WO2016181858A1 - Light source device and projection device - Google Patents

Light source device and projection device Download PDF

Info

Publication number
WO2016181858A1
WO2016181858A1 PCT/JP2016/063363 JP2016063363W WO2016181858A1 WO 2016181858 A1 WO2016181858 A1 WO 2016181858A1 JP 2016063363 W JP2016063363 W JP 2016063363W WO 2016181858 A1 WO2016181858 A1 WO 2016181858A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
excitation
source device
phosphor layer
Prior art date
Application number
PCT/JP2016/063363
Other languages
French (fr)
Japanese (ja)
Inventor
小林大介
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016181858A1 publication Critical patent/WO2016181858A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a light source device suitable for illumination of an image display element incorporated in a projection device, and a projection device incorporating such a light source device.
  • solid-state light sources such as LEDs and laser diodes (LDs) have come to be used as light sources for projectors.
  • LDs laser diodes
  • three colors of red (R), green (G), and blue (B) are used as the light source of the projector, but there is no light source having a desired intensity particularly with G light.
  • R red
  • G green
  • B blue
  • a configuration is used in which B light is used as excitation light and wavelength conversion is performed by applying it to a phosphor to obtain G light (see Patent Documents 1 to 3).
  • G light is emitted by irradiating excitation light from a B light source onto a light-emitting wheel provided with a phosphor layer containing a phosphor, and G light obtained by excitation is used together with B light or the like for liquid crystal, DMD, or the like.
  • the image formed by the image display element is projected on the screen through the projection optical system by the configuration in which the image display element is irradiated. At that time, it is desirable to illuminate the projection light onto the screen as brightly as possible.
  • Patent Document 1 a concavo-convex structure in which regular quadrangular pyramids and the like are two-dimensionally arranged is formed on the excitation light incident surface of the phosphor layer, and the excitation light is diffused in the phosphor layer to spread over a wide range. , Trying to increase the utilization efficiency of excitation light.
  • Patent Document 2 also has a concavo-convex structure in which the concave portions of the inverse regular quadrangular pyramids are two-dimensionally arranged on the excitation light incident surface of the phosphor layer. It is trying to reduce the temperature rise and light saturation phenomenon of phosphor particles.
  • the fluorescence etendue in order to brighten the projected image on the screen, it is desirable to reduce the fluorescence etendue so that the fluorescence is incident on the image display element at a desired angle or less.
  • One method for reducing the etendue of fluorescence is to reduce the spot of excitation light on the phosphor layer.
  • the fluorescence emitted from the phosphor layer usually has a Lambertian distribution, and it is easy to capture light emitted at a large angle with respect to the normal of the light emitting surface where the phosphor layer extends by an optical element such as a lens.
  • the optical element is increased in size or the optical loss is increased.
  • the method of providing a concavo-convex structure on the light emission side as in Patent Document 3 does not necessarily improve the directivity, and is applied as it is to a reflective light emitting wheel that returns fluorescence to the solid light source side. There is also a problem that cannot be done.
  • a light source device for a projection apparatus includes an excitation light source that emits excitation light, a light irradiation plate that includes a phosphor layer that emits fluorescence when irradiated with excitation light, and A surface uneven structure having an array of unevenness is formed on the surface of the light irradiation plate on which the excitation light is incident, and the incident angle of the excitation light to the light irradiation plate is determined by the method of the phosphor layer It is 20 degrees or less with respect to the line direction.
  • the excitation light is condensed and condensed on the phosphor layer.
  • an array of light emitting regions can be formed.
  • the incident angle of the excitation light is set to 20 ° or less with respect to the normal direction of the phosphor layer, thereby reducing the size of the array-shaped light emitting region.
  • the angle range when the fluorescence is emitted from the light irradiation plate can be narrowed, the etendue can be reliably reduced while preventing an increase in size and an increase in light loss.
  • a projection device includes the above-described light source device, an image display element illuminated by the light source device, and a projection optical system that projects an image formed by the image display element.
  • a small and efficient light source device that can reduce the etendue of fluorescence that illuminates the image display element is used, and the light use efficiency in the image display element can be increased, and a small and bright projection device can be provided. it can.
  • FIG. 3A is a diagram for explaining an example of a light irradiation plate incorporated in the light source device shown in FIG. 1
  • FIG. 3B is a diagram for explaining a cross-sectional structure of a first region of the light irradiation plate
  • FIG. 4A to 4C are conceptual perspective views for explaining the shape of the optical element constituting the surface uneven structure provided on the surface of the light irradiation plate, and FIG.
  • 4D shows the shape of the optical element constituting the surface uneven structure. It is a conceptual sectional view to explain. It is an expanded sectional view explaining advancing of the light around a fluorescent substance layer. It is a figure explaining the light source device etc. for projectors concerning a 2nd embodiment.
  • 7A and 7B are diagrams illustrating the structure of the light irradiation plate incorporated in the light source device shown in FIG.
  • the projection device 2 As shown in FIG. 1, the projection device 2 according to the first embodiment enables projection of images corresponding to various video signals, and includes a light source device 21, a polarization beam splitter 22, and a reflective liquid crystal element 23. A projection optical system 26 and a video drive circuit 25.
  • the light source device 21 includes a first beam forming unit 31, a second beam forming unit 131, a polarization dichroic mirror 32, a phase difference plate 33, a condenser lens 34, a light irradiation plate 35, and a fly-eye optical system 36. , A polarization conversion unit 37 and a field lens 38.
  • the first beam forming unit 31 emits laser light L1 having a substantially parallel first wavelength
  • the second beam forming unit 131 emits light source light L2 having a substantially parallel second wavelength.
  • the polarization dichroic mirror 32 branches the optical path of the fluorescence FL from the optical path of the laser light L1 and transmits the light source light L2.
  • the phase difference plate 33 changes the polarization state of the laser light L1, and the condenser lens 34 condenses the laser light L1 as the excitation light EL in the irradiated body 41 and substantially reduces the fluorescence FL from the irradiated body 41. Take out as parallel rays.
  • the light irradiation plate 35 is a phosphor wheel having an irradiated body 41 that generates fluorescence FL from the excitation light EL and reflects the excitation light EL.
  • the fly-eye optical system 36 equalizes the intensity of the illumination light L3 of the laser light L1, the light source light L2, and the fluorescence FL emitted from the polarization dichroic mirror 32, and the polarization conversion unit 37 is emitted from the polarization dichroic mirror 32.
  • the field lens 38 adjusts the incident angle of the illumination light L3 to the reflective liquid crystal element 23 by aligning the polarization direction of the illumination light L3.
  • the polarization beam splitter (PBS) 22 is a beam splitter that branches an optical path according to the polarization direction.
  • the polarization beam splitter 22 is obtained by bonding a pair of right-angle prisms. On the bonding surface, the illumination light L3 that is linearly polarized light in a predetermined direction incident from the light source device 21 is selected on the inclined surface of one right-angle prism.
  • a polarization separation surface 22a made of a polarization separation film that reflects light is formed. Thereby, the illumination light L3 emitted from the light source device 21 can be reflected and incident on a reflective liquid crystal element 23 described later. Further, the image light L 4 reflected by the reflective liquid crystal element 23 can be transmitted and incident on the projection optical system 26.
  • the polarization separation surface 22a reflects S-polarized light based on this and transmits P-polarized light.
  • the reflective liquid crystal element 23 is a display panel that forms the image light L4, that is, an image display element, and particularly a light valve or a spatial light in that the image light L4 is formed from the illumination light L3 by changing the spatial reflectance. It can be said that it is a modulation element.
  • the reflective liquid crystal element (image display element) 23 includes an image display panel that is a plate-like electronic component.
  • the reflection type liquid crystal element 23 is a micro display also called LCOS (liquid crystal on silicon), in which a circuit is directly formed on the surface of a silicon chip and a liquid crystal layer is sandwiched between a counter substrate.
  • the reflective liquid crystal element 23 modulates the illumination light L3 by changing the arrangement of liquid crystal molecules, and displays a desired image by reflection. Is.
  • S-polarized light with the polarization separation surface 22a as a reference is incident on the reflective liquid crystal element 23 as illumination light L3
  • P-polarized light with the polarization separation surface 22a as a reference is reflected as video light L4.
  • the projection optical system 26 enlarges and projects an image obtained from the reflective liquid crystal element 23 that is an image display element onto a screen or other projection target (not shown).
  • the projection optical system 26 includes a plurality of lens groups and / or reflecting surfaces, and focusing and zooming can be performed by moving some lens groups in the direction of the optical axis SX.
  • the video drive circuit 25 operates or interlocks the drive unit 39 of the reflective liquid crystal element 23 and the light irradiation plate 35 based on video signals input from various content sources (not shown) including terminal devices such as computers. It is a circuit part to do.
  • the video drive circuit 25 operates based on a control signal from the control circuit 28, and outputs a drive signal corresponding to the video signal to the reflective liquid crystal element 23 to perform an image display operation.
  • the video drive circuit 25 monitors the rotational position of the light irradiation plate 35 via the control circuit 28, and controls the light emission operation of the laser array 51 and the LED array 151 corresponding to the rotation of the light irradiation plate 35.
  • the display operation of the reflective liquid crystal element 23 is synchronized with the sequentially emitted blue light, green light, and red light, and the reflective liquid crystal element 23 performs the display operation of each color.
  • the first beam forming unit 31 includes a laser array 51, a collimator array 52, and a beam reduction lens 53.
  • the laser array 51 is an individual light source, and is an excitation light source for the phosphor layer 71 (see FIG. 3B) incorporated in the irradiated body 41 and also an illumination light source for blue.
  • the laser array (excitation light source) 51 is configured by two-dimensionally arranging laser diodes (hereinafter also referred to as LDs) that emit blue laser light L1 as excitation light EL, and has a uniform polarization direction. Emit light.
  • LDs laser diodes
  • the laser beam L1 emits P-polarized light with the polarization dichroic mirror 32 as a reference.
  • the collimator array 52 includes a number of lens elements corresponding to the number of LDs constituting the laser array 51.
  • the collimator array 52 converts the laser light L1 emitted from each LD constituting the laser array 51 into a substantially parallel light beam.
  • the beam reduction lens 53 is an afocal system in which a positive lens and a negative lens are combined, and the laser beam L1 is left as a substantially parallel beam, the beam diameter is decreased, and the excitation beam EL having a desired cross-sectional area is obtained.
  • the beam contraction lens 53 is for narrowing the beam diameter relatively small, and has a central rectangular area having sides set to about a fraction of one side of the polarization dichroic mirror 32 or a central circular area having the same size diameter.
  • the beam diameter of the excitation light EL is reduced. That is, the beam diameter of the blue laser light L1 is about a fraction of the beam diameter of the red light source light L2 described later. Since the blue laser light L1 only needs to have a small beam diameter at the entrance pupil of the condenser lens 34, which will be described later, the laser light propagating to the condenser lens 34 can be obtained by giving the beam reducing lens 53 positive power. You may make it converge gradually. In this case, a single beam reduction lens can be configured.
  • the second beam forming unit 131 includes an LED array 151, a collimator array 52, and a beam reduction lens 153.
  • the LED array 151 is configured by two-dimensionally arranging LEDs that emit the red light source light L2.
  • the LED array 151 may be an LED having a large light emission area instead of the array.
  • the second beam forming unit 131 can emit P-polarized light or S-polarized light with the polarization dichroic mirror 32 as a reference as the light source light L2 by incorporating a polarization conversion unit or replacing it with an LD.
  • the collimator array 52 includes a large number of lens elements corresponding to the large number of LEDs constituting the LED array 151, and the light source light L2 emitted from each LED is set as a substantially parallel light beam.
  • the beam reduction lens 153 changes the light source light L2 into a substantially parallel light beam.
  • the polarization dichroic mirror 32 is disposed between the beam forming unit 31 including the excitation light source and the light irradiation plate 35, and corresponds to a beam splitter that branches fluorescence from the optical path of the excitation light. More specifically, the polarization dichroic mirror 32 functions as a polarization separation mirror that transmits P-polarized light and selectively reflects S-polarized light, and green light that transmits blue light and red light and has a wavelength therebetween. A dichroic mirror that selectively reflects light.
  • the polarization dichroic mirror 32 is formed by forming a dielectric multilayer film 32a on one side of a parallel plate, and transmits the blue excitation light EL from the beam forming unit 31 and the red light source light L2 from the beam forming unit 131 as they are. In addition, blue light and green light from the irradiated body 41 side are reflected and reflected to the field lens 38 side. In other words, the polarization dichroic mirror 32 branches blue light, which is polarized light in a specific direction, on the optical path depending on transmission and reflection. Further, the polarization beam splitter 22 can prevent the fluorescence FL from returning to the first beam forming unit 31 that is an excitation light source and guide it to a desired optical path.
  • the polarization dichroic mirror 32 transmits the excitation light EL that is P-polarized light, and is used in combination with the phase difference plate 33 so that it is not utilized for excitation from the irradiated body 41 side and remains in the blue light.
  • the reflected S-polarized light is reflected and guided to the polarization conversion unit 37 in the optical path of the fluorescence FL.
  • the polarization dichroic mirror 32 reflects the green light, that is, the fluorescence FL, which is illuminated with the excitation light EL and is generated by the irradiated body 41, and guides it to the polarization conversion unit 37.
  • the blue light obtained from the laser array 51 as the excitation light source can be used without waste.
  • the retardation film 33 is a quarter wave plate made of a birefringent material.
  • the phase difference plate 33 transmits the P-polarized excitation light EL that has passed through the polarization dichroic mirror 32 according to the arrangement, and changes the P-polarized light to circularly-polarized light. Further, the phase difference plate 33 transmits the blue light that has returned from the irradiated object 41 side, that is, the excitation light EL, and changes from circularly polarized light to S-polarized light. As a result, the blue light, that is, the excitation light EL that has returned from the irradiated object 41 side through the phase difference plate 33 is almost reflected by the polarization dichroic mirror 32 and efficiently guided to the polarization conversion unit 37.
  • the condenser lens 34 guides the laser beam L1 that has passed through the polarization dichroic mirror 32 to the phosphor layer 71 so as to be focused on the phosphor layer 71 (see FIG. 3B) of the irradiated body 41 as excitation light EL.
  • the incident angle of the excitation light EL incident on the light irradiation plate 35 can be adjusted by the condenser lens 34.
  • the condenser lens 34 collects the green light generated from the irradiated object 41, that is, the fluorescence FL, and guides it to the polarization dichroic mirror 32.
