JP2014153527A - Fluorescent light source device - Google Patents

Fluorescent light source device Download PDF

Info

Publication number
JP2014153527A
JP2014153527A JP2013022982A JP2013022982A JP2014153527A JP 2014153527 A JP2014153527 A JP 2014153527A JP 2013022982 A JP2013022982 A JP 2013022982A JP 2013022982 A JP2013022982 A JP 2013022982A JP 2014153527 A JP2014153527 A JP 2014153527A
Authority
JP
Japan
Prior art keywords
fluorescent
periodic structure
wavelength conversion
source device
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013022982A
Other languages
Japanese (ja)
Other versions
JP6107190B2 (en
Inventor
Masaki Inoue
正樹 井上
Masaharu Kitamura
政治 北村
Kiyoyuki Kaburagi
清幸 蕪木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2013022982A priority Critical patent/JP6107190B2/en
Priority to PCT/JP2014/052647 priority patent/WO2014123145A1/en
Priority to CN201480007875.2A priority patent/CN104968995B/en
Publication of JP2014153527A publication Critical patent/JP2014153527A/en
Priority to US14/821,530 priority patent/US20160040857A1/en
Application granted granted Critical
Publication of JP6107190B2 publication Critical patent/JP6107190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources

Abstract

PROBLEM TO BE SOLVED: To provide a fluorescent light source device that, when a wavelength changing member is irradiated with exciting light, not only restrains backward scattering of the exciting light but also externally emits at high efficiency fluorescent light generated within the wavelength changing member, and therefore can achieve high luminous efficiency.SOLUTION: A fluorescent light source device is provided with a wavelength changing member, consisting of a fluorescent substance excited by exciting light; the wavelength changing member has a front face side periodic structure formed on its front face, which is supposed to be the exciting light receiving face, and a rear face side periodic structure on the rear face, on whose outside a light reflecting face is disposed.

Description

本発明は、励起光によって蛍光体を励起することにより、当該蛍光体から蛍光を放射する蛍光光源装置に関する。   The present invention relates to a fluorescent light source device that emits fluorescence from a phosphor by exciting the phosphor with excitation light.

例えばプロジェクターに用いられる緑色光源としては、従来、レーザ光を蛍光体に照射することによって、当該蛍光体から緑色光を放射する蛍光光源装置が知られている。このような蛍光光源装置の一例としては、回転ホイールの表面に蛍光体が塗布されてなる波長変換部材を備えてなり、この波長変換部材に青色領域のレーザ光を照射することによって、当該波長変換部材における蛍光体において緑色領域の光を生成する蛍光光源装置が知られている(特許文献1参照。)。
しかしながら、回転ホイールを備えた波長変換部材を利用した蛍光光源装置においては、回転ホイールを回転駆動するモーターの部品に劣化が生じて故障が生じやすく、また、駆動系自体の構成が複雑である、という問題がある。
For example, as a green light source used in a projector, a fluorescent light source device that emits green light from the phosphor by irradiating the phosphor with laser light is conventionally known. As an example of such a fluorescent light source device, a wavelength conversion member in which a phosphor is coated on the surface of a rotating wheel is provided, and the wavelength conversion is performed by irradiating the wavelength conversion member with laser light in a blue region. A fluorescent light source device that generates light in a green region in a phosphor in a member is known (see Patent Document 1).
However, in the fluorescent light source device using the wavelength conversion member provided with the rotating wheel, the motor part that rotationally drives the rotating wheel is likely to be deteriorated and troubled, and the configuration of the drive system itself is complicated. There is a problem.

また、蛍光光源装置の他の例としては、例えば図9に示すように、裏面に放熱用フィン64が設けられたAIN焼結体よりなる基板62の表面に、硫酸バリウム層63を介してYAG焼結体よりなる蛍光部材61が配置されてなる波長変換部材を備えてなり、この波長変換部材における蛍光部材61に、励起光として青色領域のレーザ光を照射することによって、当該蛍光部材61において緑色領域の光を生成する蛍光光源装置が知られている(特許文献2参照)。
しかしながら、このような蛍光光源装置においては、高い発光効率が得られない、という問題がある。
具体的には、励起光が蛍光部材61に照射されたときに、当該蛍光部材61の表面において励起光が後方散乱されるため、励起光が蛍光部材61の内部に十分に取り込まれない、という問題がある。また、蛍光部材61内において蛍光体で生じた蛍光のうち、蛍光部材61と空気との界面に対する入射角が臨界角を超える蛍光が蛍光部材61の内部に閉じ込められるため、蛍光を効率的に利用することができない、という問題がある。
As another example of the fluorescent light source device, for example, as shown in FIG. 9, the YAG is formed on the surface of the substrate 62 made of an AIN sintered body having the heat radiation fins 64 provided on the back surface through the barium sulfate layer 63. In the fluorescent member 61, a fluorescent member 61 made of a sintered body is provided, and the fluorescent member 61 in the wavelength converting member is irradiated with laser light in a blue region as excitation light. A fluorescent light source device that generates light in a green region is known (see Patent Document 2).
However, such a fluorescent light source device has a problem that high luminous efficiency cannot be obtained.
Specifically, when the excitation light is irradiated onto the fluorescent member 61, the excitation light is back-scattered on the surface of the fluorescent member 61, so that the excitation light is not sufficiently taken into the fluorescent member 61. There's a problem. In addition, among the fluorescence generated by the phosphor in the fluorescent member 61, the fluorescent light whose incident angle with respect to the interface between the fluorescent member 61 and the air exceeds the critical angle is confined in the fluorescent member 61, so that the fluorescent light is efficiently used. There is a problem that you can not.

特開2011−13316号公報JP 2011-13316 A 特開2011−198560号公報JP 2011-198560 A

本発明は、以上のような事情に基づいてなされたものであって、その目的は、波長変換部材に励起光が照射されたときに、当該励起光の後方散乱が抑制されると共に、波長変換部材の内部において生じた蛍光を高い効率で外部に出射することができ、従って、高い発光効率が得られる蛍光光源装置を提供することにある。   The present invention has been made based on the above circumstances, and its purpose is to suppress backscattering of the excitation light when the wavelength conversion member is irradiated with the excitation light, and to convert the wavelength. An object of the present invention is to provide a fluorescent light source device that can emit fluorescence generated inside a member to the outside with high efficiency, and thus can obtain high luminous efficiency.

本発明の蛍光光源装置は、励起光により励起される蛍光体による波長変換部材を備えてなる蛍光光源装置であって、
前記波長変換部材は、励起光受光面とされる表面に表面側周期構造が形成され、裏面に裏面側周期構造が形成されており、当該裏面の外側に光反射面が設けられていることを特徴とする。
The fluorescent light source device of the present invention is a fluorescent light source device comprising a wavelength conversion member by a phosphor excited by excitation light,
The wavelength conversion member has a surface-side periodic structure formed on a surface that is an excitation light receiving surface, a back-side periodic structure is formed on the back surface, and a light reflecting surface is provided outside the back surface. Features.

本発明の蛍光光源装置においては、前記表面側周期構造の周期は、前記蛍光体から放射される蛍光の回折が発生する範囲の大きさであることが好ましい。   In the fluorescent light source device of the present invention, it is preferable that the period of the surface-side periodic structure is a size within a range where diffraction of fluorescence emitted from the phosphor occurs.

本発明の蛍光光源装置においては、前記裏面側周期構造の周期は、前記蛍光体から放射される蛍光の回折が発生する範囲の大きさであることが好ましい。   In the fluorescent light source device of the present invention, it is preferable that the period of the back-side periodic structure has a size within a range where diffraction of fluorescence emitted from the phosphor occurs.

本発明の蛍光光源装置においては、前記波長変換部材は、その全体が蛍光体が含有されてなる蛍光部材よりなることが好ましい。   In the fluorescent light source device of the present invention, it is preferable that the wavelength conversion member is entirely made of a fluorescent member containing a phosphor.

本発明の蛍光光源装置においては、前記波長変換部材は、蛍光体が含有されてなる蛍光部材と、当該蛍光部材の表面上に形成された、表面に周期構造を有する表面側周期構造体層、および当該蛍光部材の裏面上に形成された、裏面に周期構造を有する裏面側周期構造体層の少なくとも一方の周期構造体層とを備えていることが好ましい。
このような構成の本発明の蛍光光源装置においては、前記蛍光部材上に形成された周期構造体層の屈折率は、当該蛍光部材の屈折率の値以上であることが好ましい。
In the fluorescent light source device of the present invention, the wavelength conversion member includes a fluorescent member containing a phosphor, a surface-side periodic structure layer having a periodic structure on the surface, formed on the surface of the fluorescent member, And at least one periodic structure layer of the back-side periodic structure layer having a periodic structure on the back surface, preferably formed on the back surface of the fluorescent member.
In the fluorescent light source device of the present invention having such a configuration, the refractive index of the periodic structure layer formed on the fluorescent member is preferably equal to or higher than the refractive index of the fluorescent member.

本発明の蛍光光源装置は、励起光により励起される蛍光体による波長変換部材を備えてなる蛍光光源装置であって、
前記波長変換部材は、励起光受光面とされる表面に表面側周期構造が形成され、裏面が粗面により形成された光拡散面とされており、当該裏面の外側に光反射面が設けられていることを特徴とする。
The fluorescent light source device of the present invention is a fluorescent light source device comprising a wavelength conversion member by a phosphor excited by excitation light,
The wavelength conversion member has a surface-side periodic structure formed on the surface to be an excitation light receiving surface, a back surface is a light diffusion surface formed by a rough surface, and a light reflection surface is provided outside the back surface. It is characterized by.

本発明の蛍光光源装置においては、波長変換部材における励起光受光面に表面側周期構造が形成されているため、波長変換部材に励起光が照射されたときに、当該励起光の後方散乱が抑制され、その結果、励起光を波長変換部材の内部に十分に取り込むことができる。
また、波長変換部材の裏面の外側に光反射面が設けられていると共に、当該裏面には、裏面側周期構造が形成されること、または光拡散面が粗面により形成されることによって凹凸面とされている。そのため、波長変換部材の内部において蛍光体から放射された蛍光は、当該裏面において角度を変えて光反射面で反射されることから、蛍光が波長変換部材の内部に閉じ込められることが抑制される。
従って、本発明の蛍光光源装置によれば、励起光を波長変換部材の内部に十分に取り込むことができると共に、波長変換部材内において生成された蛍光を高い効率で外部に出射することができることから、高い発光効率が得られる。
In the fluorescent light source device of the present invention, since the surface-side periodic structure is formed on the excitation light receiving surface of the wavelength conversion member, the backscattering of the excitation light is suppressed when the wavelength conversion member is irradiated with the excitation light. As a result, the excitation light can be sufficiently taken into the wavelength conversion member.
In addition, a light reflecting surface is provided outside the back surface of the wavelength conversion member, and the back surface is provided with a back surface-side periodic structure, or a light diffusing surface is formed by a rough surface. It is said that. For this reason, the fluorescence emitted from the phosphor inside the wavelength conversion member is reflected on the light reflection surface at a different angle on the back surface, so that the fluorescence is prevented from being confined inside the wavelength conversion member.
Therefore, according to the fluorescence light source device of the present invention, the excitation light can be sufficiently taken into the wavelength conversion member, and the fluorescence generated in the wavelength conversion member can be emitted to the outside with high efficiency. High luminous efficiency can be obtained.

本発明の蛍光光源装置の一例における構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure in an example of the fluorescence light source device of this invention. 図1の蛍光光源装置における波長変換部材の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the wavelength conversion member in the fluorescence light source device of FIG. 波長変換部材における表面側周期構造の変形例を模式的に示す説明図である。It is explanatory drawing which shows typically the modification of the surface side periodic structure in a wavelength conversion member. 励起光が蛍光部材よりなる波長変換部材の表面に垂直な方向に入射した場合において、当該励起光が伝播する媒体の屈折率の変化をマクロ的に示した図であり、(a)は波長変換部材の一部を拡大して示す断面図であり、(b)は波長変換部材の表面に対して垂直な方向における位置と屈折率とのマクロ的な関係を示すグラフである。It is the figure which showed macroscopically the change of the refractive index of the medium which the said excitation light propagates when excitation light injects in the direction perpendicular | vertical to the surface of the wavelength conversion member which consists of fluorescent members, (a) is wavelength conversion It is sectional drawing which expands and shows a part of member, (b) is a graph which shows the macro relationship of the position and refractive index in the direction perpendicular | vertical with respect to the surface of a wavelength conversion member. 本発明の蛍光光源装置の他の例における波長変換部材の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the wavelength conversion member in the other example of the fluorescence light source device of this invention. 本発明の蛍光光源装置の更に他の例における波長変換部材の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the wavelength conversion member in the further another example of the fluorescence light source device of this invention. 本発明の蛍光光源装置のまた更に他の例における波長変換部材の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the wavelength conversion member in the further another example of the fluorescence light source device of this invention. 実験例2において得られた、波長変換部材の裏面における光の反射率と、当該波長変換部材の光取出し効率との関係を示すグラフである。It is a graph which shows the relationship between the reflectance of the light in the back surface of the wavelength conversion member obtained in Experimental example 2, and the light extraction efficiency of the said wavelength conversion member. 従来の蛍光光源装置における波長変換部材の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the wavelength conversion member in the conventional fluorescence light source device.

以下、本発明の蛍光光源装置の実施の形態について説明する。   Hereinafter, embodiments of the fluorescent light source device of the present invention will be described.

(第1の実施の形態)
図1は、本発明の蛍光光源装置の一例における構成の概略を示す説明図であり、図2は、図1の蛍光光源装置における波長変換部材の構成を示す説明用断面図である。
この蛍光光源装置は、図1に示すように、青色領域の光を出射するレーザダイオード10と、このレーザダイオード10に対向して配置された、当該レーザダイオード10から出射されるレーザ光である励起光Lによって励起されて緑色領域の蛍光L1を出射する波長変換部材を有する蛍光発光部材20とを備えてなる。
レーザダイオード10と蛍光発光部材20との間における当該レーザダイオード10に接近した位置には、レーザダイオード10から入射された励起光Lを平行光線として出射するコリメータレンズ15が配置されている。また、コリメータレンズ15と蛍光発光部材20との間には、レーザダイオード10からの励起光Lを透過すると共に蛍光発光部材20における波長変換部材からの蛍光L1を反射するダイクロイックミラー16が、コリメータレンズ15の光軸に対して例えば45°の角度で傾斜した姿勢で配置されている。
ここに、図1では、1つのレーザダイオード10の光を用いているが、レーザダイオード10が複数あり、蛍光発光部材20における波長変換部材の前に集光レンズを配置させ、集光光を当該波長変換部材に照射する形態であってもよい。また、励起光はレーザダイオード10による光に限るものではなく、波長変換部材における蛍光体を励起することができるものであれば、LEDによる光を集光したものでもよく、更には、水銀、キセノン等が封入されたランプからの光であってもよい。尚、ランプやLEDのように放射波長に幅を持つ光源を利用した場合には、励起光の波長は主たる放射波長の領域である。ただし、本発明においては、これに限定されるものではない。
(First embodiment)
FIG. 1 is an explanatory diagram showing an outline of the configuration of an example of the fluorescent light source device of the present invention, and FIG. 2 is an explanatory sectional view showing the configuration of a wavelength conversion member in the fluorescent light source device of FIG.
As shown in FIG. 1, the fluorescent light source device includes a laser diode 10 that emits light in a blue region, and excitation that is laser light emitted from the laser diode 10 that is disposed opposite to the laser diode 10. And a fluorescent light emitting member 20 having a wavelength conversion member that is excited by the light L and emits the fluorescent light L1 in the green region.
A collimator lens 15 that emits the excitation light L incident from the laser diode 10 as a parallel light beam is disposed at a position close to the laser diode 10 between the laser diode 10 and the fluorescent light emitting member 20. A dichroic mirror 16 that transmits the excitation light L from the laser diode 10 and reflects the fluorescence L1 from the wavelength conversion member in the fluorescent light emitting member 20 is provided between the collimator lens 15 and the fluorescent light emitting member 20. For example, it is arranged in a posture inclined at an angle of 45 ° with respect to the 15 optical axes.
Here, in FIG. 1, the light of one laser diode 10 is used, but there are a plurality of laser diodes 10, a condenser lens is disposed in front of the wavelength conversion member in the fluorescent light emitting member 20, and the condensed light is The form which irradiates a wavelength conversion member may be sufficient. Further, the excitation light is not limited to the light from the laser diode 10, and may be one that collects the light from the LED as long as it can excite the phosphor in the wavelength conversion member, and further, mercury or xenon. The light from the lamp in which etc. were enclosed may be sufficient. When a light source having a width in the emission wavelength such as a lamp or LED is used, the wavelength of the excitation light is the main emission wavelength region. However, the present invention is not limited to this.

蛍光発光部材20は、図2に示すように、矩形の基板31の表面(図2における上面)上に、略矩形板状の蛍光部材21よりなる波長変換部材が設けられたものである。
この蛍光発光部材20は、蛍光部材21の表面(図2における上面)がレーザダイオード10に対向するように配置されており、当該表面が励起光受光面とされていると共に、蛍光出射面とされている。
また、蛍光部材21の裏面(図2における下面)および側面の各々には、例えば銀よりなる光反射膜33が設けられている。このように、蛍光部材21の裏面および側面に光反射膜33が形成されることにより、蛍光部材21の裏面および側面の外側に光反射面が設けられている。また、基板31の裏面には、例えば放熱用フィン(図示省略)が配置されている。
As shown in FIG. 2, the fluorescent light emitting member 20 is provided with a wavelength conversion member made of a substantially rectangular plate-like fluorescent member 21 on the surface of a rectangular substrate 31 (upper surface in FIG. 2).
The fluorescent light emitting member 20 is arranged so that the surface (the upper surface in FIG. 2) of the fluorescent member 21 faces the laser diode 10, and the surface is an excitation light receiving surface and a fluorescent light emitting surface. ing.
Further, a light reflecting film 33 made of, for example, silver is provided on each of the back surface (lower surface in FIG. 2) and side surfaces of the fluorescent member 21. As described above, the light reflecting film 33 is formed on the back surface and the side surface of the fluorescent member 21, so that the light reflecting surface is provided outside the back surface and the side surface of the fluorescent member 21. Further, on the back surface of the substrate 31, for example, heat radiation fins (not shown) are arranged.

そして、波長変換部材を構成する蛍光部材21には、励起光受光面すなわち当該蛍光部材21の表面に、凸部(以下、「表面側凸部」ともいう。)23が周期的に配列されてなる表面側周期構造22が形成されている。また、波長変換部材の裏面すなわち蛍光部材21の裏面には、凸部(以下、「裏面側凸部」ともいう。)26が周期的に配列されてなる裏面側周期構造25が形成されている。
ここに、本明細書中において、「周期構造」とは、表面から裏面に向かうに従って小径となる凸状形状を有する周期構造体(図2においては凸部23,26)が、周期的に配列されなる構造を示す。
In the fluorescent member 21 constituting the wavelength conversion member, convex portions (hereinafter also referred to as “surface-side convex portions”) 23 are periodically arranged on the excitation light receiving surface, that is, the surface of the fluorescent member 21. A surface-side periodic structure 22 is formed. Further, on the back surface of the wavelength conversion member, that is, on the back surface of the fluorescent member 21, a back surface side periodic structure 25 in which convex portions (hereinafter also referred to as “back surface side convex portions”) 26 are periodically arranged is formed. .
Here, in this specification, the “periodic structure” means that periodic structures (convex portions 23 and 26 in FIG. 2) having a convex shape having a smaller diameter from the front surface to the back surface are periodically arranged. The resulting structure is shown.

蛍光部材21は、単結晶または多結晶の蛍光体によって構成されている。蛍光部材21の厚みは、例えば0.05〜2.0mmである。   The fluorescent member 21 is composed of a single crystal or polycrystalline phosphor. The thickness of the fluorescent member 21 is, for example, 0.05 to 2.0 mm.

蛍光部材21を構成する単結晶の蛍光体は、例えば、チョクラルスキー法によって得ることができる。具体的には、坩堝内において種子結晶を溶融された原料に接触させ、この状態で、種子結晶を回転させながら鉛直方向に引き上げて当該種子結晶に単結晶を成長させることにより、単結晶の蛍光体が得られる。
また、蛍光部材21を構成する多結晶の蛍光体は、例えば以下のようにして得ることができる。先ず、母材、賦活材および焼成助剤などの原材料をボールミルなどによって粉砕処理することによって、サブミクロン以下の原材料微粒子を得る。次いで、この原材料微粒子を例えばスリップキャスト法によって焼結する。その後、得られた焼結体に対して熱間等方圧加圧加工を施すことによって、気孔率が例えば0.5%以下の多結晶の蛍光体が得られる。
The single crystal phosphor constituting the fluorescent member 21 can be obtained, for example, by the Czochralski method. Specifically, the seed crystal is brought into contact with the melted raw material in the crucible, and in this state, the seed crystal is pulled up in the vertical direction while rotating the seed crystal to grow the single crystal on the seed crystal. The body is obtained.
Moreover, the polycrystalline fluorescent substance which comprises the fluorescent member 21 can be obtained as follows, for example. First, raw materials such as a base material, an activator, and a firing aid are pulverized by a ball mill or the like to obtain raw material fine particles of submicron or less. Next, the raw material fine particles are sintered by, for example, a slip casting method. Thereafter, a polycrystalline phosphor having a porosity of 0.5% or less, for example, is obtained by subjecting the obtained sintered body to hot isostatic pressing.

蛍光部材21を構成する蛍光体の具体例としては、YAG:Ce、YAG:Pr、YAG:Sm、LuAG:Ceなどが挙げられる。このような蛍光体において、希土類元素のドープ量は、0.5mol%程度である。   Specific examples of the phosphor constituting the fluorescent member 21 include YAG: Ce, YAG: Pr, YAG: Sm, and LuAG: Ce. In such a phosphor, the rare earth element doping amount is about 0.5 mol%.

蛍光部材21の表面に形成された表面側周期構造22を構成する表面側凸部23は、図2に示されているように、略錐形状であることが好ましい。
具体的に、表面側凸部23に係る略錐形状は、図2に示すような錘状(図2においては円錐状)、または図3に示すような錐台状(図3においては円錐台状)である。ここに、表面側凸部23の形状が錐台状である場合には、上底部24aの寸法(最大寸法)aは、励起光Lの波長未満とされる。例えば凸部24の形状が円錐台状であり、励起光Lの波長が445nmである場合には、円錐台状の凸部24の上底部24aの寸法(外径)は100nmである。
As shown in FIG. 2, it is preferable that the surface side convex part 23 which comprises the surface side periodic structure 22 formed in the surface of the fluorescent member 21 is a substantially cone shape.
Specifically, the substantially conical shape related to the surface-side convex portion 23 is a weight shape as shown in FIG. 2 (conical shape in FIG. 2) or a frustum shape as shown in FIG. 3 (conical shape in FIG. 3). State). Here, when the shape of the surface-side convex part 23 is a frustum shape, the dimension (maximum dimension) a of the upper bottom part 24a is less than the wavelength of the excitation light L. For example, when the shape of the convex portion 24 is a truncated cone shape and the wavelength of the excitation light L is 445 nm, the dimension (outer diameter) of the upper bottom portion 24a of the convex portion 24 having the truncated cone shape is 100 nm.

表面側凸部23の形状が略錘形状とされることにより、蛍光部材21の表面において励起光Lが反射することを防止または抑制することができる。このような作用が生じるのは、以下の理由による。
図4は、励起光Lが蛍光部材21の表面に垂直な方向に入射した場合において、当該励起光Lが伝播する媒体の屈折率の変化をマクロ的に示した図であり、(a)は蛍光部材21の一部を拡大して模式的に示す断面図であり、(b)は蛍光部材21の表面に対して垂直な方向における位置と屈折率とのマクロ的な関係を示すグラフである。この図4に示すように、励起光Lは、空気(屈折率が1)中から蛍光部材21(屈折率がN1 )の表面に照射されたときに、表面側周期構造22を構成する表面側凸部23のテーパ面に対して傾斜した方向から入射される。このため、マクロ的に見ると、励起光Lが伝播する媒体の屈折率は、蛍光部材21の表面に垂直な方向に向かって1からN1 に緩やかに変化することとなる。従って、蛍光部材21の表面に、屈折率が急激に変化する界面が実質的にないため、蛍光部材21の表面において励起光Lが反射することを防止または抑制することができる。
By making the shape of the surface side convex part 23 into a substantially pyramid shape, it is possible to prevent or suppress the excitation light L from being reflected on the surface of the fluorescent member 21. Such an action occurs for the following reason.
FIG. 4 is a macroscopic view showing a change in the refractive index of the medium through which the excitation light L propagates when the excitation light L is incident in a direction perpendicular to the surface of the fluorescent member 21. FIG. It is sectional drawing which expands and shows typically a part of fluorescent member 21, (b) is a graph which shows the macro relationship between the position in a direction perpendicular | vertical with respect to the surface of the fluorescent member 21, and a refractive index. . As shown in FIG. 4, when the excitation light L is irradiated from the air (refractive index is 1) onto the surface of the fluorescent member 21 (refractive index is N 1 ), the surface constituting the surface-side periodic structure 22 The light is incident from a direction inclined with respect to the tapered surface of the side convex portion 23. Therefore, when viewed macroscopically, the refractive index of the medium through which the excitation light L propagates gradually changes from 1 to N 1 in the direction perpendicular to the surface of the fluorescent member 21. Therefore, since the surface of the fluorescent member 21 has substantially no interface where the refractive index changes rapidly, it is possible to prevent or suppress the excitation light L from being reflected on the surface of the fluorescent member 21.

また、表面側周期構造22を構成する略錐形状の表面側凸部23において、テーパ面(側面)の傾斜角度(側面と底面とのなす角度)は、11°以上であることが好ましい。
テーパ面の傾斜角度が11°未満である場合には、テーパ面を屈折率の異なる2つの媒体の境界面とみなすようになるため、その屈折率差に従った反射光が生じてしまうおそれがある。
Moreover, in the substantially cone-shaped surface side convex part 23 which comprises the surface side periodic structure 22, it is preferable that the inclination angle (angle formed by a side surface and a bottom face) of a taper surface (side surface) is 11 degrees or more.
When the inclination angle of the taper surface is less than 11 °, the taper surface is regarded as a boundary surface between two media having different refractive indexes, and thus there is a possibility that reflected light is generated according to the difference in refractive index. is there.

また、表面側周期構造22において、周期d1は、蛍光部材21を構成する蛍光体から放射される蛍光L1の回折が発生する範囲(ブラッグの条件)の大きさであることが好ましい。
具体的には、表面側周期構造22の周期d1は、蛍光体から放射される蛍光L1のピーク波長を、表面側周期構造22を構成する材料(図2においては蛍光部材21を構成する蛍光体)の屈折率で割った値(以下、「光学長さ」という。)、または、光学長さの数倍程度の値であることが好ましい。
本発明において、周期構造の周期とは、周期構造において互いに隣接する凸部間の距離(中心間距離)(nm)を意味する。
In the surface-side periodic structure 22, the period d <b> 1 is preferably in a range (Bragg condition) in which diffraction of the fluorescence L <b> 1 emitted from the phosphor constituting the fluorescent member 21 occurs.
Specifically, the period d1 of the surface-side periodic structure 22 indicates the peak wavelength of the fluorescence L1 emitted from the phosphor, and the material constituting the surface-side periodic structure 22 (the phosphor constituting the fluorescent member 21 in FIG. 2). ) Divided by the refractive index (hereinafter referred to as “optical length”) or a value that is several times the optical length.
In the present invention, the period of the periodic structure means a distance (center distance) (nm) between convex portions adjacent to each other in the periodic structure.

表面側周期構造22の周期d1が蛍光部材21内で生じる蛍光L1の回折が発生する範囲の大きさとされることにより、蛍光部材21の表面から蛍光L1を高い効率で外部に出射することができる。
具体的に説明すると、蛍光部材21内で生じた蛍光L1は、蛍光部材21の表面(蛍光部材21と空気との界面)に対する入射角が臨界角未満である場合には、蛍光部材21の表面を透過する透過光として無反射で蛍光部材21の表面から外部に取り出される。また、蛍光L1の蛍光部材21の表面に対する入射角が臨界角以上である場合には、例えば蛍光部材の表面が平坦面であるときには、蛍光は、当該蛍光部材の表面において全反射して波長変換部材の内部に向かうため、当該蛍光部材の表面から外部に取り出すことができない。しかしながら、蛍光部材21の表面に上記の条件を満足する周期d1を有する表面側周期構造22が形成されることにより、蛍光L1は、蛍光部材21の表面において表面側周期構造22によって回折が生じることとなる。その結果、−1次回折光として蛍光部材21の表面から出射されて外部に取り出される。
By setting the period d1 of the surface-side periodic structure 22 to be in a range in which the diffraction of the fluorescence L1 generated in the fluorescent member 21 is generated, the fluorescence L1 can be emitted from the surface of the fluorescent member 21 to the outside with high efficiency. .
More specifically, the fluorescence L1 generated in the fluorescent member 21 is the surface of the fluorescent member 21 when the incident angle with respect to the surface of the fluorescent member 21 (interface between the fluorescent member 21 and air) is less than the critical angle. As a transmitted light that passes through the fluorescent member 21, the light is taken out from the surface of the fluorescent member 21 without reflection. Further, when the incident angle of the fluorescence L1 with respect to the surface of the fluorescent member 21 is equal to or larger than the critical angle, for example, when the surface of the fluorescent member is a flat surface, the fluorescence is totally reflected on the surface of the fluorescent member and wavelength conversion is performed. Since it goes to the inside of the member, it cannot be taken out from the surface of the fluorescent member. However, when the surface-side periodic structure 22 having the period d1 that satisfies the above conditions is formed on the surface of the fluorescent member 21, the fluorescence L1 is diffracted by the surface-side periodic structure 22 on the surface of the fluorescent member 21. It becomes. As a result, the -1st order diffracted light is emitted from the surface of the fluorescent member 21 and taken out to the outside.

また、表面側周期構造22における周期d1に対する表面側凸部23の高さh1の比(h1/d1)であるアスペクト比は、0.2以上であることが好ましい。
この比(h1/d1)が0.2未満である場合には、高さ方向における回折の領域が狭くなるため、回折による十分な光取出し効率が得られない。
Moreover, it is preferable that the aspect ratio which is ratio (h1 / d1) of the height h1 of the surface side convex part 23 with respect to the period d1 in the surface side periodic structure 22 is 0.2 or more.
When this ratio (h1 / d1) is less than 0.2, the diffraction region in the height direction becomes narrow, so that sufficient light extraction efficiency by diffraction cannot be obtained.

このような表面側周期構造22は、ナノインプリント法とドライエッチング処理とによって形成することができる。具体的には、平坦な表面を有する蛍光部材の当該表面に、例えばスピンコート法によってレジストを塗布し、次いで、レジストの塗布膜を例えばナノインプリント法によりパターニングする。その後、蛍光部材の表面における露出した領域に、ドライエッチング処理を施すことにより、表面側周期構造21が形成される。   Such a surface-side periodic structure 22 can be formed by a nanoimprint method and a dry etching process. Specifically, a resist is applied to the surface of the fluorescent member having a flat surface by, for example, spin coating, and then the resist coating film is patterned by, for example, nanoimprinting. Then, the surface side periodic structure 21 is formed by performing the dry etching process to the exposed area | region in the surface of a fluorescent member.

蛍光部材21の表面に形成された裏面側周期構造25を構成する裏面側凸部26は、円錐状である。   The back surface side convex part 26 which comprises the back surface side periodic structure 25 formed in the surface of the fluorescent member 21 is cone shape.

また、裏面側周期構造25の周期d2は、蛍光部材21を構成する蛍光体から放射される蛍光L1の回折が発生する範囲(ブラッグの条件)の大きさであることが好ましい。
具体的には、裏面側周期構造25の周期d2は、蛍光体から放射される蛍光L1のピーク波長を、裏面側周期構造25を構成する材料(図2においては蛍光部材21を構成する蛍光体)の屈折率で割った値(光学長さ)、または、光学長さの数倍程度の値であることが好ましい。
この条件を満足することにより、蛍光部材21内で生じ、当該蛍光部材21の表面に入射する蛍光L1において、入射角が臨界角未満である蛍光L1の光量を大きくすることができる。そのため、蛍光部材21内で生成された蛍光L1を高い効率で当該蛍光部材21の表面から外部に出射することができる。
具体的に説明すると、蛍光部材21内で生じ、この蛍光部材21の裏面(蛍光部材21と光反射膜33との界面)に対する入射角が臨界角以上である蛍光L1には、蛍光部材21の裏面に上記の条件を満足する周期d2を有する裏面側周期構造25が形成されていることにより、当該裏面において裏面側周期構造25によって回折が生じる。そして、−1次回折光は、蛍光部材21の裏面において光反射膜33により、法線方向(蛍光部材21の表面に対する垂直方向)に沿うようにして蛍光部材21の表面に向かって反射される。このように、裏面側周期構造25によって回折によって生じる蛍光L1の−1次回折光が、蛍光部材21の表面に対して入射角が臨界角未満となるようにして入射されることから、蛍光部材21の表面に入射する蛍光L1において、入射角が臨界角未満である蛍光L1の光量が大きくなる。
Moreover, it is preferable that the period d2 of the back surface side periodic structure 25 is a size of a range (Bragg condition) in which diffraction of the fluorescence L1 emitted from the phosphor constituting the fluorescent member 21 occurs.
Specifically, the period d2 of the back-side periodic structure 25 indicates the peak wavelength of the fluorescence L1 emitted from the phosphor, and the material constituting the back-side periodic structure 25 (the phosphor constituting the fluorescent member 21 in FIG. 2). ) Divided by the refractive index (optical length), or a value several times the optical length.
By satisfying this condition, in the fluorescence L1 that occurs in the fluorescent member 21 and is incident on the surface of the fluorescent member 21, the amount of the fluorescent L1 whose incident angle is less than the critical angle can be increased. Therefore, the fluorescence L1 generated in the fluorescent member 21 can be emitted from the surface of the fluorescent member 21 to the outside with high efficiency.
More specifically, the fluorescence L1 that occurs in the fluorescent member 21 and has an incident angle with respect to the back surface (the interface between the fluorescent member 21 and the light reflecting film 33) of the fluorescent member 21 is greater than or equal to the critical angle. By forming the back surface side periodic structure 25 having the period d2 that satisfies the above-mentioned conditions on the back surface, diffraction is generated by the back surface side periodic structure 25 on the back surface. The −1st-order diffracted light is reflected toward the surface of the fluorescent member 21 by the light reflecting film 33 on the back surface of the fluorescent member 21 so as to be along the normal direction (perpendicular to the surface of the fluorescent member 21). Thus, since the minus first-order diffracted light of the fluorescence L1 generated by diffraction by the back-side periodic structure 25 is incident on the surface of the fluorescent member 21 so that the incident angle is less than the critical angle, the fluorescent member 21 In the fluorescence L1 incident on the surface, the amount of the fluorescence L1 whose incident angle is less than the critical angle becomes large.

このような裏面側周期構造25は、表面側周期構造22と同様に、ナノインプリント法とドライエッチング処理とによって形成することができる。具体的には、平坦な裏面を有する蛍光部材の当該裏面に、例えばスピンコート法によってレジストを塗布し、次いで、レジストの塗布膜を例えばナノインプリント法によりパターニングする。その後、蛍光部材の裏面における露出した領域に、ドライエッチング処理を施すことにより、裏面側周期構造25が形成される。   Such a back-side periodic structure 25 can be formed by a nanoimprint method and a dry etching process, similarly to the front-side periodic structure 22. Specifically, a resist is applied to the back surface of the fluorescent member having a flat back surface by, for example, spin coating, and then the resist coating film is patterned by, for example, nanoimprinting. Then, the back surface side periodic structure 25 is formed by performing the dry etching process to the exposed area | region in the back surface of a fluorescent member.

基板31を構成する材料としては、樹脂に金属微粉末を混入させた放熱接着剤を介したアルミ基板などを用いることができる。また、基板31の厚みは、例えば0.5〜1.0mmである。また、このアルミ基板は、放熱フィンの機能を兼ね備えたものであってもよい。   As a material constituting the substrate 31, an aluminum substrate or the like through a heat radiation adhesive in which metal fine powder is mixed into a resin can be used. Moreover, the thickness of the board | substrate 31 is 0.5-1.0 mm, for example. Further, the aluminum substrate may have a function of a heat radiating fin.

上記の蛍光光源装置においては、レーザダイオード10から出射された青色領域のレーザ光である励起光Lは、コリメータレンズ15によって平行光線とされる。その後、この励起光Lは、ダイクロイックミラー16を透過して蛍光発光部材20における波長変換部材の励起光受光面すなわち蛍光部材21の表面に対して略垂直に照射される。そして、蛍光部材21においては、当該蛍光部材21を構成する蛍光体が励起され、蛍光L1が放射される。この蛍光L1は、波長変換部材の蛍光出射面すなわち蛍光部材21の表面から出射され、ダイクロイックミラー16によって垂直方向に反射された後、蛍光光源装置の外部に出射される。   In the fluorescent light source device described above, the excitation light L that is the laser light in the blue region emitted from the laser diode 10 is converted into a parallel light beam by the collimator lens 15. Thereafter, the excitation light L passes through the dichroic mirror 16 and is irradiated substantially perpendicularly to the excitation light receiving surface of the wavelength conversion member in the fluorescent light emitting member 20, that is, the surface of the fluorescent member 21. And in the fluorescent member 21, the fluorescent substance which comprises the said fluorescent member 21 is excited, and fluorescence L1 is radiated | emitted. The fluorescence L1 is emitted from the fluorescence emission surface of the wavelength conversion member, that is, the surface of the fluorescence member 21, reflected in the vertical direction by the dichroic mirror 16, and then emitted to the outside of the fluorescence light source device.

この蛍光光源装置においては、波長変換部材の励起光受光面である蛍光部材21の表面に、表面側周期構造22が形成されている。そのため、蛍光部材21の表面に励起光Lが照射されたときに、当該励起光Lの後方散乱が抑制され、その結果、励起光Lを高い効率で蛍光部材21内に取り込むことができる。
また、光反射膜33が設けられた蛍光部材21の裏面には、裏面側周期構造25が形成されている。そのため、蛍光部材21内において蛍光体から放射され、当該蛍光部材21の裏面に入射した蛍光L1は、当該裏面において角度を変えて反射される。そのため、蛍光部材21内を繰り返し反射している蛍光L1の方向性を、波長変換部材の蛍光出射面である蛍光部材21の表面に対して垂直な方向とすることができる。その結果、蛍光L1が蛍光部材21内に閉じ込められることが抑制されることから、蛍光L1を高い効率で蛍光部材21の表面から外部に取り出すことができる。
しかも、表面側周期構造21の周期d1および裏面側周期構造25の周期d2が、蛍光部材21内で生じる蛍光L1の回折が発生する範囲の大きさとされていることから、より一層高い効率で蛍光L1を蛍光部材21の表面から外部に取出すことができる。
従って、この蛍光光源装置によれば、励起光Lを波長変換部材の内部に十分に取り込むことができると共に、波長変換部材の内部において生じた蛍光L1を高い効率で外部に出射することができることから、高い発光効率が得られる。
In this fluorescent light source device, the surface-side periodic structure 22 is formed on the surface of the fluorescent member 21 that is the excitation light receiving surface of the wavelength conversion member. For this reason, when the surface of the fluorescent member 21 is irradiated with the excitation light L, backscattering of the excitation light L is suppressed, and as a result, the excitation light L can be taken into the fluorescent member 21 with high efficiency.
In addition, a back side periodic structure 25 is formed on the back side of the fluorescent member 21 on which the light reflecting film 33 is provided. Therefore, the fluorescence L1 emitted from the phosphor in the fluorescent member 21 and incident on the back surface of the fluorescent member 21 is reflected at a different angle on the back surface. Therefore, the directivity of the fluorescence L1 that is repeatedly reflected in the fluorescent member 21 can be set to a direction perpendicular to the surface of the fluorescent member 21 that is the fluorescent emission surface of the wavelength conversion member. As a result, since the fluorescence L1 is suppressed from being confined in the fluorescence member 21, the fluorescence L1 can be extracted from the surface of the fluorescence member 21 to the outside with high efficiency.
In addition, since the period d1 of the front-side periodic structure 21 and the period d2 of the back-side periodic structure 25 are set to a size in which the diffraction of the fluorescence L1 generated in the fluorescent member 21 is generated, the fluorescence can be more efficiently generated. L1 can be taken out from the surface of the fluorescent member 21.
Therefore, according to this fluorescent light source device, the excitation light L can be sufficiently taken into the wavelength conversion member, and the fluorescence L1 generated inside the wavelength conversion member can be emitted to the outside with high efficiency. High luminous efficiency can be obtained.

(第2の実施の形態)
図5は、本発明の蛍光光源装置の他の例における波長変換部材の構成を示す説明用断面図である。
この蛍光光源装置において、蛍光発光部材20を構成する波長変換部材40は、図5に示すように、矩形の基板31上に設けられている。この波長変換部材40は、矩形板状の蛍光部材41と、この蛍光部材41の表面(図5における上面)上に形成された表面側周期構造体層42と、蛍光部材41の裏面(図5における下面)上に形成された裏面側周期構造体層44とを有している。表面側周期構造体層42には、表面に表面側周期構造43が形成されており、この表面側周期構造43は、円錐状の凸部(表面側凸部)43aが周期的に配列されてなるものである。また、裏面側周期構造体層44には、裏面に裏面側周期構造45が形成されており、この裏面側周期構造45は、円錐状の凸部(裏面側凸部)45aが周期的に配列されてなるものである。
この波長変換部材40においては、表面側周期構造体層42の表面(図5において上面)が、励起光受光面とされていると共に、蛍光出射面とされている。
また、蛍光部材41の側面、裏面側周期構造体層44の裏面(図5において下面)および側面の各々には、例えば銀よりなる光反射膜33が設けられている。このように、蛍光部材41の側面、裏面側周期構造体層44の裏面および側面に光反射膜33が形成されることにより、波長変換部材40の裏面および側面の外側に光反射面が設けられている。また、基板31の裏面には、例えば放熱用フィン(図示省略)が配置されている。基板31および蛍光部材41の構成は、当該蛍光部材41の表面および裏面に周期構造が直接形成されていないこと以外は、図1の蛍光光源装置と同様である。
(Second Embodiment)
FIG. 5 is a cross-sectional view illustrating the configuration of the wavelength conversion member in another example of the fluorescent light source device of the present invention.
In this fluorescent light source device, the wavelength conversion member 40 constituting the fluorescent light emitting member 20 is provided on a rectangular substrate 31 as shown in FIG. The wavelength converting member 40 includes a rectangular plate-like fluorescent member 41, a surface-side periodic structure layer 42 formed on the surface of the fluorescent member 41 (upper surface in FIG. 5), and the back surface of the fluorescent member 41 (FIG. 5). And a back-side periodic structure layer 44 formed on the lower surface. A surface-side periodic structure 43 is formed on the surface of the surface-side periodic structure layer 42, and the surface-side periodic structure 43 has conical convex portions (surface-side convex portions) 43 a periodically arranged. It will be. The back-side periodic structure layer 44 has a back-side periodic structure 45 formed on the back side, and the back-side periodic structure 45 has periodically arranged conical convex portions (back-side convex portions) 45a. It has been made.
In the wavelength conversion member 40, the surface (the upper surface in FIG. 5) of the surface-side periodic structure layer 42 is an excitation light receiving surface and a fluorescence emitting surface.
Further, a light reflecting film 33 made of, for example, silver is provided on each of the side surface of the fluorescent member 41, the back surface (the lower surface in FIG. 5), and the side surface of the back-side periodic structure layer 44. As described above, the light reflecting film 33 is formed on the side surface of the fluorescent member 41, the back surface and the side surface of the back surface side periodic structure layer 44, thereby providing a light reflecting surface on the outside of the back surface and the side surface of the wavelength conversion member 40. ing. Further, on the back surface of the substrate 31, for example, heat radiation fins (not shown) are arranged. The configurations of the substrate 31 and the fluorescent member 41 are the same as those of the fluorescent light source device of FIG. 1 except that the periodic structure is not directly formed on the front and back surfaces of the fluorescent member 41.

表面側周期構造体層42の表面に形成された表面側周期構造43を構成する表面側凸部43aは、図1の蛍光光源装置の波長変換部材20における表面側周期構造22と同様に、略錐形状であることが好ましい。表面側凸部43aの形状が略錘形状とされることによって、波長変換部材20の内部に、より一層高い効率で励起光Lを取り込むことができる。
表面側周期構造体層42の表面に形成された表面側周期構造43は、その周期d1が、蛍光部材41を構成する蛍光体から放射される蛍光の回折が発生する範囲の大きさであることが好ましい。このような条件を満足することにより、蛍光部材41を構成する蛍光体から放射される蛍光を高い効率で表面側周期構造体層42の表面から外部に取り出すことができる。
また、表面側周期構造体層42の表面側周期構造43における周期d1に対する凸部43aの高さh1の比であるアスペクト比は、図1に示す蛍光光源装置の波長変換部材20における表面側周期構造43と同様である。
The surface side convex part 43a which comprises the surface side periodic structure 43 formed in the surface of the surface side periodic structure layer 42 is substantially the same as the surface side periodic structure 22 in the wavelength conversion member 20 of the fluorescence light source device of FIG. A conical shape is preferred. By making the shape of the front-side convex portion 43a into a substantially weight shape, the excitation light L can be taken into the wavelength conversion member 20 with higher efficiency.
In the surface-side periodic structure 43 formed on the surface of the surface-side periodic structure layer 42, the period d1 has a size within a range where diffraction of fluorescence emitted from the phosphor constituting the fluorescent member 41 occurs. Is preferred. By satisfying such conditions, the fluorescence emitted from the phosphor constituting the fluorescent member 41 can be extracted from the surface of the surface-side periodic structure layer 42 to the outside with high efficiency.
The aspect ratio, which is the ratio of the height h1 of the convex portion 43a to the period d1 in the surface-side periodic structure 43 of the surface-side periodic structure layer 42, is the surface-side period in the wavelength conversion member 20 of the fluorescent light source device shown in FIG. Similar to structure 43.

裏面側周期構造体層44の表面に形成された裏面側周期構造45は、その周期d2が、蛍光部材41を構成する蛍光体から放射される蛍光の回折が発生する範囲の大きさであることが好ましい。このような条件を満足することにより、蛍光部材41を構成する蛍光体から放射される蛍光を高い効率で表面側周期構造体層42の表面から外部に取り出すことができる。   The back-side periodic structure 45 formed on the surface of the back-side periodic structure layer 44 has a period d2 having a size within a range in which diffraction of fluorescence emitted from the phosphor constituting the fluorescent member 41 occurs. Is preferred. By satisfying such conditions, the fluorescence emitted from the phosphor constituting the fluorescent member 41 can be extracted from the surface of the surface-side periodic structure layer 42 to the outside with high efficiency.

表面側周期構造体層42および裏面側周期構造体層44(以下、これらをまとめて「周期構造体層」ともいう。)を構成する材料としては、屈折率が蛍光部材41の屈折率の値以上のものを用いることが好ましい。屈折率が蛍光部材41の屈折率の値より高い材料によって周期構造体層を構成することによれば、蛍光部材41と周期構造体層との界面に入射した蛍光は、当該界面を透過することによって屈折が生じる。そのため、波長変換部材40の内部で生じる蛍光は、当該波長変換部材40の裏面だけでなく、蛍光部材41と周期構造体層との界面においても角度が変えられ、その向きが法線方向(表面側周期構造体層42の表面に対する垂直方向)に近づくことから、蛍光が波長変換部材40の内部に閉じ込められることが抑制される。
また、周期構造体層の材料として蛍光部材41より高屈折率のものを用いることによれば、周期が小さい周期構造を形成することが可能となる。従って、周期構造を構成する凸部としてアスペクト比が大きくても高さが小さいものを設計することができるので、周期構造の形成が容易となる。例えば、ナノプリント法を利用する場合には、モールド(テンプレート)の作製やインプリント作業を容易に行うことができる。このとき、当該周期構造が形成されている波長変換部材40における蛍光体を励起するエネルギーは、約5W/mm2 以上の励起密度を持つため、周期構造体層を構成する材料は無機材料であることが望ましい。
As a material constituting the front-side periodic structure layer 42 and the back-side periodic structure layer 44 (hereinafter collectively referred to as “periodic structure layer”), the refractive index is the value of the refractive index of the fluorescent member 41. It is preferable to use the above. According to the structure of the periodic structure layer made of a material having a refractive index higher than the refractive index value of the fluorescent member 41, the fluorescence incident on the interface between the fluorescent member 41 and the periodic structure layer is transmitted through the interface. Causes refraction. For this reason, the fluorescence generated inside the wavelength conversion member 40 is changed not only on the back surface of the wavelength conversion member 40 but also on the interface between the fluorescent member 41 and the periodic structure layer, and its direction is the normal direction (surface Since it approaches (perpendicular to the surface of the side periodic structure layer 42), it is suppressed that the fluorescence is confined inside the wavelength conversion member 40.
Further, by using a material having a higher refractive index than that of the fluorescent member 41 as the material of the periodic structure layer, it is possible to form a periodic structure having a small period. Therefore, since the convex portion constituting the periodic structure can be designed with a small height even if the aspect ratio is large, the periodic structure can be easily formed. For example, when a nanoprint method is used, a mold (template) can be easily produced or imprinted. At this time, since the energy for exciting the phosphor in the wavelength conversion member 40 in which the periodic structure is formed has an excitation density of about 5 W / mm 2 or more, the material constituting the periodic structure layer is an inorganic material. It is desirable.

周期構造体層を構成する材料としては、チタニア(屈折率2.2)、ジルコニア(屈折率1.8)、窒化珪素(屈折率2.0)などを用いることができる。
また、周期構造体層の厚みは、例えば0.1〜1.0μmである。
As a material constituting the periodic structure layer, titania (refractive index 2.2), zirconia (refractive index 1.8), silicon nitride (refractive index 2.0), or the like can be used.
The thickness of the periodic structure layer is, for example, 0.1 to 1.0 μm.

周期構造体層は、ゾルゲル法とナノインプリント法とを用いて形成することができる。具体的には、チタン、ジルコニウム等のアルコキシドを含むゾル状の材料を、例えばスピンコート法によって蛍光部材41の表面に塗布して、モールド(テンプレート)型を押付しつけた状態で加熱処理を行い、離型した後、熱処理を行う。この熱処理によって、反応(加水分解および縮重合)が進み、無機材料からなる周期構造体層が形成される。   The periodic structure layer can be formed using a sol-gel method and a nanoimprint method. Specifically, a sol-like material containing an alkoxide such as titanium or zirconium is applied to the surface of the fluorescent member 41 by, for example, a spin coating method, and a heat treatment is performed while pressing a mold (template) mold, After releasing from the mold, heat treatment is performed. By this heat treatment, the reaction (hydrolysis and condensation polymerization) proceeds and a periodic structure layer made of an inorganic material is formed.

上記の蛍光光源装置において、レーザダイオードから出射された青色領域のレーザ光である励起光は、コリメータレンズによって平行光線とされる。その後、この励起光は、ダイクロイックミラーを透過して蛍光発光部材における波長変換部材40の励起光受光面すなわち表面側周期構造体層42の表面に対して略垂直に照射され、当該表面側周期構造体層42を介して蛍光部材41に入射される。そして、蛍光部材41においては、この蛍光部材41を構成する蛍光体が励起される。これにより、蛍光部材41において蛍光が放射される。この蛍光は、波長変換部材40の蛍光出射面すなわち表面側周期構造体層42の表面から出射され、ダイクロイックミラーによって垂直方向に反射された後、蛍光光源装置の外部に出射される。   In the fluorescent light source device described above, the excitation light that is the laser light in the blue region emitted from the laser diode is converted into parallel rays by the collimator lens. Thereafter, the excitation light passes through the dichroic mirror and is irradiated substantially perpendicularly to the excitation light receiving surface of the wavelength conversion member 40 in the fluorescent light emitting member, that is, the surface of the surface-side periodic structure layer 42, and the surface-side periodic structure. The light enters the fluorescent member 41 through the body layer 42. And in the fluorescent member 41, the fluorescent substance which comprises this fluorescent member 41 is excited. Thereby, fluorescence is emitted in the fluorescent member 41. The fluorescence is emitted from the fluorescence emission surface of the wavelength conversion member 40, that is, the surface of the surface-side periodic structure layer 42, reflected in the vertical direction by the dichroic mirror, and then emitted to the outside of the fluorescence light source device.

この蛍光光源装置においては、波長変換部材40における蛍光部材41の表面に表面側周期構造体層42が設けられており、この表面側周期構造体層42の表面によって励起光受光面が構成されている。そして、表面側周期構造体層42の表面には、表面側周期構造43が形成されている。そのため、波長変換部材40に励起光が照射されたときに、当該励起光の後方散乱が抑制され、その結果、励起光を高い効率で波長変換部材40内に取り込むことができる。
また、蛍光部材41の裏面には、裏面側周期構造45が形成された裏面側周期構造体層44が設けられており、その裏面側周期構造体層44の裏面に光反射膜33が設けられている。そのため、波長変換部材40の内部において蛍光体から放射され、当該裏面に入射した蛍光は、当該裏面において角度を変えて反射される。従って、波長変換部材40内を繰り返し反射している蛍光の方向性を、波長変換部材40の蛍光出射面に対して垂直な方向とすることができる。その結果、蛍光が波長変換部材40の内部に閉じ込められることが抑制されることから、蛍光を高い効率で波長変換部材40の表面から外部に取り出すことができる。
また、表面側周期構造43の周期d1および裏面側周期構造45の周期d2が、波長変換部材40の内部で生じる蛍光の回折が発生する範囲の大きさとされていることから、より一層高い効率で蛍光を波長変換部材40の表面から外部に取出すことができる。
更に、周期構造体層(表面側周期構造体層42および裏面側周期構造体層44)を構成する材料として、屈折率が蛍光部材41の屈折率の値より高いものが用いられていることから、この蛍光部材41と周期構造体層との界面に入射した蛍光が屈折することにより、蛍光の向きが法線方向に近づくため、表面側周期構造体層42の表面から効率よく取出される。
従って、図5の蛍光光源装置によれば、励起光を波長変換部材40の内部に十分に取り込むことができると共に、波長変換部材40の内部において生じた蛍光を高い効率で外部に出射することができることから、高い発光効率が得られる。
In this fluorescent light source device, the surface-side periodic structure layer 42 is provided on the surface of the fluorescent member 41 in the wavelength conversion member 40, and the surface of the surface-side periodic structure layer 42 forms an excitation light receiving surface. Yes. A surface-side periodic structure 43 is formed on the surface of the surface-side periodic structure layer 42. Therefore, when the wavelength conversion member 40 is irradiated with excitation light, backscattering of the excitation light is suppressed, and as a result, the excitation light can be taken into the wavelength conversion member 40 with high efficiency.
Further, on the back surface of the fluorescent member 41, a back surface side periodic structure layer 44 in which a back surface side periodic structure 45 is formed is provided, and the light reflection film 33 is provided on the back surface of the back surface side periodic structure body layer 44. ing. Therefore, the fluorescence emitted from the phosphor inside the wavelength conversion member 40 and incident on the back surface is reflected at a different angle on the back surface. Therefore, the directionality of the fluorescence that is repeatedly reflected in the wavelength conversion member 40 can be set to a direction perpendicular to the fluorescence emission surface of the wavelength conversion member 40. As a result, since the fluorescence is confined inside the wavelength conversion member 40, the fluorescence can be extracted from the surface of the wavelength conversion member 40 to the outside with high efficiency.
Further, since the period d1 of the front-side periodic structure 43 and the period d2 of the back-side periodic structure 45 are set to a size within a range where fluorescence diffraction occurring inside the wavelength conversion member 40 is generated, the efficiency is further increased. The fluorescence can be taken out from the surface of the wavelength conversion member 40.
Further, as the material constituting the periodic structure layer (the front-side periodic structure layer 42 and the back-side periodic structure layer 44), a material having a refractive index higher than the refractive index value of the fluorescent member 41 is used. Since the fluorescence incident on the interface between the fluorescent member 41 and the periodic structure layer is refracted, the direction of the fluorescence approaches the normal direction, so that the fluorescent material 41 is efficiently taken out from the surface of the surface-side periodic structure layer 42.
Therefore, according to the fluorescence light source device of FIG. 5, the excitation light can be sufficiently taken into the wavelength conversion member 40 and the fluorescence generated inside the wavelength conversion member 40 can be emitted to the outside with high efficiency. Therefore, high luminous efficiency can be obtained.

(第3の実施の形態)
第3の実施の形態に係る蛍光光源装置は、励起光により励起される蛍光体による波長変換部材において、励起光受光面とされる表面に表面側周期構造が形成され、裏面が粗面により形成された光拡散面とされており、当該裏面の外側に光反射膜が設けられていることを特徴とするものである。
ここに、本明細書中において、「粗面」とは、機械的研磨(具体的には、例えばブラスト処理等)および化学的研磨(具体的には、例えばエッチング処理等)などの粗面処理によって形成された凹凸面である。
(Third embodiment)
In the fluorescent light source device according to the third embodiment, in the wavelength conversion member by the phosphor excited by the excitation light, the surface side periodic structure is formed on the surface that is the excitation light receiving surface, and the back surface is formed by the rough surface The light diffusing surface is provided, and a light reflecting film is provided outside the back surface.
Here, in this specification, the “rough surface” means rough surface treatment such as mechanical polishing (specifically, for example, blasting) and chemical polishing (specifically, for example, etching). It is the uneven surface formed by.

第3の実施の形態に係る蛍光光源装置の具体例としては、例えば第1の実施の形態に係る図1の蛍光光源装置において、波長変換部材を構成する蛍光部材の裏面が、粗面により形成された光拡散面であること以外は、当該図1の蛍光光源装置と同様の構成を有するものが挙げられる。   As a specific example of the fluorescent light source device according to the third embodiment, for example, in the fluorescent light source device of FIG. 1 according to the first embodiment, the back surface of the fluorescent member constituting the wavelength conversion member is formed by a rough surface. Except for the light diffusing surface thus formed, one having the same configuration as that of the fluorescent light source device of FIG.

上記の蛍光光源装置においては、レーザダイオードから出射された青色領域のレーザ光である励起光は、コリメータレンズによって平行光線とされる。その後、この励起光は、ダイクロイックミラーを透過して波長変換部材の励起光受光面すなわち蛍光部材の表面に対して略垂直に照射される。そして、波長変換部材においては、当該波長変換部材における蛍光部材を構成する蛍光体が励起され、蛍光が放射される。この蛍光は、波長変換部材の蛍光出射面すなわち蛍光部材の表面から出射され、ダイクロイックミラーによって垂直方向に反射された後、蛍光光源装置の外部に出射される。   In the fluorescent light source device described above, the excitation light, which is the laser light in the blue region emitted from the laser diode, is converted into parallel rays by the collimator lens. Thereafter, the excitation light passes through the dichroic mirror and is irradiated substantially perpendicularly to the excitation light receiving surface of the wavelength conversion member, that is, the surface of the fluorescent member. And in the wavelength conversion member, the fluorescent substance which comprises the fluorescent member in the said wavelength conversion member is excited, and fluorescence is emitted. The fluorescence is emitted from the fluorescence emission surface of the wavelength conversion member, that is, the surface of the fluorescence member, reflected in the vertical direction by the dichroic mirror, and then emitted to the outside of the fluorescence light source device.

この第3の実施の形態に係る蛍光光源装置においては、波長変換部材の励起光受光面である蛍光部材の表面に、表面側周期構造が形成されている。そのため、蛍光部材に励起光が照射されたときに、当該励起光の後方散乱が抑制され、その結果、励起光を高い効率で蛍光部材の内部に取り込むことができる。
また、光反射膜が設けられた蛍光部材の裏面は、粗面により形成された光拡散面とされている。そのため、蛍光部材内において蛍光体から放射され、当該蛍光部材の裏面に入射した蛍光は、様々な角度で反射される。そのため、波長変換部材20内を繰り返し反射している蛍光の方向性を、波長変換部材の蛍光出射面である蛍光部材の表面に対して垂直な方向とすることができる。その結果、蛍光が蛍光部材の内部に閉じ込められることが抑制されることから、蛍光を高い効率で蛍光部材の表面から外部に取り出すことができる。
従って、この第3の実施の形態に係る蛍光光源装置によれば、励起光を波長変換部材の内部に十分に取り込むことができると共に、波長変換部材の内部において生じた蛍光を高い効率で外部に出射することができることから、高い発光効率が得られる。
In the fluorescent light source device according to the third embodiment, the surface-side periodic structure is formed on the surface of the fluorescent member that is the excitation light receiving surface of the wavelength conversion member. Therefore, when excitation light is irradiated to the fluorescent member, backscattering of the excitation light is suppressed, and as a result, the excitation light can be taken into the fluorescent member with high efficiency.
Further, the back surface of the fluorescent member provided with the light reflecting film is a light diffusion surface formed by a rough surface. Therefore, the fluorescence emitted from the phosphor in the fluorescent member and incident on the back surface of the fluorescent member is reflected at various angles. Therefore, the directionality of the fluorescence that is repeatedly reflected in the wavelength conversion member 20 can be set to a direction perpendicular to the surface of the fluorescence member that is the fluorescence emission surface of the wavelength conversion member. As a result, since the fluorescence is confined inside the fluorescent member, the fluorescent light can be taken out from the surface of the fluorescent member with high efficiency.
Therefore, according to the fluorescence light source device according to the third embodiment, the excitation light can be sufficiently taken into the wavelength conversion member, and the fluorescence generated inside the wavelength conversion member can be efficiently emitted to the outside. Since it can radiate | emit, high luminous efficiency is obtained.

以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、種々の変更を加えることが可能である。
例えば、第1の実施の形態および第2の実施の形態の蛍光光源装置において、波長変換部材における裏面側周期構造は、表面から裏面に向かうに従って小径となる凸状形状を有する凸部を有するものであれば、略錐状の凸部を有するものに限定されず、その他の構造の凸部を有するものであってもよい。
具体的に、第1の実施の形態および第2の実施の形態に係る蛍光光源装置を構成する波長変換部材は、その裏面側周期構造が、例えば図6に示すような半球状の凸部を有するものであってもよい。
ここに、図6の蛍光光源装置は、蛍光発光部材20を構成する蛍光部材51よりなる波長変換部材において、裏面側周期構造52を構成する凸部(表面側凸部)52aの形状が半球状であること以外は、図1の蛍光光源装置と同様の構成をするものである。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made.
For example, in the fluorescent light source devices of the first embodiment and the second embodiment, the back surface-side periodic structure in the wavelength conversion member has a convex portion having a convex shape that decreases in diameter from the front surface toward the back surface. If it is, it will not be limited to what has a substantially cone-shaped convex part, You may have a convex part of another structure.
Specifically, the wavelength conversion member constituting the fluorescent light source device according to the first embodiment and the second embodiment has a hemispherical convex portion as shown in FIG. You may have.
Here, in the fluorescent light source device of FIG. 6, in the wavelength conversion member made of the fluorescent member 51 that constitutes the fluorescent light emitting member 20, the shape of the convex part (front side convex part) 52 a that constitutes the back side periodic structure 52 is hemispherical. Except for this, the configuration is the same as that of the fluorescent light source device of FIG.

この図6の蛍光光源装置において、裏面側周期構造52の周期d2は、蛍光部材51を構成する蛍光体から放射される蛍光の回折が発生する範囲の大きさであることが好ましい。このような条件を満足することにより、蛍光部材51を構成する蛍光体から放射される蛍光を高い効率で波長変換部材50の表面から外部に取り出すことができる。   In the fluorescent light source device of FIG. 6, the period d <b> 2 of the back surface side periodic structure 52 is preferably in a range in which the diffraction of fluorescence emitted from the phosphor constituting the fluorescent member 51 occurs. By satisfying such conditions, the fluorescence emitted from the phosphor constituting the fluorescent member 51 can be extracted from the surface of the wavelength conversion member 50 to the outside with high efficiency.

また、第1の実施の形態、第2の実施の形態および第3の実施の形態に係る蛍光光源装置においては、波長変換部材における裏面側周期構造が形成されてなる裏面に、光透過性を有する部材(以下、「積重部材」ともいう。)が連設されており、光反射面が波長変換部材の裏面と離間した状態で設けられていてもよい(図7参照)。
この積重部材は、波長変換部材の裏面側に位置される表面に、当該波長変換部材における裏面側周期構造に適合した周期構造が形成されたものであり、光透過性を有する接合部材によって波長変換部材40に接合される。また、積重部材は、波長変換部材40の裏面(波長変換部材と積重部材との界面)において屈折が生じるように、裏面側周期構造が形成されている部材とは異なる屈折率を有するものとされる。
具体的に、図7の蛍光光源装置においては、蛍光部材41、表面側周期構造体層42および裏面側周期構造体層44を有する波長変換部材40の裏面に、接合部材によって蛍光部材よりなる積重部材47が接合されており、この波長変換部材40と積重部材47との積重体が矩形の基板31上に設けられている。また、波長変換部材40と積重部材47との接合体の裏面(図7における下面)および側面の各々には、例えば銀よりなる光反射膜33が設けられている。このように、波長変換部材40と積重部材47との接合体の裏面および側面に光反射膜33が形成されることにより、波長変換部材40の裏面の外側に光反射面が設けられている。また、基板31の裏面には、例えば放熱用フィン(図示省略)が配置されている。
この蛍光光源装置は、波長変換部材40における裏面側周期構造体層44の裏面に光反射膜が設けられておらず、当該波長変換部材40が、裏面および側面に光反射膜33が設けられた積重部材47を介在した状態で矩形の基板31上に設けられていること以外は、図5の蛍光光源装置と同様の構成を有するものである。また、蛍光部材よりなる積重部材47の構成は、当該積重部材47の裏面に周期構造が形成されていないこと以外は、図1の蛍光光源装置と同様である。
Further, in the fluorescent light source device according to the first embodiment, the second embodiment, and the third embodiment, light transmittance is provided on the back surface where the back surface side periodic structure in the wavelength conversion member is formed. A member (hereinafter also referred to as a “stack member”) may be provided continuously, and the light reflection surface may be provided in a state of being separated from the back surface of the wavelength conversion member (see FIG. 7).
In this stacking member, a periodic structure that conforms to the periodic structure on the back surface side of the wavelength conversion member is formed on the surface located on the back surface side of the wavelength conversion member, and the wavelength is determined by the light-transmitting bonding member. It is joined to the conversion member 40. In addition, the stacking member has a refractive index different from that of the member on which the back-side periodic structure is formed so that refraction occurs on the back surface of the wavelength conversion member 40 (interface between the wavelength conversion member and the stacking member). It is said.
Specifically, in the fluorescent light source device of FIG. 7, the product made of the fluorescent member by the bonding member is provided on the back surface of the wavelength conversion member 40 having the fluorescent member 41, the front-side periodic structure layer 42, and the back-side periodic structure layer 44. A heavy member 47 is joined, and a stacked body of the wavelength conversion member 40 and the stacked member 47 is provided on a rectangular substrate 31. Further, a light reflecting film 33 made of, for example, silver is provided on each of the back surface (lower surface in FIG. 7) and the side surface of the joined body of the wavelength conversion member 40 and the stacking member 47. As described above, the light reflecting film 33 is formed on the back surface and the side surface of the joined body of the wavelength converting member 40 and the stacking member 47, so that the light reflecting surface is provided outside the back surface of the wavelength converting member 40. . Further, on the back surface of the substrate 31, for example, heat radiation fins (not shown) are arranged.
In this fluorescent light source device, the light reflecting film is not provided on the back surface of the back-side periodic structure layer 44 in the wavelength converting member 40, and the wavelength converting member 40 is provided with the light reflecting film 33 on the back surface and the side surface. Except for being provided on the rectangular substrate 31 with the stacking member 47 interposed, it has the same configuration as the fluorescent light source device of FIG. Moreover, the structure of the stacking member 47 made of a fluorescent member is the same as that of the fluorescent light source device of FIG. 1 except that the periodic structure is not formed on the back surface of the stacking member 47.

この図7の蛍光光源装置においては、波長変換部材40に励起光が照射されることにより、波長変換部材40における蛍光部材41に励起光が入射されると共に、当該波長変換部材40を透過した励起光が積重部材47に入射される。これにより、波長変換部材40の内部において蛍光(以下、「第1の蛍光」ともいう。)が生じ、また積重部材47の内部においても蛍光(以下、「第2の蛍光」ともいう。)が生じる。
そして、第1の蛍光は、波長変換部材40の裏面と積重部材47との界面に入射することにより、その一部が当該界面において角度を変えて反射され、他の一部が当該界面を透過することによって屈折して積重部材47に入射される。また、第2の蛍光は、波長変換部材40の裏面と積重部材47との界面に入射することにより、その一部が当該界面において角度を変えて反射され、他の一部が当該界面を透過することによって屈折して波長変換部材40に入射される。
このように、第1の蛍光および第2の蛍光は、積重部材47と裏面側周期構造体層44との界面および/または蛍光部材41と周期構造体層(表面側周期構造体層42および裏面側周期構造体層44)との界面を経ることによって波長変換部材40の表面に入射することとなる。そのため、第1の蛍光および第2の蛍光は、波長変換部材40内において界面を経ることによって角度が変えられ、よって波長変換部材40の表面に対して様々な角度で入射されることから、波長変換部材40の内部に閉じ込められることが抑制される。
In the fluorescence light source device of FIG. 7, when the wavelength conversion member 40 is irradiated with excitation light, the excitation light is incident on the fluorescence member 41 of the wavelength conversion member 40 and is transmitted through the wavelength conversion member 40. Light is incident on the stacking member 47. Thereby, fluorescence (hereinafter also referred to as “first fluorescence”) is generated inside the wavelength conversion member 40, and fluorescence (hereinafter also referred to as “second fluorescence”) is also generated within the stacking member 47. Occurs.
Then, when the first fluorescence is incident on the interface between the back surface of the wavelength conversion member 40 and the stacking member 47, a part of the first fluorescence is reflected at a different angle on the interface, and the other part is reflected on the interface. By being transmitted, it is refracted and incident on the stacking member 47. Further, when the second fluorescence is incident on the interface between the back surface of the wavelength conversion member 40 and the stacking member 47, a part of the second fluorescence is reflected at a different angle at the interface, and the other part is reflected at the interface. By being transmitted, the light is refracted and incident on the wavelength conversion member 40.
As described above, the first fluorescence and the second fluorescence are generated at the interface between the stacking member 47 and the back-side periodic structure layer 44 and / or the fluorescent member 41 and the periodic structure layer (the front-side periodic structure layer 42 and The light enters the surface of the wavelength conversion member 40 through the interface with the back-side periodic structure layer 44). Therefore, the first fluorescent light and the second fluorescent light are changed in angle by passing through the interface in the wavelength conversion member 40, and thus are incident on the surface of the wavelength conversion member 40 at various angles. The trapping inside the conversion member 40 is suppressed.

第2の実施の形態に係る蛍光光源装置において、波長変換部材は、図5に示したように、蛍光部材と表面側周期構造体層と裏面側周期構造体層とよりなる構成のものに限定されず、蛍光部材と共に、表面側周期構造体層および裏面側周期構造体層の少なくとも一方を備えていれば、その他の構造を有するものであってもよい。
具体的に、第2の実施の形態に係る蛍光光源装置を構成する波長変換部材は、例えば、蛍光部材と表面側周期構造体層とよりなり、当該表面側周期構造体層の表面が励起光受光面とされ、当該蛍光部材の裏面に裏面側周期構造が形成されて光反射膜が設けられた構成のものであってもよい。また、蛍光部材と裏面側周期構造体層とよりなり、当該蛍光部材の表面に表面側周期構造が形成されて励起光受光面とされ、当該裏面側周期構造体層の裏面に光反射膜が設けられた構成のものであってもよい。
In the fluorescent light source device according to the second embodiment, as shown in FIG. 5, the wavelength conversion member is limited to a configuration having a fluorescent member, a front-side periodic structure layer, and a back-side periodic structure layer. However, as long as it has at least one of the front-side periodic structure layer and the back-side periodic structure layer together with the fluorescent member, it may have other structures.
Specifically, the wavelength conversion member constituting the fluorescent light source device according to the second embodiment includes, for example, a fluorescent member and a surface-side periodic structure layer, and the surface of the surface-side periodic structure layer is excited light. The light receiving surface may have a configuration in which a back surface side periodic structure is formed on the back surface of the fluorescent member and a light reflecting film is provided. Further, it comprises a fluorescent member and a back-side periodic structure layer, a surface-side periodic structure is formed on the surface of the fluorescent member to serve as an excitation light receiving surface, and a light reflecting film is provided on the back surface of the back-side periodic structure layer. The thing of the structure provided may be sufficient.

第3の実施の形態に係る蛍光光源装置において、波長変換部材は、蛍光部材よりなり、当該蛍光部材の表面が励起光受光面とされ、裏面が粗面により形成された光拡散面とされた構成のものに限定されず、励起光受光面とされる表面に表面側周期構造が形成され、裏面が粗面により形成された光拡散面とされていれば、その他の構造を有するものであってもよい。
具体的には、第3の実施の形態に係る蛍光光源装置を構成する波長変換部材は、例えば、蛍光部材と表面側周期構造体層とよりなり、当該表面側周期構造体層の表面が励起光受光面とされ、当該蛍光部材の裏面が粗面により形成された光拡散面とされて光反射膜が設けられた構成のものであってもよい。また、蛍光部材と、当該蛍光部材の裏面に形成された裏面側粗面層とを備え、当該裏面側粗面層の裏面が粗面により形成された光拡散面とされている構成のものであってもよい。
In the fluorescent light source device according to the third embodiment, the wavelength conversion member is made of a fluorescent member, and the surface of the fluorescent member is an excitation light receiving surface and the back surface is a light diffusion surface formed by a rough surface. The structure is not limited to this, and the surface side periodic structure is formed on the surface that is the excitation light receiving surface, and the light diffusion surface formed by a rough surface on the back surface has other structures. May be.
Specifically, the wavelength conversion member constituting the fluorescent light source device according to the third embodiment includes, for example, a fluorescent member and a surface-side periodic structure layer, and the surface of the surface-side periodic structure layer is excited. The light receiving surface may be a light diffusing surface in which the back surface of the fluorescent member is a rough surface, and a light reflecting film may be provided. Also, a fluorescent member and a back surface side rough surface layer formed on the back surface of the fluorescent member, and the back surface of the back surface side rough surface layer is a light diffusion surface formed by a rough surface. There may be.

また、蛍光光源装置全体の構造は、図1に示すものに限定されず、種々の構成を採用することができる。   Moreover, the structure of the whole fluorescence light source device is not limited to what is shown in FIG. 1, A various structure is employable.

以下、本発明の実験例について説明する。   Hereinafter, experimental examples of the present invention will be described.

(実験例1)
図5に示す構成に基づいて、下記の仕様の表面側周期構造を有する波長変換部材Aを作製した。
[基板(31)]
材質:アルミ基板,寸法:25mm(縦)×25mm(横)×1mm(厚み)
[蛍光部材(41)]
材質:LuAG(屈折率=1.83,励起波長=445nm、蛍光波長=535nm),寸法:1.7mm(縦)×3.0mm(横)×130μm(厚み)
[表面側周期構造体層(42)]
材質:窒化珪素(屈折率=2.0),寸法:1.7mm(縦)×3.0mm(横)×500nm(厚み)
[表面側周期構造(43)]
凸部(43a)の形状:円錐状,周期(d1)=268nm,凸部(43a)の高さ(h1)=500nm(周期(d1)に対する凸部(43a)の高さ(h1)の比(h1/d1)=2.0)
[光反射膜(33)]
材質:銀,厚み:110nm
(Experimental example 1)
Based on the configuration shown in FIG. 5, a wavelength conversion member A having a surface-side periodic structure with the following specifications was produced.
[Substrate (31)]
Material: Aluminum substrate, Dimensions: 25 mm (length) x 25 mm (width) x 1 mm (thickness)
[Fluorescent member (41)]
Material: LuAG (refractive index = 1.83, excitation wavelength = 445 nm, fluorescence wavelength = 535 nm), dimensions: 1.7 mm (length) × 3.0 mm (width) × 130 μm (thickness)
[Surface-side periodic structure layer (42)]
Material: silicon nitride (refractive index = 2.0), dimensions: 1.7 mm (length) x 3.0 mm (width) x 500 nm (thickness)
[Surface-side periodic structure (43)]
Convex part (43a) shape: conical, period (d1) = 268 nm, convex part (43a) height (h1) = 500 nm (ratio of convex part (43a) height (h1) to period (d1) (H1 / d1) = 2.0)
[Light Reflecting Film (33)]
Material: Silver, Thickness: 110nm

また、表面側周期構造体層を設けなかったこと以外は、波長変換部材Aと同様の構成および仕様の波長変換部材Bを作製した。   Moreover, the wavelength conversion member B of the structure and specification similar to the wavelength conversion member A was produced except not having provided the surface side periodic structure body layer.

波長変換部材Aの励起光受光面(周期構造体層の表面)および波長変換部材Bの励起光受光面(蛍光部材の表面)の各々に、ピーク波長が445nmの励起光を照射し、当該励起光受光面における光の反射率を測定した。
その結果、波長変換部材Aにおいては、反射率が0.4%であるのに対して、波長変換部材Bにおいては、反射率が15%であり、波長変換部材Aにおいては、励起光の後方散乱が十分に抑制されることが確認された。
The excitation light receiving surface (surface of the periodic structure layer) of the wavelength conversion member A and the excitation light receiving surface (surface of the fluorescent member) of the wavelength conversion member B are each irradiated with excitation light having a peak wavelength of 445 nm. The light reflectance at the light receiving surface was measured.
As a result, in the wavelength conversion member A, the reflectance is 0.4%, whereas in the wavelength conversion member B, the reflectance is 15%, and in the wavelength conversion member A, the excitation light is behind. It was confirmed that scattering was sufficiently suppressed.

(実験例2)
図2に示す構成に従い、下記の仕様の波長変換部材Cを作製した。
[基板(31)]
材質:アルミ基板,寸法:25mm(縦)×25mm(横)×1mm(厚み)
[蛍光部材(21)]
材質:LuAG:Ce(屈折率=1.85,励起波長=450nm、蛍光波長=530nm),寸法:1.7mm(縦)×3.0mm(横)×130μm(厚み)
表面側周期構造(23):凸部(23)の形状:円錐状,周期(d1)=292nm,周期(d1)に対する凸部(23)の高さ(h1)の比(h1/d1)=2.0
裏面側周期構造(25):凸部(26)の形状:半径0.015mmの半球状,周期(d2)=0.03mm,凸部(26)の高さ(h)=0.01nm
[光反射膜(33)]
材質:銀,厚み:110nm
(Experimental example 2)
A wavelength conversion member C having the following specifications was produced according to the configuration shown in FIG.
[Substrate (31)]
Material: Aluminum substrate, Dimensions: 25 mm (length) x 25 mm (width) x 1 mm (thickness)
[Fluorescent member (21)]
Material: LuAG: Ce (refractive index = 1.85, excitation wavelength = 450 nm, fluorescence wavelength = 530 nm), dimensions: 1.7 mm (length) × 3.0 mm (width) × 130 μm (thickness)
Surface-side periodic structure (23): shape of convex part (23): conical, period (d1) = 292 nm, ratio of height (h1) of convex part (23) to period (d1) (h1 / d1) = 2.0
Back surface side periodic structure (25): shape of convex part (26): hemisphere with radius 0.015 mm, period (d2) = 0.03 mm, height of convex part (26) (h) = 0.01 nm
[Light Reflecting Film (33)]
Material: Silver, Thickness: 110nm

また、表面側周期構造体層を設けなかったこと以外は、波長変換部材Cと同様の構成および仕様の波長変換部材Dを作製すると共に、裏面側周期構造体層を設けなかったこと以外は、波長変換部材Cと同様の構成および仕様の波長変換部材Eを作製した。   Moreover, except not having provided the surface side periodic structure layer, while producing the wavelength conversion member D of the structure and specification similar to the wavelength conversion member C, and having not provided the back surface side periodic structure layer, A wavelength conversion member E having the same configuration and specifications as the wavelength conversion member C was produced.

波長変換部材C、波長変換部材Dおよび波長変換部材Eの励起光受光面(蛍光部材の表面)の各々に、ピーク波長が445nmの励起光を照射し、蛍光出射面(蛍光部材の表面)における光取出し効率、および裏面(蛍光部材の裏面)における光の反射率(裏面反射率)を測定した。結果を図8に示す。この図8において、波長変換部材Cに係る測定値を三角プロットで示し、波長変換部材Dに係る測定値を菱形プロットで示し、波長変換部材Eに係る測定値を四角プロットで示す。
その結果、波長変換部材Cにおいては、裏面側周期構造が設けられていることから、光取出し効率が十分に向上することが確認された。
この波長変換部材Cにおいては、例えば裏面反射率が98%である場合の光取出し効率が84.7%であり、裏面の反射率が98%である場合の光取出し効率が67.5%である波長変換部材Eに比して、1.25倍の取出し効率が得られている。
Excitation light having a peak wavelength of 445 nm is irradiated to each of the wavelength conversion member C, the wavelength conversion member D, and the excitation light receiving surface (the surface of the fluorescent member) of the wavelength conversion member E, and the fluorescence emission surface (the surface of the fluorescent member) The light extraction efficiency and the light reflectance (back surface reflectance) on the back surface (back surface of the fluorescent member) were measured. The results are shown in FIG. In FIG. 8, the measurement value related to the wavelength conversion member C is shown by a triangular plot, the measurement value related to the wavelength conversion member D is shown by a rhombus plot, and the measurement value related to the wavelength conversion member E is shown by a square plot.
As a result, in the wavelength conversion member C, it was confirmed that the light extraction efficiency was sufficiently improved because the back surface side periodic structure was provided.
In this wavelength conversion member C, for example, the light extraction efficiency when the back surface reflectance is 98% is 84.7%, and the light extraction efficiency when the back surface reflectance is 98% is 67.5%. Compared to a certain wavelength conversion member E, the extraction efficiency is 1.25 times.

10 レーザダイオード
15 コリメータレンズ
16 ダイクロイックミラー
20 蛍光発光部材
21 蛍光部材
22 表面側周期構造
23 凸部(表面側凸部)
24a 上底部
25 裏面側周期構造
26 凸部(裏面側凸部)
31 基板
33 光反射膜
40 波長変換部材
41 蛍光部材
42 表面側周期構造体層
43 表面側周期構造
43a 凸部(表面側凸部)
44 裏面側周期構造体層
45 裏面側周期構造
45a 凸部(裏面側凸部)
47 積重部材
51 蛍光部材
52 裏面側周期構造
52a 凸部(裏面側凸部)
61 蛍光部材
62 基板
63 硫酸バリウム層
64 放熱用フィン
DESCRIPTION OF SYMBOLS 10 Laser diode 15 Collimator lens 16 Dichroic mirror 20 Fluorescent light emitting member 21 Fluorescent member 22 Surface side periodic structure 23 Convex part (surface side convex part)
24a Upper bottom part 25 Back surface side periodic structure 26 Convex part (back surface side convex part)
31 Substrate 33 Light Reflective Film 40 Wavelength Conversion Member 41 Fluorescent Member 42 Surface-side Periodic Structure Layer 43 Surface-side Periodic Structure 43a Convex Part (surface-side convex part)
44 Back side periodic structure layer 45 Back side periodic structure 45a Convex part (back side convex part)
47 Stacking Member 51 Fluorescent Member 52 Back Side Periodic Structure 52a Protrusion (Back Side Convex)
61 Fluorescent member 62 Substrate 63 Barium sulfate layer 64 Heat dissipation fin

Claims (7)

励起光により励起される蛍光体による波長変換部材を備えてなる蛍光光源装置であって、
前記波長変換部材は、励起光受光面とされる表面に表面側周期構造が形成され、裏面に裏面側周期構造が形成されており、当該裏面の外側に光反射面が設けられていることを特徴とする蛍光光源装置。
A fluorescent light source device comprising a wavelength conversion member made of a phosphor excited by excitation light,
The wavelength conversion member has a surface-side periodic structure formed on a surface that is an excitation light receiving surface, a back-side periodic structure is formed on the back surface, and a light reflecting surface is provided outside the back surface. A fluorescent light source device.
前記表面側周期構造の周期は、前記蛍光体から放射される蛍光の回折が発生する範囲の大きさであることを特徴とする請求項1に記載の蛍光光源装置。   2. The fluorescent light source device according to claim 1, wherein the period of the surface-side periodic structure is a size within a range where diffraction of fluorescence emitted from the phosphor is generated. 前記裏面側周期構造の周期は、前記蛍光体から放射される蛍光の回折が発生する範囲の大きさであることを特徴とする請求項1または請求項2に記載の蛍光光源装置。   3. The fluorescent light source device according to claim 1, wherein a period of the back-side periodic structure is a size in a range where diffraction of fluorescence emitted from the phosphor occurs. 前記波長変換部材は、その全体が蛍光体が含有されてなる蛍光部材よりなることを特徴とする請求項1〜請求項3のいずれかに記載の蛍光光源装置。   The fluorescent light source device according to any one of claims 1 to 3, wherein the wavelength conversion member is entirely made of a fluorescent member containing a phosphor. 前記波長変換部材は、蛍光体が含有されてなる蛍光部材と、当該蛍光部材の表面上に形成された、表面に周期構造を有する表面側周期構造体層、および当該蛍光部材の裏面上に形成された、裏面に周期構造を有する裏面側周期構造体層の少なくとも一方の周期構造体層とを備えていることを特徴とする請求項1〜請求項3のいずれかに記載の蛍光光源装置。   The wavelength conversion member is formed on a fluorescent member containing a phosphor, a surface-side periodic structure layer having a periodic structure on the surface, formed on the surface of the fluorescent member, and a back surface of the fluorescent member. The fluorescent light source device according to any one of claims 1 to 3, further comprising at least one periodic structure layer of the back-side periodic structure layer having a periodic structure on the back surface. 前記蛍光部材上に形成された周期構造体層の屈折率は、当該蛍光部材の屈折率以上であることを特徴とする請求項5に記載の蛍光光源装置。   The fluorescent light source device according to claim 5, wherein a refractive index of the periodic structure layer formed on the fluorescent member is equal to or higher than a refractive index of the fluorescent member. 励起光により励起される蛍光体による波長変換部材を備えてなる蛍光光源装置であって、
前記波長変換部材は、励起光受光面とされる表面に表面側周期構造が形成され、裏面が粗面により形成された光拡散面とされており、当該裏面の外側に光反射面が設けられていることを特徴とする蛍光光源装置。

A fluorescent light source device comprising a wavelength conversion member made of a phosphor excited by excitation light,
The wavelength conversion member has a surface-side periodic structure formed on the surface to be an excitation light receiving surface, a back surface is a light diffusion surface formed by a rough surface, and a light reflection surface is provided outside the back surface. A fluorescent light source device.

JP2013022982A 2013-02-08 2013-02-08 Fluorescent light source device Active JP6107190B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013022982A JP6107190B2 (en) 2013-02-08 2013-02-08 Fluorescent light source device
PCT/JP2014/052647 WO2014123145A1 (en) 2013-02-08 2014-02-05 Fluorescent light source device
CN201480007875.2A CN104968995B (en) 2013-02-08 2014-02-05 Fluorescence light source device
US14/821,530 US20160040857A1 (en) 2013-02-08 2015-08-07 Flourescence-emitting light source unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013022982A JP6107190B2 (en) 2013-02-08 2013-02-08 Fluorescent light source device

Publications (2)

Publication Number Publication Date
JP2014153527A true JP2014153527A (en) 2014-08-25
JP6107190B2 JP6107190B2 (en) 2017-04-05

Family

ID=51575450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013022982A Active JP6107190B2 (en) 2013-02-08 2013-02-08 Fluorescent light source device

Country Status (1)

Country Link
JP (1) JP6107190B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039322A1 (en) * 2014-09-09 2016-03-17 ウシオ電機株式会社 Fluorescent light source device
JP2016058213A (en) * 2014-09-09 2016-04-21 ウシオ電機株式会社 Fluorescent light source device
JP2016058380A (en) * 2015-08-07 2016-04-21 ウシオ電機株式会社 Fluorescent light source device
JP2016062966A (en) * 2014-09-16 2016-04-25 スタンレー電気株式会社 Wavelength conversion body and wavelength conversion device
JP2016070947A (en) * 2014-09-26 2016-05-09 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
WO2016181858A1 (en) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 Light source device and projection device
KR20170119170A (en) * 2016-04-18 2017-10-26 엘지이노텍 주식회사 Lighting apparatus
KR20180056762A (en) * 2015-09-25 2018-05-29 마테리온 코포레이션 High optical output photoconversion device using phosphor elements with solder attachment
CN108139520A (en) * 2015-09-29 2018-06-08 松下知识产权经营株式会社 Wavelength changing element and light-emitting device
WO2019171775A1 (en) * 2018-03-06 2019-09-12 ソニー株式会社 Light-emitting element, light source device, and projector
US10777711B2 (en) 2015-10-20 2020-09-15 Panasonic Semiconductor Solutions Co., Ltd. Wavelength conversion element and light emitting device
WO2022123878A1 (en) * 2020-12-10 2022-06-16 シャープ株式会社 Wavelength conversion member, light source device, headlight fixture, and projection device
US11843078B2 (en) 2019-12-26 2023-12-12 Nichia Corporation Light emitting device with good visibility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547312A (en) * 1991-08-13 1993-02-26 Ricoh Co Ltd Backing layer for phosphor and manufacture thereof
JP2007200782A (en) * 2006-01-27 2007-08-09 Ricoh Opt Ind Co Ltd Phosphor light source, its manufacturing method, light source device, and lighting system
JP2012104267A (en) * 2010-11-08 2012-05-31 Stanley Electric Co Ltd Light source device and lighting system
JP2013030720A (en) * 2011-07-29 2013-02-07 Sharp Corp Light emitting element, light emitting device, and manufacturing method of light emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547312A (en) * 1991-08-13 1993-02-26 Ricoh Co Ltd Backing layer for phosphor and manufacture thereof
JP2007200782A (en) * 2006-01-27 2007-08-09 Ricoh Opt Ind Co Ltd Phosphor light source, its manufacturing method, light source device, and lighting system
JP2012104267A (en) * 2010-11-08 2012-05-31 Stanley Electric Co Ltd Light source device and lighting system
JP2013030720A (en) * 2011-07-29 2013-02-07 Sharp Corp Light emitting element, light emitting device, and manufacturing method of light emitting element

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208900B2 (en) 2014-09-09 2019-02-19 Ushio Denki Kabushiki Kaisha Fluorescence light source device with wavelength conversion member with particular ratio between light transmission percentage and light reflection percentage
JP2016058213A (en) * 2014-09-09 2016-04-21 ウシオ電機株式会社 Fluorescent light source device
WO2016039322A1 (en) * 2014-09-09 2016-03-17 ウシオ電機株式会社 Fluorescent light source device
JP2016062966A (en) * 2014-09-16 2016-04-25 スタンレー電気株式会社 Wavelength conversion body and wavelength conversion device
JP2016070947A (en) * 2014-09-26 2016-05-09 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
WO2016181858A1 (en) * 2015-05-08 2016-11-17 コニカミノルタ株式会社 Light source device and projection device
JP2016058380A (en) * 2015-08-07 2016-04-21 ウシオ電機株式会社 Fluorescent light source device
KR102315807B1 (en) * 2015-09-25 2021-10-22 마테리온 코포레이션 High Light Output Light Conversion Devices Using Phosphor Elements with Solder Attachment
KR20180056762A (en) * 2015-09-25 2018-05-29 마테리온 코포레이션 High optical output photoconversion device using phosphor elements with solder attachment
US11658252B2 (en) 2015-09-25 2023-05-23 Materion Corporation High optical power light conversion device using a phosphor element with solder attachment
CN108139520A (en) * 2015-09-29 2018-06-08 松下知识产权经营株式会社 Wavelength changing element and light-emitting device
US10777711B2 (en) 2015-10-20 2020-09-15 Panasonic Semiconductor Solutions Co., Ltd. Wavelength conversion element and light emitting device
US10865955B1 (en) 2015-10-20 2020-12-15 Panasonic Semiconductor Solutions Co., Ltd. Wavelength conversion element and light emitting device
KR20170119170A (en) * 2016-04-18 2017-10-26 엘지이노텍 주식회사 Lighting apparatus
KR102555300B1 (en) 2016-04-18 2023-07-19 엘지이노텍 주식회사 Lighting apparatus
JPWO2019171775A1 (en) * 2018-03-06 2021-03-18 ソニー株式会社 Light emitting element, light source device and projector
US11429015B2 (en) 2018-03-06 2022-08-30 Sony Corporation Light-emitting element, light source device and projector
CN111788521A (en) * 2018-03-06 2020-10-16 索尼公司 Light-emitting element, light source device, and projector
WO2019171775A1 (en) * 2018-03-06 2019-09-12 ソニー株式会社 Light-emitting element, light source device, and projector
US11843078B2 (en) 2019-12-26 2023-12-12 Nichia Corporation Light emitting device with good visibility
WO2022123878A1 (en) * 2020-12-10 2022-06-16 シャープ株式会社 Wavelength conversion member, light source device, headlight fixture, and projection device

Also Published As

Publication number Publication date
JP6107190B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6107190B2 (en) Fluorescent light source device
JP6489829B2 (en) Fluorescent light source device
JP6111960B2 (en) Fluorescent light source device
JP2014082401A (en) Fluorescent light source device
WO2014123145A1 (en) Fluorescent light source device
US10208900B2 (en) Fluorescence light source device with wavelength conversion member with particular ratio between light transmission percentage and light reflection percentage
JP5658600B2 (en) Light emitting device
JP6356522B2 (en) Fluorescent light emitting member, manufacturing method thereof, and fluorescent light source device
JP6580133B2 (en) Method for manufacturing patterned thin film wavelength converter
JP5900563B1 (en) Fluorescent light source device
JP5971148B2 (en) Fluorescent light source device
KR102000323B1 (en) Conversion element and illuminant
JP2015195098A (en) fluorescent light source device
WO2015041138A1 (en) Fluorescent light source device, and method for manufacturing same
JP2004528714A (en) UV reflector and UV based light source incorporating UV reflector to reduce UV radiation leakage
JP6413673B2 (en) Fluorescent light source device
JP5497520B2 (en) Light emitting module and optical wavelength conversion member
JP2016194697A (en) Fluorescent light source device
JP2016178087A (en) Fluorescent light source device
US11294195B2 (en) Aperiodic nano-optical array for angular shaping of incoherent emissions
EP3356725B1 (en) Light source with diffractive outcoupling
WO2017175635A1 (en) Fluorescent light source device
JP2016058380A (en) Fluorescent light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6107190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250