波長カットフィルタ膜40で色純度を向上させた波長変換光(赤色光)191Rは、図7Bの色度図において各色度座標に示されるようにsRGB規格を十分にカバーする色再現性のよい光となる。つまり、蛍光体光学素子1を用いた光源装置100は、sRGB規格を十分にカバーする単色光を放射することができる。 At this time, with respect to the spectrum of the emitted light 190 having a wavelength of 405 nm, the wavelength converted light (blue light) 191B obtained by improving the color purity of the fluorescence 80B emitted from the blue phosphor layer 20B by the wavelength cut filter film 40, the green fluorescence Wavelength converted light (green light) 191G whose color purity is improved by the wavelength cut filter film 40 from the fluorescent light 80G emitted from the body layer 20G, and the wavelength cut filter film 40 from the fluorescent light 80R emitted from the red phosphor layer 20R. The wavelength-converted light (red light) 191R whose color purity has been improved in the above becomes light with good color reproducibility that sufficiently covers the sRGB standard as shown by each chromaticity coordinate in the chromaticity diagram of FIG. 7B. That is, the light source device 100 using the phosphor optical element 1 can emit monochromatic light that sufficiently covers the sRGB standard.
 以上のように、本実施の形態に係る光源装置100は、蛍光体光学素子1と、半導体発光素子120と、ダイクロイックミラー131と、集光レンズ132とを備える。 As described above, the light source device 100 according to the present embodiment includes the phosphor optical element 1, the semiconductor light emitting element 120, the dichroic mirror 131, and the condenser lens 132.
 上記の構成により、簡便な構成で、光源装置100を実現できる。つまり、蛍光体光学素子1の蛍光体において効率良く半導体発光素子120からの光を蛍光に変換でき、さらに色純度の高い青色光、緑色光、赤色光を放射することができるため、輝度の高い光源装置100を実現させることができる。言い換えると、本実施の形態に係る光源装置100は、簡単な構成で、画像表示装置に適した構成を実現できる。なお、半導体発光素子120は、本発明に係る励起光源の一例である。 With the above configuration, the light source device 100 can be realized with a simple configuration. That is, the phosphor of the phosphor optical element 1 can efficiently convert light from the semiconductor light emitting element 120 into fluorescence, and can emit blue light, green light, and red light with high color purity, and thus has high luminance. The light source device 100 can be realized. In other words, the light source device 100 according to the present embodiment can realize a configuration suitable for the image display device with a simple configuration. The semiconductor light emitting device 120 is an example of an excitation light source according to the present invention.
 また、蛍光体層20を積層方向から見た外形は円形であるので、蛍光体光学素子1を容易に回転させることが可能となり、特定の蛍光体領域に連続して光が入射することを防止することができる。 Further, since the outer shape of the phosphor layer 20 viewed from the stacking direction is circular, the phosphor optical element 1 can be easily rotated, and light can be prevented from continuously entering a specific phosphor region. can do.
(第2の実施の形態)
 続いて、図8A~図10を用いて本発明の第2の実施の形態に係る蛍光体光学素子および光源装置について説明する。
(Second Embodiment)
Subsequently, a phosphor optical element and a light source device according to a second embodiment of the present invention will be described with reference to FIGS. 8A to 10.
 本実施の形態に係る光源装置は、画像表示素子として液晶パネルのような偏光光学系を用いる画像表示装置に適したものである。 The light source device according to the present embodiment is suitable for an image display device using a polarization optical system such as a liquid crystal panel as an image display element.
 図8Aは、本実施の形態に係る蛍光体光学素子の構造を示す正面図であり、図8Bは、図8AのIa-Ia線における断面図である。図9A及び図9Bは、本実施の形態に係る光源装置の動作を説明するための図である。図9Cは、本実施の形態に係る光源装置の機能を説明するための図である。図10は、本実施の形態に係る光源装置の構成及び動作を説明するための図である。 FIG. 8A is a front view showing the structure of the phosphor optical element according to the present embodiment, and FIG. 8B is a cross-sectional view taken along the line Ia-Ia in FIG. 8A. 9A and 9B are diagrams for explaining the operation of the light source device according to the present embodiment. FIG. 9C is a diagram for explaining functions of the light source device according to the present embodiment. FIG. 10 is a diagram for explaining the configuration and operation of the light source device according to the present embodiment.
(構成)
 以下、本実施の形態に係る蛍光体光学素子について、具体的に説明する。本実施の形態に係る蛍光体光学素子は、第1の実施の形態に係る蛍光体光学素子1と比較して、ほぼ同様の構成を有するが、透明基板と蛍光体層との界面の凹凸形状が、凹部と凸部とが一定周期で繰り返す同心円状に形成されている点が異なる。以下、第1の実施の形態と異なる点を中心に説明する。
(Constitution)
Hereinafter, the phosphor optical element according to the present embodiment will be specifically described. The phosphor optical element according to the present embodiment has substantially the same configuration as that of the phosphor optical element 1 according to the first embodiment, but has an uneven shape at the interface between the transparent substrate and the phosphor layer. However, the difference is that the concave and convex portions are formed in concentric circles that repeat at a constant period. The following description will focus on differences from the first embodiment.
 まず図8Aおよび図8Bに示すように、蛍光体光学素子201は、例えば、厚み0.3mm~0.5mmのアルミ合金やマグネシウム合金などの放熱基板230上に、例えば厚み0.05mm~0.4mmの青色蛍光体層220B、緑色蛍光体層220G、赤色蛍光体層220Rと、例えばB270やBK7などのガラスである厚み0.1mm~1mmの透明基板210とが順に積層されることにより形成されている。 First, as shown in FIGS. 8A and 8B, the phosphor optical element 201 is formed on a heat dissipation substrate 230 such as an aluminum alloy or a magnesium alloy having a thickness of 0.3 mm to 0.5 mm, for example. It is formed by sequentially laminating a 4 mm blue phosphor layer 220B, a green phosphor layer 220G, a red phosphor layer 220R, and a transparent substrate 210 having a thickness of 0.1 mm to 1 mm, for example, glass such as B270 or BK7. ing.
 ここで、青色蛍光体層220Bには青色蛍光用として例えばBaMgAl1017:Eu蛍光体が、緑色蛍光体層220Gには緑色蛍光用として例えばβ―SiAlON:Eu蛍光体が、赤色蛍光体層220Rには赤色蛍光用として例えば、CaAlSiN:Eu蛍光体が、例えばシリコーンなどのバインダに含有されてなる。以降、青色蛍光体層220B、緑色蛍光体層220G、赤色蛍光体層220Rを特に区別せず、蛍光体層220と記載する場合がある。 Here, for the blue phosphor layer 220B, for example, a BaMgAl 10 O 17 : Eu phosphor is used for blue fluorescence, and for the green phosphor layer 220G, for example, a β-SiAlON: Eu phosphor is used for green fluorescence, a red phosphor layer. In 220R, for example, a CaAlSiN 3 : Eu phosphor for red fluorescence is contained in a binder such as silicone. Hereinafter, the blue phosphor layer 220 </ b> B, the green phosphor layer 220 </ b> G, and the red phosphor layer 220 </ b> R may be described as the phosphor layer 220 without being particularly distinguished.
 さらに、透明基板210と蛍光体層220との界面の透明基板210側の表面には凹凸形状を有する凹凸部215が形成される。また、透明基板210に形成されている凹凸部215は、図8Aに示すように中心位置から同心円状に形成された複数の溝により構成され、例えば、ピッチが0.05mm、深さが0.1mmの複数の溝で構成される。 Furthermore, an uneven portion 215 having an uneven shape is formed on the surface on the transparent substrate 210 side of the interface between the transparent substrate 210 and the phosphor layer 220. Moreover, the uneven | corrugated | grooved part 215 formed in the transparent substrate 210 is comprised by the some groove | channel formed concentrically from the center position, as shown to FIG. 8A, for example, a pitch is 0.05 mm and the depth is 0.00. It is composed of a plurality of 1 mm grooves.
 蛍光体光学素子201の透明基板210の凹凸部215の反対側の表面には、例えばZrO、TiO、CaF等の誘電膜が多層に積層された誘電体多層膜である波長カットフィルタ膜240が形成されている。 A wavelength cut filter film 240 that is a dielectric multilayer film in which dielectric films such as ZrO, TiO 2 , and CaF are laminated in multiple layers is provided on the surface of the phosphor optical element 201 on the opposite side of the uneven portion 215 of the transparent substrate 210. Is formed.
 蛍光体光学素子201の外形は、図8Aに示すように円形の形状であり、回転して用いるために、中央部に軸穴250が形成されている。 The outer shape of the phosphor optical element 201 is a circular shape as shown in FIG. 8A, and a shaft hole 250 is formed at the center for rotation.
(動作)
 続いて図9A、図9B及び図9Cを用いて、本実施の形態に係る蛍光体光学素子201の動作を、周辺の光学素子と組み合わせた場合において説明する。本実施の形態において、蛍光体光学素子201の凹凸部215は、出射光190の偏光方向の電界成分と垂直な方向に溝が形成されるように設定される。
(Operation)
Subsequently, the operation of the phosphor optical element 201 according to the present embodiment will be described with reference to FIGS. 9A, 9B, and 9C when it is combined with peripheral optical elements. In the present embodiment, the uneven portion 215 of the phosphor optical element 201 is set such that a groove is formed in a direction perpendicular to the electric field component in the polarization direction of the emitted light 190.
 図9Aは、本実施の形態に係る蛍光体光学素子201を用いた光源装置において、半導体発光素子120から出射された出射光が、蛍光体光学素子201に到達するまでの動作を表す。図9Bは、蛍光体光学素子201から放射された蛍光が、ダイクロイックミラー131にて反射され、光源装置外部に放射されるまでの動作を表す。 FIG. 9A shows an operation until the emitted light emitted from the semiconductor light emitting element 120 reaches the phosphor optical element 201 in the light source device using the phosphor optical element 201 according to the present embodiment. FIG. 9B shows the operation until the fluorescence emitted from the phosphor optical element 201 is reflected by the dichroic mirror 131 and emitted outside the light source device.
 波長405nmの光を放射する半導体レーザである半導体発光素子120から出射された出射光290aは、図中の水平方向に電界成分を有する偏光光である。出射光290aは、偏光方向が維持されたまま、コリメートレンズ130で平行光である出射光290bとなりダイクロイックミラー131を透過する。ダイクロイックミラー131を透過した出射光290cは集光レンズ132により蛍光体光学素子201の蛍光体層220に集光される。蛍光体層220に集光された出射光290cは蛍光体層220の蛍光体において蛍光に変換されるが、蛍光体光学素子201に形成された凹凸により、表面を複数回反射して蛍光体光学素子201から出射する。このとき、図9Cに示すように、凹凸部215が、入射光の偏光方向に垂直な方向に屈折率界面を有する周期構造であるため、蛍光が屈折率界面を複数回反射して蛍光体光学素子201から出射される蛍光は、入射光の偏光とは偏光方向が90°回転した偏光成分が大きい蛍光292aとなり、蛍光体光学素子201から集光レンズ132の方向へ放射される。この蛍光292aは集光レンズ132で再び平行光292bとなり、ダイクロイックミラー131で垂直方向へ反射され光源装置から放射される。このような光源装置から放射される光は入射光の一部と、それぞれ青色、緑色及び赤色が一定時間ごとに出射される。これらの出射された偏光性の高い蛍光を利用して、画像を投影することが容易となる。 The emitted light 290a emitted from the semiconductor light emitting device 120, which is a semiconductor laser that emits light having a wavelength of 405 nm, is polarized light having an electric field component in the horizontal direction in the figure. The outgoing light 290a becomes parallel outgoing light 290b with the collimating lens 130 while the polarization direction is maintained, and passes through the dichroic mirror 131. The outgoing light 290 c that has passed through the dichroic mirror 131 is condensed on the phosphor layer 220 of the phosphor optical element 201 by the condenser lens 132. The emitted light 290c collected on the phosphor layer 220 is converted to fluorescence in the phosphor of the phosphor layer 220, but the surface is reflected a plurality of times by the unevenness formed on the phosphor optical element 201, and phosphor optics. The light is emitted from the element 201. At this time, as shown in FIG. 9C, the uneven portion 215 has a periodic structure having a refractive index interface in a direction perpendicular to the polarization direction of the incident light. The fluorescence emitted from the element 201 becomes fluorescence 292a having a large polarization component whose polarization direction is rotated by 90 ° from the polarization of the incident light, and is emitted from the phosphor optical element 201 toward the condenser lens 132. The fluorescent light 292a becomes parallel light 292b again by the condenser lens 132, is reflected by the dichroic mirror 131 in the vertical direction, and is emitted from the light source device. Light emitted from such a light source device emits a part of incident light and blue, green, and red at regular intervals. It is easy to project an image using these emitted highly polarized fluorescence.
 上記の構成により簡便な構成で、光源装置を構成することができるとともに、蛍光体光学素子の効率の低下を抑制し、輝度を向上させることができる。さらに、蛍光体光学素子から出射される光は偏光であるため、表示素子に液晶パネルなどの偏光光学系を用いる場合、効率よく蛍光を利用することができる。 With the above configuration, the light source device can be configured with a simple configuration, and the decrease in the efficiency of the phosphor optical element can be suppressed and the luminance can be improved. Furthermore, since the light emitted from the phosphor optical element is polarized light, when a polarizing optical system such as a liquid crystal panel is used for the display element, fluorescence can be used efficiently.
(効果)
 続いて図10を用いて、上記の効果を説明するため、上記本実施の形態に係る蛍光体光学素子201を用いた光源装置の一例を示す。
(effect)
Subsequently, an example of a light source device using the phosphor optical element 201 according to the present embodiment will be described with reference to FIG.
 図10の光源装置300は、図9Aおよび図9Bに示した構成のほかに、モニタ素子325、偏光ビームスプリッタ340、モニタレンズ343、回折格子346、制御IC350および偏光を利用する例えばLCOS(Liquid Crystal On Si)素子である反射型表示素子380を備える。 The light source device 300 of FIG. 10 has, for example, an LCOS (Liquid Crystal) that uses a monitor element 325, a polarizing beam splitter 340, a monitor lens 343, a diffraction grating 346, a control IC 350, and polarization in addition to the configuration shown in FIGS. 9A and 9B. A reflective display element 380 which is an On Si element is provided.
 同図に示す光源装置300は、図9Aおよび図9Bで説明した動作を行い、ダイクロイックミラー131から青色、緑色及び赤色の波長変換光292を放射する。波長変換光292は偏光ビームスプリッタ340で大部分を透過し、反射型表示素子380に照射される。このとき、偏光ビームスプリッタ340を透過しなかったごく一部の波長変換光294は回折格子346で波長ごとに分けられ、分割受光素子を有するモニタ素子325に照射される。ここで、モニタ素子325における各分割受光素子は、青色、緑色及び赤色それぞれに分けられた波長変換光294の輝度変化を読み取り、その結果を制御IC350にフィードバックすることができる。 The light source device 300 shown in FIG. 9 performs the operation described with reference to FIGS. 9A and 9B and emits blue, green, and red wavelength-converted light 292 from the dichroic mirror 131. The wavelength-converted light 292 is mostly transmitted by the polarization beam splitter 340 and irradiated on the reflective display element 380. At this time, a small part of the wavelength converted light 294 that has not passed through the polarization beam splitter 340 is divided by the diffraction grating 346 for each wavelength, and is irradiated to the monitor element 325 having the divided light receiving elements. Here, each of the divided light receiving elements in the monitor element 325 can read the luminance change of the wavelength converted light 294 divided into blue, green and red, and feed back the result to the control IC 350.
 一方、反射型表示素子380に放射された波長変換光292は、マトリックス状の画素ごとに形成されている液晶により偏光方向が変えられて反射される。それにより、反射型表示素子380で反射された波長変換光292は、偏光ビームスプリッタ340で画素ごとの映像光396となり、光源装置300から出射され、図示しない投影レンズにより投影される。 On the other hand, the wavelength-converted light 292 emitted to the reflective display element 380 is reflected with the polarization direction changed by the liquid crystal formed for each matrix pixel. Thereby, the wavelength-converted light 292 reflected by the reflective display element 380 becomes image light 396 for each pixel by the polarization beam splitter 340, is emitted from the light source device 300, and is projected by a projection lens (not shown).
 以上のように、本実施の形態に係る蛍光体光学素子201は、上記の構成により簡便な構成で、光源装置300を構成することができるとともに、蛍光体光学素子201の蛍光体における変換効率の低下を抑制し、光源装置300の輝度を向上させることができる。さらに、蛍光体光学素子201からの波長変換光(出射光)292の偏光性を高くすることができ、このような蛍光体光学素子201を用いることにより、偏光性の高い光を出射する光源装置300を構成することができる。 As described above, the phosphor optical element 201 according to the present embodiment can constitute the light source device 300 with a simple configuration as described above, and the conversion efficiency of the phosphor optical element 201 in the phosphor can be improved. The decrease can be suppressed and the luminance of the light source device 300 can be improved. Furthermore, the polarization property of the wavelength-converted light (emitted light) 292 from the phosphor optical element 201 can be increased, and by using such a phosphor optical element 201, a light source device that emits light with high polarization property 300 can be configured.
 言い換えると、本実施の形態に係る蛍光体光学素子201は、透明基板210と蛍光体層220との界面の凹凸形状が、凹部と凸部とが一定周期で繰り返す同心円状に形成されている。つまり、凹凸部215は、蛍光体層220を積層方向から見た外形に対して同心円状に形成されている。 In other words, in the phosphor optical element 201 according to the present embodiment, the uneven shape of the interface between the transparent substrate 210 and the phosphor layer 220 is formed in a concentric shape in which the concave portion and the convex portion are repeated at a constant period. That is, the concavo-convex portion 215 is formed concentrically with respect to the outer shape of the phosphor layer 220 viewed from the stacking direction.
 これにより、蛍光体光学素子201から発せられる蛍光、つまり蛍光体光学素子201からの波長変換光が一定の偏光性を有することができる。このような蛍光体光学素子201を用いることにより、偏光光学系の画像表示装置に適した光源装置300を実現できる。 Thereby, the fluorescence emitted from the phosphor optical element 201, that is, the wavelength-converted light from the phosphor optical element 201 can have a certain polarization property. By using such a phosphor optical element 201, a light source device 300 suitable for a polarization optical system image display device can be realized.
 なお、本実施の形態においては、半導体発光素子120として、半導体レーザとしたが、半導体レーザと同じ導波路が形成された端面出射型の発光素子であるスーパールミネッセントダイオードでもよい。また半導体レーザの発光波長を405nmとしたが、例えば波長380nmから440nmの波長の光を出射する半導体レーザでもよい。 In this embodiment, a semiconductor laser is used as the semiconductor light emitting device 120. However, a super luminescent diode which is an edge emitting light emitting device in which the same waveguide as the semiconductor laser is formed may be used. Further, although the emission wavelength of the semiconductor laser is 405 nm, for example, a semiconductor laser that emits light having a wavelength of 380 nm to 440 nm may be used.
 また、上記構成で、蛍光体光学素子201の凹凸(透明基板210と蛍光体層220との界面の凹凸形状)は、同心円状に形成された複数の溝により構成されるとしたがこの限りではない。例えば、蛍光体層220の中心から法線方向に形成された溝が所定の方位に形成された複数の溝により構成されるとしてもよい。つまり、蛍光体層220の中心から所定の角度間隔で形成された複数の溝により構成されてもよい。この場合、蛍光292aの偏光方向が90度変化するため、蛍光体光学素子201の位置や、ダイクロイックミラー131の構成は、凹凸形状に合わせて最適なものに変更される。 In the above configuration, the unevenness of the phosphor optical element 201 (the uneven shape of the interface between the transparent substrate 210 and the phosphor layer 220) is composed of a plurality of concentric grooves. Absent. For example, the groove formed in the normal direction from the center of the phosphor layer 220 may be composed of a plurality of grooves formed in a predetermined orientation. That is, it may be constituted by a plurality of grooves formed at predetermined angular intervals from the center of the phosphor layer 220. In this case, since the polarization direction of the fluorescence 292a changes by 90 degrees, the position of the phosphor optical element 201 and the configuration of the dichroic mirror 131 are changed to an optimum one according to the uneven shape.
 また、上記構成で、凹凸部215のピッチ(周期)は蛍光の発光波長よりも十分大きい、例えばピッチが0.05mm、深さが0.1mmとしたがこの限りではない。 In the above configuration, the pitch (period) of the concave and convex portions 215 is sufficiently larger than the emission wavelength of fluorescence, for example, the pitch is 0.05 mm and the depth is 0.1 mm.
 例えば、凹凸部215のピッチを、蛍光体からの蛍光の発光波長よりも同程度からもしくは小さく設定し、例えば、ピッチが0.1μm、溝部(透明基板210に形成された凹凸部215の凹部)の幅がピッチの約半分の0.06μm、深さが0.2μmとしてもよい。この場合、蛍光体からの出射光は、凹凸部215の周期構造の影響を強く受けるためより偏光性を高くすることができる。 For example, the pitch of the concavo-convex portions 215 is set to be about the same as or smaller than the emission wavelength of the fluorescence from the phosphor. The width may be 0.06 μm, which is about half the pitch, and the depth may be 0.2 μm. In this case, since the emitted light from the phosphor is strongly influenced by the periodic structure of the concavo-convex portion 215, the polarization can be further increased.
 ここで、青色蛍光体層220B、緑色蛍光体層220G、赤色蛍光体層220Rに含有される蛍光体粒子の粒径は、溝部幅よりも小さく設定する必要があり、凹凸のピッチが0.1μm、溝部(透明基板210に形成された凹凸部215の凹部)の幅が0.06μmの場合は、蛍光体粒子の粒径は、例えば、粒径10~50nm程度とする。 Here, the particle diameters of the phosphor particles contained in the blue phosphor layer 220B, the green phosphor layer 220G, and the red phosphor layer 220R must be set smaller than the groove width, and the uneven pitch is 0.1 μm. When the width of the groove (the concave portion of the concave and convex portion 215 formed on the transparent substrate 210) is 0.06 μm, the particle size of the phosphor particles is, for example, about 10 to 50 nm.
 つまり、蛍光体層220の励起光の入射面に形成された凹凸形状の凸部の幅、すなわち透明基板210に形成された凹凸部215の凹部の幅は、蛍光体粒子の粒径よりも大きく、かつ、蛍光体粒子から発せられる蛍光、つまり波長変換光292(出射光)の波長よりも小さい。これにより、蛍光体光学素子201から発せられる波長変換光292の偏光性をより高くすることができる。 That is, the width of the concavo-convex convex portion formed on the excitation light incident surface of the phosphor layer 220, that is, the width of the concave portion of the concavo-convex portion 215 formed on the transparent substrate 210 is larger than the particle size of the phosphor particles. And, it is smaller than the fluorescence emitted from the phosphor particles, that is, the wavelength of the wavelength converted light 292 (emitted light). Thereby, the polarization property of the wavelength conversion light 292 emitted from the phosphor optical element 201 can be further increased.
 上記の場合、蛍光体として上記大きさの、例えば、BaMgAl1017:Eu蛍光体、β―SiAlON:Eu蛍光体、CaAlSiN:Eu蛍光体を用いることができる。 In the above case, for example, a BaMgAl 10 O 17 : Eu phosphor, a β-SiAlON: Eu phosphor, or a CaAlSiN 3 : Eu phosphor having the above size can be used as the phosphor.
 さらに他の蛍光体材料として、例えば、CdSe/ZnSのコア・シェル型量子ドット蛍光体のような、粒径が発光波長と同程度か、もしくはそれ以下である蛍光体を用いることができる。 Further, as another phosphor material, for example, a phosphor having a particle size of the same or less than the emission wavelength, such as a CdSe / ZnS core-shell quantum dot phosphor, can be used.
 この場合、青色蛍光体層220B、緑色蛍光体層220G、赤色蛍光体層220Rにはいずれも量子ドット蛍光体を用い、発光波長に合わせて粒径を変化させることで、本実施の形態に係る蛍光体光学素子201を構成することが出来る。 In this case, quantum dot phosphors are used for the blue phosphor layer 220B, the green phosphor layer 220G, and the red phosphor layer 220R, and the particle diameter is changed in accordance with the emission wavelength. The phosphor optical element 201 can be configured.
 さらに蛍光体粒子をCdSe/ZnSコア・シェル型量子ドット蛍光体以外の量子ドット蛍光体を用いることができる。量子ドット蛍光体材料としては、例えばII-V族化合物半導体であるInN、InP、InAs、InSb、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSbおよびBN、II-VI族化合物半導体であるHgS、HgSe、HgTe、CdS、CdSe、CdTe、ZnS、ZnSeおよびZnTe、並びにこれらの混晶結晶よりなる群から選択することができる。また、上記蛍光体は、ノンドープ型量子ドット蛍光体であるが、ドープ型量子ドット蛍光体を用いてもよい。ドープ型量子ドット蛍光体としては、例えば構成する材料を、ZnS:Mn2+、CdS:Mn2+およびYVO4:Eu3+を用いることができる。 Further, as the phosphor particles, quantum dot phosphors other than CdSe / ZnS core-shell type quantum dot phosphors can be used. Quantum dot phosphor materials include, for example, II-V group compound semiconductors such as InN, InP, InAs, InSb, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb and BN, and II-VI group compound semiconductors. It can be selected from the group consisting of certain HgS, HgSe, HgTe, CdS, CdSe, CdTe, ZnS, ZnSe and ZnTe, and mixed crystal crystals thereof. The phosphor is a non-doped quantum dot phosphor, but a doped quantum dot phosphor may be used. For example, ZnS: Mn 2+ , CdS: Mn 2+, and YVO 4: Eu 3+ can be used as the doped quantum dot phosphor.
(第3の実施の形態)
 続いて、図11A~図13Bを用いて本発明の第3の実施の形態に係る蛍光体光学素子および光源装置について説明する。
(Third embodiment)
Subsequently, a phosphor optical element and a light source device according to a third embodiment of the present invention will be described with reference to FIGS. 11A to 13B.
 図11Aは、本実施の形態に係る蛍光体光学素子401の構造を示す正面図であり、図11Bは図11AのIa-Ia線における断面図である。図12Aは、ダイクロイックミラー131の機能を説明するための図であり、図12Bは、ダイクロイックミラー131の透過特性を示すグラフであり、図13Aは、本実施の形態に係る光源装置から出射される出射光のスペクトルを示すグラフであり、図13Bは出射光の色度図である。 FIG. 11A is a front view showing the structure of the phosphor optical element 401 according to the present embodiment, and FIG. 11B is a cross-sectional view taken along the line Ia-Ia in FIG. 11A. FIG. 12A is a diagram for explaining the function of the dichroic mirror 131, FIG. 12B is a graph showing the transmission characteristics of the dichroic mirror 131, and FIG. 13A is emitted from the light source device according to the present embodiment. FIG. 13B is a graph showing a spectrum of outgoing light, and FIG. 13B is a chromaticity diagram of outgoing light.
 本実施の形態は第2の実施の形態とほとんど同じであるが、半導体発光素子から出射される光の波長が異なる。以下、第2の実施の形態と異なる点を中心に説明する。本実施の形態においては、半導体発光素子としては、出射光の波長が435nm~480nmである、所謂、可視の青色である光を放射する半導体レーザ素子を用いる。一方、蛍光体光学素子401については、出射光の偏光方向を変えて反射する反射層425と、第2の実施の形態に示した偏光を有する蛍光に変換する蛍光体層420とに領域が分かれている。なお、透明基板410、凹凸部415、放熱基板430及び軸穴450はそれぞれ、第2の実施の形態における透明基板210、凹凸部215、放熱基板230及び軸穴250と同様である。 This embodiment is almost the same as the second embodiment, but the wavelength of light emitted from the semiconductor light emitting element is different. Hereinafter, a description will be given focusing on differences from the second embodiment. In the present embodiment, as the semiconductor light emitting element, a so-called semiconductor laser element that emits visible blue light having a wavelength of emitted light of 435 nm to 480 nm is used. On the other hand, the phosphor optical element 401 is divided into a reflection layer 425 that reflects the polarization direction of the emitted light and reflects it, and a phosphor layer 420 that converts the fluorescence having the polarization shown in the second embodiment. ing. The transparent substrate 410, the uneven portion 415, the heat dissipation substrate 430, and the shaft hole 450 are the same as the transparent substrate 210, the uneven portion 215, the heat dissipation substrate 230, and the shaft hole 250, respectively, in the second embodiment.
 蛍光体層420は緑色蛍光体粒子が含有される緑色蛍光体層420Gと、赤色蛍光体粒子が含有される赤色蛍光体層420Rとで構成される。本実施の形態では、緑色蛍光体として、Y(Al,Ga)12:Ce蛍光体、赤色蛍光体として、CaAlSiN:Eu蛍光体を用いる。 The phosphor layer 420 includes a green phosphor layer 420G containing green phosphor particles and a red phosphor layer 420R containing red phosphor particles. In the present embodiment, Y 3 (Al, Ga) 5 O 12 : Ce phosphor is used as the green phosphor, and CaAlSiN 3 : Eu phosphor is used as the red phosphor.
 一方、反射層425については、蛍光体層420の蛍光体粒子の代わりに例えば、TiO粒子などの高反射材料に置き換えることで容易に実現できる。 On the other hand, the reflective layer 425 can be easily realized by replacing the phosphor particles of the phosphor layer 420 with a highly reflective material such as TiO 2 particles, for example.
 またダイクロイックミラー131については、図12Aに示すように、半導体発光素子から出射される出射光290bの波長に対して、例えば紙面に向かって水平方向(紙面左右方向)の出射光290cのみ透過し、長波長側の蛍光および紙面に向かって垂直方向(紙面上下方向)の出射光の波長の光を反射するように設計することで構成部品点数を変えずに容易に実現することができる。なお、図12Bは、波長450nmに対して、ダイクロイックミラー131の誘電体多層膜を設計した場合の透過特性を示す。 As for the dichroic mirror 131, as shown in FIG. 12A, for example, only the outgoing light 290c in the horizontal direction (left and right direction on the paper surface) is transmitted to the wavelength of the outgoing light 290b emitted from the semiconductor light emitting element. It can be easily realized without changing the number of components by designing to reflect the fluorescent light on the long wavelength side and the light having the wavelength of the emitted light in the vertical direction (up and down direction on the paper surface). FIG. 12B shows the transmission characteristics when the dielectric multilayer film of the dichroic mirror 131 is designed for a wavelength of 450 nm.
 このような構成を有する光源装置から出射される光は、図13A及び図13Bに示すように、色純度が高く、色再現性の優れた青色光292B、緑色光292G、赤色光292Rの光となる。さらに、青色光292B、緑色光292G、赤色光292Rは偏光性が高く方向もそろっているため、偏光光学系の表示素子を用いた画像表示装置等で利用することが可能となる。 As shown in FIGS. 13A and 13B, the light emitted from the light source device having such a configuration has high color purity and excellent color reproducibility, such as blue light 292B, green light 292G, and red light 292R. Become. Further, since the blue light 292B, the green light 292G, and the red light 292R have high polarization and are aligned in directions, they can be used in an image display device or the like using a display element of a polarization optical system.
 以上のように、本実施の形態に係る蛍光体光学素子401は、上記の構成により簡便な構成で、光源装置を構成することができるとともに、蛍光体光学素子401の蛍光体における変換効率の低下を抑制し、光源装置の輝度を向上させることができる。さらに、蛍光体光学素子からの出射光を偏光性の高い光とすることができるので、偏光性の高い光を出射する光源装置を構成することができる。 As described above, the phosphor optical element 401 according to the present embodiment can be configured as a light source device with a simple configuration as described above, and the conversion efficiency of the phosphor of the phosphor optical element 401 is reduced. Can be suppressed, and the luminance of the light source device can be improved. Furthermore, since the light emitted from the phosphor optical element can be changed to light having high polarization, a light source device that emits light having high polarization can be configured.
 以上、本発明に係る蛍光体光学素子及び光源装置について、実施の形態に基づいて説明したが、本発明は、上記の実施の形態及に限定されるものではなく、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本発明に含まれる。 As described above, the phosphor optical element and the light source device according to the present invention have been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and for each embodiment. The present invention also includes forms obtained by making various modifications conceived by those skilled in the art and forms realized by arbitrarily combining the components and functions in the respective embodiments without departing from the spirit of the present invention.
 本発明に係る蛍光体光学素子および光源装置は液晶テレビや液晶モニタなどのバックライトの光源やプロジェクタなどの投影型ディスプレイの光源として用いることが可能である。 The phosphor optical element and the light source device according to the present invention can be used as a light source for a backlight such as a liquid crystal television and a liquid crystal monitor and a light source for a projection display such as a projector.
1、201、401 蛍光体光学素子
10、210、410 透明基板
15、215、415 凹凸部
15a、15c 平面
15b 傾斜面
20、220、420 蛍光体層
20B、220B 青色蛍光体層
20G、220G、420G、1004 緑色蛍光体層
20R、220R、420R 赤色蛍光体層
21 空隙
21B 青色蛍光体粒子
21G 緑色蛍光体粒子
21R 赤色蛍光体粒子
22 バインダ
23、23B、23G、23R 蛍光体含有樹脂溶液
30、230、430 放熱基板
40、240、440 波長カットフィルタ膜
50、250、450 軸穴
60 入射光
61 反射光
70 光変換領域
80、80B、80G、80R、292a 蛍光
100、300、1063 光源装置
110 モータ
111 回転軸
120 半導体発光素子
130、1149 コリメートレンズ
131 ダイクロイックミラー
132 集光レンズ
190、290a、290b、290c 出射光
192、292、294 波長変換光
325 モニタ素子
340 偏光ビームスプリッタ
343 モニタレンズ
346 回折格子
350 制御IC
380 反射型表示素子
396 映像光
1001 拡散領域
1002 蛍光発光領域
1071 蛍光体ホイール
1072 青色レーザ発光器
1073 ホイールモータ
1074 発光素子
1075 導光装置
1150 反射ミラー群
1151a、1151b、1151c、1151d ミラー
1153a、1153b、1153c、1153d、1154 レンズ
1155 集光レンズ群
1, 201, 401 Phosphor optical element 10, 210, 410 Transparent substrate 15, 215, 415 Uneven portion 15a, 15c Plane 15b Inclined surface 20, 220, 420 Phosphor layer 20B, 220B Blue phosphor layer 20G, 220G, 420G 1004 Green phosphor layer 20R, 220R, 420R Red phosphor layer 21 Void 21B Blue phosphor particle 21G Green phosphor particle 21R Red phosphor particle 22 Binder 23, 23B, 23G, 23R Phosphor-containing resin solutions 30, 230, 430 Heat radiation substrate 40, 240, 440 Wavelength cut filter film 50, 250, 450 Shaft hole 60 Incident light 61 Reflected light 70 Light conversion region 80, 80B, 80G, 80R, 292a Fluorescence 100, 300, 1063 Light source device 110 Motor 111 Rotation Axis 120 Semiconductor light emitting device 130, 1149 Torenzu 131 dichroic mirror 132 condensing lens 190,290a, 290b, 290c emits light 192,292,294 wavelength-converted light 325 monitoring device 340 polarizing beam splitter 343 monitors lens 346 diffraction grating 350 Control IC
380 Reflective display element 396 Video light 1001 Diffusing region 1002 Fluorescent light emitting region 1071 Phosphor wheel 1072 Blue laser light emitter 1073 Wheel motor 1074 Light emitting device 1075 Light guide device 1150 Reflective mirror groups 1151a, 1151b, 1151c, 1151d Mirrors 1153a, 1153b, 1153c, 1153d, 1154 Lens 1155 Condensing lens group

Claims (12)

  1.  励起光源から放射される励起光の波長の光を吸収する蛍光体粒子が含有された蛍光体含有層と、
     前記蛍光体含有層を保持する基板とを備え、
     前記蛍光体含有層の前記励起光の入射面は、凹凸形状である
     蛍光体光学素子。
    A phosphor-containing layer containing phosphor particles that absorb light having a wavelength of excitation light emitted from an excitation light source;
    A substrate for holding the phosphor-containing layer,
    The incident surface for the excitation light of the phosphor-containing layer has a concavo-convex shape.
  2.  前記凹凸形状は、凹部と凸部とが周期的に変化する形状であり、
     当該凹凸形状のピッチは、前記蛍光体粒子の粒径よりも大きい
     請求項1記載の蛍光体光学素子。
    The concavo-convex shape is a shape in which the concave portion and the convex portion change periodically,
    The phosphor optical element according to claim 1, wherein a pitch of the uneven shape is larger than a particle diameter of the phosphor particles.
  3.  さらに、
     前記蛍光体含有層の前記励起光の入射面側に、前記励起光の波長に対して透明な透明基材を備える
     請求項1又は2記載の蛍光体光学素子。
    further,
    The phosphor optical element according to claim 1, further comprising a transparent substrate that is transparent with respect to the wavelength of the excitation light, on the incident surface side of the excitation light of the phosphor-containing layer.
  4.  前記透明基材の前記蛍光体含有層側の面は、前記凹凸形状に応じた凹凸形状に形成されている
     請求項3記載の蛍光体光学素子。
    The phosphor optical element according to claim 3, wherein a surface of the transparent substrate on the phosphor-containing layer side is formed in an uneven shape corresponding to the uneven shape.
  5.  前記蛍光体含有層に含まれる前記蛍光体粒子の密度は、前記凹凸形状に向かって高くなる
     請求項1から4のいずれか1項に記載の蛍光体光学素子。
    The phosphor optical element according to any one of claims 1 to 4, wherein the density of the phosphor particles contained in the phosphor-containing layer increases toward the uneven shape.
  6.  前記基板は金属で構成されている
     請求項1から5のいずれか1項に記載の蛍光体光学素子。
    The phosphor optical element according to claim 1, wherein the substrate is made of metal.
  7.  前記蛍光体含有層を積層方向から見た外形は、円形である
     請求項1から6のいずれか1項に記載の蛍光体光学素子。
    The phosphor optical element according to any one of claims 1 to 6, wherein an outer shape of the phosphor-containing layer viewed from the stacking direction is a circle.
  8.  前記凹凸形状は、前記蛍光体含有層を積層方向から見た外形に対して同心円状に形成された複数の溝、もしくは外形に対して法線方向に形成された複数の溝により構成される
     請求項7記載の蛍光体光学素子。
    The concavo-convex shape includes a plurality of grooves formed concentrically with respect to the outer shape of the phosphor-containing layer as viewed from the stacking direction, or a plurality of grooves formed in a direction normal to the outer shape. Item 8. The phosphor optical element according to Item 7.
  9.  前記蛍光体含有層の前記励起光の入射面に形成された凹凸形状の凸部の幅は、前記蛍光体粒子の粒径よりも大きく、かつ、前記蛍光体粒子から発せられる蛍光の波長よりも小さい
     請求項1から8のいずれか1項に記載の蛍光体光学素子。
    The width of the concavo-convex convex portion formed on the excitation light incident surface of the phosphor-containing layer is larger than the particle size of the phosphor particles and is longer than the wavelength of the fluorescence emitted from the phosphor particles. The phosphor optical element according to any one of claims 1 to 8.
  10.  前記蛍光体粒子は量子ドット蛍光体である
     請求項1から9のいずれか1項に記載の蛍光体光学素子。
    The phosphor optical element according to claim 1, wherein the phosphor particles are quantum dot phosphors.
  11.  励起光源から放射される励起光の波長の光を吸収する蛍光体粒子と熱もしくは光によって硬化する溶媒とが混合された蛍光体含有樹脂溶液を、上面が凹凸形状に形成された透明光学素子の上面に塗布する工程と、
     前記蛍光体含有樹脂溶液を熱もしくは光により硬化することにより、下面に凹凸形状を有する蛍光体含有層を形成する工程とを含む
     蛍光体光学素子の製造方法。
    A phosphor-containing resin solution in which phosphor particles that absorb light having a wavelength of excitation light emitted from an excitation light source and a solvent that is cured by heat or light are mixed together. Applying to the top surface;
    Forming a phosphor-containing layer having a concavo-convex shape on the lower surface by curing the phosphor-containing resin solution with heat or light.
  12.  請求項1から10のいずれか1項に記載の蛍光体光学素子と、励起光源と、ダイクロイックミラーと、集光レンズとを備える
     光源装置。
    A light source device comprising: the phosphor optical element according to claim 1; an excitation light source; a dichroic mirror; and a condenser lens.
PCT/JP2012/004984 2012-08-06 2012-08-06 Fluorescent optical element, method for manufacturing same and light source device WO2014024218A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014529152A JPWO2014024218A1 (en) 2012-08-06 2012-08-06 Phosphor optical element, manufacturing method thereof, and light source device
PCT/JP2012/004984 WO2014024218A1 (en) 2012-08-06 2012-08-06 Fluorescent optical element, method for manufacturing same and light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004984 WO2014024218A1 (en) 2012-08-06 2012-08-06 Fluorescent optical element, method for manufacturing same and light source device

Publications (1)

Publication Number Publication Date
WO2014024218A1 true WO2014024218A1 (en) 2014-02-13

Family

ID=50067510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004984 WO2014024218A1 (en) 2012-08-06 2012-08-06 Fluorescent optical element, method for manufacturing same and light source device

Country Status (2)

Country Link
JP (1) JPWO2014024218A1 (en)
WO (1) WO2014024218A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129222A1 (en) * 2014-02-28 2015-09-03 パナソニックIpマネジメント株式会社 Light-emitting element and light-emitting device
WO2015128909A1 (en) * 2014-02-28 2015-09-03 パナソニックIpマネジメント株式会社 Light-emitting element and light-emitting device
JP2015197474A (en) * 2014-03-31 2015-11-09 ソニー株式会社 Light emitting element, light source apparatus, and projector
EP3001246A1 (en) * 2014-09-26 2016-03-30 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
JP2016099520A (en) * 2014-11-21 2016-05-30 日亜化学工業株式会社 Wavelength conversion member and projector including the wavelength conversion member
US9515239B2 (en) 2014-02-28 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
US9518215B2 (en) 2014-02-28 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
US9618697B2 (en) 2014-02-28 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Light directional angle control for light-emitting device and light-emitting apparatus
JP2017532600A (en) * 2014-09-30 2017-11-02 コーニング精密素材株式会社Corning Precision Materials Co., Ltd. Color conversion substrate, method for manufacturing the same, and display device including the same
US9882100B2 (en) 2015-08-20 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device having surface structure for limiting directional angle of light
US9890912B2 (en) 2014-02-28 2018-02-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US9899577B2 (en) 2015-06-08 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
JP2018028647A (en) * 2016-08-20 2018-02-22 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
US10031276B2 (en) 2015-03-13 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Display apparatus including photoluminescent layer
CN108630795A (en) * 2017-03-17 2018-10-09 日亚化学工业株式会社 The manufacturing method of light-transmitting member and the manufacturing method of light-emitting device
US10094522B2 (en) 2016-03-30 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device having photoluminescent layer
WO2018186300A1 (en) * 2017-04-04 2018-10-11 富士フイルム株式会社 Phosphor-containing film and backlight unit
US10115874B2 (en) 2015-06-08 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
US10113712B2 (en) 2015-03-13 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
CN108732741A (en) * 2017-04-18 2018-11-02 优美特创新材料股份有限公司 Use the light-emitting device of composite material, the manufacturing method of composite material and optical film
JP2018189927A (en) * 2017-05-11 2018-11-29 パナソニックIpマネジメント株式会社 Phosphor wheel
US10182702B2 (en) 2015-03-13 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
WO2019069566A1 (en) * 2017-10-05 2019-04-11 ソニー株式会社 Wavelength conversion element and projection-type display apparatus
JP2019079054A (en) * 2018-10-31 2019-05-23 日亜化学工業株式会社 Wavelength conversion member and projector including wavelength conversion member
US10359155B2 (en) 2015-08-20 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
EP3570106A1 (en) * 2018-05-15 2019-11-20 Canon Kabushiki Kaisha Light source apparatus and image projection apparatus
WO2020259615A1 (en) * 2019-06-28 2020-12-30 深圳光峰科技股份有限公司 Light source system and display apparatus
JPWO2020066615A1 (en) * 2018-09-26 2021-08-30 パナソニックIpマネジメント株式会社 Wavelength conversion member and white light output device using it
USRE49093E1 (en) 2015-03-13 2022-06-07 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
USRE50041E1 (en) 2015-08-20 2024-07-16 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040240A (en) * 2000-07-31 2002-02-06 Canon Inc Fluorescent thin film, fluorescent device by using the same and method for manufacturing the same
JP2005268708A (en) * 2004-03-22 2005-09-29 Stanley Electric Co Ltd Semiconductor light-emitting device and manufacturing method for the same
JP2005311153A (en) * 2004-04-23 2005-11-04 Harison Toshiba Lighting Corp Envelope for light-emitting element
JP2007027751A (en) * 2005-07-14 2007-02-01 Samsung Electro Mech Co Ltd Light-emitting diode package of wavelength conversion type
JP2012093454A (en) * 2010-10-25 2012-05-17 Seiko Epson Corp Light source device and projector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040240A (en) * 2000-07-31 2002-02-06 Canon Inc Fluorescent thin film, fluorescent device by using the same and method for manufacturing the same
JP2005268708A (en) * 2004-03-22 2005-09-29 Stanley Electric Co Ltd Semiconductor light-emitting device and manufacturing method for the same
JP2005311153A (en) * 2004-04-23 2005-11-04 Harison Toshiba Lighting Corp Envelope for light-emitting element
JP2007027751A (en) * 2005-07-14 2007-02-01 Samsung Electro Mech Co Ltd Light-emitting diode package of wavelength conversion type
JP2012093454A (en) * 2010-10-25 2012-05-17 Seiko Epson Corp Light source device and projector

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129222A1 (en) * 2014-02-28 2015-09-03 パナソニックIpマネジメント株式会社 Light-emitting element and light-emitting device
US9890912B2 (en) 2014-02-28 2018-02-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US9515239B2 (en) 2014-02-28 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
US10012780B2 (en) 2014-02-28 2018-07-03 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
US9618697B2 (en) 2014-02-28 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Light directional angle control for light-emitting device and light-emitting apparatus
WO2015128909A1 (en) * 2014-02-28 2015-09-03 パナソニックIpマネジメント株式会社 Light-emitting element and light-emitting device
US9880336B2 (en) 2014-02-28 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
US9518215B2 (en) 2014-02-28 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
JP2015197474A (en) * 2014-03-31 2015-11-09 ソニー株式会社 Light emitting element, light source apparatus, and projector
US9989838B2 (en) 2014-03-31 2018-06-05 Sony Corporation Light emitting element, light source apparatus, and projector
EP3001246A1 (en) * 2014-09-26 2016-03-30 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
CN105467734A (en) * 2014-09-26 2016-04-06 精工爱普生株式会社 Wavelength conversion element, light source device, and projector
US9874741B2 (en) 2014-09-26 2018-01-23 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
JP2017532600A (en) * 2014-09-30 2017-11-02 コーニング精密素材株式会社Corning Precision Materials Co., Ltd. Color conversion substrate, method for manufacturing the same, and display device including the same
JP2016099520A (en) * 2014-11-21 2016-05-30 日亜化学工業株式会社 Wavelength conversion member and projector including the wavelength conversion member
US10113712B2 (en) 2015-03-13 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
USRE49093E1 (en) 2015-03-13 2022-06-07 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US10031276B2 (en) 2015-03-13 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Display apparatus including photoluminescent layer
US10182702B2 (en) 2015-03-13 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US10115874B2 (en) 2015-06-08 2018-10-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device including photoluminescent layer
US9899577B2 (en) 2015-06-08 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
US9882100B2 (en) 2015-08-20 2018-01-30 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device having surface structure for limiting directional angle of light
US10359155B2 (en) 2015-08-20 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
USRE50041E1 (en) 2015-08-20 2024-07-16 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
US10094522B2 (en) 2016-03-30 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device having photoluminescent layer
JP2018028647A (en) * 2016-08-20 2018-02-22 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
CN108630795A (en) * 2017-03-17 2018-10-09 日亚化学工业株式会社 The manufacturing method of light-transmitting member and the manufacturing method of light-emitting device
CN108630795B (en) * 2017-03-17 2023-01-13 日亚化学工业株式会社 Method for manufacturing light-transmitting member and method for manufacturing light-emitting device
US11549054B2 (en) 2017-04-04 2023-01-10 Fujifilm Corporation Phosphor-containing film and backlight unit
JPWO2018186300A1 (en) * 2017-04-04 2020-03-05 富士フイルム株式会社 Phosphor-containing film and backlight unit
WO2018186300A1 (en) * 2017-04-04 2018-10-11 富士フイルム株式会社 Phosphor-containing film and backlight unit
KR20190118669A (en) * 2017-04-04 2019-10-18 후지필름 가부시키가이샤 Phosphor-Containing Film and Backlight Unit
KR102216415B1 (en) * 2017-04-04 2021-02-18 후지필름 가부시키가이샤 Phosphor-containing film and backlight unit
CN108732741A (en) * 2017-04-18 2018-11-02 优美特创新材料股份有限公司 Use the light-emitting device of composite material, the manufacturing method of composite material and optical film
JP2018178116A (en) * 2017-04-18 2018-11-15 優美特創新材料股▲ふん▼有限公司 Light emitting device using composite material, manufacturing method of composite material, and optical film
JP2018189927A (en) * 2017-05-11 2018-11-29 パナソニックIpマネジメント株式会社 Phosphor wheel
JP7124831B2 (en) 2017-10-05 2022-08-24 ソニーグループ株式会社 WAVELENGTH CONVERTER AND PROJECTION DISPLAY DEVICE
JPWO2019069566A1 (en) * 2017-10-05 2020-12-03 ソニー株式会社 Wavelength conversion element and projection type display device
US11036121B2 (en) 2017-10-05 2021-06-15 Sony Corporation Wavelength conversion device and projection-type display apparatus
WO2019069566A1 (en) * 2017-10-05 2019-04-11 ソニー株式会社 Wavelength conversion element and projection-type display apparatus
EP3570106A1 (en) * 2018-05-15 2019-11-20 Canon Kabushiki Kaisha Light source apparatus and image projection apparatus
US11300861B2 (en) 2018-05-15 2022-04-12 Canon Kabushiki Kaisha Light source apparatus suitable for image projection apparatus
CN110488561B (en) * 2018-05-15 2022-02-08 佳能株式会社 Light source device and image projection device
CN110488561A (en) * 2018-05-15 2019-11-22 佳能株式会社 Light supply apparatus and image projection device
JP7162202B2 (en) 2018-09-26 2022-10-28 パナソニックIpマネジメント株式会社 White light output device using wavelength conversion member
JPWO2020066615A1 (en) * 2018-09-26 2021-08-30 パナソニックIpマネジメント株式会社 Wavelength conversion member and white light output device using it
JP2019079054A (en) * 2018-10-31 2019-05-23 日亜化学工業株式会社 Wavelength conversion member and projector including wavelength conversion member
US11921410B2 (en) 2019-06-28 2024-03-05 Appotronics Corporation Limited Light source system and display apparatus
WO2020259615A1 (en) * 2019-06-28 2020-12-30 深圳光峰科技股份有限公司 Light source system and display apparatus

Also Published As

Publication number Publication date
JPWO2014024218A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
WO2014024218A1 (en) Fluorescent optical element, method for manufacturing same and light source device
US9146453B2 (en) Light-emitting device and projection apparatus
JP6225338B2 (en) Light source and image projection device
US9429830B2 (en) Fluorescent light emitting element and projector
US20160147136A1 (en) Wavelength conversion element, light source device, projector, and method for manufacturing wavelength conversion element
JP5767444B2 (en) Light source device and image projection device
JP5605047B2 (en) Light source device and projection display device using the same
CN114035397B (en) Light source device and projector having the same
JP6323020B2 (en) Light source device and projector
JP6459634B2 (en) Light source device and projector provided with light source device
US20120327374A1 (en) Illumination apparatus and projection display apparatus
US9645481B2 (en) Light source apparatus and projection display apparatus
JP2013162021A (en) Wavelength conversion element, light source device, and projector
US10379284B2 (en) Light source device and projector
US10877362B2 (en) Wavelength conversion element, light source device, and projector
US20170242241A1 (en) Wavelength conversion element, light source device, and projector
WO2016181768A1 (en) Fluorescent substrate, light source device, and projection-type display device
US10261402B2 (en) Light source device and projector
US9946142B2 (en) Light source device and projector having the light source device
JP5919476B2 (en) Light source device and video display device
CN109388010B (en) Fluorescent plate, light source device, and projection type image display device
JP2019040154A (en) Wavelength conversion element, wavelength conversion optical system, light source device, and projector
JP2018036457A (en) Wavelength conversion element, light source device, and projector
WO2016121720A1 (en) Wavelength conversion member, and image formation device
JP6149991B2 (en) Light source device and image projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882590

Country of ref document: EP

Kind code of ref document: A1