  • the condenser lens 34 also has a role of collecting excitation light EL, that is, blue light reflected by a scattering reflecting surface, which will be described later, provided separately from the phosphor layer 71 in the irradiated object 41 and guiding it to the polarization dichroic mirror 32.
  • the condenser lens 34 is not limited to a single lens, and may be configured with a plurality of lenses.
  • the excitation light EL is incident only on the central region of the entrance pupil of the condenser lens 34 with the beam diameter being relatively reduced by the beam reduction lens 53 shown in FIG.
  • the incident angle ⁇ of the excitation light EL having passed through the light irradiation plate 35 to the irradiated object 41 is relative to the normal direction (optical axis SX direction) of the irradiated object 41 or the phosphor layer 71 (see FIG. 3B).
  • the maximum is 20 °, that is, 20 ° or less.
  • the emission angle ⁇ ′ of the fluorescent FL from the irradiated body 41 is the normal direction of the irradiated body 41. It is 20 ° to 50 ° or less with respect to (optical axis SX direction). That is, the opening angle of the excitation light EL that is incident on the irradiated object 41 by the condenser lens 34 is sufficiently smaller than the opening angle of the fluorescence FL from the irradiated object 41 that is taken in by the condenser lens 34, and is imbalanced between the forward path and the return path. How to use
  • the light irradiation plate 35 is obtained by fixing an annular irradiated body 41 on a disk-shaped substrate 35a, and is driven by a drive unit 39 shown in FIG. 1 around an axis RX. Rotates at a constant speed.
  • the irradiated body 41 includes a first area AR1 that generates fluorescence when irradiated with the excitation light EL, and a second area AR2 that is a scattering surface that reflects the excitation light EL while being slightly scattered.
  • fluorescence FL having a longer wavelength is generated by absorption of the excitation light EL.
  • the green fluorescent light FL is emitted from the light incident area IA where the blue excitation light EL is incident locally toward the condenser lens 34 shown in FIG. Further, from the second area AR2, the blue light is reflected while being slightly scattered and is emitted toward the condenser lens 34 shown in FIG. In the second region AR2, it is desirable not to change the polarization state so much.
  • the light emission of the laser array 51 and the LED array 151 is controlled by the control circuit 28 as follows, for example.
  • the position facing the condenser lens 34 that is, the light incident area IA is an area from the middle of the first area AR1 to the middle of the second area AR2 (in the range from 1 o'clock to 5 o'clock in the figure).
  • the red light source light L2 is emitted from the LED array 151, and other areas (corresponding to the range from 5 o'clock to 1 o'clock in the figure)
  • the blue laser light L1 is emitted from the laser array 51.
  • the blue laser light L1 irradiates the second area AR2 (except for the area indicated by the symbol R in FIG. 3A)
  • the blue light is guided to the field lens 38, and the blue laser light is emitted.
  • the green light is guided to the field lens 38.
  • the red light source light L2 from the LED array 151 is guided to the field lens 38 as red light from an optical path unrelated to the light irradiation plate 35 at a timing different from that of blue light or green light.
  • the illumination light L3 is emitted from the light source device 21 in the order of green, blue, and red.
  • the light emission control is not limited to this, and the blue laser light L1 is emitted from the laser array 51 during one rotation of the irradiated object 41, and the red light source light L2 is emitted from the LED array 151 during the next one rotation. May be injected.
  • the irradiated body 41 has a flat phosphor layer 71 in the center in the first region AR1 shown in FIG. 3A, and sandwiches the phosphor layer 71 from the excitation light source side and the counter excitation light source side.
  • it has a pair of light transmission layers 72 and 73.
  • a surface uneven structure 75 and a reflective layer 76 are provided on the outside of these light transmission layers 72 and 73.
  • the light transmission layer 72 and the surface concavo-convex structure 75 may be integrally formed.
  • the phosphor layer 71 is a thin flat layer and extends in a flat plate shape along a plane perpendicular to the optical axis SX.
  • the phosphor layer 71 is composed of phosphor particles and a binder material that fixes the phosphor particles.
  • the phosphor particles constituting the phosphor layer 71 are phosphors capable of emitting fluorescence having a peak wavelength from 500 nm to 560 nm, for example, as green wavelength light when light having a wavelength corresponding to the excitation light EL is incident. .
  • cerium activated yttrium aluminum garnet (a typical chemical structure of the crystal matrix of this phosphor is Y 3 (Al, Ga) 3 O 12 ), cerium activated lutetium aluminum garnet (LuAG: Ce), ⁇ sialon phosphor, or the like can be used.
  • the surface concavo-convex structure 75 has an array of concavo-convex portions and is an aggregate of a plurality of minute optical elements 75a having the same shape.
  • Each optical element 75a constituting the surface concavo-convex structure 75 has, for example, a quadrangular pyramid shape as shown in FIG. 4A, and has a condensing effect on the excitation light EL incident on the surface 75s that is an inclined surface.
  • the angle ⁇ between the bottom surface and the inclined surface of the optical element 75a is related to the arrangement of the phosphor layer 71, but is set to about 35 ° to 55 °.
  • the optical element 75a may be a triangular pyramid as shown in FIG. 4B, a cone as shown in FIG.
  • the apex angle is preferably set to 70 to 110 °. With these shapes, it becomes easy to disperse the excitation light EL in the phosphor layer 71 to form an array-shaped light emitting region.
  • the uneven surface structure 75 is formed of a light-transmitting material, specifically, a material such as polycarbonate resin, methacrylic resin, cycloolefin resin, or a material obtained by appropriately adding auxiliary additives thereto.
  • the surface concavo-convex structure 75 is formed of a material that does not include a phosphor. Thereby, it is possible to prevent the formation of fluorescence in the uneven surface structure 75, and it becomes easy to limit the emission angle of the fluorescence extracted from the light irradiation plate 35 to a narrow range.
  • the optical elements 75a when the optical element 75a has a quadrangular pyramid shape, the optical elements 75a are arranged in a two-dimensional pattern in a lattice shape, reducing the loss and improving the light utilization efficiency.
  • the optical elements 75a are triangular pyramids as shown in FIG. 4B, two-dimensionally densely arranged, and in the case of a cone as shown in FIG. 4C, a part of the conical surface which is the surface 75s is cut out to form a rectangular region.
  • a gap may be formed between the outer edges of the surfaces 75s such as adjacent cones. In this case, the light transmission layer 72 is exposed from the gap between the optical elements 75a.
  • the pair of light transmission layers 72 and 73 sandwiching the phosphor layer 71 are flat layers having light transmission lines, and can transmit the excitation light EL and the like with low loss.
  • the light transmission layer 72 and the surface concavo-convex structure 75 can be obtained by, for example, forming them integrally, but can also be obtained by forming and bonding them separately.
  • the light transmission layer 72 on the excitation light source side is sandwiched between the surface uneven structure 75 and the phosphor layer 71 to adjust the distance between the surface uneven structure 75 and the phosphor layer 71. It has a role to adjust the light state.
  • the other light transmission layer 73 is sandwiched between the reflection layer 76 and the phosphor layer 71 to adjust the distance from the irradiation region LA, which is the light emission region of the phosphor layer 71, to the reflection layer 76.
  • the light transmitting layers 72 and 73 are formed of a material that has high light transmittance and does not include a phosphor, similarly to the surface uneven structure 75. Specifically, the light transmission layers 72 and 73 can be formed of the same material as the surface uneven structure 75.
  • the innermost reflection layer 76 is a thin flat layer and extends in a flat plate shape along a plane perpendicular to the optical axis SX.
  • the reflection layer 76 is disposed on the opposite side of the surface uneven structure 75 with the phosphor layer 71 interposed therebetween, and the excitation light EL that has passed through the phosphor layer 71 and the fluorescence FL that is directed toward the reflection layer 76 are transmitted to the phosphor layer 71 side or It has a role of returning to the LED array 151 side. That is, the reflective surface 76s, which is the surface of the reflective layer 76, exhibits a high reflectance in the wavelength range of the excitation light EL and the fluorescence FL.
  • FIG. 5 shows the light incident area IA shown in FIG. 3A.
  • the excitation light EL is incident on the irradiated body 41 at an incident angle of 20 ° or less, and the opening angle of the excitation light EL is relatively small.
  • the excitation light EL incident on the surface concavo-convex structure 75 of the irradiated body 41 is refracted by the inclined surface 75 s and enters the phosphor layer 71.
  • the excitation light EL incident on the irradiated object 41 is incident on a local irradiation region (light emitting region) LA in the phosphor layer 71 because the incident angle is small.
  • Such an irradiation area LA exists opposite to each optical element 75a, and is two-dimensionally arranged in a lattice pattern corresponding to each optical element 75a along the phosphor layer 71. That is, a lattice-like gap GA is formed between adjacent irradiation areas LA, and excitation light EL hardly enters the gap GA. In this way, a plurality of irradiation areas LA arranged two-dimensionally in a grid pattern can be arranged or set.
  • the excitation light EL is incident on a relatively narrow irradiation region (light emitting region) LA in which the light is dispersed, the light emitting area is reduced accordingly.
  • the irradiation area LA it is easy to align the conditions for the fluorescence FL emitted from the irradiation area LA to the surface side to be incident again on the same optical element 75a, and refraction of positive power when passing through the optical element 75a.
  • the emission angle of the fluorescence FL emitted from the irradiated body 41 becomes relatively small.
  • the etendue of the fluorescent light FL among the illumination light L3 emitted from the light source device 21 through the condenser lens 34 or the like can be reliably reduced, and the use efficiency of the fluorescent light FL, that is, the illumination light L3 by the reflective liquid crystal element 23 can be reduced. Can be easily increased.
  • region AR2 of the light irradiation board 35 shown to FIG. 3A is a mirror corresponding to excitation light EL.
  • the surface uneven structure 75 of the irradiated object 41 provided in the first region AR1 can be provided, and the diffuser layer 79 can be arranged instead of the phosphor layer 71 (FIG. 3C). reference).
  • the light distribution of the blue illumination component corresponding to the excitation light EL can be brought close to the light distribution of the fluorescence FL.
  • the diffuser layer 79 is formed, for example, by dispersing dielectric powder having a refractive index different from that of the surroundings.
  • the fly-eye optical system 36 is disposed on the polarization beam splitter 22 side of the polarization dichroic mirror 32, and includes a first fly-eye lens 36a and a second fly-eye lens 36b.
  • the first fly-eye lens 36a includes a plurality of lenses as elements for dividing the illumination light L3 including the laser light L1, the light source light L2, and the fluorescence FL, and the second fly-eye lens 36b moderately applies the illumination light L3.
  • a plurality of lenses are included as an element for diverging.
  • the polarization conversion unit 37 is a combination of a plurality of conversion units including, for example, a polarization beam splitter and a wavelength plate, and is P-polarized light among S-polarized light and P-polarized light included in the green fluorescent light FL reflected by the polarization dichroic mirror 32. Are selectively converted to S-polarized light.
  • the polarization conversion unit 37 selectively converts only P-polarized light included in the red light source light L2 that has passed through the polarization dichroic mirror 32 into S-polarized light. As a result, most of the illumination light L3 that has passed through the polarization conversion unit 37 is composed of S-polarized light components.
  • the substantially S-polarized fluorescence FL and the light source light L2 can be made incident on the polarization beam splitter 22, and the loss of the light source light is reduced.
  • the blue light (reflected excitation light) obtained from the excitation light EL is only the S-polarized light component reflected by the polarization dichroic mirror 32 and passes through the polarization conversion unit 37 almost as it is.
  • the field lens 38 has a function of uniformly superimposing the illumination light L3 on the reflective liquid crystal element 23 to make the incident angle range of the illumination light L3 uniform.
  • the light source device 21 can form blue laser light L1, red light source light L2, and green fluorescence FL. As described above, the blue laser light L1, the green fluorescence FL, and the red light source light L2 are each emitted to the fly-eye optical system 36 side in a predetermined order.
  • the reflective liquid crystal element 23 is illuminated in time series by each of the blue laser light L1, the red light source light L2, and the green fluorescent light FL from the light source device 21, and an image display corresponding to each color is made.
  • Video light L 4 corresponding to each color image is emitted as reflected light, transmitted through the polarization beam splitter 22, and projected by the projection optical system 26. Since each color image projected in time series is switched and displayed at a high speed, these are superimposed on a human being and recognized as a color image.
  • the surface uneven structure 75 having arrayed unevenness is formed on the surface of the light irradiation plate 35 on which the excitation light EL is incident.
  • the surface uneven structure 75 having arrayed unevenness is formed on the surface of the light irradiation plate 35 on which the excitation light EL is incident.
  • the incident angle of the excitation light EL with respect to the irradiated body 41 is set to 20 ° or less with respect to the normal direction of the phosphor layer 71, thereby Since the size of the light emitting region can be reduced and the angle range when the fluorescent light FL emits the light irradiation plate 35 can be made relatively narrow, the etendue can be reliably reduced while preventing an increase in size and an increase in light loss. .
  • the light source device according to the second embodiment will be described below.
  • the light source device according to the second embodiment is a modification of the light source device according to the first embodiment, and matters not specifically described are the same as those in the first embodiment.
  • the light source device 21 of the second embodiment incorporates a transmissive light irradiation plate (phosphor wheel) 135.
  • a transmissive light irradiation plate phosphor wheel
  • the rear surface side of the light irradiation plate 135 becomes a light emission surface
  • an emission-side condenser lens 134 is provided in front of the light-irradiation plate 135 in addition to the incident-side condenser lens 34.
  • a fly-eye optical system 36, a polarization conversion unit 37, and a field lens 38 are sequentially arranged.
  • a second beam forming unit 131 is disposed between the condenser lens 134 and the fly-eye optical system 36.
  • the first beam forming unit 31 or the light irradiation plate 135 is for blue and green
  • the second beam forming unit 131 is for red.
  • the excitation light EL generated by the light irradiation plate 135 is not moved backward to the condenser lens 34 side, so that the phase difference plate 33 in FIG. 1 is unnecessary and is omitted, and the polarization dichroic mirror in FIG. Instead of 32, a dichroic mirror 132 that does not depend on polarization is used.
  • the irradiated object 41 provided on the light irradiation plate 135 is a transmission type phosphor wheel that emits fluorescence FL or the like to the opposite side of the laser array 51 that is a solid state light source.
  • the first area AR1 that generates the fluorescence FL by irradiation and the second area AR2 that selectively transmits the excitation light EL while being slightly scattered are provided.
  • the irradiated body 41 has a structure that is integrated with the substrate 35a and embedded in the substrate 35a.
  • the first region AR1 of the irradiated object 41 has a phosphor layer 71 extending perpendicularly to the optical axis SX, a light transmission layer 72, and a dichroic mirror 78 in the center of the substrate 35a or the excitation light source side.
  • the surface uneven structure 75 are sequentially stacked, and the light transmission layer 172 and the opposing uneven structure 175 are sequentially stacked on the counter-excitation light source side of the substrate 35a.
  • the surface uneven structure 75, the phosphor layer 71, the light transmission layer 72, and the light transmission layer 172 have the same functions as those in the first embodiment, and the description thereof is omitted.
  • the dichroic mirror 78 is a layer formed of a dielectric multilayer film.
  • the dichroic mirror 78 is disposed between the surface uneven structure 75 and the phosphor layer 71 and transmits the blue excitation light EL.
  • the formed fluorescence FL is reflected and emitted to the opposing uneven structure 175 side.
  • the opposing concavo-convex structure 175 is provided on the surface on the opposite side of the surface concavo-convex structure 75 and has an array of concavo-convex shapes corresponding to the array concavo-convex of the surface concavo-convex structure 75.
  • the optical element 75a of the surface concavo-convex structure 75 and the optical element 175a of the counter concavo-convex structure 175 have substantially the same shape and are arranged to face each other with a separation in the optical axis SX direction.
  • the vertex of the optical element 75a is disposed on the lattice point
  • the opposing uneven structure 175 the vertex of the optical element 175a is disposed on the lattice point
  • these optical elements 75a and 175a have the same pitch. It is arranged without deviation.
  • the excitation light EL that has passed through the condenser lens 34 is incident on the irradiated object 41 at an incident angle of 20 ° or less, and the aperture angle is small.
  • the excitation light EL incident on the surface uneven structure 75 of the irradiated body 41 is irradiated with a relatively narrow irradiation region (light emitting region) LA arranged in a lattice pattern in the phosphor layer 71 by the optical element 75a constituting the surface uneven structure 75. Is incident on.
  • the emission area also decreases as the excitation light EL enters the relatively narrow irradiation area (light emission area) LA in which the excitation light EL is dispersed.
  • the irradiation region (light emitting region) LA by narrowing the irradiation region (light emitting region) LA, it is easy to align the conditions for the fluorescence FL from the irradiation region (light emitting region) LA to enter the optical element 175a of the opposing concavo-convex structure 175, and pass through the optical element 175a.
  • the emission angle of the fluorescence FL emitted from the irradiated body 41 is relatively small.
  • the etendue can be reliably reduced with respect to the fluorescence FL among the illumination light L3 emitted from the light source device 21 through the condenser lens 134 and the like, and the use efficiency of the fluorescence FL, that is, the illumination light L3 by the reflective liquid crystal element 23 can be reduced. Can be easily increased.
  • the second area AR2 of the light irradiation plate 135 has a structure that diffuses and transmits the excitation light EL. Also in the second area AR2, the surface uneven structure 75 of the irradiated body 41 provided in the first area AR1 can be provided, and a diffuser layer can be arranged instead of the phosphor. In this case, the light distribution of the blue illumination component corresponding to the excitation light EL can be brought close to the light distribution of the fluorescence FL.
  • the diffuser layer is formed, for example, by dispersing dielectric powder having a refractive index different from that of the surroundings.
  • the light source device according to the embodiment has been described above, but the light source device according to the present invention is not limited to the above.
  • the specific configurations of the light source device 21, the projection optical system 26, and the like are not limited to those shown in the drawings, and can be changed as appropriate according to the application.
  • a digital micromirror device can be used in place of the reflective liquid crystal element 23.
  • a prism that guides illumination light to the DMD and guides the reflected light from the DMD to the projection optical system 26 may be disposed.
  • an LED array can be used instead of the laser array 51.
  • the polarization direction of light from the LED array can be aligned before entering the polarization dichroic mirror 32. desirable.
  • a transmissive liquid crystal element may be used instead of the reflective liquid crystal element 23.
  • the excitation light EL incident on the light irradiation plate (phosphor wheel) 35 is not limited to visible light but can be ultraviolet light or the like.
  • the irradiated object 41 generates blue light and green light. What is necessary is just to comprise.
  • the incident angle is within an angle of less than 0 °, the size of the array-like light emitting region can be sufficiently reduced, and the angle range when the fluorescence exits the light irradiation plate can be narrowed.
  • the irradiated object 41 provided on the light irradiation plate 135 is not particularly divided into regions. That is, the irradiated object 41 is configured only by the first region AR1 that generates the fluorescence FL. At this time, the first region AR1 absorbs a part of the excitation light and emits fluorescence, and at the same time, diffuses a part of the excitation light and reflects in the case of the first embodiment, and in the case of the second embodiment. Make it transparent. At this time, there may or may not be a drive device for rotating the wheel. In this case, the laser array 51 and the LED array 151 may be simultaneously driven to make the illumination light L3 white, and the reflective liquid crystal element 23 may be a type in which a color filter is provided for each pixel.
  • the optical element 75a having a polygonal pyramid shape may have a shape obtained by cutting the top, that is, a polygonal frustum or a truncated pyramid.
  • the conical optical element 75a as shown in FIG. 4C can also have a shape with the top cut off, that is, a truncated cone or truncated cone.
  • the optical element 75a constituting the surface uneven structure 75 and the optical element 175a constituting the opposing uneven structure 175 do not have to have the same shape, and, for example, a pyramid and a cone are arranged so as to face each other in the optical axis direction. These vertices are preferably arranged on the same straight line parallel to the optical axis direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

Provided is a light source device (21) generating blue laser beams (L1), red light-source beams (L2), and green fluorescent beams (FL). A reflective liquid crystal element (23) is irradiated with the blue laser beams (L1), the red light-source beams (L2), and the green fluorescent beams (FL), thereby emitting, as reflected light, video light (L4) corresponding to an image. An irregular surface structure having an array of irregularities is formed on a side, of a light-emitted board (35) of the light source device (21), on which excitation light beams (EL) are incident, and an incidence angle of the excitation light beams (EL) is set to be equal to or less than 20° with respect to a direction of a normal line of a phosphor layer.

Description

光源装置及び投影装置Light source device and projection device
 本発明は、投影装置に組み込まれる画像表示素子の照明に適する光源装置、及びかかる光源装置を組み込んだ投影装置に関する。 The present invention relates to a light source device suitable for illumination of an image display element incorporated in a projection device, and a projection device incorporating such a light source device.
 プロジェクターの光源として、近年LEDやレーザーダイオード(LD)といった固体光源が利用されるようになってきている。プロジェクターの光源としてはレッド(R)、グリーン(G)及びブルー(B)の3色を用いるのが通常だが、特にG光で所望の強度を有する光源が存在しない。これに対し、例えばB光を励起光として用いて、それを蛍光体に当てることで波長変換させてG光とする構成が用いられている(特許文献1~3参照)。具体的には、B光源からの励起光を蛍光体を含む蛍光体層を設けた発光ホイールに照射することでG光とし、励起によって得たG光を、B光等とともに液晶やDMDなどの画像表示素子に照射する構成によって、画像表示素子で形成された像が投影光学系を通してスクリーン上に投影される。その際スクリーンへの投影光をできるだけ効率的に明るく照らすことが望まれる。
 例えば特許文献1では、蛍光体層の励起光入射面において正四角錐等を2次元的に配列した凹凸構造が形成されており、蛍光体層内で励起光を拡散させることによって広範囲に行き渡らせて、励起光の利用効率を高めようとしている。一方、特許文献2でも、蛍光体層の励起光入射面において逆正四角錐の凹部を2次元的に配列した凹凸構造が形成されており、蛍光体層内で励起光の密度を低下させることによって、蛍光体粒子の温度上昇や光飽和現象を低減しようとしている。
In recent years, solid-state light sources such as LEDs and laser diodes (LDs) have come to be used as light sources for projectors. Normally, three colors of red (R), green (G), and blue (B) are used as the light source of the projector, but there is no light source having a desired intensity particularly with G light. On the other hand, for example, a configuration is used in which B light is used as excitation light and wavelength conversion is performed by applying it to a phosphor to obtain G light (see Patent Documents 1 to 3). Specifically, G light is emitted by irradiating excitation light from a B light source onto a light-emitting wheel provided with a phosphor layer containing a phosphor, and G light obtained by excitation is used together with B light or the like for liquid crystal, DMD, or the like. The image formed by the image display element is projected on the screen through the projection optical system by the configuration in which the image display element is irradiated. At that time, it is desirable to illuminate the projection light onto the screen as brightly as possible.
For example, in Patent Document 1, a concavo-convex structure in which regular quadrangular pyramids and the like are two-dimensionally arranged is formed on the excitation light incident surface of the phosphor layer, and the excitation light is diffused in the phosphor layer to spread over a wide range. , Trying to increase the utilization efficiency of excitation light. On the other hand, Patent Document 2 also has a concavo-convex structure in which the concave portions of the inverse regular quadrangular pyramids are two-dimensionally arranged on the excitation light incident surface of the phosphor layer. It is trying to reduce the temperature rise and light saturation phenomenon of phosphor particles.
 ところで、スクリーン上の投影像を明るくするために、画像表示素子に所望の角度以下で蛍光が入射するよう、蛍光のエタンデュを小さくすることが望ましい。蛍光のエタンデュを小さくするには、蛍光体層での励起光のスポットを小さくするのが一つの方法である。その場合、通常は蛍光体層から放射される蛍光がランバーシャン分布となり、蛍光体層が延びる発光面の法線に対して大きい角度に放射された光をレンズ等の光学素子によって取り込むのは容易でなく、光学素子が大型化してしまう、あるいは光損失が増加してしまう。
 また、特許文献3のように光射出側に凹凸構造を設ける手法は、必ずしも指向性を大きく高めたものとなっておらず、蛍光を固体光源側に戻す反射型の発光ホイールにそのまま適用することができないという問題もある。
By the way, in order to brighten the projected image on the screen, it is desirable to reduce the fluorescence etendue so that the fluorescence is incident on the image display element at a desired angle or less. One method for reducing the etendue of fluorescence is to reduce the spot of excitation light on the phosphor layer. In that case, the fluorescence emitted from the phosphor layer usually has a Lambertian distribution, and it is easy to capture light emitted at a large angle with respect to the normal of the light emitting surface where the phosphor layer extends by an optical element such as a lens. In addition, the optical element is increased in size or the optical loss is increased.
In addition, the method of providing a concavo-convex structure on the light emission side as in Patent Document 3 does not necessarily improve the directivity, and is applied as it is to a reflective light emitting wheel that returns fluorescence to the solid light source side. There is also a problem that cannot be done.
特開2012-68465号公報JP 2012-68465 A 特開2012-93454号公報JP 2012-93454 A 特開2012-27052号公報JP 2012-27052 A
 本発明は、大型化や光損失の増加を防止しつつエタンデュを小さくすることができる光源装置、及びかかる光源装置を組み込んだ投影装置を提供することを目的とする。 It is an object of the present invention to provide a light source device that can reduce etendue while preventing an increase in size and an increase in light loss, and a projection device incorporating such a light source device.
 上記目的を達成するため、本発明に係る投影装置用の光源装置は、励起光を射出する励起光源と、励起光が照射されることによって蛍光を放射する蛍光体層を有する光照射板と、を備え、光照射板のうち、励起光が入射する側の表面には、アレイ状の凹凸を有する表面凹凸構造が形成され、光照射板への励起光の入射角度は、蛍光体層の法線方向に対して20°以下である。 In order to achieve the above object, a light source device for a projection apparatus according to the present invention includes an excitation light source that emits excitation light, a light irradiation plate that includes a phosphor layer that emits fluorescence when irradiated with excitation light, and A surface uneven structure having an array of unevenness is formed on the surface of the light irradiation plate on which the excitation light is incident, and the incident angle of the excitation light to the light irradiation plate is determined by the method of the phosphor layer It is 20 degrees or less with respect to the line direction.
 上記光源装置によれば、光照射板の励起光が入射する側の表面にアレイ状の凹凸を有する表面凹凸構造が形成されているので、励起光を分散させつつ蛍光体層に集光させることでアレイ状の発光領域を形成することができる。また、励起光をアレイ状の発光領域に集光させる際に励起光の入射角度を蛍光体層の法線方向に対して20°以下とすることにより、アレイ状の発光領域の大きさを小さくでき、蛍光が光照射板を射出する際の角度範囲を狭くできるので、大型化や光損失の増加を防止しつつエタンデュを確実に小さくすることができる。 According to the light source device, since the surface uneven structure having the array of unevenness is formed on the surface of the light irradiation plate on the side where the excitation light is incident, the excitation light is condensed and condensed on the phosphor layer. Thus, an array of light emitting regions can be formed. In addition, when the excitation light is condensed on the array-shaped light emitting region, the incident angle of the excitation light is set to 20 ° or less with respect to the normal direction of the phosphor layer, thereby reducing the size of the array-shaped light emitting region. In addition, since the angle range when the fluorescence is emitted from the light irradiation plate can be narrowed, the etendue can be reliably reduced while preventing an increase in size and an increase in light loss.
 本発明に係る投影装置は、上述の光源装置と、光源装置によって照明される画像表示素子と、画像表示素子により形成される像を投影する投影光学系と、を有する。この場合、画像表示素子を照明する蛍光のエタンデュを小さくできる小型で効率的な光源装置を用いており、画像表示素子における光利用効率を高めることができ、小型で明るい投影装置を提供することができる。 A projection device according to the present invention includes the above-described light source device, an image display element illuminated by the light source device, and a projection optical system that projects an image formed by the image display element. In this case, a small and efficient light source device that can reduce the etendue of fluorescence that illuminates the image display element is used, and the light use efficiency in the image display element can be increased, and a small and bright projection device can be provided. it can.
第1実施形態に係る投影装置用の光源装置を含む投影装置を説明する図である。It is a figure explaining the projection apparatus containing the light source device for projection apparatuses which concerns on 1st Embodiment. コンデンサーレンズによる集光等を説明する拡大断面図である。It is an expanded sectional view explaining the condensing etc. by a condenser lens. 図3Aは、図1に示す光源装置に組み込まれた光照射板の一例を説明する図であり、図3Bは、光照射板の第1領域の断面構造を説明する図であり、図3Cは、光照射板の第2領域の断面構造を説明する図である。3A is a diagram for explaining an example of a light irradiation plate incorporated in the light source device shown in FIG. 1, FIG. 3B is a diagram for explaining a cross-sectional structure of a first region of the light irradiation plate, and FIG. It is a figure explaining the cross-section of the 2nd area | region of a light irradiation plate. 図4A~4Cは、光照射板の表面に設けた表面凹凸構造を構成する光学要素の形状を説明する概念的な斜視図であり、図4Dは、表面凹凸構造を構成する光学要素の形状を説明する概念的な断面図である。4A to 4C are conceptual perspective views for explaining the shape of the optical element constituting the surface uneven structure provided on the surface of the light irradiation plate, and FIG. 4D shows the shape of the optical element constituting the surface uneven structure. It is a conceptual sectional view to explain. 蛍光体層周辺での光の進行を説明する拡大断面図である。It is an expanded sectional view explaining advancing of the light around a fluorescent substance layer. 第2実施形態に係る投影装置用の光源装置等を説明する図である。It is a figure explaining the light source device etc. for projectors concerning a 2nd embodiment. 図7A及び7Bは、図6に示す光源装置に組み込まれた光照射板の構造を説明する図である。7A and 7B are diagrams illustrating the structure of the light irradiation plate incorporated in the light source device shown in FIG.
 〔第1実施形態〕
 以下、図面を参照しつつ、本発明に係る第1実施形態の投影装置用の光源装置を組み込んだ投影装置について説明する。
[First Embodiment]
Hereinafter, a projection apparatus incorporating a light source device for a projection apparatus according to a first embodiment of the present invention will be described with reference to the drawings.
 図1に示すように、第1実施形態に係る投影装置2は、多様な映像信号に対応する画像の投影を可能にするものであり、光源装置21、偏光ビームスプリッター22、反射型液晶素子23、投影光学系26、及び映像駆動回路25を備える。 As shown in FIG. 1, the projection device 2 according to the first embodiment enables projection of images corresponding to various video signals, and includes a light source device 21, a polarization beam splitter 22, and a reflective liquid crystal element 23. A projection optical system 26 and a video drive circuit 25.
 光源装置21は、第1ビーム形成部31と、第2ビーム形成部131と、偏光ダイクロイックミラー32と、位相差板33と、コンデンサーレンズ34と、光照射板35と、フライアイ光学系36と、偏光変換部37と、フィールドレンズ38とを備える。第1ビーム形成部31は、略平行な第1の波長のレーザー光L1を射出し、第2ビーム形成部131は、略平行な第2の波長の光源光L2を射出する。偏光ダイクロイックミラー32は、レーザー光L1の光路から蛍光FLの光路を分岐するとともに光源光L2を透過させる。位相差板33は、レーザー光L1の偏光状態を変化させ、コンデンサーレンズ34は、レーザー光L1を励起光ELとして被照射体41中に集光するとともに被照射体41からの蛍光FL等を略平行な光線として取り出す。光照射板35は、励起光ELから蛍光FLを生成するとともに励起光ELを反射する被照射体41を有する蛍光体ホイールである。フライアイ光学系36は、偏光ダイクロイックミラー32から射出されたレーザー光L1、光源光L2及び蛍光FLのそれぞれの照明光L3の強度を均一化し、偏光変換部37は、偏光ダイクロイックミラー32から射出された照明光L3の偏光方向を揃え、フィールドレンズ38は、照明光L3の反射型液晶素子23への入射角度を調整する。 The light source device 21 includes a first beam forming unit 31, a second beam forming unit 131, a polarization dichroic mirror 32, a phase difference plate 33, a condenser lens 34, a light irradiation plate 35, and a fly-eye optical system 36. , A polarization conversion unit 37 and a field lens 38. The first beam forming unit 31 emits laser light L1 having a substantially parallel first wavelength, and the second beam forming unit 131 emits light source light L2 having a substantially parallel second wavelength. The polarization dichroic mirror 32 branches the optical path of the fluorescence FL from the optical path of the laser light L1 and transmits the light source light L2. The phase difference plate 33 changes the polarization state of the laser light L1, and the condenser lens 34 condenses the laser light L1 as the excitation light EL in the irradiated body 41 and substantially reduces the fluorescence FL from the irradiated body 41. Take out as parallel rays. The light irradiation plate 35 is a phosphor wheel having an irradiated body 41 that generates fluorescence FL from the excitation light EL and reflects the excitation light EL. The fly-eye optical system 36 equalizes the intensity of the illumination light L3 of the laser light L1, the light source light L2, and the fluorescence FL emitted from the polarization dichroic mirror 32, and the polarization conversion unit 37 is emitted from the polarization dichroic mirror 32. The field lens 38 adjusts the incident angle of the illumination light L3 to the reflective liquid crystal element 23 by aligning the polarization direction of the illumination light L3.
 偏光ビームスプリッター(PBS)22は、偏光方向に応じて光路を分岐するビームスプリッターである。偏光ビームスプリッター22は、一対の直角プリズムを貼り合わせたものであり、貼合わせ面において、一方の直角プリズムの斜面には、光源装置21から入射した所定方向の直線偏光である照明光L3を選択的に反射させる偏光分離膜からなる偏光分離面22aが形成されている。これにより、光源装置21から射出された照明光L3を反射し、後述する反射型液晶素子23に入射させることができる。また、この反射型液晶素子23で反射された映像光L4を透過させ、投影光学系26に入射させることができる。なお、偏光分離面22aは、これを基準とするS偏光を反射しP偏光を透過させるものとなっている。 The polarization beam splitter (PBS) 22 is a beam splitter that branches an optical path according to the polarization direction. The polarization beam splitter 22 is obtained by bonding a pair of right-angle prisms. On the bonding surface, the illumination light L3 that is linearly polarized light in a predetermined direction incident from the light source device 21 is selected on the inclined surface of one right-angle prism. A polarization separation surface 22a made of a polarization separation film that reflects light is formed. Thereby, the illumination light L3 emitted from the light source device 21 can be reflected and incident on a reflective liquid crystal element 23 described later. Further, the image light L 4 reflected by the reflective liquid crystal element 23 can be transmitted and incident on the projection optical system 26. The polarization separation surface 22a reflects S-polarized light based on this and transmits P-polarized light.
 反射型液晶素子23は、映像光L4を形成する表示パネルすなわち画像表示素子であり、特に空間的な反射率を変化させることによって照明光L3から映像光L4を形成する点でライトバルブ又は空間光変調素子と言える。反射型液晶素子(画像表示素子)23は、板状の電子部品である画像表示パネルからなる。この反射型液晶素子23は、LCOS(liquid crystal on silicon)とも称されるマイクロディスプレイであり、シリコンチップの表面に直接回路が形成され対向基板との間に液晶層を挟み込んだものである。反射型液晶素子23は、液晶層に対し駆動信号に応じた電圧が画素毎に印加されると、液晶分子の配列を変化させることで照明光L3を変調し、反射によって所望の画像を表示するものである。この際、偏光分離面22aを基準とするS偏光を照明光L3として反射型液晶素子23に入射させる場合、偏光分離面22aを基準とするP偏光が映像光L4として反射される。 The reflective liquid crystal element 23 is a display panel that forms the image light L4, that is, an image display element, and particularly a light valve or a spatial light in that the image light L4 is formed from the illumination light L3 by changing the spatial reflectance. It can be said that it is a modulation element. The reflective liquid crystal element (image display element) 23 includes an image display panel that is a plate-like electronic component. The reflection type liquid crystal element 23 is a micro display also called LCOS (liquid crystal on silicon), in which a circuit is directly formed on the surface of a silicon chip and a liquid crystal layer is sandwiched between a counter substrate. When a voltage corresponding to a drive signal is applied to the liquid crystal layer for each pixel, the reflective liquid crystal element 23 modulates the illumination light L3 by changing the arrangement of liquid crystal molecules, and displays a desired image by reflection. Is. At this time, when S-polarized light with the polarization separation surface 22a as a reference is incident on the reflective liquid crystal element 23 as illumination light L3, P-polarized light with the polarization separation surface 22a as a reference is reflected as video light L4.
 投影光学系26は、詳細な説明を省略するが、画像表示素子である反射型液晶素子23から得られる像を拡大してスクリーンその他の被投影体(不図示)に投影する。投影光学系26は、複数のレンズ群及び/又は反射面からなり、一部のレンズ群を光軸SX方向に移動させることにより、フォーカシングや変倍を行わせることができる。 Although the detailed description is omitted, the projection optical system 26 enlarges and projects an image obtained from the reflective liquid crystal element 23 that is an image display element onto a screen or other projection target (not shown). The projection optical system 26 includes a plurality of lens groups and / or reflecting surfaces, and focusing and zooming can be performed by moving some lens groups in the direction of the optical axis SX.
 映像駆動回路25は、コンピューター等の端末機器を含む種々のコンテンツ・ソース(不図示)から入力された映像信号に基づいて反射型液晶素子23及び光照射板35の駆動部39を動作させ或いは連動する回路部分である。映像駆動回路25は、制御回路28からの制御信号に基づいて動作し、反射型液晶素子23に映像信号に対応する駆動信号を出力し画像の表示動作を行わせる。この際、映像駆動回路25は、制御回路28を介して光照射板35の回転位置を監視しており、光照射板35の回転に対応してレーザーアレイ51、LEDアレイ151の発光動作を制御しつつ、反射型液晶素子23の表示動作を順次射出される青色光及び緑色光と、赤色光とに同期させて、反射型液晶素子23に各色の表示動作を行わせる。 The video drive circuit 25 operates or interlocks the drive unit 39 of the reflective liquid crystal element 23 and the light irradiation plate 35 based on video signals input from various content sources (not shown) including terminal devices such as computers. It is a circuit part to do. The video drive circuit 25 operates based on a control signal from the control circuit 28, and outputs a drive signal corresponding to the video signal to the reflective liquid crystal element 23 to perform an image display operation. At this time, the video drive circuit 25 monitors the rotational position of the light irradiation plate 35 via the control circuit 28, and controls the light emission operation of the laser array 51 and the LED array 151 corresponding to the rotation of the light irradiation plate 35. However, the display operation of the reflective liquid crystal element 23 is synchronized with the sequentially emitted blue light, green light, and red light, and the reflective liquid crystal element 23 performs the display operation of each color.
 以下、光源装置21について、その構成要素、機能、動作等を説明する。まず、第1ビーム形成部31は、レーザーアレイ51と、コリメーターアレイ52と、ビーム縮小レンズ53とを含む。ここで、レーザーアレイ51は、個体光源であり、被照射体41に組み込まれた蛍光体層71(図3B参照)に対する励起光源であるとともに、青色用の照明光源ともなっている。レーザーアレイ(励起光源)51は、励起光ELとして青色のレーザー光L1を射出するレーザーダイオード(以下、LDとも呼ぶ)を2次元的に配列することによって構成されたものであり、偏光方向の揃った光を射出する。なお、レーザー光L1は、偏光ダイクロイックミラー32を基準とするP偏光を射出する。コリメーターアレイ52は、レーザーアレイ51を構成する多数のLDに対応して多数のレンズ素子を含む。コリメーターアレイ52は、レーザーアレイ51を構成する各LDから射出されたレーザー光L1を略平行光線とする。ビーム縮小レンズ53は、正及び負レンズを組み合わせたアフォーカル系であり、レーザー光L1を略平行光線のままにしてその光線径を減少させ、所望の断面積を有する励起光ELとする。ビーム縮小レンズ53は、ビーム径を比較的小さく絞るものであり、偏光ダイクロイックミラー32の一辺の数分の1程度に設定された辺を有する中央矩形領域又は同サイズの直径を有する中央円形領域程度に励起光ELのビーム径を減少させるものとなっている。つまり、青色のレーザー光L1のビーム径は、後述する赤色の光源光L2のビーム径の数分の1程度となっている。なお、青色のレーザー光L1は、後述するコンデンサーレンズ34の入射瞳において小さなビーム径をもてばよいので、ビーム縮小レンズ53に正のパワーをもたせることで、コンデンサーレンズ34へ伝播するレーザー光が徐々に収束するようにしてもよい。この場合、ビーム縮小レンズは1枚でも構成できる。 Hereinafter, the components, functions, operations, and the like of the light source device 21 will be described. First, the first beam forming unit 31 includes a laser array 51, a collimator array 52, and a beam reduction lens 53. Here, the laser array 51 is an individual light source, and is an excitation light source for the phosphor layer 71 (see FIG. 3B) incorporated in the irradiated body 41 and also an illumination light source for blue. The laser array (excitation light source) 51 is configured by two-dimensionally arranging laser diodes (hereinafter also referred to as LDs) that emit blue laser light L1 as excitation light EL, and has a uniform polarization direction. Emit light. The laser beam L1 emits P-polarized light with the polarization dichroic mirror 32 as a reference. The collimator array 52 includes a number of lens elements corresponding to the number of LDs constituting the laser array 51. The collimator array 52 converts the laser light L1 emitted from each LD constituting the laser array 51 into a substantially parallel light beam. The beam reduction lens 53 is an afocal system in which a positive lens and a negative lens are combined, and the laser beam L1 is left as a substantially parallel beam, the beam diameter is decreased, and the excitation beam EL having a desired cross-sectional area is obtained. The beam contraction lens 53 is for narrowing the beam diameter relatively small, and has a central rectangular area having sides set to about a fraction of one side of the polarization dichroic mirror 32 or a central circular area having the same size diameter. In addition, the beam diameter of the excitation light EL is reduced. That is, the beam diameter of the blue laser light L1 is about a fraction of the beam diameter of the red light source light L2 described later. Since the blue laser light L1 only needs to have a small beam diameter at the entrance pupil of the condenser lens 34, which will be described later, the laser light propagating to the condenser lens 34 can be obtained by giving the beam reducing lens 53 positive power. You may make it converge gradually. In this case, a single beam reduction lens can be configured.
 第2ビーム形成部131は、LEDアレイ151と、コリメーターアレイ52と、ビーム縮小レンズ153とを含む。ここで、LEDアレイ151は、赤色の光源光L2を射出するLEDを2次元的に配列することによって構成されたものである。なお、LEDアレイ151は、アレイでなく発光が大きな面積のLEDを用いてもよい。また、第2ビーム形成部131は、偏光変換部を組み込むことやLDに置き換えることにより、光源光L2として、偏光ダイクロイックミラー32を基準とするP偏光又はS偏光を射出するものとできる。コリメーターアレイ52は、LEDアレイ151を構成する多数のLEDに対応して多数のレンズ素子を含み、各LEDから射出された光源光L2を略平行光線とする。ビーム縮小レンズ153は、光源光L2を略平行光線にする。 The second beam forming unit 131 includes an LED array 151, a collimator array 52, and a beam reduction lens 153. Here, the LED array 151 is configured by two-dimensionally arranging LEDs that emit the red light source light L2. The LED array 151 may be an LED having a large light emission area instead of the array. Further, the second beam forming unit 131 can emit P-polarized light or S-polarized light with the polarization dichroic mirror 32 as a reference as the light source light L2 by incorporating a polarization conversion unit or replacing it with an LD. The collimator array 52 includes a large number of lens elements corresponding to the large number of LEDs constituting the LED array 151, and the light source light L2 emitted from each LED is set as a substantially parallel light beam. The beam reduction lens 153 changes the light source light L2 into a substantially parallel light beam.
 偏光ダイクロイックミラー32は、励起光源を含むビーム形成部31と光照射板35との間に配置されており、蛍光を励起光の光路から分岐するビームスプリッターに相当する。より詳細には、偏光ダイクロイックミラー32は、P偏光を透過させるとともにS偏光を選択的に反射する偏光分離ミラーとしての機能と、青色光及び赤色光を透過させるとともにこれらの間の波長を有する緑色光を選択的に反射するダイクロイックミラーとしての機能とを有する。偏光ダイクロイックミラー32は、平行平板の片面に誘電体多層膜32aを形成したものであり、ビーム形成部31からの青色の励起光ELとビーム形成部131からの赤色の光源光L2とをそのまま透過させるとともに、被照射体41側からの青色光及び緑色光を反射してフィールドレンズ38側に反射する。つまり、偏光ダイクロイックミラー32は、特定方向の偏光である青色光を透過及び反射の別によって光路的に分岐する。また、この偏光ビームスプリッター22により、蛍光FLが励起光源である第1ビーム形成部31に戻ることを防止して所望の光路に導くことができる。具体的には、偏光ダイクロイックミラー32は、P偏光である励起光ELを透過させ、位相差板33と組み合わせて用いられることで被照射体41側から励起に利用されず青色光のままで逆行して来たS偏光を反射して蛍光FLの光路にある偏光変換部37に導く。また、偏光ダイクロイックミラー32は、励起光ELで照明されて被照射体41で発生した緑色光すなわち蛍光FLを反射して偏光変換部37に導く。以上により、励起光源であるレーザーアレイ51から得た青色光を無駄なく利用することができる。 The polarization dichroic mirror 32 is disposed between the beam forming unit 31 including the excitation light source and the light irradiation plate 35, and corresponds to a beam splitter that branches fluorescence from the optical path of the excitation light. More specifically, the polarization dichroic mirror 32 functions as a polarization separation mirror that transmits P-polarized light and selectively reflects S-polarized light, and green light that transmits blue light and red light and has a wavelength therebetween. A dichroic mirror that selectively reflects light. The polarization dichroic mirror 32 is formed by forming a dielectric multilayer film 32a on one side of a parallel plate, and transmits the blue excitation light EL from the beam forming unit 31 and the red light source light L2 from the beam forming unit 131 as they are. In addition, blue light and green light from the irradiated body 41 side are reflected and reflected to the field lens 38 side. In other words, the polarization dichroic mirror 32 branches blue light, which is polarized light in a specific direction, on the optical path depending on transmission and reflection. Further, the polarization beam splitter 22 can prevent the fluorescence FL from returning to the first beam forming unit 31 that is an excitation light source and guide it to a desired optical path. Specifically, the polarization dichroic mirror 32 transmits the excitation light EL that is P-polarized light, and is used in combination with the phase difference plate 33 so that it is not utilized for excitation from the irradiated body 41 side and remains in the blue light. The reflected S-polarized light is reflected and guided to the polarization conversion unit 37 in the optical path of the fluorescence FL. Further, the polarization dichroic mirror 32 reflects the green light, that is, the fluorescence FL, which is illuminated with the excitation light EL and is generated by the irradiated body 41, and guides it to the polarization conversion unit 37. As described above, the blue light obtained from the laser array 51 as the excitation light source can be used without waste.
 位相差板33は、複屈折性の材料からなる1/4波長板である。位相差板33は、その配置により偏光ダイクロイックミラー32を通過したP偏光の励起光ELを透過させてP偏光から円偏光とする。また、位相差板33は被照射体41側から戻ってきた青色光すなわち励起光ELを透過させて円偏光からS偏光とする。これにより、位相差板33を経て被照射体41側から戻ってきた青色光すなわち励起光ELは、偏光ダイクロイックミラー32で殆ど反射され、偏光変換部37に効率的に導かれる。 The retardation film 33 is a quarter wave plate made of a birefringent material. The phase difference plate 33 transmits the P-polarized excitation light EL that has passed through the polarization dichroic mirror 32 according to the arrangement, and changes the P-polarized light to circularly-polarized light. Further, the phase difference plate 33 transmits the blue light that has returned from the irradiated object 41 side, that is, the excitation light EL, and changes from circularly polarized light to S-polarized light. As a result, the blue light, that is, the excitation light EL that has returned from the irradiated object 41 side through the phase difference plate 33 is almost reflected by the polarization dichroic mirror 32 and efficiently guided to the polarization conversion unit 37.
 コンデンサーレンズ34は、偏光ダイクロイックミラー32を通過したレーザー光L1を励起光ELとして被照射体41の蛍光体層71(図3B参照)に集光するように蛍光体層71に導く。このコンデンサーレンズに34より、光照射板35に入射させる励起光ELの入射角度を調整することができる。また、コンデンサーレンズ34は、被照射体41で発生した緑色光すなわち蛍光FLを集めて偏光ダイクロイックミラー32に導く。コンデンサーレンズ34は、被照射体41において蛍光体層71とは別に設けられた後述する散乱性の反射面で反射された励起光ELすなわち青色光を集めて偏光ダイクロイックミラー32に導く役割も有する。なお、コンデンサーレンズ34は、単独のレンズで構成されるものに限らず、複数のレンズでも構成可能である。 The condenser lens 34 guides the laser beam L1 that has passed through the polarization dichroic mirror 32 to the phosphor layer 71 so as to be focused on the phosphor layer 71 (see FIG. 3B) of the irradiated body 41 as excitation light EL. The incident angle of the excitation light EL incident on the light irradiation plate 35 can be adjusted by the condenser lens 34. The condenser lens 34 collects the green light generated from the irradiated object 41, that is, the fluorescence FL, and guides it to the polarization dichroic mirror 32. The condenser lens 34 also has a role of collecting excitation light EL, that is, blue light reflected by a scattering reflecting surface, which will be described later, provided separately from the phosphor layer 71 in the irradiated object 41 and guiding it to the polarization dichroic mirror 32. Note that the condenser lens 34 is not limited to a single lens, and may be configured with a plurality of lenses.
 図2に示すように、励起光ELは、図1に示すビーム縮小レンズ53によって比較的ビーム径を小さく絞られた状態でコンデンサーレンズ34の入射瞳の中央領域のみに入射するので、コンデンサーレンズ34を経た励起光ELの光照射板35の被照射体41への入射角度θは、被照射体41又はその蛍光体層71(図3B参照)の法線方向(光軸SX方向)に対して最大で20°つまり20°以下となっている。一方、光照射板35の被照射体41からの蛍光FLについては、コンデンサーレンズ34全体を利用できるので、被照射体41からの蛍光FLの射出角度θ'は、被照射体41の法線方向(光軸SX方向)に対して20°~50°以下となっている。つまり、コンデンサーレンズ34によって被照射体41に入射させる励起光ELの開口角は、コンデンサーレンズ34によって取り込まれる被照射体41からの蛍光FLの開口角よりも十分小さく、往路と復路とで不均衡な用い方をする。 As shown in FIG. 2, the excitation light EL is incident only on the central region of the entrance pupil of the condenser lens 34 with the beam diameter being relatively reduced by the beam reduction lens 53 shown in FIG. The incident angle θ of the excitation light EL having passed through the light irradiation plate 35 to the irradiated object 41 is relative to the normal direction (optical axis SX direction) of the irradiated object 41 or the phosphor layer 71 (see FIG. 3B). The maximum is 20 °, that is, 20 ° or less. On the other hand, since the entire condenser lens 34 can be used for the fluorescence FL from the irradiated body 41 of the light irradiation plate 35, the emission angle θ ′ of the fluorescent FL from the irradiated body 41 is the normal direction of the irradiated body 41. It is 20 ° to 50 ° or less with respect to (optical axis SX direction). That is, the opening angle of the excitation light EL that is incident on the irradiated object 41 by the condenser lens 34 is sufficiently smaller than the opening angle of the fluorescence FL from the irradiated object 41 that is taken in by the condenser lens 34, and is imbalanced between the forward path and the return path. How to use
 図3Aに示すように、光照射板35は、円板状の基板35a上に環状の被照射体41を固定したものであり、図1に示す駆動部39に駆動されて軸RXのまわりに定速で回転する。被照射体41は、励起光ELの照射によって蛍光を発生する第1領域AR1と、励起光ELを若干散乱させつつ反射する散乱面である第2領域AR2とを有する。被照射体41の第1領域AR1では、励起光ELの吸収によって、それより波長の長い蛍光FLを生成する。すなわち、第1領域AR1において青色の励起光ELの入射する局所的に光入射領域IAからは、緑色の蛍光FLが図2に示すコンデンサーレンズ34側に射出される。また、第2領域AR2からは、青色光が若干散乱されつつ反射されて図2に示すコンデンサーレンズ34側に射出される。なお、第2領域AR2では、偏光状態をあまり変化させないことが望ましい。 As shown in FIG. 3A, the light irradiation plate 35 is obtained by fixing an annular irradiated body 41 on a disk-shaped substrate 35a, and is driven by a drive unit 39 shown in FIG. 1 around an axis RX. Rotates at a constant speed. The irradiated body 41 includes a first area AR1 that generates fluorescence when irradiated with the excitation light EL, and a second area AR2 that is a scattering surface that reflects the excitation light EL while being slightly scattered. In the first region AR1 of the irradiation object 41, fluorescence FL having a longer wavelength is generated by absorption of the excitation light EL. That is, in the first area AR1, the green fluorescent light FL is emitted from the light incident area IA where the blue excitation light EL is incident locally toward the condenser lens 34 shown in FIG. Further, from the second area AR2, the blue light is reflected while being slightly scattered and is emitted toward the condenser lens 34 shown in FIG. In the second region AR2, it is desirable not to change the polarization state so much.
 レーザーアレイ51、LEDアレイ151の発光は、制御回路28により、例えば以下のように制御される。図3Aに示すように、コンデンサーレンズ34に対向する位置つまり光入射領域IAが、第1領域AR1の途中から第2領域AR2の途中までの領域(図において時計の1時から5時の範囲に相当し、符号Rで示す1/3の領域)に配置される場合、LEDアレイ151から赤色の光源光L2を射出させ、それ以外の領域(図において時計の5時から1時の範囲に相当し、符号Bで示す2/3の領域)では、レーザーアレイ51から青色のレーザー光L1を射出させる。 The light emission of the laser array 51 and the LED array 151 is controlled by the control circuit 28 as follows, for example. As shown in FIG. 3A, the position facing the condenser lens 34, that is, the light incident area IA is an area from the middle of the first area AR1 to the middle of the second area AR2 (in the range from 1 o'clock to 5 o'clock in the figure). In the case of being arranged in the 1/3 area indicated by the symbol R), the red light source light L2 is emitted from the LED array 151, and other areas (corresponding to the range from 5 o'clock to 1 o'clock in the figure) In the region 2/3 indicated by reference character B), the blue laser light L1 is emitted from the laser array 51.
 このように制御することで青、緑、赤の光束を時系列的にそれぞれフィールドレンズ38へ導くことができる。より具体的には、青色のレーザー光L1が第2領域AR2を照射している状態(図3Aで符号Rで示す領域を除く)では、青色光がフィールドレンズ38に導かれ、青色のレーザー光L1が第1領域AR1を照射している状態(図3Aで符号Rで示す領域を除く)では、緑色光がフィールドレンズ38に導かれる。また、LEDアレイ151からの赤色の光源光L2は、青色光や緑色光とは異なるタイミングで光照射板35とは無関係の光路からの赤色光としてフィールドレンズ38に導かれる。この結果、光照射板35が例えば時計方向に回転する場合、緑、青、及び赤の順で、光源装置21から照明光L3が射出される。 By controlling in this way, it is possible to guide the blue, green and red luminous fluxes to the field lens 38 in time series. More specifically, in a state where the blue laser light L1 irradiates the second area AR2 (except for the area indicated by the symbol R in FIG. 3A), the blue light is guided to the field lens 38, and the blue laser light is emitted. In a state where L1 irradiates the first area AR1 (excluding the area indicated by the symbol R in FIG. 3A), the green light is guided to the field lens 38. The red light source light L2 from the LED array 151 is guided to the field lens 38 as red light from an optical path unrelated to the light irradiation plate 35 at a timing different from that of blue light or green light. As a result, when the light irradiation plate 35 rotates, for example, in the clockwise direction, the illumination light L3 is emitted from the light source device 21 in the order of green, blue, and red.
 なお、発光制御に関しては、これに限らず、被照射体41の1回転の間はレーザーアレイ51から青色のレーザー光L1を射出させ、次の1回転中にLEDアレイ151から赤色の光源光L2を射出させてもよい。 Note that the light emission control is not limited to this, and the blue laser light L1 is emitted from the laser array 51 during one rotation of the irradiated object 41, and the red light source light L2 is emitted from the LED array 151 during the next one rotation. May be injected.
 図3Bに示すように、被照射体41は、図3Aに示す第1領域AR1において、中央に平坦な蛍光体層71を有するとともに、蛍光体層71を励起光源側及び反励起光源側から挟むように一対の光透過層72,73を有する。これら光透過層72,73の外側には、表面凹凸構造75と、反射層76とが設けられている。光透過層72と表面凹凸構造75は一体で形成されていてもよい。 As shown in FIG. 3B, the irradiated body 41 has a flat phosphor layer 71 in the center in the first region AR1 shown in FIG. 3A, and sandwiches the phosphor layer 71 from the excitation light source side and the counter excitation light source side. Thus, it has a pair of light transmission layers 72 and 73. On the outside of these light transmission layers 72 and 73, a surface uneven structure 75 and a reflective layer 76 are provided. The light transmission layer 72 and the surface concavo-convex structure 75 may be integrally formed.
 蛍光体層71は、薄い平坦層であり、光軸SXに垂直な面に沿って平板状に延びる。蛍光体層71は、蛍光体粒子と、かかる蛍光体粒子を固定するバインダー材とで構成される。蛍光体層71を構成する蛍光体粒子は、励起光ELに対応する波長の光が入射したときに、例えば緑色の波長の光として500nmから560nmにピーク波長がある蛍光発光を行える蛍光体である。具体的には、蛍光体層71を構成する蛍光体粒子として、セリウム賦活イットリウムアルミニウムガーネット(YAG:Ce)(この蛍光体の結晶母体の代表的な化学組織はY(Al,Ga)12)、セリウム賦活ルテチウム・アルミニウム・ガーネット(LuAG:Ce)、又はβサイアロン蛍光体等を用いることができる。 The phosphor layer 71 is a thin flat layer and extends in a flat plate shape along a plane perpendicular to the optical axis SX. The phosphor layer 71 is composed of phosphor particles and a binder material that fixes the phosphor particles. The phosphor particles constituting the phosphor layer 71 are phosphors capable of emitting fluorescence having a peak wavelength from 500 nm to 560 nm, for example, as green wavelength light when light having a wavelength corresponding to the excitation light EL is incident. . Specifically, as phosphor particles constituting the phosphor layer 71, cerium activated yttrium aluminum garnet (YAG: Ce) (a typical chemical structure of the crystal matrix of this phosphor is Y 3 (Al, Ga) 3 O 12 ), cerium activated lutetium aluminum garnet (LuAG: Ce), β sialon phosphor, or the like can be used.
 表面凹凸構造75は、アレイ状の凹凸を有しており、同一形状を有する複数の微小な光学要素75aの集合体である。表面凹凸構造75を構成する各光学要素75aは、例えば図4Aに示すように四角錐状であり、傾斜面である表面75sに入射した励起光ELに対して集光作用を有する。ここで、光学要素75aの底面と傾斜面の角度αは、蛍光体層71の配置等にも関連するが、35°~55°程度に設定されている。なお、光学要素75aは、図4Bに示すような三角錐、図4Cに示すような円錐、図4Dに示すような凸レンズ形状であってもよい。なお、円錐の場合、頂角を70~110°に設定することが好ましい。これらの形状により、蛍光体層71において励起光ELを分散させてアレイ状の発光領域を形成することが容易になる。 The surface concavo-convex structure 75 has an array of concavo-convex portions and is an aggregate of a plurality of minute optical elements 75a having the same shape. Each optical element 75a constituting the surface concavo-convex structure 75 has, for example, a quadrangular pyramid shape as shown in FIG. 4A, and has a condensing effect on the excitation light EL incident on the surface 75s that is an inclined surface. Here, the angle α between the bottom surface and the inclined surface of the optical element 75a is related to the arrangement of the phosphor layer 71, but is set to about 35 ° to 55 °. The optical element 75a may be a triangular pyramid as shown in FIG. 4B, a cone as shown in FIG. 4C, or a convex lens shape as shown in FIG. 4D. In the case of a cone, the apex angle is preferably set to 70 to 110 °. With these shapes, it becomes easy to disperse the excitation light EL in the phosphor layer 71 to form an array-shaped light emitting region.
 なお、表面凹凸構造75は、光透過性を有する材料、具体的にはポリカーボネート樹脂、メタクリル樹脂、シクロオレフィン樹脂等の材料又はそれに補助的な添加物を適宜加えたものから形成される。ただし、表面凹凸構造75は、蛍光体を含まない材料で形成されている。これにより、凹凸表面構造75で蛍光が形成されることを防止でき、光照射板35から取り出される蛍光の射出角度を狭い範囲に制限しやすくなる。 The uneven surface structure 75 is formed of a light-transmitting material, specifically, a material such as polycarbonate resin, methacrylic resin, cycloolefin resin, or a material obtained by appropriately adding auxiliary additives thereto. However, the surface concavo-convex structure 75 is formed of a material that does not include a phosphor. Thereby, it is possible to prevent the formation of fluorescence in the uneven surface structure 75, and it becomes easy to limit the emission angle of the fluorescence extracted from the light irradiation plate 35 to a narrow range.
 図4Aのように光学要素75aが四角錐状である場合、光学要素75aは格子状に縦横2次元に配列されており、ロスを低減して光の利用効率を向上させている。図4Bに示すように光学要素75aが三角錐の場合も、2次元的に稠密に配列され、図4Cに示すように円錐の場合、表面75sである円錐面の一部を切り欠いて矩形領域に収まるように配列される。ただし、隣接する円錐等の表面75sの外縁間に隙間を形成してもよく、この場合、光学要素75a間の隙間から光透過層72が露出する。 As shown in FIG. 4A, when the optical element 75a has a quadrangular pyramid shape, the optical elements 75a are arranged in a two-dimensional pattern in a lattice shape, reducing the loss and improving the light utilization efficiency. When the optical elements 75a are triangular pyramids as shown in FIG. 4B, two-dimensionally densely arranged, and in the case of a cone as shown in FIG. 4C, a part of the conical surface which is the surface 75s is cut out to form a rectangular region. Are arranged to fit in However, a gap may be formed between the outer edges of the surfaces 75s such as adjacent cones. In this case, the light transmission layer 72 is exposed from the gap between the optical elements 75a.
 図3B及び図5に示すように、蛍光体層71を挟む一対の光透過層72,73は、光透過線を有する平坦な層であり、励起光EL等を低損失で透過させることができる。光透過層72と表面凹凸構造75とは、例えば一体で形成することによって得られるが、別々に形成して接合することによっても得られる。励起光源側の光透過層72は、表面凹凸構造75と蛍光体層71との間に挟まれて表面凹凸構造75と蛍光体層71との間隔を調整しており、表面凹凸構造75による集光状態を調整する役割を有する。他方の光透過層73は、反射層76と蛍光体層71との間に挟まれて、蛍光体層71の発光領域となる照射領域LAから反射層76までの間隔を調整している。なお、光透過層72,73は、表面凹凸構造75と同様に、高い光透過性を有するとともに蛍光体を含まない材料で形成されている。具体的には、光透過層72,73は、表面凹凸構造75と同様の材料で形成することができる。 As shown in FIGS. 3B and 5, the pair of light transmission layers 72 and 73 sandwiching the phosphor layer 71 are flat layers having light transmission lines, and can transmit the excitation light EL and the like with low loss. . The light transmission layer 72 and the surface concavo-convex structure 75 can be obtained by, for example, forming them integrally, but can also be obtained by forming and bonding them separately. The light transmission layer 72 on the excitation light source side is sandwiched between the surface uneven structure 75 and the phosphor layer 71 to adjust the distance between the surface uneven structure 75 and the phosphor layer 71. It has a role to adjust the light state. The other light transmission layer 73 is sandwiched between the reflection layer 76 and the phosphor layer 71 to adjust the distance from the irradiation region LA, which is the light emission region of the phosphor layer 71, to the reflection layer 76. The light transmitting layers 72 and 73 are formed of a material that has high light transmittance and does not include a phosphor, similarly to the surface uneven structure 75. Specifically, the light transmission layers 72 and 73 can be formed of the same material as the surface uneven structure 75.
 最も奥の反射層76は、薄い平坦層であり、光軸SXに垂直な面に沿って平板状に延びる。反射層76は、蛍光体層71を介して表面凹凸構造75の反対側に配置され、蛍光体層71を通過した励起光ELや、反射層76側へ向かう蛍光FLを蛍光体層71側又はLEDアレイ151側に戻す役割を有する。つまり、反射層76の表面である反射面76sは、励起光ELや蛍光FLの波長域で高い反射率を示す。 The innermost reflection layer 76 is a thin flat layer and extends in a flat plate shape along a plane perpendicular to the optical axis SX. The reflection layer 76 is disposed on the opposite side of the surface uneven structure 75 with the phosphor layer 71 interposed therebetween, and the excitation light EL that has passed through the phosphor layer 71 and the fluorescence FL that is directed toward the reflection layer 76 are transmitted to the phosphor layer 71 side or It has a role of returning to the LED array 151 side. That is, the reflective surface 76s, which is the surface of the reflective layer 76, exhibits a high reflectance in the wavelength range of the excitation light EL and the fluorescence FL.
 図5を参照して、被照射体41に入射した励起光ELやこれによって発生する蛍光FLの光路や伝搬について説明する。なお、図5は、図3Aに示す光入射領域IAを示している。 With reference to FIG. 5, the optical path and propagation of the excitation light EL incident on the irradiated object 41 and the fluorescence FL generated thereby will be described. FIG. 5 shows the light incident area IA shown in FIG. 3A.
 励起光ELは、被照射体41に20°以下の入射角で入射し、励起光ELの開口角は比較的小さくなっている。被照射体41の表面凹凸構造75に入射した励起光ELは、傾斜した表面75sで屈折され、蛍光体層71に入射する。この際、被照射体41に入射する励起光ELは、入射角が小さいことから、蛍光体層71のうち局所的な照射領域(発光領域)LAに入射する。このような、照射領域LAは、各光学要素75aに対向して存在するものであり、蛍光体層71に沿って各光学要素75aに対応して2次元的に格子状に配列される。つまり、隣接する照射領域LA間には、格子状の隙間GAが形成され、この隙間GAには、励起光ELが殆ど入射しない。このようにして2次元的に格子状に配列された複数の照射領域LAを配置又は設定できる。 The excitation light EL is incident on the irradiated body 41 at an incident angle of 20 ° or less, and the opening angle of the excitation light EL is relatively small. The excitation light EL incident on the surface concavo-convex structure 75 of the irradiated body 41 is refracted by the inclined surface 75 s and enters the phosphor layer 71. At this time, the excitation light EL incident on the irradiated object 41 is incident on a local irradiation region (light emitting region) LA in the phosphor layer 71 because the incident angle is small. Such an irradiation area LA exists opposite to each optical element 75a, and is two-dimensionally arranged in a lattice pattern corresponding to each optical element 75a along the phosphor layer 71. That is, a lattice-like gap GA is formed between adjacent irradiation areas LA, and excitation light EL hardly enters the gap GA. In this way, a plurality of irradiation areas LA arranged two-dimensionally in a grid pattern can be arranged or set.
 また、図示の蛍光体層71において、励起光ELが分散した比較的狭い照射領域(発光領域)LAに入射するので、これに伴って発光面積も減少する。しかも、照射領域LAを狭めたことによって、照射領域LAから表面側に射出される蛍光FLが同じ光学要素75aに再び入射する条件を揃えやすく、光学要素75aを通過するときに正のパワーの屈折を受け、被照射体41から射出される蛍光FLの射出角度が比較的小さくなる。結果的に、コンデンサーレンズ34等を経て光源装置21から射出される照明光L3のうち蛍光FLに関してエタンデュを確実に小さくすることができ、反射型液晶素子23による蛍光FLすなわち照明光L3の利用効率を簡易に高めることができる。 Further, in the illustrated phosphor layer 71, since the excitation light EL is incident on a relatively narrow irradiation region (light emitting region) LA in which the light is dispersed, the light emitting area is reduced accordingly. In addition, by narrowing the irradiation area LA, it is easy to align the conditions for the fluorescence FL emitted from the irradiation area LA to the surface side to be incident again on the same optical element 75a, and refraction of positive power when passing through the optical element 75a. In response, the emission angle of the fluorescence FL emitted from the irradiated body 41 becomes relatively small. As a result, the etendue of the fluorescent light FL among the illumination light L3 emitted from the light source device 21 through the condenser lens 34 or the like can be reliably reduced, and the use efficiency of the fluorescent light FL, that is, the illumination light L3 by the reflective liquid crystal element 23 can be reduced. Can be easily increased.
 なお、図3Aに示す光照射板35の第2領域AR2は、励起光ELに対応するミラーとなっている。この第2領域AR2においても、第1領域AR1に設けた被照射体41の表面凹凸構造75を設けることができ、蛍光体層71の代わりに拡散体層79を配置することができる(図3C参照)。この場合、励起光ELに対応する青色の照明成分の配光分布を蛍光FLの配光分布に近づけることができる。拡散体層79は、例えば周囲とは異なる屈折率の誘電体粉体を分散させることで形成される。 In addition, 2nd area | region AR2 of the light irradiation board 35 shown to FIG. 3A is a mirror corresponding to excitation light EL. Also in the second region AR2, the surface uneven structure 75 of the irradiated object 41 provided in the first region AR1 can be provided, and the diffuser layer 79 can be arranged instead of the phosphor layer 71 (FIG. 3C). reference). In this case, the light distribution of the blue illumination component corresponding to the excitation light EL can be brought close to the light distribution of the fluorescence FL. The diffuser layer 79 is formed, for example, by dispersing dielectric powder having a refractive index different from that of the surroundings.
 図1に戻って、フライアイ光学系36は、偏光ダイクロイックミラー32の偏光ビームスプリッター22側に配置され、第1フライアイレンズ36aと第2フライアイレンズ36bとを有する。第1フライアイレンズ36aは、レーザー光L1、光源光L2及び蛍光FLを含む照明光L3を分割するための要素として複数のレンズを含み、第2フライアイレンズ36bは、照明光L3を適度に発散させるための要素として複数のレンズを含む。 Referring back to FIG. 1, the fly-eye optical system 36 is disposed on the polarization beam splitter 22 side of the polarization dichroic mirror 32, and includes a first fly-eye lens 36a and a second fly-eye lens 36b. The first fly-eye lens 36a includes a plurality of lenses as elements for dividing the illumination light L3 including the laser light L1, the light source light L2, and the fluorescence FL, and the second fly-eye lens 36b moderately applies the illumination light L3. A plurality of lenses are included as an element for diverging.
 偏光変換部37は、例えば偏光ビームスプリッターや波長板からなる変換ユニットを複数組み合わせたものであり、偏光ダイクロイックミラー32で反射された緑色の蛍光FL等に含まれるS偏光及びP偏光のうちP偏光のみを選択的にS偏光に変換する。また、偏光変換部37は、偏光ダイクロイックミラー32を通過した赤色の光源光L2に含まれるP偏光のみを選択的にS偏光に変換する。結果的に、偏光変換部37を通過した照明光L3は、殆どがS偏光成分で構成されるものとなる。これにより、偏光ビームスプリッター22に略S偏光の蛍光FL及び光源光L2を入射させることができ、光源光のロスが少なくなる。なお、励起光ELから得た青色光(反射励起光)は、偏光ダイクロイックミラー32で反射されたS偏光成分のみであり、偏光変換部37を略そのまま通過する。 The polarization conversion unit 37 is a combination of a plurality of conversion units including, for example, a polarization beam splitter and a wavelength plate, and is P-polarized light among S-polarized light and P-polarized light included in the green fluorescent light FL reflected by the polarization dichroic mirror 32. Are selectively converted to S-polarized light. The polarization conversion unit 37 selectively converts only P-polarized light included in the red light source light L2 that has passed through the polarization dichroic mirror 32 into S-polarized light. As a result, most of the illumination light L3 that has passed through the polarization conversion unit 37 is composed of S-polarized light components. Thereby, the substantially S-polarized fluorescence FL and the light source light L2 can be made incident on the polarization beam splitter 22, and the loss of the light source light is reduced. Note that the blue light (reflected excitation light) obtained from the excitation light EL is only the S-polarized light component reflected by the polarization dichroic mirror 32 and passes through the polarization conversion unit 37 almost as it is.
 フィールドレンズ38は、反射型液晶素子23上において照明光L3を均一に重畳させ照明光L3の入射角範囲を一様にする働きを有する。 The field lens 38 has a function of uniformly superimposing the illumination light L3 on the reflective liquid crystal element 23 to make the incident angle range of the illumination light L3 uniform.
 図1に示す投影装置2の動作の概要について説明すると、光源装置21によって青色のレーザー光L1と、赤色の光源光L2と、緑色の蛍光FLとを形成することができる。上述のように、青色のレーザー光L1と緑色の蛍光FLと赤色の光源光L2とは、所定の順序でそれぞれフライアイ光学系36側に射出される。反射型液晶素子23は、光源装置21からの青色のレーザー光L1と、赤色の光源光L2と、緑色の蛍光FLとのそれぞれによって時系列的に照明され、各色に対応した画像表示がなされ、反射光として各色画像に対応する映像光L4を射出し、偏光ビームスプリッター22を透過し投影光学系26により投影される。時系列で投影された各色画像は、高速で切り替え表示されるため、人にはこれらが重畳されてカラー画像として認識される。 The outline of the operation of the projection device 2 shown in FIG. 1 will be described. The light source device 21 can form blue laser light L1, red light source light L2, and green fluorescence FL. As described above, the blue laser light L1, the green fluorescence FL, and the red light source light L2 are each emitted to the fly-eye optical system 36 side in a predetermined order. The reflective liquid crystal element 23 is illuminated in time series by each of the blue laser light L1, the red light source light L2, and the green fluorescent light FL from the light source device 21, and an image display corresponding to each color is made. Video light L 4 corresponding to each color image is emitted as reflected light, transmitted through the polarization beam splitter 22, and projected by the projection optical system 26. Since each color image projected in time series is switched and displayed at a high speed, these are superimposed on a human being and recognized as a color image.
 以上で説明した第1実施形態の光源装置21によれば、光照射板35の励起光ELが入射する側の表面に、アレイ状の凹凸を有する表面凹凸構造75が形成されているので、励起光ELを分散させつつ蛍光体層71に集光させることでアレイ状の発光領域である照射領域LAを形成することができる。また、励起光ELを蛍光体層71に集光させる際に励起光ELの被照射体41に対する入射角度を蛍光体層71の法線方向に対して20°以下とすることにより、アレイ状の発光領域の大きさを小さくでき、蛍光FLが光照射板35を射出する際の角度範囲を比較的狭くできるので、大型化や光損失の増加を防止しつつエタンデュを確実に小さくすることができる。 According to the light source device 21 of the first embodiment described above, the surface uneven structure 75 having arrayed unevenness is formed on the surface of the light irradiation plate 35 on which the excitation light EL is incident. By condensing the light EL on the phosphor layer 71 while dispersing the light EL, it is possible to form an irradiation region LA which is an arrayed light emitting region. Further, when the excitation light EL is condensed on the phosphor layer 71, the incident angle of the excitation light EL with respect to the irradiated body 41 is set to 20 ° or less with respect to the normal direction of the phosphor layer 71, thereby Since the size of the light emitting region can be reduced and the angle range when the fluorescent light FL emits the light irradiation plate 35 can be made relatively narrow, the etendue can be reliably reduced while preventing an increase in size and an increase in light loss. .
〔第2実施形態〕
 以下、第2実施形態に係る光源装置について説明する。なお、第2実施形態の光源装置は第1実施形態の光源装置を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
The light source device according to the second embodiment will be described below. The light source device according to the second embodiment is a modification of the light source device according to the first embodiment, and matters not specifically described are the same as those in the first embodiment.
 図6に示すように、第2実施形態の光源装置21は、透過型の光照射板(蛍光体ホイール)135を組み込んだものとなっている。結果的に、光照射板135の裏面側が光射出面となって、その先に入射側のコンデンサーレンズ34とは別に射出側のコンデンサーレンズ134が設けられている。このコンデンサーレンズ134に続いて、フライアイ光学系36と、偏光変換部37と、フィールドレンズ38とが順次配置されている。また、コンデンサーレンズ134とフライアイ光学系36の間に、第2ビーム形成部131が配置されている。ここで、第1ビーム形成部31又は光照射板135は、青及び緑色用であり、第2ビーム形成部131は、赤色用である。 As shown in FIG. 6, the light source device 21 of the second embodiment incorporates a transmissive light irradiation plate (phosphor wheel) 135. As a result, the rear surface side of the light irradiation plate 135 becomes a light emission surface, and an emission-side condenser lens 134 is provided in front of the light-irradiation plate 135 in addition to the incident-side condenser lens 34. Subsequent to the condenser lens 134, a fly-eye optical system 36, a polarization conversion unit 37, and a field lens 38 are sequentially arranged. A second beam forming unit 131 is disposed between the condenser lens 134 and the fly-eye optical system 36. Here, the first beam forming unit 31 or the light irradiation plate 135 is for blue and green, and the second beam forming unit 131 is for red.
 なお、本実施形態の場合、光照射板135で生成した励起光ELをコンデンサーレンズ34側に逆進させないので、図1の位相差板33が不要となって省略され、図1の偏光ダイクロイックミラー32に代えて偏光に依存しないダイクロイックミラー132が用いられている。 In the case of the present embodiment, the excitation light EL generated by the light irradiation plate 135 is not moved backward to the condenser lens 34 side, so that the phase difference plate 33 in FIG. 1 is unnecessary and is omitted, and the polarization dichroic mirror in FIG. Instead of 32, a dichroic mirror 132 that does not depend on polarization is used.
 図7Aに示すように、光照射板135に設けた被照射体41は、蛍光FL等を固体光源であるレーザーアレイ51の反対側に射出させる透過型の蛍光体ホイールであり、励起光ELの照射によって蛍光FLを発生する第1領域AR1と、励起光ELを若干散乱させつつ選択的に透過させる第2領域AR2とを備えるものとなる。 As shown in FIG. 7A, the irradiated object 41 provided on the light irradiation plate 135 is a transmission type phosphor wheel that emits fluorescence FL or the like to the opposite side of the laser array 51 that is a solid state light source. The first area AR1 that generates the fluorescence FL by irradiation and the second area AR2 that selectively transmits the excitation light EL while being slightly scattered are provided.
 被照射体41は、基板35aと一体化されて基板35aに埋め込まれたような構造となっている。
 図7Bに示すように、被照射体41の第1領域AR1は、基板35aの中央又は励起光源側に、光軸SXに垂直に延びる蛍光体層71と、光透過層72と、ダイクロイックミラー78と、表面凹凸構造75とを順次積層するとともに、基板35aの反励起光源側に、光透過層172と、対向凹凸構造175とを順次積層したものとなっている。なお、これらのうち、表面凹凸構造75、蛍光体層71、光透過層72及び光透過層172は、第1実施形態の場合と同様の機能を有するものであり、説明を省略する。
The irradiated body 41 has a structure that is integrated with the substrate 35a and embedded in the substrate 35a.
As shown in FIG. 7B, the first region AR1 of the irradiated object 41 has a phosphor layer 71 extending perpendicularly to the optical axis SX, a light transmission layer 72, and a dichroic mirror 78 in the center of the substrate 35a or the excitation light source side. And the surface uneven structure 75 are sequentially stacked, and the light transmission layer 172 and the opposing uneven structure 175 are sequentially stacked on the counter-excitation light source side of the substrate 35a. Of these, the surface uneven structure 75, the phosphor layer 71, the light transmission layer 72, and the light transmission layer 172 have the same functions as those in the first embodiment, and the description thereof is omitted.
 ダイクロイックミラー78は、誘電体多層膜で形成された層であり、表面凹凸構造75と蛍光体層71との間に配置されて、青色の励起光ELを透過させるとともに、蛍光体層71内で形成された蛍光FLを反射して対向凹凸構造175側に射出させる。対向凹凸構造175は、表面凹凸構造75の反対側の表面に設けられ、表面凹凸構造75のアレイ状の凹凸に対応する形状のアレイ状の凹凸を有する。つまり、表面凹凸構造75の光学要素75aと、対向凹凸構造175の光学要素175aとは、略同一形状を有して光軸SX方向に離間して互いに対向配置されている。結果的に、表面凹凸構造75において光学要素75aの頂点は格子点上に配置され、対向凹凸構造175において光学要素175aの頂点は格子点上に配置され、これらの光学要素75a,175aは同じピッチでずれなく配置されている。 The dichroic mirror 78 is a layer formed of a dielectric multilayer film. The dichroic mirror 78 is disposed between the surface uneven structure 75 and the phosphor layer 71 and transmits the blue excitation light EL. The formed fluorescence FL is reflected and emitted to the opposing uneven structure 175 side. The opposing concavo-convex structure 175 is provided on the surface on the opposite side of the surface concavo-convex structure 75 and has an array of concavo-convex shapes corresponding to the array concavo-convex of the surface concavo-convex structure 75. That is, the optical element 75a of the surface concavo-convex structure 75 and the optical element 175a of the counter concavo-convex structure 175 have substantially the same shape and are arranged to face each other with a separation in the optical axis SX direction. As a result, in the surface uneven structure 75, the vertex of the optical element 75a is disposed on the lattice point, and in the opposing uneven structure 175, the vertex of the optical element 175a is disposed on the lattice point, and these optical elements 75a and 175a have the same pitch. It is arranged without deviation.
 コンデンサーレンズ34を経た励起光ELは、被照射体41に20°以下の入射角で入射し、開口角が小さくなっている。被照射体41の表面凹凸構造75に入射した励起光ELは、表面凹凸構造75を構成する光学要素75aにより、蛍光体層71において格子状に配列された比較的狭い照射領域(発光領域)LAに入射する。このように、励起光ELが分散した比較的狭い照射領域(発光領域)LAに入射することに伴って発光面積も減少する。さらに、照射領域(発光領域)LAを狭めたことによって、照射領域(発光領域)LAからの蛍光FLが対向凹凸構造175の光学要素175aに入射する条件を揃えやすく、光学要素175aを通過して被照射体41から射出される蛍光FLの射出角度が比較的小さくなる。結果的に、コンデンサーレンズ134等を経て光源装置21から射出される照明光L3のうち蛍光FLに関してエタンデュを確実に小さくすることができ、反射型液晶素子23による蛍光FLすなわち照明光L3の利用効率を簡易に高めることができる。 The excitation light EL that has passed through the condenser lens 34 is incident on the irradiated object 41 at an incident angle of 20 ° or less, and the aperture angle is small. The excitation light EL incident on the surface uneven structure 75 of the irradiated body 41 is irradiated with a relatively narrow irradiation region (light emitting region) LA arranged in a lattice pattern in the phosphor layer 71 by the optical element 75a constituting the surface uneven structure 75. Is incident on. As described above, the emission area also decreases as the excitation light EL enters the relatively narrow irradiation area (light emission area) LA in which the excitation light EL is dispersed. Furthermore, by narrowing the irradiation region (light emitting region) LA, it is easy to align the conditions for the fluorescence FL from the irradiation region (light emitting region) LA to enter the optical element 175a of the opposing concavo-convex structure 175, and pass through the optical element 175a. The emission angle of the fluorescence FL emitted from the irradiated body 41 is relatively small. As a result, the etendue can be reliably reduced with respect to the fluorescence FL among the illumination light L3 emitted from the light source device 21 through the condenser lens 134 and the like, and the use efficiency of the fluorescence FL, that is, the illumination light L3 by the reflective liquid crystal element 23 can be reduced. Can be easily increased.
 光照射板135の第2領域AR2は、励起光ELを拡散透過させる構造を有する。この第2領域AR2においても、第1領域AR1に設けた被照射体41の表面凹凸構造75等を設けることができ、蛍光体の代わりに拡散体層を配置することができる。この場合、励起光ELに対応する青色の照明成分の配光分布を蛍光FLの配光分布に近づけることができる。拡散体層は、例えば周囲とは異なる屈折率の誘電体粉体を分散させることで形成される。 The second area AR2 of the light irradiation plate 135 has a structure that diffuses and transmits the excitation light EL. Also in the second area AR2, the surface uneven structure 75 of the irradiated body 41 provided in the first area AR1 can be provided, and a diffuser layer can be arranged instead of the phosphor. In this case, the light distribution of the blue illumination component corresponding to the excitation light EL can be brought close to the light distribution of the fluorescence FL. The diffuser layer is formed, for example, by dispersing dielectric powder having a refractive index different from that of the surroundings.
 以上、実施形態に係る光源装置等について説明したが、本発明に係る光源装置等は、上記のものには限られない。例えば、光源装置21、投影光学系26等の具体的な構成は、図示のものに限らず用途等に応じて適宜変更することができる。 The light source device according to the embodiment has been described above, but the light source device according to the present invention is not limited to the above. For example, the specific configurations of the light source device 21, the projection optical system 26, and the like are not limited to those shown in the drawings, and can be changed as appropriate according to the application.
 また、反射型液晶素子23に代えてデジタルマイクロミラーデバイス(DMD)を用いることができる。この場合、偏光ビームスプリッター22に代えて、DMDに照明光を入射させDMDからの反射光を投影光学系26に導くプリズムを配置すればよい。 Also, a digital micromirror device (DMD) can be used in place of the reflective liquid crystal element 23. In this case, instead of the polarization beam splitter 22, a prism that guides illumination light to the DMD and guides the reflected light from the DMD to the projection optical system 26 may be disposed.
 ビーム形成部31において、レーザーアレイ51に代えてLEDアレイを用いることもできるが、図1の実施形態の場合、LEDアレイからの光の偏光方向を偏光ダイクロイックミラー32への入射前に揃えることが望ましい。 In the beam forming unit 31, an LED array can be used instead of the laser array 51. However, in the embodiment of FIG. 1, the polarization direction of light from the LED array can be aligned before entering the polarization dichroic mirror 32. desirable.
 画像表示素子として、反射型液晶素子23に代えて透過型の液晶素子を用いてもよい。 As the image display element, a transmissive liquid crystal element may be used instead of the reflective liquid crystal element 23.
 光照射板(蛍光体ホイール)35に入射させる励起光ELは、可視光に限らず紫外光等とすることができるが、この場合、被照射体41において、青色光及び緑色光を発生させるよう構成すればよい。また、励起光の全ての光線が20°以下の入射角で被照射体41に照射される必要は必ずしもなく、励起光の主たる光線(光源光の80~90%以上の光量の光)が20°以下の入射角に収まっていれば、十分アレイ状の発光領域の大きさを小さくでき、蛍光が光照射板を射出する際の角度範囲を狭くできる。 The excitation light EL incident on the light irradiation plate (phosphor wheel) 35 is not limited to visible light but can be ultraviolet light or the like. In this case, the irradiated object 41 generates blue light and green light. What is necessary is just to comprise. Further, it is not always necessary to irradiate the irradiated object 41 with all the light beams of the excitation light at an incident angle of 20 ° or less, and the main light beam of the excitation light (light having a light amount of 80 to 90% or more of the light source light) is 20 If the incident angle is within an angle of less than 0 °, the size of the array-like light emitting region can be sufficiently reduced, and the angle range when the fluorescence exits the light irradiation plate can be narrowed.
 画像表示素子に入射する光を時分割しないようにすることもできる。その場合、光照射板135に設けた被照射体41は、特に領域に分かれない。つまり、被照射体41は、蛍光FLを発生する第1領域AR1のみで構成される。このとき第1領域AR1は、励起光の一部を吸収して蛍光を発すると同時に、励起光の一部を拡散させ、第1の実施形態の場合は反射、第2の実施形態に場合は透過させる。このときホイールを回転させる駆動装置はあっても無くてもよい。この場合、レーザーアレイ51とLEDアレイ151を同時に駆動して照明光L3を白色とし、反射型液晶素子23は、画素ごとにカラーフィルターを設けたタイプとすればよい。 The light incident on the image display element can be prevented from being time-shared. In that case, the irradiated object 41 provided on the light irradiation plate 135 is not particularly divided into regions. That is, the irradiated object 41 is configured only by the first region AR1 that generates the fluorescence FL. At this time, the first region AR1 absorbs a part of the excitation light and emits fluorescence, and at the same time, diffuses a part of the excitation light and reflects in the case of the first embodiment, and in the case of the second embodiment. Make it transparent. At this time, there may or may not be a drive device for rotating the wheel. In this case, the laser array 51 and the LED array 151 may be simultaneously driven to make the illumination light L3 white, and the reflective liquid crystal element 23 may be a type in which a color filter is provided for each pixel.
 図4A及び4Bに示すような多角錐状の光学要素75aについては、頂部を切り取った形状、すなわち多角錐台又は截頭角錐といった形状とすることができる。また、図4Cに示すような円錐状の光学要素75aについても、頂部を切り取った形状、すなわち円錐台又は截頭円錐といった形状とすることができる。 4A and 4B, the optical element 75a having a polygonal pyramid shape may have a shape obtained by cutting the top, that is, a polygonal frustum or a truncated pyramid. Also, the conical optical element 75a as shown in FIG. 4C can also have a shape with the top cut off, that is, a truncated cone or truncated cone.
 また、表面凹凸構造75を構成する光学要素75aと、対向凹凸構造175を構成する光学要素175aとは、同一形状である必要はなく、光軸方向に関して対向するように例えば角錐と円錐とを配置することができるが、これらの頂点は光軸方向に平行な同一直線上に配列されることが望ましい。 Further, the optical element 75a constituting the surface uneven structure 75 and the optical element 175a constituting the opposing uneven structure 175 do not have to have the same shape, and, for example, a pyramid and a cone are arranged so as to face each other in the optical axis direction. These vertices are preferably arranged on the same straight line parallel to the optical axis direction.

Claims (10)

  1.  励起光を射出する励起光源と、
     励起光が照射されることによって蛍光を放射する蛍光体層を有する光照射板と、を備え、
     前記光照射板のうち、励起光が入射する側の表面には、アレイ状の凹凸を有する表面凹凸構造が形成され、
     前記光照射板への励起光の入射角度は、前記蛍光体層の法線方向に対して20°以下である、投影装置用の光源装置。
    An excitation light source that emits excitation light;
    A light irradiation plate having a phosphor layer that emits fluorescence when irradiated with excitation light, and
    Of the light irradiation plate, a surface uneven structure having an array of unevenness is formed on the surface on which excitation light is incident,
    A light source device for a projection device, wherein an incident angle of excitation light to the light irradiation plate is 20 ° or less with respect to a normal direction of the phosphor layer.
  2.  前記光照射板は、前記蛍光体層を介して前記表面凹凸構造の反対側に、反射面を有する、請求項1に記載の投影装置用の光源装置。 2. The light source device for a projection device according to claim 1, wherein the light irradiation plate has a reflective surface on the opposite side of the surface uneven structure through the phosphor layer.
  3.  前記光照射板は、前記蛍光体層を介して前記表面凹凸構造の反対側の表面に、前記表面凹凸構造のアレイ状の凹凸に対応する形状のアレイ状の凹凸を有する対向凹凸構造を有し、前記表面凹凸構造と前記蛍光体層との間に励起光を透過し蛍光を反射する層を有する、請求項1に記載の投影装置用の光源装置。 The light irradiation plate has an opposing concavo-convex structure having an array of concavo-convex shapes corresponding to the array concavo-convex of the surface concavo-convex structure on the surface opposite to the surface concavo-convex structure via the phosphor layer. The light source device for a projection device according to claim 1, further comprising a layer that transmits excitation light and reflects fluorescence between the surface uneven structure and the phosphor layer.
  4.  前記光照射板は、前記蛍光体層と前記表面凹凸構造との間に、蛍光体を含まない材料で形成された平坦な光透過層を有する、請求項1~3のいずれか一項に記載の投影装置用の光源装置。 The light irradiation plate has a flat light transmission layer formed of a material not containing a phosphor between the phosphor layer and the surface uneven structure. Light source device for the projection apparatus.
  5.  前記凹凸表面構造は、蛍光体を含まない材料で形成されている、請求項1~4のいずれか一項に記載の投影装置用の光源装置。 The light source device for a projection device according to any one of claims 1 to 4, wherein the uneven surface structure is formed of a material that does not include a phosphor.
  6.  前記表面凹凸構造は、多角錐、円錐、凸レンズ形状、又はそれらの頂部を切り取った形状である、請求項1~5のいずれか一項に記載の投影装置用の光源装置。 The light source device for a projection device according to any one of claims 1 to 5, wherein the surface uneven structure is a polygonal pyramid, a cone, a convex lens shape, or a shape obtained by cutting a top portion thereof.
  7.  前記光照射板の前記励起光源側に隣接して励起光を前記蛍光体層に導くためのコンデンサーレンズを備える、請求項1~6のいずれか一項に記載の投影装置用の光源装置。 The light source device for a projection device according to any one of claims 1 to 6, further comprising a condenser lens adjacent to the excitation light source side of the light irradiation plate for guiding excitation light to the phosphor layer.
  8.  前記励起光源と前記光照射板との間に配置され、蛍光を励起光の光路から分岐するビームスプリッターをさらに備える、請求項1及び2のいずれか一項に記載の投影装置用の光源装置。 3. The light source device for a projection device according to claim 1, further comprising a beam splitter disposed between the excitation light source and the light irradiation plate and branching fluorescence from an optical path of the excitation light.
  9.  前記励起光源は、励起光として青色光を射出し、前記蛍光体層は、青色光による励起によって発生した蛍光を放射し、
     前記ビームスプリッターは、位相差板と組み合わせて用いられ、特定方向の偏光である青色光を透過及び反射の別によって光路的に分岐する偏光ダイクロイックミラーであり、前記励起光源からの青色光を前記蛍光体に導くとともに、前記蛍光体層で励起に利用されなかった青色光を蛍光の光路に導く、請求項8に記載の投影装置用の光源装置。
    The excitation light source emits blue light as excitation light, and the phosphor layer emits fluorescence generated by excitation with blue light,
    The beam splitter is a polarization dichroic mirror that is used in combination with a phase difference plate and splits blue light, which is polarized light in a specific direction, on the optical path depending on whether it is transmitted or reflected, and converts the blue light from the excitation light source into the fluorescent light. 9. The light source device for a projection device according to claim 8, wherein the light source device guides blue light that has not been used for excitation in the phosphor layer to a fluorescent light path while guiding the light to a body.
  10.  請求項1~9のいずれか一項に記載の光源装置と、
     前記光源装置によって照明される画像表示素子と、前記画像表示素子により形成される像を投影する投影光学系と、を有する投影装置。
    A light source device according to any one of claims 1 to 9,
    A projection apparatus comprising: an image display element illuminated by the light source device; and a projection optical system that projects an image formed by the image display element.
PCT/JP2016/063363 2015-05-08 2016-04-28 Light source device and projection device WO2016181858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-096101 2015-05-08
JP2015096101 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016181858A1 true WO2016181858A1 (en) 2016-11-17

Family

ID=57248886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063363 WO2016181858A1 (en) 2015-05-08 2016-04-28 Light source device and projection device

Country Status (1)

Country Link
WO (1) WO2016181858A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107261A1 (en) * 2017-11-29 2019-06-06 キヤノン株式会社 Light source device and projection type display device using same
JP2019101415A (en) * 2017-11-29 2019-06-24 キヤノン株式会社 Light source device and projection type display apparatus using the same
JP2020056883A (en) * 2018-10-01 2020-04-09 カシオ計算機株式会社 Light source device and projection device
JP2022547626A (en) * 2019-09-16 2022-11-14 マテリオン プレシジョン オプティクス (シャンハイ) リミテッド Reflective diffuser for laser speckle reduction and reflective light-emitting wheel equipped with the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003923A (en) * 2010-06-16 2012-01-05 Sony Corp Lighting device and image display device
JP2012009242A (en) * 2010-06-24 2012-01-12 Seiko Epson Corp Light source device and projector
JP2012027052A (en) * 2010-07-20 2012-02-09 Panasonic Corp Light source device and projection type display apparatus using the same
JP2012108486A (en) * 2010-10-21 2012-06-07 Panasonic Corp Light source device and image display
JP2012247625A (en) * 2011-05-27 2012-12-13 Minebea Co Ltd Color wheel
WO2014103093A1 (en) * 2012-12-26 2014-07-03 パナソニック株式会社 Image display device and light conversion panel used in same
JP2014153527A (en) * 2013-02-08 2014-08-25 Ushio Inc Fluorescent light source device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003923A (en) * 2010-06-16 2012-01-05 Sony Corp Lighting device and image display device
JP2012009242A (en) * 2010-06-24 2012-01-12 Seiko Epson Corp Light source device and projector
JP2012027052A (en) * 2010-07-20 2012-02-09 Panasonic Corp Light source device and projection type display apparatus using the same
JP2012108486A (en) * 2010-10-21 2012-06-07 Panasonic Corp Light source device and image display
JP2012247625A (en) * 2011-05-27 2012-12-13 Minebea Co Ltd Color wheel
WO2014103093A1 (en) * 2012-12-26 2014-07-03 パナソニック株式会社 Image display device and light conversion panel used in same
JP2014153527A (en) * 2013-02-08 2014-08-25 Ushio Inc Fluorescent light source device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107261A1 (en) * 2017-11-29 2019-06-06 キヤノン株式会社 Light source device and projection type display device using same
JP2019101415A (en) * 2017-11-29 2019-06-24 キヤノン株式会社 Light source device and projection type display apparatus using the same
US11194240B2 (en) 2017-11-29 2021-12-07 Canon Kabushiki Kaisha Light source apparatus and projection type display apparatus using the same
JP7163140B2 (en) 2017-11-29 2022-10-31 キヤノン株式会社 Light source device and projection display device using the same
JP2020056883A (en) * 2018-10-01 2020-04-09 カシオ計算機株式会社 Light source device and projection device
JP2022547626A (en) * 2019-09-16 2022-11-14 マテリオン プレシジョン オプティクス (シャンハイ) リミテッド Reflective diffuser for laser speckle reduction and reflective light-emitting wheel equipped with the same

Similar Documents

Publication Publication Date Title
US8998421B2 (en) Projector having polarization conversion
US9661285B2 (en) Projector with multiple types of light sources
EP2631713B1 (en) Lighting device and projection type display device using same
JP6056001B2 (en) Light source device and projection display device
US9249949B2 (en) Lighting device and projection-type display device using the same including a color-combining prism
JP5605047B2 (en) Light source device and projection display device using the same
US9423680B2 (en) Light source apparatus that irradiates a phosphor layer with excitation light and projector
US9348206B2 (en) Light source apparatus and projector having a light combiner with a polarization separation film
JP5682813B2 (en) Lighting device and projector
US20140168614A1 (en) Light source device and projector
WO2015111145A1 (en) Light source device and image display device using same
JP2012103615A (en) Illumination device and projector
WO2016181858A1 (en) Light source device and projection device
US20130286360A1 (en) Projector
WO2016189871A1 (en) Light source unit and projection device
JP2022084619A (en) Light source optical system, light source device and image projection
JPWO2017169187A1 (en) Light source device and electronic device
CN112540499A (en) Projector with a light source
US11523093B2 (en) Light source apparatus and projector
JP5803447B2 (en) Light source device and projector
WO2016098560A1 (en) Wavelength conversion member and image formation device
JP6332485B2 (en) projector
JP2017146552A (en) Illumination device and projector
JP5991389B2 (en) Lighting device and projector
CN114114810B (en) Light source device, image display device, and projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP