WO2022123878A1 - Wavelength conversion member, light source device, headlight fixture, and projection device - Google Patents

Wavelength conversion member, light source device, headlight fixture, and projection device Download PDF

Info

Publication number
WO2022123878A1
WO2022123878A1 PCT/JP2021/036722 JP2021036722W WO2022123878A1 WO 2022123878 A1 WO2022123878 A1 WO 2022123878A1 JP 2021036722 W JP2021036722 W JP 2021036722W WO 2022123878 A1 WO2022123878 A1 WO 2022123878A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
substrate
layer
conversion member
light
Prior art date
Application number
PCT/JP2021/036722
Other languages
French (fr)
Japanese (ja)
Inventor
透 菅野
繁 青森
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2022123878A1 publication Critical patent/WO2022123878A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present disclosure relates to a wavelength conversion member, a light source device, a headlight device, and a projection device.
  • This disclosure claims priority based on Japanese Patent Application No. 2020-204874 filed in Japan on December 10, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a wavelength conversion member having a substrate and a phosphor layer which is a wavelength conversion layer laminated on the substrate.
  • the wavelength conversion member described in Cited Document 1 employs a structure in which the substrate and the wavelength conversion layer are irregularly intertwined with each other in order to increase the contact area between the substrate and the wavelength conversion layer.
  • peeling of the wavelength conversion layer from the substrate has become a problem.
  • An object of the present disclosure is, for example, to provide a wavelength conversion member in which peeling of a wavelength conversion layer is suppressed.
  • the wavelength conversion member of one embodiment of the present disclosure has a shape different from that of the substrate, and is provided on the substrate with a protrusion layer including a plurality of protrusions protruding from the substrate, and the inorganic wavelength conversion material comprises inorganic particles.
  • the wavelength conversion layer is provided with a wavelength conversion layer dispersed in a binder including the binder, and the wavelength conversion layer is fixed on the substrate in direct contact with the protrusion layer.
  • Another form of the wavelength conversion member of the present disclosure has a different shape from the substrate, a projection layer including a plurality of projections protruding from the substrate, and a wavelength conversion material provided on the substrate and containing an inorganic wavelength conversion material.
  • a reflective layer provided between the layer and the substrate and the wavelength conversion layer, in which highly reflective particles are dispersed in a binder containing inorganic particles, is provided, and the reflective layer is in direct contact with the protruding layer. It is fixed on the substrate.
  • FIG. It is sectional drawing which shows typically the example of the light source apparatus of Embodiment 1.
  • FIG. It is a partially enlarged view of the wavelength conversion member of FIG. It is sectional drawing of the wavelength conversion member of Embodiment 2.
  • FIG. It is a partially enlarged view of the wavelength conversion member of FIG. It is the schematic which shows an example of the headlight for a reflective vehicle schematically.
  • It is a schematic diagram schematically showing an example of a headlight for a transmissive vehicle.
  • It is a schematic diagram schematically showing an example of a light source device.
  • It is a top view which shows an example of the fluorescent wheel rotation apparatus schematically.
  • It is a schematic diagram which shows an example of a projection apparatus schematically.
  • FIG. 1 is a cross-sectional view schematically showing an example of a light source device 100 according to the present embodiment.
  • FIG. 2 is a partially enlarged view of the wavelength conversion member 10 of FIG.
  • the light source device 100 includes, for example, a wavelength conversion member 10 and a light source 30.
  • the light source 30 irradiates the wavelength conversion member 10, for example, with excitation light 31 such as a blue laser. More specifically, the light source 30 emits light having a wavelength that excites the inorganic wavelength conversion material 21 in the wavelength conversion member 10.
  • the wavelength conversion member 10 converts the excitation light 31 emitted from the light source 30 into light having a wavelength different from that of the excitation light 31, for example, light having a wavelength longer than that of the excitation light 31, and emits the light.
  • the light source device 100 converts the wavelength of the light emitted by the light source 30 by the wavelength conversion member 10 and emits it.
  • wavelength conversion member 10 will be described in more detail.
  • the wavelength conversion member 10 has, for example, a substrate 11 and a wavelength conversion layer 20 formed on the substrate 11.
  • the shape and dimensions of the substrate 11 are not particularly limited.
  • the substrate 11 may have, for example, a circular shape, a disk shape, a polygonal shape, an elliptical shape, an oval shape, or the like.
  • the thickness of the substrate 11 is not particularly limited, but can be, for example, about 0.5 mm or more and 2.0 mm or less.
  • the substrate 11 may be one that does not transmit light (for example, visible light), for example, one that reflects light, or a translucent plate that transmits light.
  • the substrate 11 is formed of, for example, a metal material such as aluminum that reflects light if it is a reflective type, and a ceramic material such as glass or sapphire that transmits light if it is a transmissive type.
  • the reflective substrate 11 may be provided with a highly reflective coating film made of a reflective material such as silver or a hyperreflective film made of an oxide multilayer film on the surface of a material that transmits light. Further, regardless of whether the substrate 11 is a reflective type or a transmissive type, it is preferable that the substrate 11 has a high thermal conductivity in order to suppress temperature quenching of the inorganic wavelength conversion material contained in the wavelength conversion layer 20. Therefore, the substrate 11 is preferably made of aluminum or copper. Further, when the substrate 11 is made of aluminum, the surface may be alumite, for example.
  • a protrusion layer 12 having a plurality of protrusions 12a is provided on the substrate 11.
  • the plurality of protrusions 12a have, for example, different shapes from each other and protrude from the substrate 11.
  • a part of the plurality of protrusions 12a is an acute-angled protrusion extending in a direction forming an acute angle with respect to the substrate 11.
  • at least a part of the plurality of protrusions 12a extends in a direction inclined from the normal direction of the main surface of the substrate 11, and preferably extends in a direction forming an acute angle with the main surface of the substrate 11.
  • the plurality of protrusions 12a are coupled to the substrate 11.
  • the coupling of the plurality of protrusions 12a to the substrate 11 is stronger than the coupling of the wavelength conversion layer 20 of the present embodiment to the substrate 11.
  • the bond of the plurality of protrusions 12a to the substrate 11 may be any of mechanical bond, physical bond and chemical bond.
  • the plurality of protrusions 12a may be made of the same material as the material constituting the substrate 11, or may be made of a material different from the material constituting the substrate 11. When the plurality of protrusions 12a are made of the same material as the material constituting the substrate 11, the plurality of protrusions 12a may be continuous from the substrate 11 without interposing a clear interface.
  • the thickness of the protrusion layer 12 is preferably, for example, 10 nm to 500 nm. That is, it is preferable that the heights of the plurality of protrusions 12a from the substrate 11 are 10 nm to 500 nm, respectively.
  • the wavelength conversion layer 20 is formed on the surface of the substrate 11 on which the protrusion layer 12 is provided. More specifically, for example, the wavelength conversion layer 20 is formed directly on the protrusion layer 12. In other words, the wavelength conversion layer 20 is in direct contact with the protrusion layer 12 and is fixed on the substrate 11. Further, the wavelength conversion layer 20 of the present embodiment is arranged on the substrate 11 so as to be overlapped with the plurality of protrusions 12a. The plurality of protrusions 12a bite into the wavelength conversion layer 20 of the present embodiment.
  • the wavelength conversion layer 20 is a layer that emits light having a wavelength different from that of the excitation light, typically light having a wavelength longer than that of the excitation light, when light of a specific wavelength (excitation light) is incident.
  • the wavelength conversion layer 20 includes, for example, a plurality of inorganic wavelength conversion materials 21 and a binder 22. In the wavelength conversion layer 20, the plurality of inorganic wavelength conversion materials 21 are dispersed in the binder 22.
  • the inorganic wavelength conversion material 21 when light of a specific wavelength (excitation light) is incident, the inorganic wavelength conversion material 21 emits light having a wavelength different from that of the excitation light, typically light having a wavelength longer than that of the excitation light.
  • the inorganic wavelength conversion material 21 is, for example, a phosphor.
  • Examples of the material of the inorganic wavelength conversion material 21 include YAG: Ce (Y 3 Al 5 O 12 : Ce 3+ ), CaAlSiN 3 : Eu 2+ , Ca- ⁇ -SiAlON: Eu 2+ , ⁇ -SiAlON: Eu 2+ , Lu. 3 Al 5 O 12 : Ce 3+ (LuAG: Ce), (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 C 12 : Eu, BaMgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ and the like can be mentioned.
  • the shape of the inorganic wavelength conversion material 21 is not particularly limited, and may be, for example, particle-like, spherical, elliptical, needle-like, polygonal columnar, columnar, or the like.
  • the average particle size of the inorganic wavelength conversion material 21 is, for example, preferably several ⁇ m or more and several tens of ⁇ m or less, more preferably 1 ⁇ m or more and 50 ⁇ m or less, and even more preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the inorganic wavelength conversion material 21 may be one type or a mixture of a plurality of types.
  • the binder 22 includes, for example, a matrix body 23 and inorganic particles 24.
  • the matrix body 23 constitutes a three-dimensional matrix.
  • the inorganic wavelength conversion material 21 is fixed to the substrate 11 by the binder 22.
  • Inorganic particles 24 are dispersed in the matrix body 23.
  • the matrix body 23 is made of an amorphous inorganic material such as water glass.
  • the binder 22 preferably has a high thermal conductivity in order to suppress temperature quenching of the inorganic wavelength conversion material contained in the wavelength conversion layer 20, for example.
  • the content of the binder 22 in the wavelength conversion layer 20 is preferably, for example, 10 vol% or more and 50 vol% or less.
  • the inorganic wavelength conversion material 21 has a weak bond with each other, which may result in a mechanically brittle film.
  • the content of the binder 22 is large, the amount occupied by the inorganic wavelength conversion material 21 is small, so that the luminous efficiency may be low.
  • the thickness of the wavelength conversion layer 20 is preferably, for example, 20 ⁇ m to 200 ⁇ m, more preferably 50 ⁇ m to 100 ⁇ m.
  • the inorganic wavelength conversion material 21 may have insufficient absorption of excitation light and may have low luminous efficiency.
  • the wavelength conversion layer 20 is thick, the heat generated by the inorganic wavelength conversion material 21 absorbing the excitation light is difficult to escape toward the substrate 11, and the temperature of the wavelength conversion layer 20 may rise. ..
  • the emission intensity of the inorganic wavelength conversion material 21 may decrease as the temperature increases.
  • the binder 22 is configured to include the matrix body 23 and the inorganic particles 24, but may be composed of the inorganic particles 24 without including the matrix body 23.
  • the binder 22 is composed of a plurality of interconnected inorganic particles 24, for example, a sintered body of the plurality of inorganic particles 24.
  • the sintered body of such inorganic particles 24 may be impregnated or coated with an amorphous inorganic material such as water glass.
  • Examples of the inorganic particles 24 include aluminum oxides such as ⁇ -alumina, boehmite and ⁇ -alumina, magnesium oxide, calcium oxide and zinc oxide, and boehmite is preferable from the viewpoint of hydration.
  • the shape of the inorganic particles 24 is not particularly limited, and may be, for example, particulate, spherical, elliptical, needle-like, polygonal columnar, columnar, or the like.
  • the average particle size of the inorganic particles 24 is preferably smaller than the average particle size of the plurality of inorganic wavelength conversion materials 21, for example, 2 nm or more and 100 nm or less, and 5 nm or more and 30 nm or less. preferable. Further, the average particle size of the inorganic particles 24 is preferably smaller than the wavelength of the light emitted by the light source 30, for example, in order to suppress Mie scattering.
  • a protrusion-forming sol is applied onto the substrate 11 to form a coating film.
  • the coating method is not particularly limited, and conventional coating methods such as spray coating, inkjet coating, dispenser coating, screen printing, and dip method can be used.
  • the coating film is dried or fired, for example, to remove the solvent in the protrusion-forming sol to form a protrusion-forming gel.
  • the processing temperature and processing time for drying or firing are appropriately set according to the type and amount of the solvent used.
  • each convex portion is fine with a thickness of several tens nm to several hundred nm, a height of several tens nm to several hundred nm, and a length of several nm to several tens nm. It can be said that they are plate-shaped and have an uneven structure in which they are oriented in irregular and aperiodic directions at random with each other. Such an uneven structure is a so-called petal-like structure.
  • the protrusion-forming sol is, for example, a sol made of a metal alkoxide.
  • the protrusion-forming gel can be appropriately prepared, for example, by hydrolyzing the metal alkoxide according to a known sol-gel method.
  • IPA isopropyl alcohol
  • Al (O-sec-Bu) 3 aluminum tri-sec-butoxide
  • EAcAc ethyl acetoacetate
  • H2O water
  • IPA ethyl acetoacetate
  • the coating film formed from the above alumina sol is, for example, bemite (pseudo-bemite) having low crystallinity.
  • the method for forming the protrusion layer 12 is not limited to the above, and for example, a fine structure can be formed on the surface by directly treating a substrate made of aluminum or alumite in hot water. By boiling a substrate made of these materials, a boehmite film as a protrusion layer is formed on the surface, and the pH of the solution at the time of boiling and the shape of the protrusions formed on the substrate formed by the inclusions can be changed. can.
  • the bemite film may be made of, for example, bemite ( ⁇ -AlOOH) or low crystalline bemite (pseudo-bemite).
  • the protrusion layer having a petal-like structure has been mentioned as an example, but the structure of the protrusion layer is not particularly limited, and may be, for example, a granular structure.
  • the protrusion layer 12 is provided on the substrate 11, it is possible to suppress the peeling of the wavelength conversion layer 20.
  • the binder 22 is formed from the inorganic particles 24, the inorganic particles 24 enter between the acute-angled protrusions extending in a direction forming an acute angle from the substrate 11 and the substrate 11, so that the peeling of the wavelength conversion layer 20 is further suppressed. can do.
  • An ink composition containing an inorganic wavelength conversion material 21, a precursor to be a matrix body 23, and inorganic particles 24 is applied onto a substrate 11 having a protrusion layer 12 to form a film made of the ink composition.
  • a conventional method such as spray application, inkjet application, dispenser application, screen printing, dip method and the like can be used.
  • the film made of the ink composition is dried or fired.
  • the solvent is removed from the film made of the ink composition, and the wavelength conversion layer 20 in which the inorganic wavelength conversion material 21 is dispersed in the binder 22 is obtained.
  • the firing temperature and firing time are appropriately set according to the binder and the like formed, and for example, firing is performed at 200 to 400 ° C. for 60 minutes.
  • the ink composition is preferably a sol containing, for example, a metal alkoxide which is a precursor to be a matrix body 23, inorganic particles 24, and an inorganic wavelength conversion material 21.
  • the ink composition may further contain a stabilizer that keeps the solvent, the inorganic particles 24, and the inorganic wavelength conversion material 21 in a dispersed state.
  • the solvent is not particularly limited, and examples thereof include water, alcoholic solvents, and mixtures thereof. Examples of the alcohol solvent include ethanol, isopropyl alcohol and the like.
  • FIG. 3 is a cross-sectional view showing the wavelength conversion member of the present embodiment.
  • FIG. 4 is a partially enlarged view of the wavelength conversion member in FIG.
  • the wavelength conversion member 10-1 has, for example, a substrate 11, a reflection layer 40 formed on the substrate 11, and a wavelength conversion layer 20 formed on the reflection layer 40.
  • a protrusion layer 12 having a plurality of protrusions 12a is provided on the substrate 11.
  • the plurality of protrusions 12a have, for example, different shapes from each other and protrude from the substrate 11.
  • a part of the plurality of protrusions 12a is an acute-angled protrusion extending in a direction forming an acute angle with respect to the substrate 11.
  • at least a part of the plurality of protrusions 12a extends in a direction inclined from the normal direction of the main surface of the substrate 11, and preferably extends in a direction forming an acute angle with the main surface of the substrate 11.
  • the plurality of protrusions 12a are coupled to the substrate 11.
  • the bonding of the plurality of protrusions 12a to the substrate 11 is stronger than the bonding of the reflective layer 40 to the substrate 11 of the present embodiment.
  • the bond of the plurality of protrusions 12a to the substrate 11 may be any of mechanical bond, physical bond and chemical bond.
  • the plurality of protrusions 12a may be made of the same material as the material constituting the substrate 11, or may be made of a material different from the material constituting the substrate 11. When the plurality of protrusions 12a are made of the same material as the material constituting the substrate 11, the plurality of protrusions 12a may be continuous from the substrate 11 without interposing a clear interface.
  • the reflective layer 40 is formed on the surface of the substrate 11 on which the protrusion layer 12 is provided. More specifically, the reflective layer 40 is formed directly on, for example, the protrusion layer 12. The reflective layer 40 is in direct contact with the protrusion layer 12 and is fixed on the substrate 11. Further, the reflective layer 40 of the present embodiment is arranged on the substrate 11 so as to be overlapped with the plurality of protrusions 12a. The plurality of protrusions 12a bite into the reflective layer 40 of the present embodiment. The reflective layer 40 reflects the light emitted from the wavelength conversion layer 20 before it reaches the substrate 11. As a result, the wavelength conversion member 10-1 converts the wavelength of the irradiated excitation light, and efficiently emits the light of the converted wavelength in the direction of the surface on which the wavelength conversion layer 20 of the wavelength conversion member 10-1 is formed. can do.
  • the reflective layer 40 includes, for example, a binder 22 and highly reflective particles 42 dispersed in the binder 22.
  • the binder 22 is, for example, the same as the binder 22 in the first embodiment.
  • the binder 22 does not include the matrix body 23 and may be obtained by sintering the inorganic particles 24.
  • the highly reflective particles 42 include zinc oxide, magnesium oxide, titanium oxide and the like.
  • the light converted by the wavelength conversion layer 20 is reflected by the highly reflective particles 42 by scattering such as geometric scattering, Mie scattering, and Rayleigh scattering.
  • the particle size of the highly reflective particles 42 is preferably about 200 nm to 2000 nm.
  • the highly reflective particles 42 preferably have a particle size near the wavelength of light.
  • the highly reflective particles 42 preferably have a particle size larger than about half the wavelength of the light converted by the wavelength conversion layer 20 in order to reflect the light converted by the wavelength conversion layer 20.
  • the particle size of the inorganic particles 24 is smaller than that of the highly reflective particles 42, and the highly reflective particles 42 are substantially bonded to each other in the sintered body of the inorganic particles 24. It is preferable that the particles are dispersed without being dispersed.
  • the thickness of the reflective layer 40 is preferably, for example, 50 ⁇ m to 100 ⁇ m. If the thickness of the reflective layer 40 is thin, the reflectance of the reflective layer 40 may decrease. On the other hand, when the thickness of the reflective layer 40 is thick, it becomes difficult to dissipate the heat generated in the wavelength conversion layer 20 from the substrate 11, and the luminous efficiency in the wavelength conversion layer 20 may decrease.
  • the peeling of the reflective layer 40 can be suppressed, and eventually the peeling of the wavelength conversion layer 20 can be suppressed. Can be done. Further, since the binder 22 enters between the acute-angled protrusions extending in a direction forming an acute angle from the substrate 11 and the substrate 11, peeling of the reflective layer 40 can be further suppressed.
  • FIG. 5 is a schematic view schematically showing the configuration of a headlight for a reflective vehicle.
  • the reflective vehicle headlight fixture is an example of a light source device. It should be noted that the configuration of the headlight fixture for a reflective vehicle can also be used for a headlight fixture such as a headlight worn on a person's head or a handy flashlight.
  • the reflective vehicle headlight 110 includes a light source 30, a wavelength conversion member 10, and a reflector 102.
  • the light source 30 is preferably a blue laser light source that emits excitation light 31 having a wavelength that excites the inorganic wavelength conversion material 21 in the wavelength conversion member 10.
  • the reflector 102 is preferably composed of a semi-parabolic mirror. It is preferable that the paraboloid is divided into two vertically by a dividing surface 104 parallel to the xy plane to form a semi-paraboloid, and the inner surface thereof has a mirror configuration.
  • the reflector 102 has a through hole through which the excitation light 31 passes.
  • the light source 30 irradiates the wavelength conversion member 10 with the excitation light 31.
  • the inorganic wavelength conversion material 21 in the wavelength conversion member 10 is excited by the excitation light 31 and emits light 105 in the long wavelength region (yellow wavelength) of visible light. Further, the excitation light 31 hits the irradiation surface of the wavelength conversion member 10 and becomes diffusely reflected light 106.
  • the wavelength conversion member 10 is arranged on the dividing surface 104 at the focal position of the parabolic mirror constituting the reflector 102. Therefore, when the fluorescence 105 and the diffusely reflected light 106 emitted from the wavelength conversion member 10 hit the reflector 102 and are reflected, they uniformly travel straight to the emission surface 103. As a result, the reflective vehicle headlight 110 emits white light, which is a mixture of fluorescence 105 and diffuse reflected light 106, as parallel light from the emission surface 103.
  • FIG. 6 is a schematic view schematically showing an example of a headlight fixture for a transmissive vehicle.
  • the transmissive vehicle headlight fixture is an example of a light source device.
  • the transmission type vehicle headlight device 120 is a transmission type lighting device including a wavelength conversion member 10, and is preferably a transmission type laser headlight. It should be noted that the configuration of the headlight fixture for a transmissive vehicle can also be used for a headlight fixture such as a headlight worn on a person's head or a handy flashlight.
  • the transmission type vehicle headlight device 120 includes a light source 30, a wavelength conversion member 10, and a reflector 123.
  • the wavelength conversion member 10 is irradiated with the excitation light 31 from the translucent substrate 11 side and emits light from the wavelength conversion layer 20 side.
  • the light emitted from the wavelength conversion member 10 is reflected by the paraboloid surface of the reflector 123 and is emitted from the transmissive vehicle headlight device 120 with directivity.
  • a dichroic capable of transmitting the excitation light wavelength between the substrate 11 and the wavelength conversion layer 20, more preferably between the substrate 11 and the protrusion layer, and reflecting the light emitted from the wavelength conversion layer 20. It may be equipped with a mirror. The dichroic mirror prevents the light emitted from the wavelength conversion layer 20 from being emitted from the substrate 11 side of the wavelength conversion member 10, and is emitted from the wavelength conversion layer 20 side. That is, it is possible to improve the light extraction efficiency of the wavelength conversion member 10.
  • the substrate 11 in the wavelength conversion member 10 is preferably a heat sink substrate having a heat sink function.
  • the heat of the wavelength conversion layer 20 can be dissipated through the heat sink substrate, the wavelength conversion layer 20 is prevented from being excessively heated, and the temperature quenching of the inorganic wavelength conversion material contained in the wavelength conversion layer 20 is suppressed. can.
  • the wavelength conversion member 10-2 includes a projection layer 13 having a plurality of projections 13a provided on the surface of the substrate 11 opposite to the side on which the wavelength conversion layer 20 is formed. Have. As a result, the reflection of the excitation light can be suppressed on the surface of the substrate 11 on which the protrusion layer 13 is provided, and the efficiency of incorporating the excitation light into the wavelength conversion layer 20 can be improved.
  • the wavelength conversion member 10-2 is preferably used not only in the headlight fixture for a transmission type vehicle but also in a transmission type light source device.
  • FIG. 8 shows a schematic diagram of an example of a light source device.
  • FIG. 9 is a schematic plan view (xy plane) of the fluorescent wheel rotating device.
  • FIG. 10 is a schematic side view (xz plane) of the fluorescent wheel rotating device.
  • the light source device 200 includes a light source 30, an optical system 210, and a fluorescent wheel rotation device 220.
  • the light source device 200 is a device that irradiates the wavelength conversion layer 223 of the fluorescence wheel 221 with the light emitted by the light source 30 and extracts the light emitted by the wavelength conversion layer 223.
  • the light source 30 irradiates the fluorescence wheel 221 with a predetermined wavelength band light (excitation light).
  • the wavelength band of the excitation light emitted by the light source 30 can use various ranges depending on the design of the light source device 200. For example, as a light source that emits light that excites a phosphor, a blue light source can be used, and a blue laser diode is preferable.
  • the optical system 210 includes, for example, a biconvex lens 213, a dichroic mirror 211, and a single convex lens 214, 215. Further, the optical system 210 is composed of an incident optical system that causes the excitation light of the light source 30 to enter the fluorescence wheel 221 and an exit optical system that emits the light from the fluorescence wheel 221.
  • the excitation light 31 from the light source 30 is incident on the fluorescent wheel 221 via the biconvex lens 213, the dichroic mirror 211, and the single convex lenses 215 and 214.
  • the emission optical system emits, for example, the light 105 in the fluorescence wheel 221 emitted by the incident excitation light 31 via the one-convex lens 214, 215, and the dichroic mirror 211.
  • the dichroic mirror 211 reflects, for example, blue light and transmits yellow and red light.
  • the fluorescent wheel rotating device 220 includes, for example, a fluorescent wheel 221, a drive device 226 such as a motor, a rotating shaft 224, and a wheel fixture 225.
  • the fluorescent wheel 221 has, for example, a configuration in which a wavelength conversion layer 223 is provided on a wheel substrate 222 which is a circular wheel.
  • the fluorescent wheel 221 has a wavelength conversion layer 223 arranged on at least a part of the surface of the wheel substrate 222 in the circumferential direction so as to receive the excitation light emitted from the light source.
  • the fluorescent wheel 221 corresponds to the wavelength conversion member in the first and second embodiments
  • the wheel substrate 222 corresponds to the substrate of the first and second embodiments
  • the wavelength conversion layer 223 corresponds to the wavelength conversion layer of the first and second embodiments. do.
  • the fluorescence wheel 221 absorbs the excitation light 31 emitted from the light source 30 and emits a predetermined wavelength band light, or emits the excitation light as it is.
  • the fluorescent wheel rotating device 220 rotates (rotates and stops) the fluorescent wheel 221 through a rotating shaft 224 connected to a driving device 226 such as a motor controlled by an electric signal, for example.
  • a driving device 226 such as a motor controlled by an electric signal, for example.
  • the wheel fixative 225 fixes the fluorescent wheel 221 to the rotating shaft 224.
  • the wheel fixture 225 sandwiches and fixes the hole-side peripheral edge of the fluorescent wheel 221 in the thickness direction.
  • the rotary shaft 224 is rotated around the central axis by the driving force of the drive device 226 to rotate the fluorescent wheel 221.
  • the wheel fixture 225 is preferably made of metal. Any method may be used to fix the fluorescent wheel 221 to the rotary shaft 224. Further, in the present embodiment, the fluorescent wheel 221 is fixed to the rotating shaft 224 using the wheel fixing tool 225, but the fluorescent wheel 221 is fixed to the rotating shaft 224 with an adhesive or the like, and the wheel fixing tool 225 is used. It may not be configured.
  • the wheel substrate 222 has a disk shape and has a wavelength conversion layer 223 on its surface.
  • the wheel substrate 222 is made of the same material as the substrate. Further, the wheel substrate 222 may be a reflection type or a transmission type depending on the design of the light source device 200.
  • the wheel substrate 222 is preferably made of a metal such as aluminum, copper, or iron. At this time, it is preferable that the surface of the wheel substrate 222 is coated with a highly reflective film such as silver. Further, the wheel substrate 222 may be formed of a material that does not consider the reflection of the excitation light and the light emitted by the inorganic wavelength conversion material, and only the surface irradiated with the excitation light may be formed of the reflective material.
  • the wheel substrate 222 is preferably an inorganic material such as sapphire or glass that transmits excitation light. Further, since the light emitted by the inorganic wavelength conversion material is radiated in all directions, it is preferable to reflect the light emitted by the inorganic wavelength conversion material while transmitting the excitation light when the transmission type is used. Further, regardless of whether the wheel substrate 222 is a reflective type or a transmissive type, it is preferable that the wheel substrate 222 has a high thermal conductivity in order to suppress temperature quenching of the inorganic wavelength conversion material. Therefore, the wheel substrate 222 is preferably formed of aluminum or sapphire. Further, the wheel substrate 222 may be a combination of a reflective type and a transmissive type.
  • the light source device 200 can be used as a projection device such as a projector, for example.
  • FIG. 11 shows a schematic diagram of an example of a projection device.
  • the projection device 300 uses, for example, the light source device 200.
  • the projection device 300 controls the light source 30 based on the fluorescence wheel rotation device 220, the rotation position sensor 303 that acquires the rotation position of the fluorescence wheel 221 in the fluorescence wheel rotation device 220, and the output information from the rotation position sensor 303.
  • the projection device 300 controls the output of the light source 30 based on the information on the rotation position of the fluorescent wheel 221 acquired by the rotation position sensor 303.
  • the excitation light 31 emitted from the light source 30 irradiates the wavelength conversion layer in the fluorescence wheel 221.
  • the excitation light 31 of blue light passes through the fluorescence wheel 221 via the transmission portion.
  • the excitation light 31 irradiated to the wavelength conversion layer can pass through the light source side optical system 306 and the mirrors 309a to 309c on the optical path.
  • the light source side optical system 306 is preferably a dichroic mirror.
  • a preferred dichroic mirror can reflect blue light incident at 45 degrees and transmit red and green light.
  • the blue light emitted by the excitation light 31 incident on the dichroic mirror is reflected and directed to the fluorescent wheel 221. Due to the timing of rotation of the fluorescent wheel 221 the blue light is transmitted through the fluorescent wheel 221 through the transmitting portion. Depending on the timing of rotation of the fluorescent wheel 221, the excitation light 31 irradiated to other than the transmission portion is irradiated to the wavelength conversion layer and converted into light having a different wavelength.
  • the red and green lights having different wavelengths pass through the dichroic mirror and enter the display element 307.
  • the blue light transmitted through the transmissive portion is incident on the dichroic mirror again via the mirrors 309a to 309c, is reflected again by the dichroic mirror, and is incident on the display element 307.
  • the projector can include the light source device 200, a display element 307, a light source side optical system 306 (dichroic mirror), and a projection side optical system 308.
  • the light source side optical system 306 (dichroic mirror) guides the light from the light source device 301 to the display element 307, and the projection side optical system 308 may project the projected light from the display element 307 onto a screen or the like.
  • the display element 307 is preferably a DMD (Digital Mirror Device).
  • the projection side optical system 308 preferably consists of a combination of projection lens.
  • the present disclosure is not limited to the above embodiment, but is replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that exhibits the same action and effect, or a configuration that can achieve the same purpose. You may.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The present invention provides a wavelength conversion member in which peeling of a wavelength conversion layer is suppressed. This wavelength conversion member comprises a substrate, a protrusion layer which includes a plurality of protrusions having different shapes from each other and protruding from the substrate, and a wavelength conversion layer which is provided on the substrate and in which an inorganic wavelength conversion material is dispersed in a binder containing inorganic particles. The wavelength conversion layer is in direct contact with the protrusion layer and secured onto the substrate.

Description

波長変換部材、光源装置、前照灯具、および投影装置Wavelength converters, light source devices, headlights, and projection devices
 本開示は、波長変換部材、光源装置、前照灯具、および投影装置に関する。本開示は、2020年12月10日に、日本に出願された特願2020-204874号に基づく優先権を主張するものであり、その内容をここに援用する。 The present disclosure relates to a wavelength conversion member, a light source device, a headlight device, and a projection device. This disclosure claims priority based on Japanese Patent Application No. 2020-204874 filed in Japan on December 10, 2020, the contents of which are incorporated herein by reference.
 例えば、特許文献1には、基板と、基板上に積層された波長変換層である蛍光体層とを有する波長変換部材が開示されている。 For example, Patent Document 1 discloses a wavelength conversion member having a substrate and a phosphor layer which is a wavelength conversion layer laminated on the substrate.
特開2018-189927号公報Japanese Unexamined Patent Publication No. 2018-189927
 引用文献1に記載の波長変換部材では、基板と、波長変換層との接触面積を大きくするために、基板と、波長変換層とがお互いに不規則に入り組んだ構造を採用している。しかしながら、波長変換部材においては、基板から、波長変換層の剥がれが問題となっている。
 本開示の主な目的は、例えば、波長変換層の剥がれが抑制された波長変換部材を提供することにある。
The wavelength conversion member described in Cited Document 1 employs a structure in which the substrate and the wavelength conversion layer are irregularly intertwined with each other in order to increase the contact area between the substrate and the wavelength conversion layer. However, in the wavelength conversion member, peeling of the wavelength conversion layer from the substrate has become a problem.
An object of the present disclosure is, for example, to provide a wavelength conversion member in which peeling of a wavelength conversion layer is suppressed.
 本開示の一形態の波長変換部材は、基板と、互いに異なる形状であり、前記基板から突出する複数の突起を含む突起層と、前記基板上に設けられ、無機波長変換材が、無機粒子を含むバインダに分散した波長変換層と、を備え、前記波長変換層は、前記突起層と直接接触して、 前記基板上に固定されている。 The wavelength conversion member of one embodiment of the present disclosure has a shape different from that of the substrate, and is provided on the substrate with a protrusion layer including a plurality of protrusions protruding from the substrate, and the inorganic wavelength conversion material comprises inorganic particles. The wavelength conversion layer is provided with a wavelength conversion layer dispersed in a binder including the binder, and the wavelength conversion layer is fixed on the substrate in direct contact with the protrusion layer.
 本開示の別の形態の波長変換部材は、基板と、互いに異なる形状であり、前記基板から突出する複数の突起を含む突起層と、前記基板上に設けられ、無機波長変換材を含む波長変換層と、前記基板と前記波長変換層との間に設けられ、高反射性粒子が、無機粒子を含むバインダに分散した反射層と、を備え、前記反射層は、前記突起層と直接接触して、前記基板上に固定されている。 Another form of the wavelength conversion member of the present disclosure has a different shape from the substrate, a projection layer including a plurality of projections protruding from the substrate, and a wavelength conversion material provided on the substrate and containing an inorganic wavelength conversion material. A reflective layer provided between the layer and the substrate and the wavelength conversion layer, in which highly reflective particles are dispersed in a binder containing inorganic particles, is provided, and the reflective layer is in direct contact with the protruding layer. It is fixed on the substrate.
実施形態1の光源装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the light source apparatus of Embodiment 1. FIG. 図1の波長変換部材の部分拡大図である。It is a partially enlarged view of the wavelength conversion member of FIG. 実施形態2の波長変換部材の断面図である。It is sectional drawing of the wavelength conversion member of Embodiment 2. FIG. 図2の波長変換部材の部分拡大図である。It is a partially enlarged view of the wavelength conversion member of FIG. 反射型車両用前照灯の一例を模式的に示す概略図である。It is the schematic which shows an example of the headlight for a reflective vehicle schematically. 透過型車両用前照灯の一例を模式的に示す概略図である。It is a schematic diagram schematically showing an example of a headlight for a transmissive vehicle. 波長変換部材の別の一例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the wavelength conversion member. 光源装置の一例を模式的に示す概略図である。It is a schematic diagram schematically showing an example of a light source device. 蛍光ホイール回転装置の一例を模式的に示す平面図である。It is a top view which shows an example of the fluorescent wheel rotation apparatus schematically. 図9の蛍光ホイール回転装置の側面図である。It is a side view of the fluorescent wheel rotation apparatus of FIG. 投影装置の一例を模式的に示す概略図である。It is a schematic diagram which shows an example of a projection apparatus schematically.
 以下に説明する実施形態は、本開示の単なる例示である。本開示は、下記の実施形態に何ら限定されない。また、以下の実施形態においては、同一の構成要素については同じ符号を付し、詳細な説明は省略する場合がある。 The embodiments described below are merely examples of the present disclosure. The present disclosure is not limited to the following embodiments. Further, in the following embodiments, the same components may be designated by the same reference numerals and detailed description thereof may be omitted.
 <実施形態1>
 図1は、本実施形態にかかる光源装置100の一例を模式的に示す断面図である。図2は、図1の波長変換部材10の部分拡大図である。
<Embodiment 1>
FIG. 1 is a cross-sectional view schematically showing an example of a light source device 100 according to the present embodiment. FIG. 2 is a partially enlarged view of the wavelength conversion member 10 of FIG.
 光源装置100は、例えば、波長変換部材10と、光源30とを含む。 The light source device 100 includes, for example, a wavelength conversion member 10 and a light source 30.
 光源30は、例えば、波長変換部材10に青色レーザ等の励起光31を照射する。より具体的には、光源30は、波長変換部材10における無機波長変換材21を励起する波長の光を発する。 The light source 30 irradiates the wavelength conversion member 10, for example, with excitation light 31 such as a blue laser. More specifically, the light source 30 emits light having a wavelength that excites the inorganic wavelength conversion material 21 in the wavelength conversion member 10.
 波長変換部材10は、光源30から照射された励起光31を、励起光31と異なる波長の光、例えば、励起光31よりも波長の長い光に変換し、出射する。言い換えれば、光源装置100は、光源30が発する光の波長を、波長変換部材10で変換して出射する。 The wavelength conversion member 10 converts the excitation light 31 emitted from the light source 30 into light having a wavelength different from that of the excitation light 31, for example, light having a wavelength longer than that of the excitation light 31, and emits the light. In other words, the light source device 100 converts the wavelength of the light emitted by the light source 30 by the wavelength conversion member 10 and emits it.
 以下、波長変換部材10について、より詳細に説明する。 Hereinafter, the wavelength conversion member 10 will be described in more detail.
 波長変換部材10は、例えば、基板11と、基板11上に形成された波長変換層20を有する。 The wavelength conversion member 10 has, for example, a substrate 11 and a wavelength conversion layer 20 formed on the substrate 11.
 基板11の形状寸法は、特に限定されない。基板11は、例えば、円形状、円板状、多角形状、楕円形状、長円形状等であってもよい。基板11の厚みは、特に限定されないが、例えば、0.5mm以上2.0mm以下程度とすることができる。なお、基板11は、光(例えば、可視光)を透過させないもの、例えば光を反射するものであってもよいし、光を透過させる透光板であってもよい。基板11は、例えば、反射型であれば光を反射するアルミニウム等の金属材料、透過型であれば光を透過するガラスやサファイア等のセラミックス材料で形成される。反射型の基板11は、光を透過する材料の表面に、例えば、酸化物多層膜からなる増反射膜や銀などの反射する材料からなる高反射コーティング膜を設けたものでもよい。また、基板11は、反射型であっても透過型であっても、波長変換層20に含まれる無機波長変換材の温度消光を抑制するため、熱伝導率が高いことが好ましい。そのため、基板11は、アルミニウム、銅で形成することが好ましい。さらに、基板11は、アルミニウムからなる場合、例えば、表面がアルマイトになっていてもよい。 The shape and dimensions of the substrate 11 are not particularly limited. The substrate 11 may have, for example, a circular shape, a disk shape, a polygonal shape, an elliptical shape, an oval shape, or the like. The thickness of the substrate 11 is not particularly limited, but can be, for example, about 0.5 mm or more and 2.0 mm or less. The substrate 11 may be one that does not transmit light (for example, visible light), for example, one that reflects light, or a translucent plate that transmits light. The substrate 11 is formed of, for example, a metal material such as aluminum that reflects light if it is a reflective type, and a ceramic material such as glass or sapphire that transmits light if it is a transmissive type. The reflective substrate 11 may be provided with a highly reflective coating film made of a reflective material such as silver or a hyperreflective film made of an oxide multilayer film on the surface of a material that transmits light. Further, regardless of whether the substrate 11 is a reflective type or a transmissive type, it is preferable that the substrate 11 has a high thermal conductivity in order to suppress temperature quenching of the inorganic wavelength conversion material contained in the wavelength conversion layer 20. Therefore, the substrate 11 is preferably made of aluminum or copper. Further, when the substrate 11 is made of aluminum, the surface may be alumite, for example.
 基板11上には、複数の突起12aを有する突起層12が設けられている。複数の突起12aは、例えば、互いに異なる形状であり、基板11から突出している。また、複数の突起12aのうちの一部は、基板11に対して、鋭角をなす方向に延びる鋭角突起となっている。言い換えると、複数の突起12aの少なくとも一部は、基板11の主面の法線方向から傾斜した方向に延び、望ましくは、基板11の主面と鋭角をなす方向に延びる。 A protrusion layer 12 having a plurality of protrusions 12a is provided on the substrate 11. The plurality of protrusions 12a have, for example, different shapes from each other and protrude from the substrate 11. Further, a part of the plurality of protrusions 12a is an acute-angled protrusion extending in a direction forming an acute angle with respect to the substrate 11. In other words, at least a part of the plurality of protrusions 12a extends in a direction inclined from the normal direction of the main surface of the substrate 11, and preferably extends in a direction forming an acute angle with the main surface of the substrate 11.
 また、複数の突起12aは、基板11に結合している。なお、複数の突起12aの基板11への結合は、本実施形態の波長変換層20の基板11への結合より強い。複数の突起12aの基板11への結合は、機械的結合、物理的結合及び化学的結合のいずれであってもよい。複数の突起12aは、基板11を構成する材料と同じ材料により構成されてもよいし、基板11を構成する材料と異なる材料により構成されてもよい。複数の突起12aが基板11を構成する材料と同じ材料により構成される場合は、複数の突起12aが明確な界面を介さず基板11から連続していてもよい。 Further, the plurality of protrusions 12a are coupled to the substrate 11. The coupling of the plurality of protrusions 12a to the substrate 11 is stronger than the coupling of the wavelength conversion layer 20 of the present embodiment to the substrate 11. The bond of the plurality of protrusions 12a to the substrate 11 may be any of mechanical bond, physical bond and chemical bond. The plurality of protrusions 12a may be made of the same material as the material constituting the substrate 11, or may be made of a material different from the material constituting the substrate 11. When the plurality of protrusions 12a are made of the same material as the material constituting the substrate 11, the plurality of protrusions 12a may be continuous from the substrate 11 without interposing a clear interface.
 突起層12の厚さは、例えば、10nm~500nmであることが好ましい。つまり、複数の突起12aの基板11からの高さが、それぞれ10nm~500nmであることが好ましい。 The thickness of the protrusion layer 12 is preferably, for example, 10 nm to 500 nm. That is, it is preferable that the heights of the plurality of protrusions 12a from the substrate 11 are 10 nm to 500 nm, respectively.
 波長変換層20は、基板11の突起層12が設けられた面に形成されている。より具体的には、例えば、波長変換層20は、突起層12上に直接形成されている。言い換えると、波長変換層20は、突起層12と直接接触して、基板11上に固定されている。また、本実施形態の波長変換層20は、複数の突起12aに重ねて基板11上に配置される。複数の突起12aは、本実施形態の波長変換層20に食い込む。波長変換層20は、特定の波長の光(励起光)が入射したときに、励起光とは異なる波長の光、典型的には、励起光よりも波長の長い光を出射する層である。波長変換層20は、例えば、複数の無機波長変換材21、バインダ22を含む。波長変換層20において、複数の無機波長変換材21は、バインダ22中に分散している。 The wavelength conversion layer 20 is formed on the surface of the substrate 11 on which the protrusion layer 12 is provided. More specifically, for example, the wavelength conversion layer 20 is formed directly on the protrusion layer 12. In other words, the wavelength conversion layer 20 is in direct contact with the protrusion layer 12 and is fixed on the substrate 11. Further, the wavelength conversion layer 20 of the present embodiment is arranged on the substrate 11 so as to be overlapped with the plurality of protrusions 12a. The plurality of protrusions 12a bite into the wavelength conversion layer 20 of the present embodiment. The wavelength conversion layer 20 is a layer that emits light having a wavelength different from that of the excitation light, typically light having a wavelength longer than that of the excitation light, when light of a specific wavelength (excitation light) is incident. The wavelength conversion layer 20 includes, for example, a plurality of inorganic wavelength conversion materials 21 and a binder 22. In the wavelength conversion layer 20, the plurality of inorganic wavelength conversion materials 21 are dispersed in the binder 22.
 無機波長変換材21は、例えば、特定の波長の光(励起光)が入射したときに、励起光とは異なる波長の光、典型的には、励起光よりも波長の長い光を出射する。無機波長変換材21は、例えば蛍光体である。 For example, when light of a specific wavelength (excitation light) is incident, the inorganic wavelength conversion material 21 emits light having a wavelength different from that of the excitation light, typically light having a wavelength longer than that of the excitation light. The inorganic wavelength conversion material 21 is, for example, a phosphor.
 無機波長変換材21の材料としては、例えば、YAG:Ce(YAl12:Ce3+)、CaAlSiN:Eu2+、Ca-α-SiAlON:Eu2+、β-SiAlON:Eu2+、LuAl12:Ce3+(LuAG:Ce)、(Sr,Ca,Ba,Mg)10(PO12:Eu、BaMgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+等が挙げられる。 Examples of the material of the inorganic wavelength conversion material 21 include YAG: Ce (Y 3 Al 5 O 12 : Ce 3+ ), CaAlSiN 3 : Eu 2+ , Ca-α-SiAlON: Eu 2+ , β-SiAlON: Eu 2+ , Lu. 3 Al 5 O 12 : Ce 3+ (LuAG: Ce), (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 C 12 : Eu, BaMgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ and the like can be mentioned.
 無機波長変換材21の形状は、特に限定されず、例えば、粒子状、球状、楕球状、針状、多角柱状、円柱状等であってもよい。無機波長変換材21の平均粒子径は、例えば、数μm以上、数十μm以下であることが好ましく、1μm以上50μm以下であることがより好ましく、5μm以上30μm以下であることがさらにより好ましい。無機波長変換材21は、1種類であっても、複数種類を混合したものであってもよい。 The shape of the inorganic wavelength conversion material 21 is not particularly limited, and may be, for example, particle-like, spherical, elliptical, needle-like, polygonal columnar, columnar, or the like. The average particle size of the inorganic wavelength conversion material 21 is, for example, preferably several μm or more and several tens of μm or less, more preferably 1 μm or more and 50 μm or less, and even more preferably 5 μm or more and 30 μm or less. The inorganic wavelength conversion material 21 may be one type or a mixture of a plurality of types.
 バインダ22は、例えば、マトリクス体23、無機粒子24を含む。マトリクス体23は、三次元マトリクスを構成している。そして、無機波長変換材21は、バインダ22により基板11に固定されている。マトリクス体23中に、無機粒子24が分散している。マトリクス体23は、例えば、水ガラス等の非晶質の無機材料からなる。 The binder 22 includes, for example, a matrix body 23 and inorganic particles 24. The matrix body 23 constitutes a three-dimensional matrix. The inorganic wavelength conversion material 21 is fixed to the substrate 11 by the binder 22. Inorganic particles 24 are dispersed in the matrix body 23. The matrix body 23 is made of an amorphous inorganic material such as water glass.
 バインダ22は、例えば、波長変換層20に含まれる無機波長変換材の温度消光を抑制するため、熱伝導率が高いことが好ましい。 The binder 22 preferably has a high thermal conductivity in order to suppress temperature quenching of the inorganic wavelength conversion material contained in the wavelength conversion layer 20, for example.
 波長変換層20におけるバインダ22の含有量は、例えば、10vol%以上50vol%以下であることが好ましい。バインダ22の含有量が少ない場合、無機波長変換材21同士の結合が弱いため機械的にもろい膜になる可能性がある。バインダ22の含有量が多い場合、無機波長変換材21の占める量が少なくなるため発光効率が低くなる可能性がある。 The content of the binder 22 in the wavelength conversion layer 20 is preferably, for example, 10 vol% or more and 50 vol% or less. When the content of the binder 22 is low, the inorganic wavelength conversion material 21 has a weak bond with each other, which may result in a mechanically brittle film. When the content of the binder 22 is large, the amount occupied by the inorganic wavelength conversion material 21 is small, so that the luminous efficiency may be low.
 波長変換層20の厚さは、例えば、20μm~200μmが好ましく、50μm~100μmがより好ましい。波長変換層20の厚さが薄い場合、無機波長変換材21の励起光吸収が不十分であり発光効率が低い場合がある。一方、波長変換層20の厚さが厚い場合、無機波長変換材21が励起光を吸収して発生した熱が基板11方向へ逃げにくくなり、波長変換層20の温度が上昇する可能性がある。無機波長変換材21は、温度が向上すると発光強度が低下する可能性がある。 The thickness of the wavelength conversion layer 20 is preferably, for example, 20 μm to 200 μm, more preferably 50 μm to 100 μm. When the thickness of the wavelength conversion layer 20 is thin, the inorganic wavelength conversion material 21 may have insufficient absorption of excitation light and may have low luminous efficiency. On the other hand, when the wavelength conversion layer 20 is thick, the heat generated by the inorganic wavelength conversion material 21 absorbing the excitation light is difficult to escape toward the substrate 11, and the temperature of the wavelength conversion layer 20 may rise. .. The emission intensity of the inorganic wavelength conversion material 21 may decrease as the temperature increases.
 なお、上記では、バインダ22が、マトリクス体23と無機粒子24とを含む構成としているが、マトリクス体23を含まず、無機粒子24から構成されていてもよい。この場合、バインダ22は、例えば、複数の無機粒子24の焼結体等の、相互に接続された複数の無機粒子24により構成されている。さらに、このような無機粒子24の焼結体上に、上記水ガラス等の非晶質の無機材料を含浸またはコートしていてもよい。 In the above, the binder 22 is configured to include the matrix body 23 and the inorganic particles 24, but may be composed of the inorganic particles 24 without including the matrix body 23. In this case, the binder 22 is composed of a plurality of interconnected inorganic particles 24, for example, a sintered body of the plurality of inorganic particles 24. Further, the sintered body of such inorganic particles 24 may be impregnated or coated with an amorphous inorganic material such as water glass.
 無機粒子24としては、例えば、α-アルミナ、ベーマイト、γ-アルミナ等のアルミニウム酸化物、酸化マグネシウム、酸化カルシウム、酸化亜鉛が挙げられ、水和性の観点から、ベーマイトが好ましい。 Examples of the inorganic particles 24 include aluminum oxides such as α-alumina, boehmite and γ-alumina, magnesium oxide, calcium oxide and zinc oxide, and boehmite is preferable from the viewpoint of hydration.
 無機粒子24の形状は、特に限定されず、例えば、粒子状、球状、楕球状、針状、多角柱状、円柱状等であってもよい。無機粒子24の平均粒子径は、複数の無機波長変換材21の平均粒子径よりも小さいことが好ましく、例えば、2nm以上、100nm以下であることが好ましく、5nm以上、30nm以下であることがより好ましい。また、無機粒子24の平均粒径は、例えば、ミー散乱を抑制する上で、光源30が出射する光の波長よりも小さいことが好ましい。 The shape of the inorganic particles 24 is not particularly limited, and may be, for example, particulate, spherical, elliptical, needle-like, polygonal columnar, columnar, or the like. The average particle size of the inorganic particles 24 is preferably smaller than the average particle size of the plurality of inorganic wavelength conversion materials 21, for example, 2 nm or more and 100 nm or less, and 5 nm or more and 30 nm or less. preferable. Further, the average particle size of the inorganic particles 24 is preferably smaller than the wavelength of the light emitted by the light source 30, for example, in order to suppress Mie scattering.
 (突起層12の製造方法)
 次に、本実施形態に係る波長変換部材10における基板11に設けられた突起層12の製造方法の一例について説明する。
(Manufacturing method of protrusion layer 12)
Next, an example of a method for manufacturing the protrusion layer 12 provided on the substrate 11 in the wavelength conversion member 10 according to the present embodiment will be described.
 基板11上に、突起形成用ゾルを塗布し、塗布膜を形成する。塗布方法は特に限定されず、スプレー塗布、インクジェット塗布、ディスペンサ塗布、スクリーン印刷、ディップ法等の慣用の塗布方法を用いることができる。 A protrusion-forming sol is applied onto the substrate 11 to form a coating film. The coating method is not particularly limited, and conventional coating methods such as spray coating, inkjet coating, dispenser coating, screen printing, and dip method can be used.
 ついで、塗布膜を、例えば、乾燥または焼成により、突起形成用ゾル中の溶媒を除去し、突起形成用ゲルを形成する。乾燥または焼成の処理温度および処理時間は、用いる溶媒の種類および量等に応じて適宜に設定される。 Then, the coating film is dried or fired, for example, to remove the solvent in the protrusion-forming sol to form a protrusion-forming gel. The processing temperature and processing time for drying or firing are appropriately set according to the type and amount of the solvent used.
 さらに、溶媒を除去した塗布膜(突起形成用ゲル)を、熱水で処理する。熱水で処理することにより、塗布膜は、複数の突起12aを有する突起層12となる。これにより、基板11上に、突起層12を形成することができる。複数の突起12aを有する突起層12は、個々の凸部が厚さ数十nm~数百nm程度、高さ数十nm~数百nm程度、長さ数nm~数十nm程度の微細な板状であって、これらが互いにランダムな不規則・非周期的な方向を向いている凹凸構造であるということができる。このような凹凸構造は、いわゆる花弁状構造である。 Further, the coating film (gel for forming protrusions) from which the solvent has been removed is treated with hot water. By treating with hot water, the coating film becomes a protrusion layer 12 having a plurality of protrusions 12a. As a result, the protrusion layer 12 can be formed on the substrate 11. In the protrusion layer 12 having a plurality of protrusions 12a, each convex portion is fine with a thickness of several tens nm to several hundred nm, a height of several tens nm to several hundred nm, and a length of several nm to several tens nm. It can be said that they are plate-shaped and have an uneven structure in which they are oriented in irregular and aperiodic directions at random with each other. Such an uneven structure is a so-called petal-like structure.
 上記突起形成用ゾルは、例えば、金属アルコキシドからなるゾルである。突起形成用ゲルは、例えば、公知のゾル-ゲル法にしたがって金属アルコキシドを加水分解することにより、適宜に調製することができる。 The protrusion-forming sol is, for example, a sol made of a metal alkoxide. The protrusion-forming gel can be appropriately prepared, for example, by hydrolyzing the metal alkoxide according to a known sol-gel method.
 ここで、突起形成用ゾルの製造方法の一例として、アルミニウムアルコキシドから形成されるアルミナゾルの製造方法を、以下に説明する。 Here, as an example of a method for producing a sol for forming protrusions, a method for producing an alumina sol formed from aluminum alkoxide will be described below.
 まず、アルミニウムトリ-sec-ブトキシド(Al(O-sec-Bu))にイソプロピルアルコール(IPA)を添加し、室温で約1時間撹拌する。さらに、キレート剤としてアセト酢酸エチル(EAcAc)を添加し、室温で約3時間撹拌する。次いで、水(HO)およびIPAを注意深く滴下する。これにより、アルミナゾルを調製することができる。上記各成分の比率は、適宜に調整することができるが、例えば、Al(O-sec-Bu):IPA:EAcAc:HO=1:20:1:4である。 First, isopropyl alcohol (IPA) is added to aluminum tri-sec-butoxide (Al (O-sec-Bu) 3 ), and the mixture is stirred at room temperature for about 1 hour. Further, ethyl acetoacetate (EAcAc) is added as a chelating agent, and the mixture is stirred at room temperature for about 3 hours. Then water ( H2O ) and IPA are carefully added dropwise. This makes it possible to prepare an alumina sol. The ratio of each of the above components can be appropriately adjusted, and is, for example, Al (O-sec-Bu) 3 : IPA: EAcAc: H 2 O = 1: 20: 1: 4.
 上記アルミナゾルから形成される塗布膜は、例えば、結晶性の低いべーマイト(擬べーマイト)となる。 The coating film formed from the above alumina sol is, for example, bemite (pseudo-bemite) having low crystallinity.
 なお、突起層12の形成方法は、上記に限定されるものではなく、例えば、アルミニウムまたはアルマイトからなる基板を直接熱水中で処理することで表面に微細構造を形成することができる。これらの材質からなる基板を煮沸することで表面に突起層となるベーマイト膜が形成し、また煮沸時の溶液のpHや含有物により形成される基板に形成される突起の形状も変化させることができる。上記べーマイト膜は、例えば、べーマイト(γ-AlOOH)や結晶性の低いべーマイト(擬べーマイト)からなっていてよい。さらに、上記では、花弁状構造の突起層を例に挙げたが、突起層の構造は特に限定されるものではなく、例えば、粒状構造であってもよい。 The method for forming the protrusion layer 12 is not limited to the above, and for example, a fine structure can be formed on the surface by directly treating a substrate made of aluminum or alumite in hot water. By boiling a substrate made of these materials, a boehmite film as a protrusion layer is formed on the surface, and the pH of the solution at the time of boiling and the shape of the protrusions formed on the substrate formed by the inclusions can be changed. can. The bemite film may be made of, for example, bemite (γ-AlOOH) or low crystalline bemite (pseudo-bemite). Further, in the above, the protrusion layer having a petal-like structure has been mentioned as an example, but the structure of the protrusion layer is not particularly limited, and may be, for example, a granular structure.
 本実施形態の波長変換部材10によれば、基板11に突起層12が設けられているため、波長変換層20の剥がれを抑制することができる。バインダ22が無機粒子24から形成された場合、無機粒子24が、特に基板11から鋭角をなすよう方向に延びる鋭角突起と、基板11との間に入り込むため、波長変換層20の剥がれをより抑制することができる。 According to the wavelength conversion member 10 of the present embodiment, since the protrusion layer 12 is provided on the substrate 11, it is possible to suppress the peeling of the wavelength conversion layer 20. When the binder 22 is formed from the inorganic particles 24, the inorganic particles 24 enter between the acute-angled protrusions extending in a direction forming an acute angle from the substrate 11 and the substrate 11, so that the peeling of the wavelength conversion layer 20 is further suppressed. can do.
 (波長変換部材10の製造方法)
 次に、本実施形態に係る波長変換部材10の製造方法の一例について説明する。
(Manufacturing method of wavelength conversion member 10)
Next, an example of a method for manufacturing the wavelength conversion member 10 according to the present embodiment will be described.
 突起層12を有する基板11上に、無機波長変換材21、マトリクス体23となる前駆体、無機粒子24を含むインク組成物を塗布し、インク組成物からなる膜を形成する。インク組成物の塗布方法としては、スプレー塗布、インクジェット塗布、ディスペンサ塗布、スクリーン印刷、ディップ法等の慣用の方法を用いることができる。 An ink composition containing an inorganic wavelength conversion material 21, a precursor to be a matrix body 23, and inorganic particles 24 is applied onto a substrate 11 having a protrusion layer 12 to form a film made of the ink composition. As a method for applying the ink composition, a conventional method such as spray application, inkjet application, dispenser application, screen printing, dip method and the like can be used.
 ついで、インク組成物からなる膜を乾燥または焼成する。これによりインク組成物からなる膜から溶媒が除去され、無機波長変換材21がバインダ22中に分散された波長変換層20が得られる。焼成温度および焼成時間は、形成されるバインダ等に応じて適宜に設定されるが、例えば、200~400℃で、60分間の焼成が行われる。 Then, the film made of the ink composition is dried or fired. As a result, the solvent is removed from the film made of the ink composition, and the wavelength conversion layer 20 in which the inorganic wavelength conversion material 21 is dispersed in the binder 22 is obtained. The firing temperature and firing time are appropriately set according to the binder and the like formed, and for example, firing is performed at 200 to 400 ° C. for 60 minutes.
 インク組成物は、例えば、マトリクス体23になる前駆体である金属アルコキシド、無機粒子24、無機波長変換材21を含むゾルが好ましい。インク組成物は、さらに、溶媒、無機粒子24、無機波長変換材21を分散状態に保つ安定化剤を含むものであってよい。上記溶媒としては、特に限定されず、水、アルコール系溶媒、およびこれらの混合物等が挙げられる。アルコール系溶媒としては、エタノール、イソプロピルアルコール等が挙げられる。なお、波長変換層20がマトリクス体23を含まない場合、金属アルコキシド等の前駆体を含まないインク組成物を用いればよい。 The ink composition is preferably a sol containing, for example, a metal alkoxide which is a precursor to be a matrix body 23, inorganic particles 24, and an inorganic wavelength conversion material 21. The ink composition may further contain a stabilizer that keeps the solvent, the inorganic particles 24, and the inorganic wavelength conversion material 21 in a dispersed state. The solvent is not particularly limited, and examples thereof include water, alcoholic solvents, and mixtures thereof. Examples of the alcohol solvent include ethanol, isopropyl alcohol and the like. When the wavelength conversion layer 20 does not contain the matrix body 23, an ink composition that does not contain a precursor such as a metal alkoxide may be used.
 <実施形態2>
 図3は、本実施形態の波長変換部材を示す断面図である。図4は、図3における波長変換部材の部分拡大図である。
<Embodiment 2>
FIG. 3 is a cross-sectional view showing the wavelength conversion member of the present embodiment. FIG. 4 is a partially enlarged view of the wavelength conversion member in FIG.
 波長変換部材10-1は、例えば、基板11と、基板11上に形成された反射層40と、反射層40上に形成された波長変換層20を有する。 The wavelength conversion member 10-1 has, for example, a substrate 11, a reflection layer 40 formed on the substrate 11, and a wavelength conversion layer 20 formed on the reflection layer 40.
 基板11上には、複数の突起12aを有する突起層12が設けられている。複数の突起12aは、例えば、互いに異なる形状であり、基板11から突出している。また、複数の突起12aのうちの一部は、基板11に対して、鋭角をなす方向に延びる鋭角突起となっている。言い換えると、複数の突起12aの少なくとも一部は、基板11の主面の法線方向から傾斜した方向に延び、望ましくは、基板11の主面と鋭角をなす方向に延びる。 A protrusion layer 12 having a plurality of protrusions 12a is provided on the substrate 11. The plurality of protrusions 12a have, for example, different shapes from each other and protrude from the substrate 11. Further, a part of the plurality of protrusions 12a is an acute-angled protrusion extending in a direction forming an acute angle with respect to the substrate 11. In other words, at least a part of the plurality of protrusions 12a extends in a direction inclined from the normal direction of the main surface of the substrate 11, and preferably extends in a direction forming an acute angle with the main surface of the substrate 11.
 また、複数の突起12aは、基板11に結合している。なお、複数の突起12aの基板11への結合は、本実施形態の反射層40の基板11への結合より強い。複数の突起12aの基板11への結合は、機械的結合、物理的結合及び化学的結合のいずれであってもよい。複数の突起12aは、基板11を構成する材料と同じ材料により構成されてもよいし、基板11を構成する材料と異なる材料により構成されてもよい。複数の突起12aが基板11を構成する材料と同じ材料により構成される場合は、複数の突起12aが明確な界面を介さず基板11から連続していてもよい。 Further, the plurality of protrusions 12a are coupled to the substrate 11. The bonding of the plurality of protrusions 12a to the substrate 11 is stronger than the bonding of the reflective layer 40 to the substrate 11 of the present embodiment. The bond of the plurality of protrusions 12a to the substrate 11 may be any of mechanical bond, physical bond and chemical bond. The plurality of protrusions 12a may be made of the same material as the material constituting the substrate 11, or may be made of a material different from the material constituting the substrate 11. When the plurality of protrusions 12a are made of the same material as the material constituting the substrate 11, the plurality of protrusions 12a may be continuous from the substrate 11 without interposing a clear interface.
 反射層40は、基板11の突起層12が設けられた面に形成されている。より具体的には、反射層40は、例えば、突起層12上に直接形成されている。そして、反射層40は、突起層12と直接接触して基板11上に固定されている。また、本実施形態の反射層40は、複数の突起12aに重ねて基板11上に配置される。複数の突起12aは、本実施形態の反射層40に食い込む。反射層40は、波長変換層20から出射された光が基板11に到達する前に反射する。これにより、波長変換部材10-1は、照射された励起光の波長を変換し、変換した波長の光を波長変換部材10-1の波長変換層20が形成された面の方向に効率よく出射することができる。 The reflective layer 40 is formed on the surface of the substrate 11 on which the protrusion layer 12 is provided. More specifically, the reflective layer 40 is formed directly on, for example, the protrusion layer 12. The reflective layer 40 is in direct contact with the protrusion layer 12 and is fixed on the substrate 11. Further, the reflective layer 40 of the present embodiment is arranged on the substrate 11 so as to be overlapped with the plurality of protrusions 12a. The plurality of protrusions 12a bite into the reflective layer 40 of the present embodiment. The reflective layer 40 reflects the light emitted from the wavelength conversion layer 20 before it reaches the substrate 11. As a result, the wavelength conversion member 10-1 converts the wavelength of the irradiated excitation light, and efficiently emits the light of the converted wavelength in the direction of the surface on which the wavelength conversion layer 20 of the wavelength conversion member 10-1 is formed. can do.
 反射層40は、例えば、バインダ22と、バインダ22に分散した高反射粒子42を含む。 The reflective layer 40 includes, for example, a binder 22 and highly reflective particles 42 dispersed in the binder 22.
 バインダ22としては、例えば、実施形態1におけるバインダ22と同様である。なお、バインダ22は、マトリクス体23含まず、上記無機粒子24が焼結したものであってもよい。 The binder 22 is, for example, the same as the binder 22 in the first embodiment. The binder 22 does not include the matrix body 23 and may be obtained by sintering the inorganic particles 24.
 高反射粒子42としては、例えば、酸化亜鉛、酸化マグネシウム、酸化チタン等が挙げられる。波長変換層20で変換された光は、高反射粒子42により、幾何学的な散乱、ミー散乱、レイリー散乱等の散乱により反射される。高反射粒子42の粒径は、200nm~2000nm程度が好ましい。また、特に、ミー散乱による散乱効率が最大となり、また散乱の波長依存性も小さいことから、高反射粒子42は、光の波長付近の粒径を有することが好ましい。さらに、高反射粒子42は、例えば、波長変換層20で変換された光を反射させるうえで、波長変換層20で変換された光の波長の半分程度よりも大きい粒径を有することが好ましい。例えば、バインダ22が無機粒子24の焼結体からなる場合、無機粒子24の粒径は、高反射粒子42よりも小さく、無機粒子24の焼結体中に高反射粒子42同士がほぼ結合せずに分散していることが好ましい。 Examples of the highly reflective particles 42 include zinc oxide, magnesium oxide, titanium oxide and the like. The light converted by the wavelength conversion layer 20 is reflected by the highly reflective particles 42 by scattering such as geometric scattering, Mie scattering, and Rayleigh scattering. The particle size of the highly reflective particles 42 is preferably about 200 nm to 2000 nm. Further, in particular, since the scattering efficiency due to Mie scattering is maximized and the wavelength dependence of scattering is small, the highly reflective particles 42 preferably have a particle size near the wavelength of light. Further, for example, the highly reflective particles 42 preferably have a particle size larger than about half the wavelength of the light converted by the wavelength conversion layer 20 in order to reflect the light converted by the wavelength conversion layer 20. For example, when the binder 22 is made of a sintered body of the inorganic particles 24, the particle size of the inorganic particles 24 is smaller than that of the highly reflective particles 42, and the highly reflective particles 42 are substantially bonded to each other in the sintered body of the inorganic particles 24. It is preferable that the particles are dispersed without being dispersed.
 反射層40の厚さは、例えば、50μm~100μmが好ましい。反射層40の厚さが薄い場合、反射層40における反射率が低下する可能性がある。一方、反射層40の厚さが厚い場合、波長変換層20で発生した熱を基板11から放熱することが難しくなり、波長変換層20における発光効率が低下する可能性がある。 The thickness of the reflective layer 40 is preferably, for example, 50 μm to 100 μm. If the thickness of the reflective layer 40 is thin, the reflectance of the reflective layer 40 may decrease. On the other hand, when the thickness of the reflective layer 40 is thick, it becomes difficult to dissipate the heat generated in the wavelength conversion layer 20 from the substrate 11, and the luminous efficiency in the wavelength conversion layer 20 may decrease.
 本実施形態の波長変換部材10-1によれば、基板11に突起層12が設けられているため、反射層40の剥がれを抑制することができ、ひいては波長変換層20の剥がれを抑制することができる。また、バインダ22が、特に基板11から鋭角をなすよう方向に延びる鋭角突起と、基板11との間に入り込むため、反射層40の剥がれをより抑制することができる。 According to the wavelength conversion member 10-1 of the present embodiment, since the projection layer 12 is provided on the substrate 11, the peeling of the reflective layer 40 can be suppressed, and eventually the peeling of the wavelength conversion layer 20 can be suppressed. Can be done. Further, since the binder 22 enters between the acute-angled protrusions extending in a direction forming an acute angle from the substrate 11 and the substrate 11, peeling of the reflective layer 40 can be further suppressed.
 以下、実施形態1、2における波長変換部材を用いた装置の例について説明する。 Hereinafter, an example of the apparatus using the wavelength conversion member in the first and second embodiments will be described.
 <反射型車両用前照灯具>
 図5は、反射型車両用前照灯具(ヘッドライト)の構成を模式的に示した概略図である。反射型車両用前照灯具は、光源装置の一例である。なお、反射型車両用前照灯具の構成は、人の頭に装着するヘッドライトやハンディの懐中電灯等の前照灯具にも使用可能である。
<Headlights for reflective vehicles>
FIG. 5 is a schematic view schematically showing the configuration of a headlight for a reflective vehicle. The reflective vehicle headlight fixture is an example of a light source device. It should be noted that the configuration of the headlight fixture for a reflective vehicle can also be used for a headlight fixture such as a headlight worn on a person's head or a handy flashlight.
 反射型車両用前照灯具110は、光源30と、波長変換部材10と、リフレクタ102と、を備える。 The reflective vehicle headlight 110 includes a light source 30, a wavelength conversion member 10, and a reflector 102.
 光源30は、波長変換部材10における無機波長変換材21を励起する波長の励起光31を出射する青色レーザ光源であることが好ましい。 The light source 30 is preferably a blue laser light source that emits excitation light 31 having a wavelength that excites the inorganic wavelength conversion material 21 in the wavelength conversion member 10.
 リフレクタ102は、半放物面ミラーから構成されることが好ましい。放物面をxy平面に平行な分割面104により上下に2分割して半放物面とし、その内面はミラーの構成になっていることが好ましい。リフレクタ102には励起光31が通過する透孔がある。 The reflector 102 is preferably composed of a semi-parabolic mirror. It is preferable that the paraboloid is divided into two vertically by a dividing surface 104 parallel to the xy plane to form a semi-paraboloid, and the inner surface thereof has a mirror configuration. The reflector 102 has a through hole through which the excitation light 31 passes.
 光源30は、波長変換部材10に励起光31を照射する。波長変換部材10における無機波長変換材21は、励起光31によって励起され、可視光の長波長域(黄色波長)の光105を発する。また、励起光31は、波長変換部材10の照射表面に当たって拡散反射光106ともなる。 The light source 30 irradiates the wavelength conversion member 10 with the excitation light 31. The inorganic wavelength conversion material 21 in the wavelength conversion member 10 is excited by the excitation light 31 and emits light 105 in the long wavelength region (yellow wavelength) of visible light. Further, the excitation light 31 hits the irradiation surface of the wavelength conversion member 10 and becomes diffusely reflected light 106.
 波長変換部材10は、分割面104上において、リフレクタ102を構成する放物面ミラーの焦点の位置に配置される。したがって、波長変換部材10から出射された蛍光105、拡散反射光106はリフレクタ102へ当たって反射すると、一様に出射面103に直進する。これにより、反射型車両用前照灯具110は、蛍光105と拡散反射光106とが混ざり合った白色光を平行光として出射面103から出射する。 The wavelength conversion member 10 is arranged on the dividing surface 104 at the focal position of the parabolic mirror constituting the reflector 102. Therefore, when the fluorescence 105 and the diffusely reflected light 106 emitted from the wavelength conversion member 10 hit the reflector 102 and are reflected, they uniformly travel straight to the emission surface 103. As a result, the reflective vehicle headlight 110 emits white light, which is a mixture of fluorescence 105 and diffuse reflected light 106, as parallel light from the emission surface 103.
 <透過型車両用前照灯具>
 図6は、透過型車両用前照灯具の一例を模式的に示す概略図である。透過型車両用前照灯具は、光源装置の一例である。また、透過型車両用前照灯具120は、波長変換部材10を備える透過型照明装置であり、好ましくは透過型レーザヘッドライトである。なお、透過型車両用前照灯具の構成は、人の頭に装着するヘッドライトやハンディの懐中電灯等の前照灯具にも使用可能である。
<Headlights for transmissive vehicles>
FIG. 6 is a schematic view schematically showing an example of a headlight fixture for a transmissive vehicle. The transmissive vehicle headlight fixture is an example of a light source device. Further, the transmission type vehicle headlight device 120 is a transmission type lighting device including a wavelength conversion member 10, and is preferably a transmission type laser headlight. It should be noted that the configuration of the headlight fixture for a transmissive vehicle can also be used for a headlight fixture such as a headlight worn on a person's head or a handy flashlight.
 透過型車両用前照灯具120は、光源30と、波長変換部材10と、リフレクタ123と、を備える。 The transmission type vehicle headlight device 120 includes a light source 30, a wavelength conversion member 10, and a reflector 123.
 本実施形態の透過型車両用前照灯具120では、波長変換部材10は、透光性の基板11側から励起光31が照射され、波長変換層20側から光を出射する。波長変換部材10から出射された光は、リフレクタ123の放物面で反射され指向性をもって透過型車両用前照灯具120から出射される。 In the transmission type vehicle headlight 120 of the present embodiment, the wavelength conversion member 10 is irradiated with the excitation light 31 from the translucent substrate 11 side and emits light from the wavelength conversion layer 20 side. The light emitted from the wavelength conversion member 10 is reflected by the paraboloid surface of the reflector 123 and is emitted from the transmissive vehicle headlight device 120 with directivity.
 また、基板11と波長変換層20との間、より好ましくは、基板11と突起層との間に、励起光波長を透過し、波長変換層20から出射される光を反射することができるダイクロイックミラーを備えていてもよい。このダイクロイックミラーにより、波長変換層20から出射される光が、波長変換部材10の基板11側から出射されることを防ぎ、波長変換層20側から出射される。つまり、波長変換部材10における光の取り出し効率を高めることができる。 Further, a dichroic capable of transmitting the excitation light wavelength between the substrate 11 and the wavelength conversion layer 20, more preferably between the substrate 11 and the protrusion layer, and reflecting the light emitted from the wavelength conversion layer 20. It may be equipped with a mirror. The dichroic mirror prevents the light emitted from the wavelength conversion layer 20 from being emitted from the substrate 11 side of the wavelength conversion member 10, and is emitted from the wavelength conversion layer 20 side. That is, it is possible to improve the light extraction efficiency of the wavelength conversion member 10.
 なお、波長変換部材10における基板11は、ヒートシンク機能を有するヒートシンク基板であることが好ましい。これにより、波長変換層20の熱をヒートシンク基板を介して放熱することでき、波長変換層20が過度に加熱されることを防ぎ、波長変換層20に含まれる無機波長変換材の温度消光を抑制できる。 The substrate 11 in the wavelength conversion member 10 is preferably a heat sink substrate having a heat sink function. As a result, the heat of the wavelength conversion layer 20 can be dissipated through the heat sink substrate, the wavelength conversion layer 20 is prevented from being excessively heated, and the temperature quenching of the inorganic wavelength conversion material contained in the wavelength conversion layer 20 is suppressed. can.
 また、上記波長変換部材10としては、例えば、図7に示す波長変換部材10-2を用いることが好ましい。波長変換部材10-2は、波長変換部材10の構成に加えて、基板11における波長変換層20が形成された側と反対側の面に設けられた、複数の突起13aを有する突起層13を有する。これにより、基板11の突起層13が設けられた面において励起光の反射を抑制することができ、励起光の波長変換層20への取り込み効率を高めることができる。波長変換部材10-2は、透過型車両用前照灯具に限らず、透過型の光源装置において好適に使用される。 Further, as the wavelength conversion member 10, for example, it is preferable to use the wavelength conversion member 10-2 shown in FIG. 7. In addition to the configuration of the wavelength conversion member 10, the wavelength conversion member 10-2 includes a projection layer 13 having a plurality of projections 13a provided on the surface of the substrate 11 opposite to the side on which the wavelength conversion layer 20 is formed. Have. As a result, the reflection of the excitation light can be suppressed on the surface of the substrate 11 on which the protrusion layer 13 is provided, and the efficiency of incorporating the excitation light into the wavelength conversion layer 20 can be improved. The wavelength conversion member 10-2 is preferably used not only in the headlight fixture for a transmission type vehicle but also in a transmission type light source device.
 <光源装置>
 図8は、光源装置の一例の概略図を示す。図9は、蛍光ホイール回転装置の概略平面図(xy平面)である。図10は、蛍光ホイール回転装置の概略側面図(xz平面)である。
<Light source device>
FIG. 8 shows a schematic diagram of an example of a light source device. FIG. 9 is a schematic plan view (xy plane) of the fluorescent wheel rotating device. FIG. 10 is a schematic side view (xz plane) of the fluorescent wheel rotating device.
 光源装置200は、光源30と、光学系210と、蛍光ホイール回転装置220とを備える。光源装置200は、光源30が発する光を、蛍光ホイール221の波長変換層223に照射し、波長変換層223が発する光を取り出す装置である。 The light source device 200 includes a light source 30, an optical system 210, and a fluorescent wheel rotation device 220. The light source device 200 is a device that irradiates the wavelength conversion layer 223 of the fluorescence wheel 221 with the light emitted by the light source 30 and extracts the light emitted by the wavelength conversion layer 223.
 光源30は、所定の波長帯域光(励起光)を蛍光ホイール221に照射する。光源30が照射する励起光の波長帯域は、光源装置200の設計に応じて様々な範囲を用いることができる。例えば、蛍光体を励起する光を発する光源としては、青色光源を用いることができ、青色レーザダイオードであることが好ましい。 The light source 30 irradiates the fluorescence wheel 221 with a predetermined wavelength band light (excitation light). The wavelength band of the excitation light emitted by the light source 30 can use various ranges depending on the design of the light source device 200. For example, as a light source that emits light that excites a phosphor, a blue light source can be used, and a blue laser diode is preferable.
 光学系210は、例えば、図8に示すように、両凸レンズ213、ダイクロイックミラー211、片凸レンズ214、215を備える。また、光学系210は、光源30の励起光を蛍光ホイール221に入射させる入射光学系と、蛍光ホイール221からの光を出射させる出射光学系とから構成される。 As shown in FIG. 8, the optical system 210 includes, for example, a biconvex lens 213, a dichroic mirror 211, and a single convex lens 214, 215. Further, the optical system 210 is composed of an incident optical system that causes the excitation light of the light source 30 to enter the fluorescence wheel 221 and an exit optical system that emits the light from the fluorescence wheel 221.
 入射光学系は、例えば、光源30からの励起光31を、両凸レンズ213、ダイクロイックミラー211、片凸レンズ215、214を介して、蛍光ホイール221に入射させる。出射光学系は、例えば、入射された励起光31により発光した蛍光ホイール221における光105を、片凸レンズ214、215、ダイクロイックミラー211を介して出射させる。ダイクロイックミラー211は、例えば、青色光を反射し、黄色光および赤色光を透過する。 In the incident optical system, for example, the excitation light 31 from the light source 30 is incident on the fluorescent wheel 221 via the biconvex lens 213, the dichroic mirror 211, and the single convex lenses 215 and 214. The emission optical system emits, for example, the light 105 in the fluorescence wheel 221 emitted by the incident excitation light 31 via the one- convex lens 214, 215, and the dichroic mirror 211. The dichroic mirror 211 reflects, for example, blue light and transmits yellow and red light.
 蛍光ホイール回転装置220は、例えば、図9、10に示すように、蛍光ホイール221、モーター等の駆動装置226、回転シャフト224、ホイール固定具225を備える。 As shown in FIGS. 9 and 10, the fluorescent wheel rotating device 220 includes, for example, a fluorescent wheel 221, a drive device 226 such as a motor, a rotating shaft 224, and a wheel fixture 225.
 蛍光ホイール221は、例えば、円形のホイールであるホイール基板222上に波長変換層223が設けられた構成を有する。蛍光ホイール221は、ホイール基板222の表面の周方向の少なくとも一部に、光源から出射された励起光を受けるように、波長変換層223が配置されている。この蛍光ホイール221は、実施形態1、2における波長変換部材に相当し、ホイール基板222が実施形態1、2の基板に相当し、波長変換層223が実施形態1、2の波長変換層に相当する。蛍光ホイール221は、光源30から照射された励起光31を吸収して、所定の波長帯域光を放射し、または励起光をそのまま射出する。 The fluorescent wheel 221 has, for example, a configuration in which a wavelength conversion layer 223 is provided on a wheel substrate 222 which is a circular wheel. The fluorescent wheel 221 has a wavelength conversion layer 223 arranged on at least a part of the surface of the wheel substrate 222 in the circumferential direction so as to receive the excitation light emitted from the light source. The fluorescent wheel 221 corresponds to the wavelength conversion member in the first and second embodiments, the wheel substrate 222 corresponds to the substrate of the first and second embodiments, and the wavelength conversion layer 223 corresponds to the wavelength conversion layer of the first and second embodiments. do. The fluorescence wheel 221 absorbs the excitation light 31 emitted from the light source 30 and emits a predetermined wavelength band light, or emits the excitation light as it is.
 蛍光ホイール回転装置220は、例えば、電気信号により制御されるモーター等の駆動装置226に接続された回転シャフト224を通じて蛍光ホイール221を回転移動(回転および停止)させる。これにより、蛍光ホイール221の波長変換層223における励起光に照射される位置が変化し、波長変換層223が過度に加熱されることを防ぎ、波長変換層223に含まれる無機波長変換材の温度消光を抑制できる。 The fluorescent wheel rotating device 220 rotates (rotates and stops) the fluorescent wheel 221 through a rotating shaft 224 connected to a driving device 226 such as a motor controlled by an electric signal, for example. As a result, the position of the wavelength conversion layer 223 of the fluorescent wheel 221 to be irradiated with the excitation light is changed, the wavelength conversion layer 223 is prevented from being excessively heated, and the temperature of the inorganic wavelength conversion material contained in the wavelength conversion layer 223 is prevented. Quenching can be suppressed.
 ホイール固定具225は、蛍光ホイール221を回転シャフト224に固定する。ホイール固定具225は、蛍光ホイール221の孔側周縁を厚み方向に挟んで固定している。回転シャフト224は、駆動装置226の駆動力により中心軸回りに回転し蛍光ホイール221を回転させる。ホイール固定具225は、金属製であることが好ましい。蛍光ホイール221を回転シャフト224に固定する方法は、どのようなものであってもよい。また、本実施形態では、ホイール固定具225を用いて蛍光ホイール221を回転シャフト224に固定しているが、蛍光ホイール221を接着剤等により回転シャフト224に固定して、ホイール固定具225を用いない構成としてもよい。 The wheel fixative 225 fixes the fluorescent wheel 221 to the rotating shaft 224. The wheel fixture 225 sandwiches and fixes the hole-side peripheral edge of the fluorescent wheel 221 in the thickness direction. The rotary shaft 224 is rotated around the central axis by the driving force of the drive device 226 to rotate the fluorescent wheel 221. The wheel fixture 225 is preferably made of metal. Any method may be used to fix the fluorescent wheel 221 to the rotary shaft 224. Further, in the present embodiment, the fluorescent wheel 221 is fixed to the rotating shaft 224 using the wheel fixing tool 225, but the fluorescent wheel 221 is fixed to the rotating shaft 224 with an adhesive or the like, and the wheel fixing tool 225 is used. It may not be configured.
 ホイール基板222は、円板状であり、表面に波長変換層223を有する。ホイール基板222は、上記基板と同様の材料で形成される。また、ホイール基板222は、光源装置200の設計に応じて、反射型、透過型であってもよい。 The wheel substrate 222 has a disk shape and has a wavelength conversion layer 223 on its surface. The wheel substrate 222 is made of the same material as the substrate. Further, the wheel substrate 222 may be a reflection type or a transmission type depending on the design of the light source device 200.
 光源装置200が反射型の場合、ホイール基板222は、例えば、アルミニウム、銅、鉄などの金属であることが好ましい。このときは、ホイール基板222の表面に銀などの高反射膜がコーティングされていることが好ましい。さらに、ホイール基板222を励起光および無機波長変換材が発する光の反射を考慮しない材料により形成し、励起光が照射される表面のみを反射材料で形成してもよい。 When the light source device 200 is a reflective type, the wheel substrate 222 is preferably made of a metal such as aluminum, copper, or iron. At this time, it is preferable that the surface of the wheel substrate 222 is coated with a highly reflective film such as silver. Further, the wheel substrate 222 may be formed of a material that does not consider the reflection of the excitation light and the light emitted by the inorganic wavelength conversion material, and only the surface irradiated with the excitation light may be formed of the reflective material.
 光源装置200が透過型の場合、ホイール基板222は、励起光を透過するサファイア、ガラスなどの無機材料であることが好ましい。また、無機波長変換材が発する光はあらゆる方向に放射されるため、透過型とするときは、励起光を透過しつつ無機波長変換材が発する光を反射することが好ましい。また、ホイール基板222は、反射型であっても透過型であっても、無機波長変換材の温度消光を抑制するため、熱伝導率が高いことが好ましい。そのため、ホイール基板222は、アルミニウム、サファイアで形成することが好ましい。また、ホイール基板222は、反射型と透過型を組み合わせたものとしてもよい。 When the light source device 200 is a transmission type, the wheel substrate 222 is preferably an inorganic material such as sapphire or glass that transmits excitation light. Further, since the light emitted by the inorganic wavelength conversion material is radiated in all directions, it is preferable to reflect the light emitted by the inorganic wavelength conversion material while transmitting the excitation light when the transmission type is used. Further, regardless of whether the wheel substrate 222 is a reflective type or a transmissive type, it is preferable that the wheel substrate 222 has a high thermal conductivity in order to suppress temperature quenching of the inorganic wavelength conversion material. Therefore, the wheel substrate 222 is preferably formed of aluminum or sapphire. Further, the wheel substrate 222 may be a combination of a reflective type and a transmissive type.
 上記光源装置200は、たとえば、プロジェクタ等の投影装置に使用することが可能である。 The light source device 200 can be used as a projection device such as a projector, for example.
 (投影装置の構成)
 図11は、投影装置の一例の概略図を示す。投影装置300は、例えば、上記光源装置200を利用している。
(Configuration of projection device)
FIG. 11 shows a schematic diagram of an example of a projection device. The projection device 300 uses, for example, the light source device 200.
 投影装置300は、蛍光ホイール回転装置220と、蛍光ホイール回転装置220における蛍光ホイール221の回転位置を取得する回転位置センサ303と、回転位置センサ303からの出力情報に基づいて光源30を制御する光源制御部304と、表示素子307と、蛍光ホイール回転装置220からの光を表示素子307まで導光する光源側光学系306と、表示素子307からの投影光をスクリーンに投影する投影側光学系308とを備えている。 The projection device 300 controls the light source 30 based on the fluorescence wheel rotation device 220, the rotation position sensor 303 that acquires the rotation position of the fluorescence wheel 221 in the fluorescence wheel rotation device 220, and the output information from the rotation position sensor 303. The control unit 304, the display element 307, the light source side optical system 306 that guides the light from the fluorescent wheel rotating device 220 to the display element 307, and the projection side optical system 308 that projects the projected light from the display element 307 onto the screen. And have.
 投影装置300は、回転位置センサ303により取得された蛍光ホイール221の回転位置の情報により光源30の出力を制御する。光源30から出射された励起光31は、蛍光ホイール221における波長変換層に照射される。 The projection device 300 controls the output of the light source 30 based on the information on the rotation position of the fluorescent wheel 221 acquired by the rotation position sensor 303. The excitation light 31 emitted from the light source 30 irradiates the wavelength conversion layer in the fluorescence wheel 221.
 蛍光ホイール221の一部に透過部を設けた場合、青色光の励起光31は透過部を介して蛍光ホイール221を透過する。波長変換層に照射された励起光31は、光路上にて光源側光学系306、ミラー309a~309cを通ることができる。光源側光学系306はダイクロイックミラーであるのが好ましい。好ましいダイクロイックミラーは、45度で入射した青色の光は反射させ、赤色および緑色の光は透過させることができる。 When a transmission portion is provided in a part of the fluorescence wheel 221, the excitation light 31 of blue light passes through the fluorescence wheel 221 via the transmission portion. The excitation light 31 irradiated to the wavelength conversion layer can pass through the light source side optical system 306 and the mirrors 309a to 309c on the optical path. The light source side optical system 306 is preferably a dichroic mirror. A preferred dichroic mirror can reflect blue light incident at 45 degrees and transmit red and green light.
 より詳細に検討すると、上記光学特性を備えたダイクロイックミラーを光源側光学系306に採用することにより、ダイクロイックミラーに入射する励起光31による青色の光は反射されて蛍光ホイール221に向けられる。蛍光ホイール221の回転のタイミングにより、青色の光は透過部を介して蛍光ホイール221を透過する。蛍光ホイール221の回転のタイミングにより、透過部以外に照射された励起光31は、波長変換層に照射されて波長の異なる光に変換される。波長の異なる光である赤色および緑色の光は、ダイクロイックミラーを透過して表示素子307に入射する。透過部を透過した青色の光は、ミラー309a~309cを介して再度ダイクロイックミラーに入射し、ダイクロイックミラーで再度反射されて表示素子307に入射する。 When examined in more detail, by adopting a dichroic mirror having the above optical characteristics in the light source side optical system 306, the blue light emitted by the excitation light 31 incident on the dichroic mirror is reflected and directed to the fluorescent wheel 221. Due to the timing of rotation of the fluorescent wheel 221 the blue light is transmitted through the fluorescent wheel 221 through the transmitting portion. Depending on the timing of rotation of the fluorescent wheel 221, the excitation light 31 irradiated to other than the transmission portion is irradiated to the wavelength conversion layer and converted into light having a different wavelength. The red and green lights having different wavelengths pass through the dichroic mirror and enter the display element 307. The blue light transmitted through the transmissive portion is incident on the dichroic mirror again via the mirrors 309a to 309c, is reflected again by the dichroic mirror, and is incident on the display element 307.
 好ましい実施形態では、プロジェクタ(投影装置300)は、上記光源装置200と、表示素子307と、光源側光学系306(ダイクロイックミラー)と、投影側光学系308と、を備えることができる。光源側光学系306(ダイクロイックミラー)は、光源装置301からの光を上記表示素子307まで導光し、投影側光学系308は、上記表示素子307からの投影光をスクリーン等に投影することができる。好ましい実施形態では、表示素子307はDMD(デジタルミラーデバイス)であるのが好ましい。投影側光学系308は投影部レンズの組み合わせからなることが好ましい。 In a preferred embodiment, the projector (projection device 300) can include the light source device 200, a display element 307, a light source side optical system 306 (dichroic mirror), and a projection side optical system 308. The light source side optical system 306 (dichroic mirror) guides the light from the light source device 301 to the display element 307, and the projection side optical system 308 may project the projected light from the display element 307 onto a screen or the like. can. In a preferred embodiment, the display element 307 is preferably a DMD (Digital Mirror Device). The projection side optical system 308 preferably consists of a combination of projection lens.
 本開示は、上記実施形態に限定されるものではなく、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成又は同一の目的を達成することができる構成で置き換えてもよい。 The present disclosure is not limited to the above embodiment, but is replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that exhibits the same action and effect, or a configuration that can achieve the same purpose. You may.

Claims (12)

  1.  基板と、
     互いに異なる形状であり、前記基板から突出する複数の突起を含む突起層と、
     前記基板上に設けられ、無機波長変換材が、無機粒子を含むバインダに分散した波長変換層と、
    を備え、
     前記波長変換層は、前記突起層と直接接触して、前記基板上に固定されている、
    波長変換部材。
    With the board
    A protrusion layer containing a plurality of protrusions having different shapes from each other and protruding from the substrate, and a protrusion layer.
    A wavelength conversion layer provided on the substrate and in which the inorganic wavelength conversion material is dispersed in a binder containing inorganic particles,
    Equipped with
    The wavelength conversion layer is in direct contact with the protrusion layer and is fixed on the substrate.
    Wavelength conversion member.
  2.  基板と、
     互いに異なる形状であり、前記基板から突出する複数の突起を含む突起層と、
     前記基板上に設けられ、無機波長変換材を含む波長変換層と、
     前記基板と前記波長変換層との間に設けられ、高反射性粒子が、無機粒子を含むバインダに分散した反射層と、
    を備え、
     前記反射層は、前記突起層と直接接触して、前記基板上に固定されている、
    波長変換部材。
    With the board
    A protrusion layer containing a plurality of protrusions having different shapes from each other and protruding from the substrate, and a protrusion layer.
    A wavelength conversion layer provided on the substrate and containing an inorganic wavelength conversion material,
    A reflective layer provided between the substrate and the wavelength conversion layer, in which highly reflective particles are dispersed in a binder containing inorganic particles,
    Equipped with
    The reflective layer is in direct contact with the projection layer and is fixed on the substrate.
    Wavelength conversion member.
  3.  前記無機粒子の粒径は、2nm~100nmである、
    請求項1または2に記載の波長変換部材。
    The particle size of the inorganic particles is 2 nm to 100 nm.
    The wavelength conversion member according to claim 1 or 2.
  4.  前記複数の突起は、前記基板に対して鋭角をなす方向に延びる鋭角突起を含む、
    請求項1~3のいずれか1項に記載の波長変換部材。 
    The plurality of protrusions include sharp protrusions extending in a direction forming an acute angle with respect to the substrate.
    The wavelength conversion member according to any one of claims 1 to 3.
  5.  前記バインダは、前記鋭角突起と前記基板との間に入り込んでいる、
    請求項4に記載の波長変換部材。
    The binder is inserted between the acute-angled protrusion and the substrate.
    The wavelength conversion member according to claim 4.
  6.  前記突起層の厚さは、10nm~500nmである、
    請求項1~5のいずれか1項に記載の波長変換部材。
    The thickness of the protrusion layer is 10 nm to 500 nm.
    The wavelength conversion member according to any one of claims 1 to 5.
  7.  前記突起層は、花弁状構造を有する、
    請求項1~6のいずれか1項に記載の波長変換部材。
    The protrusion layer has a petal-like structure.
    The wavelength conversion member according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか1項に記載の波長変換部材と、
     前記波長変換部材に励起光を照射する光源と、
    を備え、
     前記波長変換層に前記励起光が入射した際に、光を出射する、
    光源装置。
    The wavelength conversion member according to any one of claims 1 to 7.
    A light source that irradiates the wavelength conversion member with excitation light,
    Equipped with
    When the excitation light is incident on the wavelength conversion layer, the light is emitted.
    Light source device.
  9.  請求項8に記載の光源装置と、
     前記波長変換部材から出射された光を反射させる反射面を有するリフレクタと、
    を備え、
     前記リフレクタの反射面が、入射した光を一定方向に平行に出射するように反射させる形状を有する、
    前照灯具。
    The light source device according to claim 8 and
    A reflector having a reflecting surface that reflects the light emitted from the wavelength conversion member,
    Equipped with
    The reflective surface of the reflector has a shape that reflects incident light so as to be emitted in parallel in a certain direction.
    Headlights.
  10.  前記波長変換部材は、さらに前記基板における前記波長変換層が設けられた面とは反対の反対面にも、前記突起層を有し、
     前記光源は、前記反対面側から前記波長変換部材に前記励起光を照射する、請求項9に記載の前照灯具。
    The wavelength conversion member also has the protrusion layer on the surface of the substrate opposite to the surface on which the wavelength conversion layer is provided.
    The headlighting tool according to claim 9, wherein the light source irradiates the wavelength conversion member with the excitation light from the opposite surface side.
  11.  請求項8に記載の光源装置であって、前記波長変換部材が、前記基板が円板状のホイールである光源装置と、
     前記波長変換部材を回転させる駆動装置と、
     前記波長変換部材に励起光を照射する光源と、
    を備え、
     前記波長変換部材の前記波長変換層に前記励起光が入射した際に、光を出射する、
    光源装置。
    The light source device according to claim 8, wherein the wavelength conversion member is a light source device in which the substrate is a disk-shaped wheel.
    A drive device that rotates the wavelength conversion member and
    A light source that irradiates the wavelength conversion member with excitation light,
    Equipped with
    When the excitation light is incident on the wavelength conversion layer of the wavelength conversion member, the light is emitted.
    Light source device.
  12.  請求項11に記載の光源装置と、
     表示素子と、
     前記光源装置からの光を前記表示素子まで導光する光源側光学系と、
     前記表示素子からの投影光をスクリーンに投影する投影側光学系と、
    を備える、
    投影装置。
    The light source device according to claim 11 and
    Display element and
    A light source side optical system that guides light from the light source device to the display element, and
    A projection side optical system that projects the projected light from the display element onto the screen,
    To prepare
    Projection device.
PCT/JP2021/036722 2020-12-10 2021-10-05 Wavelength conversion member, light source device, headlight fixture, and projection device WO2022123878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-204874 2020-12-10
JP2020204874 2020-12-10

Publications (1)

Publication Number Publication Date
WO2022123878A1 true WO2022123878A1 (en) 2022-06-16

Family

ID=81973525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036722 WO2022123878A1 (en) 2020-12-10 2021-10-05 Wavelength conversion member, light source device, headlight fixture, and projection device

Country Status (1)

Country Link
WO (1) WO2022123878A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118532A (en) * 2008-11-13 2010-05-27 Stanley Electric Co Ltd Color-converting light-emitting device
JP2012053995A (en) * 2010-08-31 2012-03-15 Sharp Corp Light projection structure and lighting system
JP2013228598A (en) * 2012-04-26 2013-11-07 Panasonic Corp Light source device and projection type display apparatus employing light source device
JP2014153527A (en) * 2013-02-08 2014-08-25 Ushio Inc Fluorescent light source device
JP2015053326A (en) * 2013-09-05 2015-03-19 日亜化学工業株式会社 Light emitting device and method for manufacturing the same
JP2015215583A (en) * 2013-11-08 2015-12-03 日本電気硝子株式会社 Fluorescent wheel for projector and light-emitting device for projector
JP2016058619A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Light-emitting device
WO2017068765A1 (en) * 2015-10-20 2017-04-27 パナソニックIpマネジメント株式会社 Wavelength conversion element and light-emitting device
JP2018131577A (en) * 2017-02-17 2018-08-23 日本特殊陶業株式会社 Wavelength conversion member
WO2018230333A1 (en) * 2017-06-14 2018-12-20 日本電気硝子株式会社 Wavelength conversion member and light emitting device
WO2019098057A1 (en) * 2017-11-16 2019-05-23 パナソニックIpマネジメント株式会社 Wavelength conversion element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118532A (en) * 2008-11-13 2010-05-27 Stanley Electric Co Ltd Color-converting light-emitting device
JP2012053995A (en) * 2010-08-31 2012-03-15 Sharp Corp Light projection structure and lighting system
JP2013228598A (en) * 2012-04-26 2013-11-07 Panasonic Corp Light source device and projection type display apparatus employing light source device
JP2014153527A (en) * 2013-02-08 2014-08-25 Ushio Inc Fluorescent light source device
JP2015053326A (en) * 2013-09-05 2015-03-19 日亜化学工業株式会社 Light emitting device and method for manufacturing the same
JP2015215583A (en) * 2013-11-08 2015-12-03 日本電気硝子株式会社 Fluorescent wheel for projector and light-emitting device for projector
JP2016058619A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Light-emitting device
WO2017068765A1 (en) * 2015-10-20 2017-04-27 パナソニックIpマネジメント株式会社 Wavelength conversion element and light-emitting device
JP2018131577A (en) * 2017-02-17 2018-08-23 日本特殊陶業株式会社 Wavelength conversion member
WO2018230333A1 (en) * 2017-06-14 2018-12-20 日本電気硝子株式会社 Wavelength conversion member and light emitting device
WO2019098057A1 (en) * 2017-11-16 2019-05-23 パナソニックIpマネジメント株式会社 Wavelength conversion element

Similar Documents

Publication Publication Date Title
JP6852976B2 (en) Wavelength conversion member, its manufacturing method and light emitting device
JP6246622B2 (en) Light source device and lighting device
JP5598974B2 (en) Lighting device
US8872208B2 (en) Light source device and lighting device
EP2665099A1 (en) White-light light-emitting diode lamp with a remote reflective photoluminescent converter
EP2677233B1 (en) Light-emitting diode source of white light with a remote phosphor converter
JP6644081B2 (en) Light-emitting device, lighting device, and method for manufacturing light-emitting body included in light-emitting device
JP5709463B2 (en) Light source device and lighting device
JP5285038B2 (en) Light projecting structure and lighting device
JP2012089316A (en) Light source device, and lighting system
JP7369724B2 (en) Reflection color correction for phosphor lighting systems
JP2012079989A (en) Light source device and lighting fixture
US20220136679A1 (en) Wavelength conversion element, light source device, vehicle headlight, transmissive lighting device, display device, and lighting device
WO2022123878A1 (en) Wavelength conversion member, light source device, headlight fixture, and projection device
WO2021111724A1 (en) Wavelength conversion element, wavelength conversion device, and light-emission system
WO2021181779A1 (en) Optical element and light emission system
JP5781367B2 (en) Light source device and lighting device
WO2020085204A1 (en) Optical element and optical device
CN109751564B (en) Phosphor module
JP2021144062A (en) Waveform conversion element, light source device, vehicle headlight, display device, light source module, and projection device
JP5766521B2 (en) Lighting device
JP2022039095A (en) Phosphor particle, wavelength conversion element, light source device, method of manufacturing phosphor particle, method of manufacturing wavelength conversion element, and projector
EP3555689A1 (en) Light converting device
WO2020189405A1 (en) Optical element, vehicle headlight, light source device, and projection device
JP2022108288A (en) Wavelength conversion wheel, light source device, and projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP