WO2019230935A1 - Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, and projection device - Google Patents

Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, and projection device Download PDF

Info

Publication number
WO2019230935A1
WO2019230935A1 PCT/JP2019/021674 JP2019021674W WO2019230935A1 WO 2019230935 A1 WO2019230935 A1 WO 2019230935A1 JP 2019021674 W JP2019021674 W JP 2019021674W WO 2019230935 A1 WO2019230935 A1 WO 2019230935A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
light source
phosphor
wavelength conversion
layer
Prior art date
Application number
PCT/JP2019/021674
Other languages
French (fr)
Japanese (ja)
Inventor
睦子 山本
透 菅野
英臣 由井
智子 植木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019230935A1 publication Critical patent/WO2019230935A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a light source device and a wavelength conversion element used in the light source device.
  • This application claims priority based on Japanese Patent Application No. 2018-104904 for which it applied to Japan on May 31, 2018, and uses the content here.
  • JP 2017-215507 A published on December 7, 2017
  • International Publication No. 2014/203484 Released on December 24, 2014
  • JP 2012-119193 A released on June 21, 2012
  • the prior art as described above has a problem that temperature quenching occurs due to heat generation when high-density excitation light enters the phosphor.
  • the phosphor is caused to emit light by a blue laser or the like, there is a problem that a desired fluorescence emission intensity cannot be obtained at the time of high output irradiation.
  • An object of one embodiment of the present invention is to adjust the temperature rise of a phosphor and contribute to an improvement in fluorescence emission intensity.
  • a wavelength conversion element includes a fluorescent layer in which phosphor particles are dispersed in a binder, and the fluorescent layer includes a first region, a second region, and a second region.
  • the present invention it is possible to control the temperature rise of the fluorescent layer and contribute to the improvement of the fluorescence emission intensity.
  • FIG. 8A is a schematic diagram illustrating a light source device according to Embodiment 7 of the present invention
  • FIGS. 8B to 8E are schematic diagrams illustrating wavelength conversion elements mounted on the light source device.
  • 9A to 9C are schematic views showing a light source device according to Embodiment 8 of the present invention.
  • FIG. 1 shows a configuration of a general wavelength conversion element 10.
  • the phosphor layer 12 is deposited on the substrate 11.
  • the phosphor layer 12 is irradiated with excitation light 14 emitted from the excitation light source 13, and the phosphor layer 12 emits fluorescence.
  • the phosphor is caused to emit light by a blue laser or the like, the problem that the desired fluorescence emission intensity cannot be obtained at the time of high output irradiation is disclosed in Patent Document 1, in which the volume density of the phosphor particles on the phosphor excitation light irradiation side is disclosed.
  • a configuration has been proposed in which the height is made higher than the substrate side.
  • a garnet-based material whose base material is alumina is used from the viewpoint of material cost, manufacturing cost, and optical characteristics.
  • YAG Ce (yellow light emitting phosphor)
  • LuAG Ce (green light emitting phosphor)
  • the garnet-based phosphor is composed of a material represented by the general formula (M 1-x RE x ) 3 Al 5 O 12 and includes both M and RE containing at least one element selected from a rare earth element group. It is done.
  • M is Sc, Y, Gd, Lu
  • RE is at least one element of Ce, Eu, and Tb.
  • the phosphor particles are CaAlSiN 3 : Eu, (Sr, Ca) AlSiN 3 : Eu, (Ca, Y) y S 12- (m + n) Al m + n On N 16-n : Eu, It is preferably selected from the group consisting of Si 6-z Al z O z N 8-z : Eu, SrGa 2 S 4 : Eu, or CaS: Eu (where m, n, x, y, z are positive Is the number of). Note that the above is an example, and the phosphor particles used in the phosphor layer of one embodiment of the present invention are not limited to the above examples.
  • the Ce concentration (mol%) of one embodiment of the present invention is represented by x ⁇ 100 (mol%) in the above general formula.
  • the temperature dependence of the luminous efficiency of the phosphor will be described based on the external quantum efficiency of the YAG: Ce phosphor.
  • Ce Ce
  • the phosphor material in which Ce (cerium) is doped as a dopant in YAG (yttrium, aluminum, garnet) the temperature dependence of the luminous efficiency varies depending on the difference in the doping concentration of Ce. I can confirm.
  • Q A ⁇ ⁇ ⁇ ⁇ ⁇ (T A ⁇ 4-T B ⁇ 4)
  • Q is showing the radiation heat
  • A is the radiation unit area
  • sigma is the Stefan-Boltzmann constant
  • T A is the temperature of the radiating portion
  • T B is the temperature of the surroundings.
  • the luminous efficiency of the phosphor is affected by the temperature of the phosphor, and as shown in FIG. 2 (a), the luminous efficiency decreases as the temperature increases as the irradiation density increases.
  • the temperature rise of the phosphor layer 12 may not be sufficiently suppressed depending on the cooling state.
  • the temperature characteristics of the phosphor change depending on the concentration of the luminescent center element (Ce in the present embodiment) (FIG. 2A).
  • a commercially available YAG: Ce phosphor has a Ce concentration with a high luminous efficiency (for example, about 1.4 to 1.5 mol%) when used at room temperature. This is because the YAG phosphor with a low Ce concentration has a high internal quantum efficiency, but the absorption rate of the excitation light is low. Therefore, the external quantum efficiency that is important as a wavelength conversion element is optimum when the Ce concentration is around 1.5 mol%. It is because it becomes. In the case where the phosphor temperature of the irradiation spot exceeds 250 ° C.
  • the luminous efficiency decreases with a general YAG: Ce phosphor (Ce concentration 1.4 mol%).
  • a YAG: Ce phosphor having a low Ce concentration (for example, about 0.5 to 1.0 mol%) will be examined in more detail. Referring to FIG. 2A, it can be confirmed that when the Ce concentration is 1.0 mol% or more, the luminance is lowered at an optical density of 10 W / mm 2 or more. On the other hand, if the Ce concentration is about 0.5 to 0.7 mol%, no decrease in luminance can be confirmed until the light density is about 16 W / mm 2 . Thereby, it can be understood that when the Ce concentration is 1.0 mol% or more, the luminance is lowered due to the high temperature due to the excitation light and the phosphor having poor temperature characteristics.
  • FIG. 2B shows the temperature dependence due to the difference in the thickness of the phosphor layer.
  • a phosphor having a Ce concentration of 0.7 mol% and an average particle diameter D50 of 11.1 ⁇ m is used as a sample.
  • the thickness of the phosphor layer is 20 ⁇ m to 40 ⁇ m, a decrease in luminance cannot be confirmed at least until the light density is about 16 W / mm 2 .
  • the thickness of the phosphor layer is 70 ⁇ m, a decrease in luminance is confirmed at a light density of 12 W / mm 2 or more.
  • the thickness of the phosphor layer is 100 ⁇ m, a significant decrease in luminance is confirmed at a light density of 5.5 W / mm 2 or more.
  • the phosphor layer is thick, it can be confirmed that the heat radiation to the substrate is not in time, the surface temperature becomes high, and the luminance is lowered. In view of these tendencies, the present invention will be described for each embodiment.
  • FIG. 3A shows a schematic diagram of the wavelength conversion element 30a according to the first embodiment of the present invention.
  • the configuration of the phosphor layer is different from the configuration of the general wavelength conversion element 10 shown in FIG.
  • a YAG phosphor layer doped with a high Ce concentration is deposited on a substrate 11, and a YAG phosphor layer doped with a low Ce concentration is deposited thereon.
  • the high Ce concentration doped YAG phosphor layer the high Ce concentration doped YAG phosphor 36 a is scattered in the binder 35.
  • the low Ce concentration doped YAG phosphor particles 34 a are scattered in the binder 33.
  • the binders used for the binders 33 and 35 may be the same material binder or different material binders.
  • the phosphor layer on the surface irradiated with the excitation light 14 has a structure in which the concentration of Ce, which is the emission center element, is lower than that of the phosphor layer on the substrate side.
  • the side irradiated with the excitation light 14 is referred to as a “first region” (first region 31 in the first embodiment), and the other side is a second region (second region 32 in the first embodiment). Called.
  • the phosphor layer is composed of at least two regions (first region 31 and second region 32) having different Ce concentrations is shown.
  • a multilayer structure may be used. When the phosphor layer has a multilayer structure, the layer deposited on the substrate 11 corresponds to the second region, and the irradiation surface side irradiated with the excitation light 14 corresponds to the first region.
  • Phosphors with good luminous efficiency in the first region 31 and the second region 32 constituting the respective temperature ranges (low Ce concentration doped YAG phosphor particles 34a, 34b, high Ce concentration doped YAG phosphor particles 36a, 36b) Can be obtained. Thereby, compared with the case where the single fluorescent substance layer 12 is used, the light source device which is bright and long-life can be implement
  • the volume ratio of the phosphor particles to the binder is preferably larger in the first region 31 than in the second region 32. It is preferable that the change in the volume ratio relative to the binder not only changes discontinuously in the two regions, but also gradually changes so that the volume ratio decreases from the first region to the second region.
  • first region 31 in the first embodiment Since a temperature gradient is generated due to a temperature difference between the excitation light irradiation surface (first region 31 in the first embodiment) and the substrate side (second region 32 in the first embodiment), heat conduction in the second region 32 is performed. If it is good, heat can be released to the substrate side. Therefore, the first region 31 can release heat even if the binder density per unit volume is low.
  • FIG. 3B is a schematic diagram of the wavelength conversion element 30b according to the first embodiment of the present invention.
  • members having the same functions as those described in the above embodiment are given the same reference numerals, and the description thereof will not be repeated.
  • the difference from the wavelength conversion element 30a is that the particle diameters of the phosphors scattered in the first region 31 and the second region 32 are different.
  • phosphor particles 34 b having a large particle size are scattered in the binder 33 in the first region 31
  • phosphor particles 36 b having a small particle size are scattered in the binder 35 in the second region 32. .
  • the low Ce concentration doped YAG phosphor particles are indicated as “34 *” and the high Ce concentration doped YAG phosphor particles are indicated as “36 *” (“*” is “a” or “b”).
  • 34b When the phosphor particles have a large particle size, “34b” is displayed, and when the phosphor particles have a small particle size, “36b” is displayed.
  • the volume ratio of the phosphor particles to the binder is preferably larger in the first region 31 than in the second region 32. It is preferable that the change in the volume ratio relative to the binder not only changes so as to be divided in two regions, but also gradually changes so that the volume ratio decreases from the first region to the second region.
  • the substrate 11 can be an aluminum substrate. In order to increase the fluorescence emission intensity, it is preferable that a highly reflective film such as silver is coated on the aluminum substrate. In other embodiments, a highly reflective alumina substrate, a white fully scattering substrate, or the like may be used.
  • the material of the substrate 11 is preferably a material having a high thermal conductivity such as a metal, and is not particularly limited to the materials described above.
  • ⁇ -alumina, alumina sol, silica, colloidal silica, silicon carbide, zirconia, zirconium carbide, zirconium nitride, alkali metal silicate, titania, titanium carbide, titanium nitride can be used.
  • a high Ce concentration YAG phosphor layer serving as a second layer (corresponding to the second region) is applied on the substrate 11, and then a low Ce concentration YAG serving as the first layer (corresponding to the first region).
  • a phosphor layer is applied.
  • the manufacturing method is not limited to sedimentation coating, and other methods may be used.
  • the first layer can be coated with a YAG phosphor having a Ce concentration of 0.5 mol% in a film thickness of 40 ⁇ m.
  • the second layer can be coated with a YAG phosphor having a Ce concentration of 1.5 mol% in a film thickness of 44 ⁇ m (FIG. 3A).
  • the first layer can be coated with a YAG phosphor having a Ce concentration of 0.5 mol% in a film thickness of 40 ⁇ m.
  • the second layer can be coated with a YAG phosphor having a Ce concentration of 1.5 mol% in a film thickness of 44 ⁇ m.
  • FIG. 2 (c) shows the light density dependence of the peak luminance comparing Sample 1 and Comparative Example 1 having such a configuration.
  • the peak intensity of Sample 1 is exhibited at a higher light density than that of Comparative Example 1.
  • the preferred embodiment of the thickness of the first layer depends on the excitation light energy density. In a preferred embodiment, the maximum thickness of the first layer is less than 70 ⁇ m. The thinnest preferred embodiment is preferably about 1 ⁇ m as a monolayer for one phosphor particle.
  • a phosphor layer having a total film thickness of about 84 ⁇ m can be formed.
  • the number of layers is not limited to two, and may be composed of three or more layers.
  • the phosphor layer may have a Ce concentration gradient.
  • the Ce concentration gradient YAG phosphor layer is configured such that the Ce concentration on the substrate 11 side (corresponding to the second region) is high and the Ce concentration on the excitation light irradiation surface side (corresponding to the first region) is low.
  • [Configuration of wavelength conversion element] 4A and 4B are schematic views of wavelength conversion elements 40a and 40b according to the second embodiment of the present invention. A difference from the wavelength conversion elements 30a and 30b in FIGS. 3A and 3B is that a recess having a semicircular cross section is formed in a part of the upper surface of the second region 42, and the first recess is formed in the recess. The region 41 is formed.
  • the distance from the high-density excitation light irradiation position is equal at the boundary line between the first region 41 and the second region 42, and the influence of heat can be equally dispersed. it can.
  • a groove (a recess having a semicircular cross-sectional shape) with a stamper and apply the first region 41.
  • [Configuration of wavelength conversion element] 5A and 5B are schematic views of wavelength conversion elements 50a and 50b according to Embodiment 3 of the present invention.
  • 3A and 3B is different from the wavelength conversion elements 30a and 30b in FIGS. 3A and 3B in that a recess having an inverted triangular shape is formed in a part of the upper surface of the second region 52, and the first recess is formed in the recess. That is, the region 51 is formed.
  • the influence of heat can be dispersed more than the multilayer film structure of the first embodiment.
  • a groove (a concave portion having an inverted triangular cross section) with a stamper, and apply the first region 51.
  • [Configuration of wavelength conversion element] 6A and 6B are schematic views of wavelength conversion elements 60a and 60b according to Embodiment 4 of the present invention.
  • 3A and 3B is different from the wavelength conversion elements 30a and 30b in FIG. 3A in that a concave portion having a square cross section is formed in a part of the upper surface of the second region 62, and the first concave portion is formed in the concave portion.
  • a region 61 is formed.
  • a groove (a recess having a square cross-sectional shape) with a stamper and apply the first region 61.
  • [Mounting example of wavelength conversion element] 7A to 7D are schematic views of wavelength conversion elements 70a to 70d according to Embodiments 5 and 6 of the present invention.
  • a high Ce concentration YAG phosphor layer is deposited on the transmissive substrate 71 (corresponding to the second regions 32, 42, 52, and 62), and a low Ce concentration YAG phosphor layer is deposited thereon (the first region).
  • the transparent substrate 71 has a heat sink structure.
  • the transmissive substrate 71 can be cooled by making a fixed contact with a transmissive heat sink (not shown).
  • the phosphor particles (low Ce concentration doped YAG phosphor particles 34a and 34b, high Ce concentration doped YAG phosphor particles 36a and 36b) are omitted for simplification in both the first region and the second region.
  • phosphor particles (low Ce concentration doped YAG phosphor particles in the binders 33 and 35 as in the first region 31 and the second region 32 shown in FIGS. 3A and 3B).
  • 34a, 34b, high Ce concentration doped YAG phosphor particles 36a, 36b) are preferably interspersed.
  • FIG. 7A phosphor particles (low Ce concentration doped YAG phosphor particles in the binders 33 and 35 as in the first region 31 and the second region 32 shown in FIGS. 3A and 3B).
  • 34a, 34b, high Ce concentration doped YAG phosphor particles 36a, 36b) are preferably interspersed.
  • phosphor particles (low Ce concentration doped YAG in the binders 33 and 35 as in the first region 41 and the second region 42 shown in FIGS. 4A and 4B). It is preferred that the phosphor particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed.
  • phosphor particles (low Ce concentration doped YAG fluorescence) are contained in the binders 33 and 35 in the same manner as the first region 51 and the second region 52 shown in FIGS. 5A and 5B.
  • the body particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed.
  • FIG. 7B phosphor particles (low Ce concentration doped YAG in the binders 33 and 35 as in the first region 41 and the second region 42 shown in FIGS. 4A and 4B). It is preferred that the phosphor particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b)
  • phosphor particles (low Ce concentration doped YAG fluorescence) are contained in the binders 33 and 35 in the same manner as the first region 61 and the second region 62 shown in FIGS. 6 (a) and 6 (b).
  • the body particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed.
  • a transmissive light source device that irradiates the excitation light 14 from below the transmissive substrate 71 is preferable.
  • Such a light source device is preferably mounted on a transmissive laser headlight (Patent Document 2 (International Publication No. 2014/203484)).
  • Patent Document 3 Japanese Patent Laid-Open No. 2012-119193
  • a high Ce concentration YAG phosphor layer is deposited on the irradiation surface side (second region) irradiated with excitation light.
  • Excitation light is irradiated from the irradiation surface side (second region), and the heat of the irradiation surface (second region) is dissipated to the transmissive substrate 71, so that the first region has a higher temperature than the second region. Therefore, it is preferable that a low Ce concentration YAG phosphor layer is deposited in the first region.
  • the excitation light 14 is light from a backlight device (not shown).
  • the excitation light emitted from the light source of the backlight device is preferably mounted on a display device that transmits the fluorescent light by the wavelength conversion elements 70a to 70d through the transparent substrate 71.
  • Embodiments 5 and 6 not only a change in the concentration of Ce as a dopant, but also a phosphor layer in which the particle size of the phosphor particles and the volume density of the phosphor particles with respect to the binder are different may be used.
  • FIG. 8A shows a schematic diagram of a light source device 80 according to Embodiment 7 of the present invention.
  • the light source device 80 is preferably a reflective laser headlight 80.
  • the excitation light source 13 is preferably a blue laser light source that emits excitation light 14 having a wavelength for exciting the phosphor layer of the wavelength conversion element 81.
  • the reflector 111 is preferably composed of a semiparabolic mirror. It is preferable that the paraboloid is divided into upper and lower parts parallel to the xy plane to form a semiparaboloid, and the inner surface is a mirror.
  • the reflector 111 has a through hole through which the excitation light 14 passes.
  • the wavelength conversion element 81 is excited by the blue excitation light 14 and emits fluorescence emission 117 in the long wavelength range (yellow wavelength) of visible light. Further, the excitation light 14 strikes the wavelength conversion element 81 and becomes diffuse reflection light 118.
  • the wavelength conversion element 81 is disposed at the focal point of the paraboloid. Since the wavelength conversion element 81 is located at the focal point of the parabolic mirror, when the fluorescent light emission 117 and the diffuse reflection light 118 emitted from the wavelength conversion element 81 strike the reflector 111 and are reflected, they uniformly reach the emission surface 112. Go straight. White light in which fluorescent light emission 117 and diffuse reflected light 118 are mixed is emitted from the emission surface 112 as parallel light.
  • the wavelength conversion element 81 arranged at the focal point of the paraboloid.
  • the layer on the irradiation surface side of the excitation light (first regions 31, 41, 51, 61) is formed of a low Ce concentration YAG phosphor layer
  • the layer on the substrate side (second region) 32, 42, 52, 62) are composed of high Ce concentration YAG phosphor layers.
  • both the first region and the second region are phosphor particles (low Ce concentration doped YAG phosphor particles 34a and 34b, high Ce concentration doped YAG phosphor particles for simplification). 36a and 36b) are omitted.
  • phosphor particles low Ce concentration doped YAG phosphor particles in the binders 33 and 35 as in the first region 31 and the second region 32 shown in FIGS. 3A and 3B).
  • 34a, 34b, high Ce concentration doped YAG phosphor particles 36a, 36b) are preferably interspersed.
  • phosphor particles (low Ce concentration doped YAG in the binders 33 and 35 as in the first region 41 and the second region 42 shown in FIGS. 4A and 4B). It is preferred that the phosphor particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed.
  • phosphor particles (low Ce concentration doped YAG fluorescence) are contained in the binders 33 and 35.
  • the body particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed.
  • phosphor particles (low Ce concentration doped YAG fluorescence) are contained in the binders 33 and 35 in the same manner as the first region 61 and the second region 62 shown in FIGS. 6A and 6B.
  • the body particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed.
  • the seventh embodiment not only a change in the concentration of Ce as a dopant, but also a phosphor layer having a different particle size and a volume density of the phosphor particles with respect to the binder may be used.
  • FIG. 9A shows a schematic diagram of a projection apparatus 90 using the light source module 91 according to the eighth embodiment.
  • the projection device 90 can be preferably used for a projector or the like.
  • the excitation light source 13 is preferably a laser light source that emits excitation light 14 having a wavelength for exciting the phosphor layer 148 (see FIGS. 9B and 9C) in the light source module 91.
  • a blue laser diode that excites a phosphor such as YAG or LuAG is used.
  • the excitation light 14 that irradiates the phosphor layer 148 can pass through the light source side optical system 106 and the mirrors 109a to 109c on the optical path.
  • the light source side optical system 106 is preferably a dichroic mirror. A preferred dichroic mirror can reflect blue light incident at 45 degrees and transmit red and green light.
  • the phosphor layer 148 is deposited on the phosphor wheel 141.
  • FIG. 9B shows a plan view (xy plane) of the light source module 91
  • FIG. 9C shows a cross-sectional view (xz plane) of the light source module 91.
  • the light source module 91 includes a phosphor layer 148 deposited on the periphery on the surface of the phosphor wheel 141.
  • the fluorescent wheel 141 is fixed to the rotating shaft 147 of the driving device 142 by a wheel fixture 146.
  • the driving device 142 is preferably a motor, and a fluorescent wheel 141 fixed to a rotating shaft 147 that is a rotating shaft of the motor by a fixing tool 146 rotates as the motor rotates.
  • the phosphor layer 148 deposited on the peripheral part on the surface of the fluorescent wheel 141 receives the excitation light and emits the fluorescent light emission 117, passes through the light source side optical system 106, and emits the fluorescent light. Since the phosphor layer 148 rotates with the rotation of the fluorescent wheel 141, the phosphor layer 148 emits the fluorescence emission 117 while rotating at any time.
  • the phosphor layer 148 has a configuration in the xz plane of FIGS. 8B to 8E, with the cross section in the xz plane of FIG. 9C. It is preferable that any cross section of any xz plane perpendicular to the xy plane of FIG. 9B has the configuration in the xz plane of FIGS. 8B to 8E.
  • the phosphor layer 148 corresponds to the wavelength conversion element 81a
  • the phosphor layer 148 has the second layer (second region 32) deposited on the phosphor wheel 141, and the first layer ( A multilayer structure in which the first region 31) is deposited is formed.
  • concave portions are formed in the second regions 42, 52, and 62 in an annular shape.
  • the cross-sectional shapes of the recesses are preferably semicircular, inverted triangular, and square, respectively.
  • the first regions 41, 51 and 61 are preferably formed in an annular recess having such a cross-sectional shape.
  • the eighth embodiment not only a change in the concentration of Ce as a dopant from the first region to the second region, but also a phosphor layer in which the particle size of the phosphor particles and the volume density of the phosphor particles with respect to the binder are different may be used. Good.
  • the projector can include the light source module 91, the display element 107, the light source side optical system 106 (dichroic mirror), and the projection side optical system 108.
  • the light source side optical system 106 (dichroic mirror) guides the light from the light source module 91 to the display element 107, and the projection side optical system 108 projects the projection light from the display element 107 onto a screen or the like. it can.
  • the display element 107 is preferably a DMD (Digital Mirror Device).
  • the projection-side optical system 108 is preferably composed of a combination of projection unit lenses.
  • the wavelength conversion element (30a, 30b, 40a, 50a, 60a, 70a, 81, 81a, 81b, 81c, 81d) according to the aspect 1 of the present invention includes phosphor particles (low Ce concentration) in the binder (33, 35).
  • the wavelength conversion elements (30a, 30b, 40a, 50a, 60a, 70a, 81, 81a, 81b, 81c, 81d) in which the first region (31, 41, 51, 61) is at a higher temperature.
  • the phosphor particles (low Ce concentration doped YAG phosphor particles 34a and 34b (phosphor particles having a large particle diameter), high Ce concentration doped YAG phosphor particles 36a and 36b (phosphor particles having a small particle diameter)) emit light.
  • the phosphor is doped with a central element (Ce), and extends from the first region (31, 41, 51, 61) of the phosphor layer to the second region (32, 42, 52, 62).
  • the temperature rise of the fluorescent layer can be controlled.
  • the change in size of the phosphor particles is a change in which the volume decreases from the first region to the second region. Also good.
  • the heat dissipation can be adjusted by adjusting the particle size, and the color unevenness on the light emitting surface can be reduced by using a phosphor having a small particle size on the light emitting surface.
  • the change in the concentration of the luminescent center element is a change in which the concentration increases from the first region to the second region. It is good.
  • the wavelength conversion element according to Aspect 4 of the present invention is the wavelength conversion element according to any one of Aspects 1 to 3, wherein the volume ratio of the phosphor particles to the binder is changed from the first area to the second area. It is good also as a structure which is a change which decreases.
  • the heat dissipation can be adjusted by the amount of the binder, and a high-intensity wavelength conversion element can be provided.
  • the wavelength conversion element according to aspect 5 of the present invention is the wavelength conversion element according to any one of aspects 1 to 4, wherein the first region has a layer structure including a first layer, and the second region is a second layer.
  • the first layer may be deposited on the second layer, and the maximum thickness of the first layer may be less than 70 ⁇ m.
  • a preferable film thickness depending on the excitation light energy density can be adjusted, and a high-intensity wavelength conversion element can be provided.
  • the wavelength conversion element according to Aspect 6 of the present invention is the wavelength conversion element according to any one of Aspects 1 to 4, wherein the second region has a recess in the excitation light irradiation region, and the first region is in the recess. It is good also as a structure which is formed and the said 1st area
  • the heat radiation distance from the irradiation point can be adjusted, and a high-intensity wavelength conversion element can be provided.
  • a light source device includes the wavelength conversion element according to any one of aspects 1 to 6 and a substrate, wherein the fluorescent layer is deposited on the substrate, and the fluorescent layer is The first surface and the second surface are opposite to each other in the thickness direction, the second region is at least on the second surface side, and the first region is only on the first surface side.
  • the second region may face the substrate, and the first region may be heated to a higher temperature than the second region by irradiating the first region with excitation light.
  • a light source device includes the wavelength conversion element according to any one of the first to sixth aspects, and a transmissive heat sink substrate (71), and the fluorescent layer on the transmissive heat sink substrate.
  • the fluorescent layer has a first surface and a second surface that are opposite to each other in the thickness direction, and the second region is at least on the second surface side, The region is only on the first surface side, the second surface faces the transmissive heat sink substrate, the excitation light is irradiated from the second surface side, and the heat of the second surface is transmitted through the transmission surface. It is good also as a structure from which the said 1st area
  • a vehicle headlamp (reflection type laser headlight 80) according to Aspect 9 of the present invention is a vehicle headlamp provided with the light source device according to Aspect 7 or 8, and emits excitation light.
  • the display device includes a backlight device including a light source that emits excitation light, and the above-described aspect 7 that emits fluorescent light by being excited by excitation light emitted from the light source of the backlight device.
  • the light source device described in 8 may be provided.
  • a light source module (90) includes the wavelength conversion element according to any one of aspects 1 to 6 and a fluorescent wheel (141), and the light source module (90) is provided on the fluorescent wheel (141).
  • a fluorescent layer is deposited, the fluorescent layer has a first surface and a second surface facing each other in the thickness direction, and the second region is at least on the second surface side, and the first surface The region is only on the first surface side, the second surface faces the fluorescent wheel, and the first surface side is irradiated with excitation light from the first region to the first surface. It is good also as a structure where an area
  • a projection apparatus (90; projector) according to aspect 12 of the present invention includes a light source module (91) according to aspect 11 above, and a light source (13) that emits excitation light (14) to the light source module (91).
  • a light source device including a drive device (142) for rotating a fluorescent wheel (141) of the light source module (91), a display element (107), and light from the light source device for the display element (107).
  • a light source side optical system (106) that guides light to the screen and a projection side optical system (108) that projects projection light from the display element (107) onto a screen or the like may be used.
  • the wavelength conversion element according to aspect 13 of the present invention may be configured such that, in the above aspect 6, the cross-sectional shape of the concave portion can be selected from any of a semicircular shape, an inverted triangular shape, and a rectangular shape. .
  • the heat radiation distance from the irradiation point can be adjusted, and a high-intensity wavelength conversion element can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Filters (AREA)

Abstract

The present invention achieves a wavelength conversion element that controls the temperature increase in a fluorescent layer and exhibits improved fluorescence emission intensity. This wavelength conversion element comprises a fluorescent layer that has phosphor particles dispersed in a binder, the fluorescent layer having a first region and a second region, and the first region having a higher temperature than the second region due to the effect of excitation light, wherein the phosphor particles are constituted by a phosphor doped with a luminescent center element, and at least two from among the concentration of the luminescent center element, the size of the phosphor particles, and the volume ratio of the phosphor particles to the binder vary from the first region to the second region of the fluorescent layer.

Description

波長変換素子、光源装置、車両用前照灯具、表示装置、光源モジュール、投影装置Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, projection device
 本発明は、光源装置、並びに、光源装置に用いる波長変換素子に関する。
 本願は、2018年5月31日に日本に出願された特願2018-104904号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light source device and a wavelength conversion element used in the light source device.
This application claims priority based on Japanese Patent Application No. 2018-104904 for which it applied to Japan on May 31, 2018, and uses the content here.
 青色レーザなどの励起光を蛍光体に照射した際に、蛍光体が蛍光を発光させることが従来技術として知られている。 It is known as a prior art that when a phosphor is irradiated with excitation light such as a blue laser, the phosphor emits fluorescence.
特開2017-215507号公報(2017年12月7日公開)JP 2017-215507 A (published on December 7, 2017) 国際公開第2014/203484号(2014年12月24日公開)International Publication No. 2014/203484 (Released on December 24, 2014) 特開2012-119193号公報(2012年6月21日公開)JP 2012-119193 A (released on June 21, 2012)
 しかしながら、上述のような従来技術は、高密度励起光が蛍光体へ入射する際に発熱することで温度消光が生じるという問題がある。つまり、青色レーザなどにより蛍光体を発光させた場合、高出力照射時に所望の蛍光発光強度を得ることができないという問題がある。 However, the prior art as described above has a problem that temperature quenching occurs due to heat generation when high-density excitation light enters the phosphor. In other words, when the phosphor is caused to emit light by a blue laser or the like, there is a problem that a desired fluorescence emission intensity cannot be obtained at the time of high output irradiation.
 本発明の一態様は、蛍光体の温度上昇を調整し、蛍光発光強度の向上に資することを目的とする。 An object of one embodiment of the present invention is to adjust the temperature rise of a phosphor and contribute to an improvement in fluorescence emission intensity.
 上記の課題を解決するために、本発明の一態様に係る波長変換素子は、バインダ中に蛍光体粒子が分散した蛍光層を備え、前記蛍光層は、第1の領域と第2の領域とを有し、励起光の影響により前記第2の領域より前記第1の領域が高温となる波長変換素子であって、前記蛍光体粒子は、発光中心元素がドープされた蛍光体から構成され、前記蛍光層の前記第1の領域から前記第2の領域にわたって前記発光中心元素の濃度、蛍光体粒子の大きさ、および、前記バインダに対する蛍光体粒子の体積比率の少なくとも2つが変化するように構成される構成である。 In order to solve the above problem, a wavelength conversion element according to one embodiment of the present invention includes a fluorescent layer in which phosphor particles are dispersed in a binder, and the fluorescent layer includes a first region, a second region, and a second region. A wavelength conversion element in which the first region has a higher temperature than the second region due to the influence of excitation light, and the phosphor particles are composed of a phosphor doped with an emission center element, At least two of the concentration of the luminescent center element, the size of the phosphor particles, and the volume ratio of the phosphor particles to the binder change from the first region to the second region of the phosphor layer. It is the composition which is done.
 本発明の一態様によれば、蛍光層の温度上昇を制御し、蛍光発光強度の向上に資することができる。 According to one embodiment of the present invention, it is possible to control the temperature rise of the fluorescent layer and contribute to the improvement of the fluorescence emission intensity.
従来技術に係る波長変換素子を示す概略図である。It is the schematic which shows the wavelength conversion element which concerns on a prior art. YAG:Ce蛍光体のピーク強度の光密度依存性を示すグラフである。It is a graph which shows the light density dependence of the peak intensity of a YAG: Ce fluorescent substance. 本発明の実施形態1に係る波長変換素子を示す概略図である。It is the schematic which shows the wavelength conversion element which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る波長変換素子を示す概略図である。It is the schematic which shows the wavelength conversion element which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る波長変換素子を示す概略図である。It is the schematic which shows the wavelength conversion element which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る波長変換素子を示す概略図である。It is the schematic which shows the wavelength conversion element which concerns on Embodiment 4 of this invention. 本発明の実施形態5、6に係る波長変換素子を示す概略図である。It is the schematic which shows the wavelength conversion element which concerns on Embodiment 5, 6 of this invention. 図8(a)は本発明の実施形態7に係る光源装置を示す概略図であり、(b)~(e)は、光源装置に実装する波長変換素子を示す概略図である。FIG. 8A is a schematic diagram illustrating a light source device according to Embodiment 7 of the present invention, and FIGS. 8B to 8E are schematic diagrams illustrating wavelength conversion elements mounted on the light source device. 図9(a)~(c)は、本発明の実施形態8に係る光源装置を示す概略図である。9A to 9C are schematic views showing a light source device according to Embodiment 8 of the present invention.
 図1に一般的な波長変換素子10の構成を示す。基板11の上に蛍光体層12が堆積された構成が一般的である。反射型の光学系では、蛍光体層12に励起光源13から発した励起光14が照射し、蛍光体層12は蛍光発光する。青色レーザなどにより蛍光体を発光させた場合、高出力照射時に所望の蛍光発光強度を得ることができないという問題に対し、特許文献1では、蛍光体の励起光照射側の蛍光体粒子の体積密度を基板側よりも高くするという構成が提案されていた。しかし、かかる構成では、蛍光体の励起光照射側の蛍光体密度が高いため発熱が大きいという課題がある。つまり蛍光体の発光効率の温度依存性を検討する必要がある。 FIG. 1 shows a configuration of a general wavelength conversion element 10. In general, the phosphor layer 12 is deposited on the substrate 11. In the reflective optical system, the phosphor layer 12 is irradiated with excitation light 14 emitted from the excitation light source 13, and the phosphor layer 12 emits fluorescence. When the phosphor is caused to emit light by a blue laser or the like, the problem that the desired fluorescence emission intensity cannot be obtained at the time of high output irradiation is disclosed in Patent Document 1, in which the volume density of the phosphor particles on the phosphor excitation light irradiation side is disclosed. A configuration has been proposed in which the height is made higher than the substrate side. However, in such a configuration, there is a problem that heat generation is large because the phosphor density on the excitation light irradiation side of the phosphor is high. That is, it is necessary to examine the temperature dependence of the luminous efficiency of the phosphor.
 〔発光効率の温度依存性〕
 蛍光体粒子は、材料コスト、製造コスト、および光学特性の観点から、アルミナを母材とするガーネット系材料が用いられる。ガーネット系材料としては、YAG:Ce(黄色発光蛍光体)、LuAG:Ce(緑色発光蛍光体)等が用いられる。また、ガーネット系蛍光体は、一般式(M1-xREAl12で示される物質で構成され、M、REともに希土類元素群より選ばれる少なくとも一つの元素を含むものが用いられる。一般的に、Mは、Sc、Y、Gd、Lu、REは、Ce、Eu、Tbのうち、少なくとも一種の元素が用いられる。Alの一部をGaで置換することも可能である。蛍光体粒子は、他の好ましい実施形態では、CaAlSiN:Eu、(Sr,Ca)AlSiN:Eu、(Ca,Y)12-(m+n)Alm+n16-n:Eu、Si6-zAl8-z:Eu、SrGa:Eu、またはCaS:Euからなる群より選ばれることが好ましい(ここで、m、n、x、y、zは正の数である)。なお、上記は一例であり、本発明の一態様の蛍光体層に用いられる蛍光体粒子は、上記の例に限られない。
[Temperature dependence of luminous efficiency]
For the phosphor particles, a garnet-based material whose base material is alumina is used from the viewpoint of material cost, manufacturing cost, and optical characteristics. As the garnet-based material, YAG: Ce (yellow light emitting phosphor), LuAG: Ce (green light emitting phosphor), or the like is used. The garnet-based phosphor is composed of a material represented by the general formula (M 1-x RE x ) 3 Al 5 O 12 and includes both M and RE containing at least one element selected from a rare earth element group. It is done. In general, M is Sc, Y, Gd, Lu, and RE is at least one element of Ce, Eu, and Tb. It is also possible to substitute a part of Al with Ga. In other preferred embodiments, the phosphor particles are CaAlSiN 3 : Eu, (Sr, Ca) AlSiN 3 : Eu, (Ca, Y) y S 12- (m + n) Al m + n On N 16-n : Eu, It is preferably selected from the group consisting of Si 6-z Al z O z N 8-z : Eu, SrGa 2 S 4 : Eu, or CaS: Eu (where m, n, x, y, z are positive Is the number of). Note that the above is an example, and the phosphor particles used in the phosphor layer of one embodiment of the present invention are not limited to the above examples.
 本発明の一態様のCe濃度(mol%)とは、上記一般式において、x×100(mol%)で表される。 The Ce concentration (mol%) of one embodiment of the present invention is represented by x × 100 (mol%) in the above general formula.
 蛍光体の発光効率の温度依存性について、YAG:Ce蛍光体の外部量子効率に基づいて説明する。図2(a)に示す通り、YAG(イットリウム・アルミニウム・ガーネット)にドーパントとしてCe(セリウム)をドープした蛍光体材料について、Ceのドープ濃度の違いにより発光効率の温度依存性が相違する様子が確認できる。 The temperature dependence of the luminous efficiency of the phosphor will be described based on the external quantum efficiency of the YAG: Ce phosphor. As shown in FIG. 2A, the phosphor material in which Ce (cerium) is doped as a dopant in YAG (yttrium, aluminum, garnet), the temperature dependence of the luminous efficiency varies depending on the difference in the doping concentration of Ce. I can confirm.
 蛍光体に励起光を照射した場合、蛍光発光が得られると同時に、励起光の一部は熱エネルギーに変換されるため、蛍光体の照射スポット部は高温になる。熱放射については、一般的に下記の式で説明することができる。 When the phosphor is irradiated with excitation light, fluorescence emission is obtained, and at the same time, a part of the excitation light is converted into thermal energy, so the irradiation spot portion of the phosphor becomes high temperature. Thermal radiation can be generally described by the following equation.
     Q=A・ε・σ・(T^4-T^4)
ここで、Qは放射熱量、Aは放射部面積、εは放射率、σはステファン・ボルツマン定数、Tは放射部の温度、Tは周囲の温度を示す。
Q = A · ε · σ · (T A ^ 4-T B ^ 4)
Here, Q is showing the radiation heat, A is the radiation unit area, epsilon emissivity, sigma is the Stefan-Boltzmann constant, T A is the temperature of the radiating portion, T B is the temperature of the surroundings.
 蛍光体の発光効率は蛍光体の温度による影響を受け、図2(a)に示すように、照射密度の増加に伴う温度上昇に従って発光効率が低下することが知られている。より強い(明るい)蛍光発光を得るためには励起光14の照射強度を強める必要があり、この場合、冷却状況によっては蛍光体層12の温度上昇抑制が十分に行えなくなる場合がある。 It is known that the luminous efficiency of the phosphor is affected by the temperature of the phosphor, and as shown in FIG. 2 (a), the luminous efficiency decreases as the temperature increases as the irradiation density increases. In order to obtain stronger (brighter) fluorescent light emission, it is necessary to increase the irradiation intensity of the excitation light 14, and in this case, the temperature rise of the phosphor layer 12 may not be sufficiently suppressed depending on the cooling state.
 また、蛍光体の温度特性は発光中心元素(本実施形態ではCe)の濃度により変化することが知られている(図2(a))。一般的に市販されているYAG:Ce蛍光体のCe濃度は、常温使用時の発光効率が高い濃度(例えば1.4~1.5mol%程度)が用いられることが多い。これはCeの濃度が低いYAG蛍光体では、内部量子効率は高くなるが、励起光の吸収率が低いため、波長変換素子として重要な外部量子効率は、Ce濃度1.5mol%付近が最適値となるためである。高密度、高強度の励起光照射によって照射スポットの蛍光体温度が250℃を超える領域になるような場合、一般的なYAG:Ce蛍光体(Ce濃度1.4mol%)では発光効率が低下する。ここでは、Ce濃度が低いYAG:Ce蛍光体(例えば0.5~1.0mol%程度)についてより詳細に検討する。図2(a)を参照すると、Ce濃度1.0mol%以上だと、光密度10W/mm以上で輝度が低下するのが確認できる。一方、Ce濃度が0.5~0.7mol%程度であれば、光密度16W/mm程度までは輝度低下は確認できない。これにより、Ce濃度1.0mol%以上だと、励起光により高温になり温度特性の優れていない蛍光体は輝度が低下することが理解できる。 Further, it is known that the temperature characteristics of the phosphor change depending on the concentration of the luminescent center element (Ce in the present embodiment) (FIG. 2A). In general, a commercially available YAG: Ce phosphor has a Ce concentration with a high luminous efficiency (for example, about 1.4 to 1.5 mol%) when used at room temperature. This is because the YAG phosphor with a low Ce concentration has a high internal quantum efficiency, but the absorption rate of the excitation light is low. Therefore, the external quantum efficiency that is important as a wavelength conversion element is optimum when the Ce concentration is around 1.5 mol%. It is because it becomes. In the case where the phosphor temperature of the irradiation spot exceeds 250 ° C. due to irradiation with high-density and high-intensity excitation light, the luminous efficiency decreases with a general YAG: Ce phosphor (Ce concentration 1.4 mol%). . Here, a YAG: Ce phosphor having a low Ce concentration (for example, about 0.5 to 1.0 mol%) will be examined in more detail. Referring to FIG. 2A, it can be confirmed that when the Ce concentration is 1.0 mol% or more, the luminance is lowered at an optical density of 10 W / mm 2 or more. On the other hand, if the Ce concentration is about 0.5 to 0.7 mol%, no decrease in luminance can be confirmed until the light density is about 16 W / mm 2 . Thereby, it can be understood that when the Ce concentration is 1.0 mol% or more, the luminance is lowered due to the high temperature due to the excitation light and the phosphor having poor temperature characteristics.
 図2(b)に蛍光体層の厚みの相違による温度依存性を示す。いずれもCe濃度が0.7mol%、平均粒径D50が11.1μmの蛍光体をサンプルとして用いている。蛍光体層の厚みが20μmから40μmの場合、少なくとも光密度16W/mm程度までは輝度低下は確認できない。これに対し、蛍光体層の厚みが70μmの場合、光密度12W/mm以上で輝度低下が確認される。蛍光体層の厚みが100μmの場合には、光密度5.5W/mm以上で大幅な輝度低下が確認される。蛍光体層が厚い場合、基板への放熱が間に合わず、表面温度が高温になり輝度が低下することが確認できる。これらの傾向に鑑みて本発明を実施形態ごとに説明する。 FIG. 2B shows the temperature dependence due to the difference in the thickness of the phosphor layer. In either case, a phosphor having a Ce concentration of 0.7 mol% and an average particle diameter D50 of 11.1 μm is used as a sample. When the thickness of the phosphor layer is 20 μm to 40 μm, a decrease in luminance cannot be confirmed at least until the light density is about 16 W / mm 2 . On the other hand, when the thickness of the phosphor layer is 70 μm, a decrease in luminance is confirmed at a light density of 12 W / mm 2 or more. When the thickness of the phosphor layer is 100 μm, a significant decrease in luminance is confirmed at a light density of 5.5 W / mm 2 or more. When the phosphor layer is thick, it can be confirmed that the heat radiation to the substrate is not in time, the surface temperature becomes high, and the luminance is lowered. In view of these tendencies, the present invention will be described for each embodiment.
 〔実施形態1〕
 〔波長変換素子の構成〕
 以下、本発明の一実施形態について、詳細に説明する。図3(a)に本発明の実施形態1にかかる波長変換素子30aの概略図を示す。図1に示した一般的な波長変換素子10の構成と比べて、蛍光体層の構成が異なる。実施形態1にかかる波長変換素子30aの蛍光体層は基板11の上に高Ce濃度ドープされたYAG蛍光体層が堆積されており、その上に低Ce濃度ドープされたYAG蛍光体層が堆積されている。高Ce濃度ドープされたYAG蛍光体層は、具体的には、バインダ35内に高Ce濃度ドープYAG蛍光体36aが散在する。低Ce濃度ドープされたYAG蛍光体層は、具体的には、バインダ33内に低Ce濃度ドープYAG蛍光体粒子34aが散在する。バインダ33、35に使用されるバインダは同じ材料のバインダでもよく、異なる材料のバインダでもよい。
Embodiment 1
[Configuration of wavelength conversion element]
Hereinafter, an embodiment of the present invention will be described in detail. FIG. 3A shows a schematic diagram of the wavelength conversion element 30a according to the first embodiment of the present invention. The configuration of the phosphor layer is different from the configuration of the general wavelength conversion element 10 shown in FIG. In the phosphor layer of the wavelength conversion element 30a according to the first embodiment, a YAG phosphor layer doped with a high Ce concentration is deposited on a substrate 11, and a YAG phosphor layer doped with a low Ce concentration is deposited thereon. Has been. Specifically, in the high Ce concentration doped YAG phosphor layer, the high Ce concentration doped YAG phosphor 36 a is scattered in the binder 35. Specifically, in the YAG phosphor layer doped with low Ce concentration, the low Ce concentration doped YAG phosphor particles 34 a are scattered in the binder 33. The binders used for the binders 33 and 35 may be the same material binder or different material binders.
 つまり励起光14が照射される面の蛍光体層は、基板側の蛍光体層よりも発光中心元素であるCeの濃度が低い構成となっている。以下、励起光14が照射される側を「第1の領域」(実施形態1では第1の領域31)と称し、他の側を第2の領域(実施形態1では第2の領域32)と称する。この例では、蛍光体層がCe濃度の異なる少なくとも2つの領域(第1の領域31、第2の領域32)から構成される例を示しているが、2層構造に限定されず、他の多層構造であってもよい。蛍光体層が多層構造から構成される場合、基板11の上に堆積された層が第2の領域に相当し、励起光14が照射される照射面側が第1の領域に相当する。 That is, the phosphor layer on the surface irradiated with the excitation light 14 has a structure in which the concentration of Ce, which is the emission center element, is lower than that of the phosphor layer on the substrate side. Hereinafter, the side irradiated with the excitation light 14 is referred to as a “first region” (first region 31 in the first embodiment), and the other side is a second region (second region 32 in the first embodiment). Called. In this example, an example in which the phosphor layer is composed of at least two regions (first region 31 and second region 32) having different Ce concentrations is shown. A multilayer structure may be used. When the phosphor layer has a multilayer structure, the layer deposited on the substrate 11 corresponds to the second region, and the irradiation surface side irradiated with the excitation light 14 corresponds to the first region.
 それぞれの温度域を構成する第1の領域31、第2の領域32で発光効率の良い蛍光体(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)による発光を得ることができる。これにより、単一の蛍光体層12を用いた場合に比べ、明るく長寿命な光源装置を実現することができる。 Phosphors with good luminous efficiency in the first region 31 and the second region 32 constituting the respective temperature ranges (low Ce concentration doped YAG phosphor particles 34a, 34b, high Ce concentration doped YAG phosphor particles 36a, 36b) Can be obtained. Thereby, compared with the case where the single fluorescent substance layer 12 is used, the light source device which is bright and long-life can be implement | achieved.
 また図3(a)に示すように、バインダに対する蛍光体粒子の体積比率が、第2の領域32より第1の領域31の方が大きいのが好ましい。バインダに対する体積比率の変化は、2つの領域で不連続に変化するだけでなく、第1の領域から第2の領域にかけて体積比率が減少するように徐々に変化するのも好ましい。 Further, as shown in FIG. 3A, the volume ratio of the phosphor particles to the binder is preferably larger in the first region 31 than in the second region 32. It is preferable that the change in the volume ratio relative to the binder not only changes discontinuously in the two regions, but also gradually changes so that the volume ratio decreases from the first region to the second region.
 励起光照射面(実施形態1では第1の領域31)と、基板側(実施形態1では第2の領域32)での温度差により、温度勾配が生じるため、第2の領域32の熱伝導がよければ、基板側へ熱を逃がすことができる。それゆえ、第1の領域31は、単位体積あたりのバインダ密度が低くても、熱を逃がすことができる。 Since a temperature gradient is generated due to a temperature difference between the excitation light irradiation surface (first region 31 in the first embodiment) and the substrate side (second region 32 in the first embodiment), heat conduction in the second region 32 is performed. If it is good, heat can be released to the substrate side. Therefore, the first region 31 can release heat even if the binder density per unit volume is low.
 図3(b)に本発明の実施形態1にかかる波長変換素子30bの概略図を示す。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。波長変換素子30aとの相違点は、第1の領域31および第2の領域32にそれぞれ散在する蛍光体の粒子径が異なる点である。好ましい実施形態では、第1の領域31のバインダ33内には大きな粒子径の蛍光体粒子34bが散在し、第2の領域32のバインダ35内には小さな粒子径の蛍光体粒子36bが散在する。説明の便宜上、低Ce濃度ドープYAG蛍光体粒子を「34*」と表示し、高Ce濃度ドープYAG蛍光体粒子を「36*」と表示する(「*」は「a」又は「b」)。蛍光体粒子が大きな粒子径の場合「34b」と表示し、蛍光体粒子が小さな粒子径の場合「36b」と表示する。 FIG. 3B is a schematic diagram of the wavelength conversion element 30b according to the first embodiment of the present invention. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals, and the description thereof will not be repeated. The difference from the wavelength conversion element 30a is that the particle diameters of the phosphors scattered in the first region 31 and the second region 32 are different. In a preferred embodiment, phosphor particles 34 b having a large particle size are scattered in the binder 33 in the first region 31, and phosphor particles 36 b having a small particle size are scattered in the binder 35 in the second region 32. . For convenience of explanation, the low Ce concentration doped YAG phosphor particles are indicated as “34 *” and the high Ce concentration doped YAG phosphor particles are indicated as “36 *” (“*” is “a” or “b”). . When the phosphor particles have a large particle size, “34b” is displayed, and when the phosphor particles have a small particle size, “36b” is displayed.
 また図3(a)と同様に図3(b)にも示すように、バインダに対する蛍光体粒子の体積比率が、第2の領域32より第1の領域31の方が大きいのが好ましい。バインダに対する体積比率の変化は、2つの領域で分かれるように変化するだけでなく、第1の領域から第2の領域にかけて体積比率が減少するように徐々に変化するのも好ましい。 As shown in FIG. 3B as well as in FIG. 3A, the volume ratio of the phosphor particles to the binder is preferably larger in the first region 31 than in the second region 32. It is preferable that the change in the volume ratio relative to the binder not only changes so as to be divided in two regions, but also gradually changes so that the volume ratio decreases from the first region to the second region.
 〔波長変換素子の製造プロセス〕
 基板11はアルミ基板を用いることができる。蛍光発光強度を高める為に、アルミ基板上には銀などの高反射膜がコーティングされているのが好ましい。他の実施形態では、高反射のアルミナ基板、白色完全散乱基板などを用いてもよい。基板11の材質は金属など熱伝導率の高いものが好ましく、特に上述した材料に限定されない。
[Manufacturing process of wavelength conversion element]
The substrate 11 can be an aluminum substrate. In order to increase the fluorescence emission intensity, it is preferable that a highly reflective film such as silver is coated on the aluminum substrate. In other embodiments, a highly reflective alumina substrate, a white fully scattering substrate, or the like may be used. The material of the substrate 11 is preferably a material having a high thermal conductivity such as a metal, and is not particularly limited to the materials described above.
 塗布方法としては、スクリーン印刷、沈降塗布、ディップ法をもちいることができる。バインダとしては、α-アルミナ、アルミナゾル、シリカ、コロイダルシリカ、炭化ケイ素、ジルコニア、炭化ジルコニウム、窒化ジルコニウム、アルカリ金属ケイ酸塩、チタニア、炭化チタン、窒化チタン、を用いることができる。 As the coating method, screen printing, sedimentation coating, or dip method can be used. As the binder, α-alumina, alumina sol, silica, colloidal silica, silicon carbide, zirconia, zirconium carbide, zirconium nitride, alkali metal silicate, titania, titanium carbide, titanium nitride can be used.
 基板11の上に第2の層(第2の領域に相当)となる高Ce濃度YAG蛍光体層を塗布し、その後、第1の層(第1の領域に相当)となる低Ce濃度YAG蛍光体層を塗布する。製造方法は沈降塗布に限定されず他の方法を用いてもよい。YAGにCeをドープした黄色蛍光体の一例として、第1の層は、Ce濃度が0.5mol%のYAG蛍光体を膜厚40μmで塗布することができる。第2の層は、Ce濃度が1.5mol%のYAG蛍光体を膜厚44μmで塗布することができる(図3(a))。 A high Ce concentration YAG phosphor layer serving as a second layer (corresponding to the second region) is applied on the substrate 11, and then a low Ce concentration YAG serving as the first layer (corresponding to the first region). A phosphor layer is applied. The manufacturing method is not limited to sedimentation coating, and other methods may be used. As an example of a yellow phosphor in which YAG is doped with Ce, the first layer can be coated with a YAG phosphor having a Ce concentration of 0.5 mol% in a film thickness of 40 μm. The second layer can be coated with a YAG phosphor having a Ce concentration of 1.5 mol% in a film thickness of 44 μm (FIG. 3A).
 図3(b)に示す更に好ましい実施形態では、第1の層は、Ce濃度が0.5mol%のYAG蛍光体を膜厚40μmで塗布することができる。バインダに対する蛍光体の体積比率は、蛍光体:バインダ=1:1、粒度分布は、D50:12.5μmであるのが好ましい。第2の層は、Ce濃度が1.5mol%のYAG蛍光体を膜厚44μmで塗布することができる。バインダに対する蛍光体の体積比率は、蛍光体:バインダ=1:3、粒度分布は、D50:11μmであるのが好ましい(図3(b))。 In a further preferred embodiment shown in FIG. 3B, the first layer can be coated with a YAG phosphor having a Ce concentration of 0.5 mol% in a film thickness of 40 μm. The volume ratio of the phosphor to the binder is preferably phosphor: binder = 1: 1, and the particle size distribution is preferably D50: 12.5 μm. The second layer can be coated with a YAG phosphor having a Ce concentration of 1.5 mol% in a film thickness of 44 μm. The volume ratio of the phosphor to the binder is preferably phosphor: binder = 1: 3, and the particle size distribution is preferably D50: 11 μm (FIG. 3B).
 かかる構成によるサンプル1と比較例1とを対比したピーク輝度の光密度依存性を図2(c)に示す。比較例1の構成は、Ce濃度が0.7mol%のYAG蛍光体を膜厚70μmで塗布したものであり、バインダに対する蛍光体の体積比率は、蛍光体:バインダ=1:1である。かかる対比から明らかなとおり、サンプル1のピーク強度は、比較例1と比べてより大きな光密度に対してピーク強度が発揮されるのが確認できる。 FIG. 2 (c) shows the light density dependence of the peak luminance comparing Sample 1 and Comparative Example 1 having such a configuration. In the configuration of Comparative Example 1, a YAG phosphor having a Ce concentration of 0.7 mol% is applied with a film thickness of 70 μm, and the volume ratio of the phosphor to the binder is phosphor: binder = 1: 1. As is clear from this comparison, it can be confirmed that the peak intensity of Sample 1 is exhibited at a higher light density than that of Comparative Example 1.
 第1の層の厚みの好ましい実施形態は、励起光エネルギー密度に依存する。好ましい実施形態では、第1の層の最大厚さが70μm未満である。最も薄い厚さの好ましい実施形態は、蛍光体粒子1個分の単層として、1μm程度であるのが好ましい。 The preferred embodiment of the thickness of the first layer depends on the excitation light energy density. In a preferred embodiment, the maximum thickness of the first layer is less than 70 μm. The thinnest preferred embodiment is preferably about 1 μm as a monolayer for one phosphor particle.
 好ましい実施形態では、総膜厚84μm程度の蛍光体層を構成することができる。層の数は2層に限定されず、3層以上で構成されていても良い。 In a preferred embodiment, a phosphor layer having a total film thickness of about 84 μm can be formed. The number of layers is not limited to two, and may be composed of three or more layers.
 蛍光体層は、Ceの濃度勾配を有する構成とすることもできる。Ce濃度勾配YAG蛍光体層は、基板11の側(第2の領域に相当)のCe濃度が高く、励起光照射面側(第1の領域に相当)のCe濃度が低く構成される。 The phosphor layer may have a Ce concentration gradient. The Ce concentration gradient YAG phosphor layer is configured such that the Ce concentration on the substrate 11 side (corresponding to the second region) is high and the Ce concentration on the excitation light irradiation surface side (corresponding to the first region) is low.
 いずれにしても、励起光照射面側と基板側で発光中心元素濃度の異なる蛍光体を設けることで、それぞれの温度域で発光効率の良い蛍光体による発光を得ることができ、単一の蛍光体を用いた場合に比べ明るい光源装置を実現することができる。 In any case, by providing phosphors with different emission central element concentrations on the excitation light irradiation surface side and the substrate side, it is possible to obtain light emission with a phosphor with good luminous efficiency in each temperature range, and a single fluorescence A bright light source device can be realized as compared with the case of using a body.
 〔実施形態2〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Another embodiment of the present invention will be described below. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals, and the description thereof will not be repeated.
 〔波長変換素子の構成〕
 図4(a)、(b)に本発明の実施形態2にかかる波長変換素子40a、40bの概略図を示す。図3(a)、(b)の波長変換素子30a、30bとの相違点は、第2の領域42の上面の一部に断面形状が半円状の凹部が形成され当該凹部内に第1の領域41が形成されている点である。
[Configuration of wavelength conversion element]
4A and 4B are schematic views of wavelength conversion elements 40a and 40b according to the second embodiment of the present invention. A difference from the wavelength conversion elements 30a and 30b in FIGS. 3A and 3B is that a recess having a semicircular cross section is formed in a part of the upper surface of the second region 42, and the first recess is formed in the recess. The region 41 is formed.
 凹部の形状が半円状であれば、第1の領域41と第2の領域42との境界線において、高密度励起光照射位置からの距離が等しくなり、熱の影響を等しく分散することができる。 If the shape of the recess is semicircular, the distance from the high-density excitation light irradiation position is equal at the boundary line between the first region 41 and the second region 42, and the influence of heat can be equally dispersed. it can.
 好ましい実施形態では、第2の領域42を形成後、スタンパで溝(断面形状が半円状の凹部)を形成し、第1の領域41を塗布するのが好ましい。 In a preferred embodiment, after forming the second region 42, it is preferable to form a groove (a recess having a semicircular cross-sectional shape) with a stamper and apply the first region 41.
 〔実施形態3〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 3]
Another embodiment of the present invention will be described below. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals, and the description thereof will not be repeated.
 〔波長変換素子の構成〕
 図5(a)、(b)に本発明の実施形態3にかかる波長変換素子50a、50bの概略図を示す。図3(a)、(b)の波長変換素子30a、30bとの相違点は、第2の領域52の上面の一部に断面形状が逆三角形状の凹部が形成され当該凹部内に第1の領域51が形成されている点である。凹部の形状を設けることにより、実施形態1の多層膜構造よりも熱の影響を分散することができる。
[Configuration of wavelength conversion element]
5A and 5B are schematic views of wavelength conversion elements 50a and 50b according to Embodiment 3 of the present invention. 3A and 3B is different from the wavelength conversion elements 30a and 30b in FIGS. 3A and 3B in that a recess having an inverted triangular shape is formed in a part of the upper surface of the second region 52, and the first recess is formed in the recess. That is, the region 51 is formed. By providing the shape of the recess, the influence of heat can be dispersed more than the multilayer film structure of the first embodiment.
 好ましい実施形態では、第2の領域52を形成後、スタンパで溝(断面形状が逆三角形状の凹部)を形成し、第1の領域51を塗布するのが好ましい。 In a preferred embodiment, after forming the second region 52, it is preferable to form a groove (a concave portion having an inverted triangular cross section) with a stamper, and apply the first region 51.
 〔実施形態4〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 4]
Another embodiment of the present invention will be described below. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals, and the description thereof will not be repeated.
 〔波長変換素子の構成〕
 図6(a)、(b)に本発明の実施形態4にかかる波長変換素子60a、60bの概略図を示す。図3(a)、(b)の波長変換素子30a、30bとの相違点は、第2の領域62の上面の一部に断面形状が方形状の凹部が形成され当該凹部内に第1の領域61が形成されている点である。凹部の形状を設けることにより、実施形態1の多層膜構造よりも熱の影響を分散することができる。
[Configuration of wavelength conversion element]
6A and 6B are schematic views of wavelength conversion elements 60a and 60b according to Embodiment 4 of the present invention. 3A and 3B is different from the wavelength conversion elements 30a and 30b in FIG. 3A in that a concave portion having a square cross section is formed in a part of the upper surface of the second region 62, and the first concave portion is formed in the concave portion. A region 61 is formed. By providing the shape of the recess, the influence of heat can be dispersed more than the multilayer film structure of the first embodiment.
 好ましい実施形態では、第2の領域62を形成後、スタンパで溝(断面形状が方形状の凹部)を形成し、第1の領域61を塗布するのが好ましい。 In a preferred embodiment, after forming the second region 62, it is preferable to form a groove (a recess having a square cross-sectional shape) with a stamper and apply the first region 61.
 〔実施形態5、6〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiments 5 and 6]
Another embodiment of the present invention will be described below. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals, and the description thereof will not be repeated.
 〔波長変換素子の実装例〕
 図7(a)~(d)に本発明の実施形態5、6にかかる波長変換素子70a~70dの概略図を示す。透過性基板71の上に高Ce濃度YAG蛍光体層が堆積され(第2の領域32、42、52、62に相当)、その上に低Ce濃度YAG蛍光体層が堆積される(第1の領域31、41、51、61に相当)。透過性基板71をヒートシンク構造とするのも好ましい。別の好ましい実施形態では、透過性基板71を透過性ヒートシンク(図示せず)と固定接触させることで冷却することもできる。
[Mounting example of wavelength conversion element]
7A to 7D are schematic views of wavelength conversion elements 70a to 70d according to Embodiments 5 and 6 of the present invention. A high Ce concentration YAG phosphor layer is deposited on the transmissive substrate 71 (corresponding to the second regions 32, 42, 52, and 62), and a low Ce concentration YAG phosphor layer is deposited thereon (the first region). Corresponding to the regions 31, 41, 51, 61). It is also preferable that the transparent substrate 71 has a heat sink structure. In another preferred embodiment, the transmissive substrate 71 can be cooled by making a fixed contact with a transmissive heat sink (not shown).
 図7では第1の領域、第2の領域ともに、簡略化のために蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)を省略している。図7(a)では図3(a),(b)に示した第1の領域31、第2の領域32と同様にバインダ33,35内に蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)が散在するのが好ましい。同様に、図7(b)では図4(a),(b)に示した第1の領域41、第2の領域42と同様にバインダ33,35内に蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)が散在するのが好ましい。同様に図7(c)では図5(a),(b)に示した第1の領域51、第2の領域52と同様にバインダ33,35内に蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)が散在するのが好ましい。同様に図7(d)では図6(a),(b)に示した第1の領域61、第2の領域62と同様にバインダ33,35内に蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)が散在するのが好ましい。 In FIG. 7, the phosphor particles (low Ce concentration doped YAG phosphor particles 34a and 34b, high Ce concentration doped YAG phosphor particles 36a and 36b) are omitted for simplification in both the first region and the second region. ing. In FIG. 7A, phosphor particles (low Ce concentration doped YAG phosphor particles in the binders 33 and 35 as in the first region 31 and the second region 32 shown in FIGS. 3A and 3B). 34a, 34b, high Ce concentration doped YAG phosphor particles 36a, 36b) are preferably interspersed. Similarly, in FIG. 7B, phosphor particles (low Ce concentration doped YAG in the binders 33 and 35 as in the first region 41 and the second region 42 shown in FIGS. 4A and 4B). It is preferred that the phosphor particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed. Similarly, in FIG. 7C, phosphor particles (low Ce concentration doped YAG fluorescence) are contained in the binders 33 and 35 in the same manner as the first region 51 and the second region 52 shown in FIGS. 5A and 5B. Preferably, the body particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed. Similarly, in FIG. 7 (d), phosphor particles (low Ce concentration doped YAG fluorescence) are contained in the binders 33 and 35 in the same manner as the first region 61 and the second region 62 shown in FIGS. 6 (a) and 6 (b). Preferably, the body particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed.
 本発明の実施形態5では、励起光14を透過性基板71の下側から照射させる透過型光源装置とするのが好ましい。かかる光源装置は、透過型レーザヘッドライトへの実装が好ましい(特許文献2(国際公開第2014/203484号))。特許文献3(特開2012-119193号公報)に開示されているように、透過性のヒートシンク基板に蛍光膜が堆積している場合、ヒートシンク側から励起光が入射すると、ヒートシンク側は放熱性が高いとことが知られている。波長変換素子70a~70dに用いられる透過性基板71はヒートシンク機能を備えている場合、高Ce濃度YAG蛍光体層が励起光により照射される照射面側(第2の領域)に堆積されるのが好ましい。照射面側(第2の領域)から励起光が照射され、照射面(第2の領域)の熱が透過性基板71に放熱することにより第2の領域より第1の領域が高温となる。従って、第1の領域に低Ce濃度YAG蛍光体層が堆積されるのが好ましい。 In the fifth embodiment of the present invention, a transmissive light source device that irradiates the excitation light 14 from below the transmissive substrate 71 is preferable. Such a light source device is preferably mounted on a transmissive laser headlight (Patent Document 2 (International Publication No. 2014/203484)). As disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2012-119193), when a fluorescent film is deposited on a transmissive heat sink substrate, when the excitation light is incident from the heat sink side, the heat sink side has heat dissipation properties. It is known to be expensive. When the transparent substrate 71 used for the wavelength conversion elements 70a to 70d has a heat sink function, a high Ce concentration YAG phosphor layer is deposited on the irradiation surface side (second region) irradiated with excitation light. Is preferred. Excitation light is irradiated from the irradiation surface side (second region), and the heat of the irradiation surface (second region) is dissipated to the transmissive substrate 71, so that the first region has a higher temperature than the second region. Therefore, it is preferable that a low Ce concentration YAG phosphor layer is deposited in the first region.
 本発明の実施形態6では、励起光14がバックライト装置(図示せず)からの光であるのが好ましい。バックライト装置の光源から出射した励起光が透過性基板71を透過し、波長変換素子70a~70dにより蛍光を発光する表示装置に実装されるのが好ましい。 In the sixth embodiment of the present invention, it is preferable that the excitation light 14 is light from a backlight device (not shown). The excitation light emitted from the light source of the backlight device is preferably mounted on a display device that transmits the fluorescent light by the wavelength conversion elements 70a to 70d through the transparent substrate 71.
 実施形態5、6では、ドーパントであるCe濃度変化だけでなく、蛍光体粒子の粒径サイズやバインダに対する蛍光体粒子の体積密度が異なる蛍光体層を用いてもよい。 In Embodiments 5 and 6, not only a change in the concentration of Ce as a dopant, but also a phosphor layer in which the particle size of the phosphor particles and the volume density of the phosphor particles with respect to the binder are different may be used.
 〔実施形態7〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 7]
Another embodiment of the present invention will be described below. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals, and the description thereof will not be repeated.
 〔光源装置の構成〕
 図8(a)に本発明の実施形態7に係る光源装置80の概略図を示す。光源装置80は好ましくは反射型レーザヘッドライト80である。励起光源13は、波長変換素子81の蛍光体層を励起する波長の励起光14を出射する青色レーザ光源であるのが好ましい。リフレクタ111は、半放物面ミラーから構成されるのが好ましい。放物面をxy平面に平行に上下に2分割して半放物面とし、その内面はミラーになっているのが好ましい。リフレクタ111には励起光14が通過する透孔がある。波長変換素子81は、青色の励起光14によって励起され、可視光の長波長域(黄色波長)の蛍光発光117を出射する。また、励起光14は、波長変換素子81に当たって拡散反射光118ともなる。波長変換素子81は、放物面の焦点の位置に配置される。波長変換素子81が、放物面ミラーの焦点の位置にあるので、波長変換素子81から出射された蛍光発光117、拡散反射光118はリフレクタ111へ当たって反射すると、一様に出射面112に直進する。蛍光発光117と拡散反射光118とが混ざり合った白色光が平行光として出射面112から出射する。
[Configuration of light source device]
FIG. 8A shows a schematic diagram of a light source device 80 according to Embodiment 7 of the present invention. The light source device 80 is preferably a reflective laser headlight 80. The excitation light source 13 is preferably a blue laser light source that emits excitation light 14 having a wavelength for exciting the phosphor layer of the wavelength conversion element 81. The reflector 111 is preferably composed of a semiparabolic mirror. It is preferable that the paraboloid is divided into upper and lower parts parallel to the xy plane to form a semiparaboloid, and the inner surface is a mirror. The reflector 111 has a through hole through which the excitation light 14 passes. The wavelength conversion element 81 is excited by the blue excitation light 14 and emits fluorescence emission 117 in the long wavelength range (yellow wavelength) of visible light. Further, the excitation light 14 strikes the wavelength conversion element 81 and becomes diffuse reflection light 118. The wavelength conversion element 81 is disposed at the focal point of the paraboloid. Since the wavelength conversion element 81 is located at the focal point of the parabolic mirror, when the fluorescent light emission 117 and the diffuse reflection light 118 emitted from the wavelength conversion element 81 strike the reflector 111 and are reflected, they uniformly reach the emission surface 112. Go straight. White light in which fluorescent light emission 117 and diffuse reflected light 118 are mixed is emitted from the emission surface 112 as parallel light.
 図8(b)~(e)に、放物面の焦点に配置された波長変換素子81の概略図を示す。波長変換素子81a~81dは、励起光の照射面側の層(第1の領域31,41,51,61)が低Ce濃度YAG蛍光体層で構成され、基板側の層(第2の領域32,42,52,62)が高Ce濃度YAG蛍光体層で構成される。 8B to 8E are schematic views of the wavelength conversion element 81 arranged at the focal point of the paraboloid. In the wavelength conversion elements 81a to 81d, the layer on the irradiation surface side of the excitation light ( first regions 31, 41, 51, 61) is formed of a low Ce concentration YAG phosphor layer, and the layer on the substrate side (second region) 32, 42, 52, 62) are composed of high Ce concentration YAG phosphor layers.
 図8(b)~(e)では第1の領域、第2の領域ともに、簡略化のために蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)を省略している。図8(b)では図3(a),(b)に示した第1の領域31、第2の領域32と同様にバインダ33,35内に蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)が散在するのが好ましい。同様に、図8(c)では図4(a),(b)に示した第1の領域41、第2の領域42と同様にバインダ33,35内に蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)が散在するのが好ましい。同様に図8(d)では図5(a),(b)に示した第1の領域51、第2の領域52と同様にバインダ33,35内に蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)が散在するのが好ましい。同様に図8(e)では図6(a),(b)に示した第1の領域61、第2の領域62と同様にバインダ33,35内に蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b、高Ce濃度ドープYAG蛍光体粒子36a,36b)が散在するのが好ましい。 In FIGS. 8B to 8E, both the first region and the second region are phosphor particles (low Ce concentration doped YAG phosphor particles 34a and 34b, high Ce concentration doped YAG phosphor particles for simplification). 36a and 36b) are omitted. In FIG. 8B, phosphor particles (low Ce concentration doped YAG phosphor particles in the binders 33 and 35 as in the first region 31 and the second region 32 shown in FIGS. 3A and 3B). 34a, 34b, high Ce concentration doped YAG phosphor particles 36a, 36b) are preferably interspersed. Similarly, in FIG. 8C, phosphor particles (low Ce concentration doped YAG in the binders 33 and 35 as in the first region 41 and the second region 42 shown in FIGS. 4A and 4B). It is preferred that the phosphor particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed. Similarly, in FIG. 8D, similarly to the first region 51 and the second region 52 shown in FIGS. 5A and 5B, phosphor particles (low Ce concentration doped YAG fluorescence) are contained in the binders 33 and 35. Preferably, the body particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed. Similarly, in FIG. 8E, phosphor particles (low Ce concentration doped YAG fluorescence) are contained in the binders 33 and 35 in the same manner as the first region 61 and the second region 62 shown in FIGS. 6A and 6B. Preferably, the body particles 34a, 34b and the high Ce concentration doped YAG phosphor particles 36a, 36b) are interspersed.
 励起光の照射面側の層(第1の領域31,41,51,61)に低Ce濃度YAG蛍光体層を配置したことにより、従来技術より更に高輝度での発光が可能となる。 By disposing the low Ce concentration YAG phosphor layer on the layer on the irradiation surface side of the excitation light ( first regions 31, 41, 51, 61), light emission with higher luminance than that of the prior art becomes possible.
 実施形態7では、ドーパントであるCe濃度変化だけでなく、蛍光体粒子の粒径サイズやバインダに対する蛍光体粒子の体積密度が異なる蛍光体層を用いてもよい。 In the seventh embodiment, not only a change in the concentration of Ce as a dopant, but also a phosphor layer having a different particle size and a volume density of the phosphor particles with respect to the binder may be used.
 〔実施形態8〕
 本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 8]
Another embodiment of the present invention will be described below. For convenience of explanation, members having the same functions as those described in the above embodiment are given the same reference numerals, and the description thereof will not be repeated.
 〔投影装置の構成〕
 図9(a)に実施形態8にかかる光源モジュール91を利用した投影装置90の概略図を示す。投影装置90は、好ましくはプロジェクタなどに用いられ得る。投影装置90では、励起光源13は、光源モジュール91における蛍光体層148(図9(b),(c)参照)を励起する波長の励起光14を出射するレーザ光源であるのが好ましい。好ましい実施形態では、YAG、LuAG等の蛍光体を励起する青色レーザダイオードが用いられる。蛍光体層148を照射する励起光14は、光路上にて光源側光学系106、ミラー109a~109cを通過することができる。光源側光学系106はダイクロイックミラーであるのが好ましい。好ましいダイクロイックミラーは、45度で入射した青色の光は反射させ、赤色および緑色の光は透過させることができる。
[Configuration of Projector]
FIG. 9A shows a schematic diagram of a projection apparatus 90 using the light source module 91 according to the eighth embodiment. The projection device 90 can be preferably used for a projector or the like. In the projection device 90, the excitation light source 13 is preferably a laser light source that emits excitation light 14 having a wavelength for exciting the phosphor layer 148 (see FIGS. 9B and 9C) in the light source module 91. In a preferred embodiment, a blue laser diode that excites a phosphor such as YAG or LuAG is used. The excitation light 14 that irradiates the phosphor layer 148 can pass through the light source side optical system 106 and the mirrors 109a to 109c on the optical path. The light source side optical system 106 is preferably a dichroic mirror. A preferred dichroic mirror can reflect blue light incident at 45 degrees and transmit red and green light.
 蛍光体層148は蛍光ホイール141上に堆積される。図9(b)に、光源モジュール91の平面図(xy平面)を、図9(c)に、光源モジュール91の断面図(xz平面)を示す。好ましい実施形態では、光源モジュール91は、蛍光ホイール141の表面上の周辺部に堆積された蛍光体層148を備えている。蛍光ホイール141はホイール固定具146で、駆動装置142の回転軸147に固定される。駆動装置142は好ましくはモータであり、モータの回転シャフトである回転軸147に固定具146で固定された蛍光ホイール141がモータの回転に伴い回転する。 The phosphor layer 148 is deposited on the phosphor wheel 141. FIG. 9B shows a plan view (xy plane) of the light source module 91, and FIG. 9C shows a cross-sectional view (xz plane) of the light source module 91. In a preferred embodiment, the light source module 91 includes a phosphor layer 148 deposited on the periphery on the surface of the phosphor wheel 141. The fluorescent wheel 141 is fixed to the rotating shaft 147 of the driving device 142 by a wheel fixture 146. The driving device 142 is preferably a motor, and a fluorescent wheel 141 fixed to a rotating shaft 147 that is a rotating shaft of the motor by a fixing tool 146 rotates as the motor rotates.
 蛍光ホイール141の表面上の周辺部に堆積された蛍光体層148が、励起光を受けて蛍光発光117を出射し、光源側光学系106を透過して蛍光光を出射する。蛍光体層148は、蛍光ホイール141の回転に伴い回転するため随時回転しながら、蛍光発光117を出射する。 The phosphor layer 148 deposited on the peripheral part on the surface of the fluorescent wheel 141 receives the excitation light and emits the fluorescent light emission 117, passes through the light source side optical system 106, and emits the fluorescent light. Since the phosphor layer 148 rotates with the rotation of the fluorescent wheel 141, the phosphor layer 148 emits the fluorescence emission 117 while rotating at any time.
 好ましい実施形態では、蛍光体層148は、図9(c)のxz平面における断面が、図8(b)~(e)のxz平面における構成を備える。図9(b)のxy平面に対して垂直となる任意のxz平面のどの断面においても図8(b)~(e)のxz平面における構成を備えるのが好ましい。蛍光体層148が、波長変換素子81aに相当する構成では、蛍光体層148は、蛍光ホイール141上に第2の層(第2の領域32)が堆積され、その上に第1の層(第1の領域31)が堆積された多層構造を形成する。蛍光体層148が、波長変換素子81b~dに相当する構成では、第2の領域42,52,62に環状に凹部が形成される。凹部の断面形状はそれぞれ半円状、逆三角形状、方形状であるのが好ましい。かかる断面形状を備えた環状の凹部に第1の領域41,51,61が形成されるのが好ましい。 In a preferred embodiment, the phosphor layer 148 has a configuration in the xz plane of FIGS. 8B to 8E, with the cross section in the xz plane of FIG. 9C. It is preferable that any cross section of any xz plane perpendicular to the xy plane of FIG. 9B has the configuration in the xz plane of FIGS. 8B to 8E. In the configuration in which the phosphor layer 148 corresponds to the wavelength conversion element 81a, the phosphor layer 148 has the second layer (second region 32) deposited on the phosphor wheel 141, and the first layer ( A multilayer structure in which the first region 31) is deposited is formed. In the configuration in which the phosphor layer 148 corresponds to the wavelength conversion elements 81b to 81d, concave portions are formed in the second regions 42, 52, and 62 in an annular shape. The cross-sectional shapes of the recesses are preferably semicircular, inverted triangular, and square, respectively. The first regions 41, 51 and 61 are preferably formed in an annular recess having such a cross-sectional shape.
 実施形態8では、第1の領域から第2の領域にかけてドーパントであるCe濃度変化だけでなく、蛍光体粒子の粒径サイズやバインダに対する蛍光体粒子の体積密度が異なる蛍光体層を用いてもよい。 In the eighth embodiment, not only a change in the concentration of Ce as a dopant from the first region to the second region, but also a phosphor layer in which the particle size of the phosphor particles and the volume density of the phosphor particles with respect to the binder are different may be used. Good.
 好ましい実施形態では、プロジェクタ(投影装置90)は、上記光源モジュール91と、表示素子107と、光源側光学系106(ダイクロイックミラー)と、投影側光学系108と、を備えることができる。光源側光学系106(ダイクロイックミラー)は、光源モジュール91からの光を上記表示素子107まで導光し、投影側光学系108は、上記表示素子107からの投影光をスクリーン等に投影することができる。好ましい実施形態では、表示素子107はDMD(デジタルミラーデバイス)であるのが好ましい。投影側光学系108は投影部レンズの組み合わせからなるのが好ましい。 In a preferred embodiment, the projector (projection device 90) can include the light source module 91, the display element 107, the light source side optical system 106 (dichroic mirror), and the projection side optical system 108. The light source side optical system 106 (dichroic mirror) guides the light from the light source module 91 to the display element 107, and the projection side optical system 108 projects the projection light from the display element 107 onto a screen or the like. it can. In a preferred embodiment, the display element 107 is preferably a DMD (Digital Mirror Device). The projection-side optical system 108 is preferably composed of a combination of projection unit lenses.
 〔まとめ〕
 本発明の態様1に係る波長変換素子(30a、30b、40a、50a、60a、70a、81、81a、81b、81c、81d)は、バインダ(33、35)中に蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b(大きな粒子径の蛍光体粒子)、高Ce濃度ドープYAG蛍光体粒子36a,36b(小さな粒子径の蛍光体粒子))が分散した蛍光層を備え、前記蛍光層は、第1の領域(31、41、51、61)と第2の領域(32、42、52、62)とを有し、励起光(14)の影響により前記第2の領域(32、42、52、62)より前記第1の領域(31、41、51、61)が高温となる波長変換素子(30a、30b、40a、50a、60a、70a、81、81a、81b、81c、81d)であって、前記蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b(大きな粒子径の蛍光体粒子)、高Ce濃度ドープYAG蛍光体粒子36a,36b(小さな粒子径の蛍光体粒子))は、発光中心元素(Ce)がドープされた蛍光体から構成され、前記蛍光層の前記第1の領域(31、41、51、61)から前記第2の領域(32、42、52、62)にわたって前記発光中心元素(Ce)の濃度、蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b(大きな粒子径の蛍光体粒子)、高Ce濃度ドープYAG蛍光体粒子36a,36b(小さな粒子径の蛍光体粒子))の大きさ、および、前記バインダ(33、35)に対する蛍光体粒子(低Ce濃度ドープYAG蛍光体粒子34a,34b(大きな粒子径の蛍光体粒子)、高Ce濃度ドープYAG蛍光体粒子36a,36b(小さな粒子径の蛍光体粒子))の体積比率の少なくとも2つが変化するように構成される構成である。
[Summary]
The wavelength conversion element (30a, 30b, 40a, 50a, 60a, 70a, 81, 81a, 81b, 81c, 81d) according to the aspect 1 of the present invention includes phosphor particles (low Ce concentration) in the binder (33, 35). A phosphor layer in which doped YAG phosphor particles 34a and 34b (phosphor particles having a large particle diameter) and high Ce concentration doped YAG phosphor particles 36a and 36b (phosphor particles having a small particle diameter) are dispersed; Has a first region (31, 41, 51, 61) and a second region (32, 42, 52, 62), and the second region (32, 42, 52, 62) The wavelength conversion elements (30a, 30b, 40a, 50a, 60a, 70a, 81, 81a, 81b, 81c, 81d) in which the first region (31, 41, 51, 61) is at a higher temperature. ) The phosphor particles (low Ce concentration doped YAG phosphor particles 34a and 34b (phosphor particles having a large particle diameter), high Ce concentration doped YAG phosphor particles 36a and 36b (phosphor particles having a small particle diameter)) emit light. The phosphor is doped with a central element (Ce), and extends from the first region (31, 41, 51, 61) of the phosphor layer to the second region (32, 42, 52, 62). Concentration of luminescent center element (Ce), phosphor particles (low Ce concentration doped YAG phosphor particles 34a, 34b (large particle size phosphor particles), high Ce concentration doped YAG phosphor particles 36a, 36b (small particle size) And phosphor particles (low Ce concentration doped YAG phosphor particles 34a and 34b (phosphor particles having a large particle diameter) with respect to the binder (33, 35) Is configured configured high Ce doped YAG phosphor particles 36a, 36b at least two volume ratio of (small phosphor particles with a particle size)) changes.
 上記の構成によれば、蛍光層の温度上昇制御を行うことができる。 According to the above configuration, the temperature rise of the fluorescent layer can be controlled.
 本発明の態様2に係る波長変換素子は、上記の態様1において、前記蛍光体粒子の大きさの変化が、前記第1の領域から前記第2の領域にかけて体積が減少する変化である構成としてもよい。 In the wavelength conversion element according to aspect 2 of the present invention, in the aspect 1, the change in size of the phosphor particles is a change in which the volume decreases from the first region to the second region. Also good.
 上記の構成によれば、粒径サイズを調整することにより放熱性が調整でき、発光面に粒径サイズの小さな蛍光体を用いることにより、発光表面での色ムラを小さくすることができる。 According to the above configuration, the heat dissipation can be adjusted by adjusting the particle size, and the color unevenness on the light emitting surface can be reduced by using a phosphor having a small particle size on the light emitting surface.
 本発明の態様3に係る波長変換素子は、上記の態様1または2において、前記発光中心元素の濃度の変化が、前記第1の領域から前記第2の領域にかけて濃度が増加する変化である構成としてもよい。 In the wavelength conversion element according to aspect 3 of the present invention, in the aspect 1 or 2, the change in the concentration of the luminescent center element is a change in which the concentration increases from the first region to the second region. It is good.
 本発明の態様4に係る波長変換素子は、上記の態様1から3のいずれかにおいて、前記バインダに対する蛍光体粒子の体積比率の変化が、前記第1の領域から前記第2の領域にかけて体積比率が減少する変化である構成としてもよい。 The wavelength conversion element according to Aspect 4 of the present invention is the wavelength conversion element according to any one of Aspects 1 to 3, wherein the volume ratio of the phosphor particles to the binder is changed from the first area to the second area. It is good also as a structure which is a change which decreases.
 上記の構成によれば、バインダ量により放熱性が調整でき、高輝度の波長変換素子を提供できる。 According to the above configuration, the heat dissipation can be adjusted by the amount of the binder, and a high-intensity wavelength conversion element can be provided.
 本発明の態様5に係る波長変換素子は、上記の態様1から4のいずれかにおいて、前記第1の領域が第1の層からなる層構造を有し、第2の領域が第2の層からなる層構造を有し、前記第1の層は前記第2の層の上に堆積され、前記第1の層の最大厚さが70μm未満である構成としてもよい。 The wavelength conversion element according to aspect 5 of the present invention is the wavelength conversion element according to any one of aspects 1 to 4, wherein the first region has a layer structure including a first layer, and the second region is a second layer. The first layer may be deposited on the second layer, and the maximum thickness of the first layer may be less than 70 μm.
 上記の構成によれば、励起光エネルギー密度に依存する好ましい膜厚を調整でき、高輝度の波長変換素子を提供できる。 According to the above configuration, a preferable film thickness depending on the excitation light energy density can be adjusted, and a high-intensity wavelength conversion element can be provided.
 本発明の態様6に係る波長変換素子は、上記の態様1から4のいずれかにおいて、前記第2の領域が、励起光の照射領域に凹部を有し、前記凹部に前記第1の領域が形成され、前記第1の領域が励起光により照射される構成としてもよい。 The wavelength conversion element according to Aspect 6 of the present invention is the wavelength conversion element according to any one of Aspects 1 to 4, wherein the second region has a recess in the excitation light irradiation region, and the first region is in the recess. It is good also as a structure which is formed and the said 1st area | region is irradiated with excitation light.
 上記の構成によれば、照射ポイントからの放熱距離を調整でき、高輝度の波長変換素子を提供できる。 According to the above configuration, the heat radiation distance from the irradiation point can be adjusted, and a high-intensity wavelength conversion element can be provided.
 本発明の態様7に係る光源装置は、上記の態様1から6のいずれかに記載の波長変換素子と、基板と、を備え、前記基板上に前記蛍光層が堆積され、前記蛍光層が、厚さ方向において互いに反対側にある第1の面と第2の面とを有し、前記第2の領域が少なくとも第2の面側にあり、前記第1の領域は第1の面側のみにあり、前記第2の面が前記基板に面し、前記第1の領域に励起光が照射されることにより前記第2の領域より前記第1の領域が高温となる構成としてもよい。 A light source device according to aspect 7 of the present invention includes the wavelength conversion element according to any one of aspects 1 to 6 and a substrate, wherein the fluorescent layer is deposited on the substrate, and the fluorescent layer is The first surface and the second surface are opposite to each other in the thickness direction, the second region is at least on the second surface side, and the first region is only on the first surface side. The second region may face the substrate, and the first region may be heated to a higher temperature than the second region by irradiating the first region with excitation light.
 上記の構成によれば、従来よりも高輝度の蛍光発光を提供することができる。 According to the above configuration, it is possible to provide fluorescent light emission with higher brightness than conventional.
 本発明の態様8に係る光源装置は、上記の態様1から6のいずれかに記載の波長変換素子と、透過性ヒートシンク基板(71)と、を備え、前記透過性ヒートシンク基板上に前記蛍光層が堆積され、前記蛍光層が、厚さ方向において互いに反対側にある第1の面と第2の面とを有し、前記第2の領域が少なくとも第2の面側にあり、前記第1の領域は第1の面側のみにあり、前記第2の面が前記透過性ヒートシンク基板に面し、前記第2の面側から励起光が照射され、前記第2の面の熱が前記透過性ヒートシンク基板に放熱することにより前記第2の領域より前記第1の領域が高温となる構成としてもよい。 A light source device according to an eighth aspect of the present invention includes the wavelength conversion element according to any one of the first to sixth aspects, and a transmissive heat sink substrate (71), and the fluorescent layer on the transmissive heat sink substrate. And the fluorescent layer has a first surface and a second surface that are opposite to each other in the thickness direction, and the second region is at least on the second surface side, The region is only on the first surface side, the second surface faces the transmissive heat sink substrate, the excitation light is irradiated from the second surface side, and the heat of the second surface is transmitted through the transmission surface. It is good also as a structure from which the said 1st area | region becomes higher temperature than the said 2nd area | region by thermally radiating to a heat sink board | substrate.
 上記の構成によれば、従来よりも高輝度の蛍光発光を提供することができる。 According to the above configuration, it is possible to provide fluorescent light emission with higher brightness than conventional.
 本発明の態様9に係る車両用前照灯具(反射型レーザヘッドライト80)は、上記の態様7または8に記載の光源装置を備えた車両用前照灯具であって、励起光を出射する光源と、前記光源から出射した励起光に励起されて蛍光光を出射する上記の態様7または8に記載の光源装置と、前記光源装置から出射した蛍光光を反射させる反射面を有するリフレクタと、を備え、前記リフレクタの反射面が、入射した光を一定方向に平行に出射するように反射させる形状を有する構成としてもよい。 A vehicle headlamp (reflection type laser headlight 80) according to Aspect 9 of the present invention is a vehicle headlamp provided with the light source device according to Aspect 7 or 8, and emits excitation light. A light source, a light source device according to the above aspect 7 or 8 that is excited by excitation light emitted from the light source and emits fluorescent light, a reflector having a reflective surface that reflects the fluorescent light emitted from the light source device, and The reflecting surface of the reflector may be configured to reflect the incident light so as to be emitted in parallel in a certain direction.
 上記の構成によれば、従来よりも高輝度の車両用前照灯具を提供することができる。 According to the above configuration, it is possible to provide a vehicular headlamp that has higher brightness than conventional ones.
 本発明の態様10に係る表示装置は、励起光を出射する光源を備えたバックライト装置と、前記バックライト装置の光源から出射した励起光に励起されて蛍光光を出射する上記の態様7または8に記載の光源装置と、を備えた構成としてもよい。 The display device according to aspect 10 of the present invention includes a backlight device including a light source that emits excitation light, and the above-described aspect 7 that emits fluorescent light by being excited by excitation light emitted from the light source of the backlight device. The light source device described in 8 may be provided.
 上記の構成によれば、従来よりも高輝度の表示装置を提供することができる。 According to the above configuration, it is possible to provide a display device with higher brightness than in the past.
 本発明の態様11に係る光源モジュール(90)は、上記の態様1から6のいずれかに記載の波長変換素子と、蛍光ホイール(141)と、を備え、前記蛍光ホイール(141)上に前記蛍光層が堆積され、前記蛍光層が、厚さ方向において互いに対向する第1の面と第2の面とを有し、前記第2の領域が少なくとも第2の面側にあり、前記第1の領域は第1の面側のみにあり、前記第2の面が前記蛍光ホイールに面し、前記第1の面側から励起光が照射されることにより前記第2の領域より前記第1の領域が高温となる構成としてもよい。 A light source module (90) according to aspect 11 of the present invention includes the wavelength conversion element according to any one of aspects 1 to 6 and a fluorescent wheel (141), and the light source module (90) is provided on the fluorescent wheel (141). A fluorescent layer is deposited, the fluorescent layer has a first surface and a second surface facing each other in the thickness direction, and the second region is at least on the second surface side, and the first surface The region is only on the first surface side, the second surface faces the fluorescent wheel, and the first surface side is irradiated with excitation light from the first region to the first surface. It is good also as a structure where an area | region becomes high temperature.
 上記の構成によれば、従来よりも高輝度の光源モジュールを提供することができる。 According to the above configuration, it is possible to provide a light source module with higher brightness than conventional.
 本発明の態様12に係る投影装置(90;プロジェクタ)は、上記の態様11に記載の光源モジュール(91)と、前記光源モジュール(91)に励起光(14)を射出する光源(13)と、前記光源モジュール(91)の蛍光ホイール(141)を回転させる駆動装置(142)と、を備えた光源装置と、表示素子(107)と、前記光源装置からの光を前記表示素子(107)まで導光する光源側光学系(106)と、前記表示素子(107)からの投影光をスクリーン等に投影する投影側光学系(108)と、を備える構成としてもよい。 A projection apparatus (90; projector) according to aspect 12 of the present invention includes a light source module (91) according to aspect 11 above, and a light source (13) that emits excitation light (14) to the light source module (91). A light source device including a drive device (142) for rotating a fluorescent wheel (141) of the light source module (91), a display element (107), and light from the light source device for the display element (107). A light source side optical system (106) that guides light to the screen and a projection side optical system (108) that projects projection light from the display element (107) onto a screen or the like may be used.
 上記の構成によれば、従来よりも高輝度の投影装置を提供することができる。 According to the above configuration, it is possible to provide a projection device with higher brightness than in the past.
 本発明の態様13に係る波長変換素子は、上記の態様6において、前記凹部の断面形状が、半円状、逆三角形状、又は、方形状のいずれかから選択することができる構成としてもよい。 The wavelength conversion element according to aspect 13 of the present invention may be configured such that, in the above aspect 6, the cross-sectional shape of the concave portion can be selected from any of a semicircular shape, an inverted triangular shape, and a rectangular shape. .
 上記の構成によれば、照射ポイントからの放熱距離を調整でき、高輝度の波長変換素子を提供できる。 According to the above configuration, the heat radiation distance from the irradiation point can be adjusted, and a high-intensity wavelength conversion element can be provided.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。

 
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.

Claims (12)

  1.  バインダ中に蛍光体粒子が分散した蛍光層を備え、
     前記蛍光層は、第1の領域と第2の領域とを有し、励起光の影響により前記第2の領域より前記第1の領域が高温となる波長変換素子であって、
     前記蛍光体粒子は、発光中心元素がドープされた蛍光体から構成され、
     前記蛍光層の前記第1の領域から前記第2の領域にわたって前記発光中心元素の濃度、蛍光体粒子の大きさ、および、前記バインダに対する蛍光体粒子の体積比率の少なくとも2つが変化するように構成されることを特徴とする波長変換素子。
    A phosphor layer in which phosphor particles are dispersed in a binder,
    The fluorescent layer has a first region and a second region, and is a wavelength conversion element in which the first region has a higher temperature than the second region due to the influence of excitation light,
    The phosphor particles are composed of a phosphor doped with an emission center element,
    At least two of the concentration of the luminescent center element, the size of the phosphor particles, and the volume ratio of the phosphor particles to the binder change from the first region to the second region of the phosphor layer. The wavelength conversion element characterized by the above-mentioned.
  2.  前記蛍光体粒子の大きさの変化が、前記第1の領域から前記第2の領域にかけて体積が減少する変化であることを特徴とする請求項1に記載の波長変換素子。 2. The wavelength conversion element according to claim 1, wherein the change in size of the phosphor particles is a change in which the volume decreases from the first region to the second region.
  3.  前記発光中心元素の濃度の変化が、前記第1の領域から前記第2の領域にかけて濃度が増加する変化であることを特徴とする請求項1または2に記載の波長変換素子。 3. The wavelength conversion element according to claim 1, wherein the change in the concentration of the luminescent center element is a change in which the concentration increases from the first region to the second region.
  4.  前記バインダに対する蛍光体粒子の体積比率の変化が、前記第1の領域から前記第2の領域にかけて体積比率が減少する変化であることを特徴とする請求項1から3のいずれか1項に記載の波長変換素子。 The change in the volume ratio of the phosphor particles with respect to the binder is a change in which the volume ratio decreases from the first region to the second region. Wavelength conversion element.
  5.  前記第1の領域が第1の層からなる層構造を有し、第2の領域が第2の層からなる層構造を有し、
     前記第1の層は前記第2の層の上に堆積され、
     前記第1の層の最大厚さが70μm未満であることを特徴とする請求項1から4のいずれか1項に記載の波長変換素子。
    The first region has a layer structure composed of a first layer, the second region has a layer structure composed of a second layer,
    The first layer is deposited on the second layer;
    5. The wavelength conversion element according to claim 1, wherein a maximum thickness of the first layer is less than 70 μm.
  6.  前記第2の領域が、励起光の照射領域に凹部を有し、
     前記凹部に前記第1の領域が形成され、
     前記第1の領域が励起光により照射されることを特徴とする請求項1から4のいずれか1項に記載の波長変換素子。
    The second region has a recess in the excitation light irradiation region;
    The first region is formed in the recess;
    The wavelength conversion element according to any one of claims 1 to 4, wherein the first region is irradiated with excitation light.
  7.  請求項1から6のいずれか1項に記載の波長変換素子と、
     基板と、
    を備え、
     前記基板上に前記蛍光層が堆積され、
     前記蛍光層が、厚さ方向において互いに反対側にある第1の面と第2の面とを有し、前記第2の領域が少なくとも第2の面側にあり、前記第1の領域は第1の面側のみにあり、
     前記第2の面が前記基板に面し、
     前記第1の領域に励起光が照射されることにより前記第2の領域より前記第1の領域が高温となることを特徴とする光源装置。
    The wavelength conversion element according to any one of claims 1 to 6,
    A substrate,
    With
    The phosphor layer is deposited on the substrate;
    The fluorescent layer has a first surface and a second surface opposite to each other in the thickness direction, the second region is at least on the second surface side, and the first region is a first surface 1 only on the face side,
    The second surface faces the substrate;
    The light source device according to claim 1, wherein the first region is heated to a higher temperature than the second region when the first region is irradiated with excitation light.
  8.  請求項1から6のいずれか1項に記載の波長変換素子と、
     透過性ヒートシンク基板と、
    を備え、
     前記透過性ヒートシンク基板上に前記蛍光層が堆積され、
     前記蛍光層が、厚さ方向において互いに反対側にある第1の面と第2の面とを有し、前記第2の領域が少なくとも第2の面側にあり、前記第1の領域は第1の面側のみにあり、
     前記第2の面が前記透過性ヒートシンク基板に面し、
     前記第2の面側から励起光が照射され、前記第2の面の熱が前記透過性ヒートシンク基板に放熱することにより前記第2の領域より前記第1の領域が高温となることを特徴とする光源装置。
    The wavelength conversion element according to any one of claims 1 to 6,
    A transparent heat sink substrate;
    With
    The phosphor layer is deposited on the transparent heat sink substrate;
    The fluorescent layer has a first surface and a second surface opposite to each other in the thickness direction, the second region is at least on the second surface side, and the first region is a first surface 1 only on the face side,
    The second surface faces the transparent heat sink substrate;
    Excitation light is irradiated from the second surface side, and the heat of the second surface is radiated to the transmissive heat sink substrate, whereby the first region becomes hotter than the second region. Light source device.
  9.  請求項7または8に記載の光源装置を備えた車両用前照灯具であって、
     励起光を出射する光源と、
     前記光源から出射した励起光に励起されて蛍光光を出射する請求項7または8に記載の光源装置と、
     前記光源装置から出射した蛍光光を反射させる反射面を有するリフレクタと、
    を備え、
     前記リフレクタの反射面が、入射した光を一定方向に平行に出射するように反射させる形状を有することを特徴とする車両用前照灯具。
    A vehicle headlamp provided with the light source device according to claim 7 or 8,
    A light source that emits excitation light;
    The light source device according to claim 7 or 8, wherein the light source device is excited by excitation light emitted from the light source and emits fluorescent light.
    A reflector having a reflecting surface for reflecting the fluorescent light emitted from the light source device;
    With
    The vehicle headlamp according to claim 1, wherein the reflecting surface of the reflector reflects the incident light so as to be emitted in parallel in a certain direction.
  10.  励起光を出射する光源を備えたバックライト装置と、
     前記バックライト装置の光源から出射した励起光に励起されて蛍光光を出射する請求項7または8に記載の光源装置と、
    を備えたことを特徴とする表示装置。
    A backlight device including a light source that emits excitation light;
    The light source device according to claim 7 or 8, which is excited by excitation light emitted from a light source of the backlight device and emits fluorescent light,
    A display device comprising:
  11.  請求項1から6のいずれか1項に記載の波長変換素子と、
     蛍光ホイールと、
    を備え、
     前記蛍光ホイール上に前記蛍光層が堆積され、
     前記蛍光層が、厚さ方向において互いに対向する第1の面と第2の面とを有し、前記第2の領域が少なくとも第2の面側にあり、前記第1の領域は第1の面側のみにあり、
     前記第2の面が前記蛍光ホイールに面し、
     前記第1の面側から励起光が照射されることにより前記第2の領域より前記第1の領域が高温となることを特徴とする光源モジュール。
    The wavelength conversion element according to any one of claims 1 to 6,
    With a fluorescent wheel,
    With
    The phosphor layer is deposited on the phosphor wheel;
    The fluorescent layer has a first surface and a second surface facing each other in the thickness direction, the second region is at least on the second surface side, and the first region is the first surface On the face side only,
    The second surface faces the fluorescent wheel;
    The light source module according to claim 1, wherein the first region has a higher temperature than the second region when irradiated with excitation light from the first surface side.
  12.   請求項11に記載の光源モジュールと、
      前記光源モジュールに励起光を射出する光源と、
      前記光源モジュールの蛍光ホイールを回転させる駆動装置と、
     を備えた光源装置と、
     表示素子と、
     前記光源装置からの光を前記表示素子まで導光する光源側光学系と、
     前記表示素子からの投影光をスクリーン等に投影する投影側光学系と、
    を備えることを特徴とする投影装置。
    The light source module according to claim 11;
    A light source that emits excitation light to the light source module;
    A driving device for rotating a fluorescent wheel of the light source module;
    A light source device comprising:
    A display element;
    A light source side optical system that guides light from the light source device to the display element;
    A projection-side optical system that projects projection light from the display element onto a screen or the like;
    A projection apparatus comprising:
PCT/JP2019/021674 2018-05-31 2019-05-31 Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, and projection device WO2019230935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-104904 2018-05-31
JP2018104904A JP2021144062A (en) 2018-05-31 2018-05-31 Waveform conversion element, light source device, vehicle headlight, display device, light source module, and projection device

Publications (1)

Publication Number Publication Date
WO2019230935A1 true WO2019230935A1 (en) 2019-12-05

Family

ID=68696693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021674 WO2019230935A1 (en) 2018-05-31 2019-05-31 Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, and projection device

Country Status (2)

Country Link
JP (1) JP2021144062A (en)
WO (1) WO2019230935A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162357A1 (en) * 2019-02-06 2020-08-13 シャープ株式会社 Wavelength conversion element, light source device, headlight for vehicles, transmission type lighting device, display device, and lighting device
WO2021187207A1 (en) * 2020-03-16 2021-09-23 ソニーグループ株式会社 Illuminating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080705A1 (en) * 2012-11-22 2014-05-30 シャープ株式会社 Light emitting apparatus, method for manufacturing same, lighting apparatus, and headlamp
JP2016099558A (en) * 2014-11-25 2016-05-30 セイコーエプソン株式会社 Wavelength conversion element, light source unit, projector and manufacturing method of wavelength conversion element
WO2017056469A1 (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Light source device and projection device
WO2017209152A1 (en) * 2016-06-01 2017-12-07 キヤノン株式会社 Wavelength conversion element, light source device, and image projection device
JP2018028647A (en) * 2016-08-20 2018-02-22 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080705A1 (en) * 2012-11-22 2014-05-30 シャープ株式会社 Light emitting apparatus, method for manufacturing same, lighting apparatus, and headlamp
JP2016099558A (en) * 2014-11-25 2016-05-30 セイコーエプソン株式会社 Wavelength conversion element, light source unit, projector and manufacturing method of wavelength conversion element
WO2017056469A1 (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Light source device and projection device
WO2017209152A1 (en) * 2016-06-01 2017-12-07 キヤノン株式会社 Wavelength conversion element, light source device, and image projection device
JP2018028647A (en) * 2016-08-20 2018-02-22 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162357A1 (en) * 2019-02-06 2020-08-13 シャープ株式会社 Wavelength conversion element, light source device, headlight for vehicles, transmission type lighting device, display device, and lighting device
JPWO2020162357A1 (en) * 2019-02-06 2021-12-09 シャープ株式会社 Wavelength conversion element, light source device, vehicle headlight, transmissive lighting device, display device and lighting device
WO2021187207A1 (en) * 2020-03-16 2021-09-23 ソニーグループ株式会社 Illuminating device

Also Published As

Publication number Publication date
JP2021144062A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
JP5598974B2 (en) Lighting device
WO2017038164A1 (en) Light-emitting device
JP6644081B2 (en) Light-emitting device, lighting device, and method for manufacturing light-emitting body included in light-emitting device
JP2012243701A (en) Light source device and lighting system
US11387391B2 (en) Conversion element, optoelectronic component and method for producing a conversion element
JP5675248B2 (en) Light source device and lighting device
JP6125666B2 (en) Light emitting device
WO2019230935A1 (en) Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, and projection device
TWI810280B (en) High efficiency and uniformity white light generator stimulated by laser
WO2020162357A1 (en) Wavelength conversion element, light source device, headlight for vehicles, transmission type lighting device, display device, and lighting device
US11506360B2 (en) Optical element and optical device
WO2019230934A1 (en) Wavelength conversion element and light source device
WO2020090663A1 (en) Optical element, fluorescent wheel, light source device, headlight for vehicles, and projection device
WO2021181779A1 (en) Optical element and light emission system
WO2019230936A1 (en) Optical element, vehicle front lamp, light source device, and projection device
WO2020189405A1 (en) Optical element, vehicle headlight, light source device, and projection device
WO2022123878A1 (en) Wavelength conversion member, light source device, headlight fixture, and projection device
JP2023002851A (en) Wavelength conversion element, fluorescent wheel, light source device, vehicular headlight appliance, and projection device
JP2022050894A (en) Light emitting device and light source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP