WO2016098560A1 - Wavelength conversion member and image formation device - Google Patents

Wavelength conversion member and image formation device Download PDF

Info

Publication number
WO2016098560A1
WO2016098560A1 PCT/JP2015/083354 JP2015083354W WO2016098560A1 WO 2016098560 A1 WO2016098560 A1 WO 2016098560A1 JP 2015083354 W JP2015083354 W JP 2015083354W WO 2016098560 A1 WO2016098560 A1 WO 2016098560A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
conversion member
wavelength conversion
phosphor layer
Prior art date
Application number
PCT/JP2015/083354
Other languages
French (fr)
Japanese (ja)
Inventor
三森 満
昌宏 今田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016098560A1 publication Critical patent/WO2016098560A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor

Definitions

  • the present invention relates to a wavelength conversion member and an image forming apparatus, and more particularly to a wavelength conversion member suitably used for an image forming apparatus such as a small image projection apparatus and an image forming apparatus using the same.
  • an image projection apparatus which is a kind of image forming apparatus
  • a projection image is formed using a liquid crystal panel, a mirror deflection type digital micromirror device (DMD), or the like.
  • DMD digital micromirror device
  • As a light source for projecting such an image Conventionally, discharge lamps have been widely used. However, the discharge lamp has a problem that its life is short and its reliability is low, and there is also a demand for environmental protection.
  • solid-state light sources such as semiconductor lasers and light emitting diodes have been developed, and have been used as light sources for image projection apparatuses.
  • Patent Document 1 discloses a fluorescent wheel that excites red light by causing blue laser light to enter the red phosphor layer and excites green light by causing blue laser light to enter the green phosphor layer. ing.
  • Patent Document 2 has been devised to improve the light utilization efficiency by providing a fine uneven shape on the surface of the phosphor layer.
  • Patent Document 2 a portion (uneven structure) having a hexagonal bottom surface is formed by cutting a part of a plurality of regular quadrangular pyramids or spherical bodies on the excitation light incident surface of the phosphor layer. Even if the irradiating structure is irradiated at the same angle, the refraction direction changes depending on the irradiation position, and the excitation light is diffused in various directions in the phosphor layer. Thereby, since the excitation light spreads over a wide range in the phosphor layer, the excitation light irradiated to the phosphor increases, and it is said that the utilization efficiency of the excitation light can be increased.
  • the fluorescent light emitted from the back side of the phosphor upon receiving the excitation light entering from the concavo-convex structure is emitted in all directions, but the excitation light incident surface has various angles.
  • the luminous flux once reflected on the incident surface and irradiated on the reflecting surface of the fluorescent plate is also more likely to be irradiated on the excitation light incident surface at a different angle when it is irradiated on the excitation light incident surface next time. It is supposed to be used effectively.
  • the present invention has been made in view of such problems, and an object thereof is to provide a wavelength conversion member capable of improving the light distribution characteristics of a light to form a high-quality image and an image forming apparatus using the wavelength conversion member. To do.
  • the wavelength conversion member reflecting one aspect of the present invention is: A wavelength conversion member in which a reflection portion, a phosphor layer, and a light deflection portion are arranged in this order in order from at least a portion of the substrate,
  • the light deflection unit has a plurality of optical elements having a light collecting action, and the plurality of optical elements are arranged side by side,
  • the light having the first wavelength incident on the optical element of the light deflector is divided by the plurality of optical elements and incident on the phosphor layer, and the first wavelength differs from the first wavelength by the phosphor layer.
  • the light having the second wavelength is reflected from the phosphor layer directly or after being reflected by the reflecting portion and then refracted by the light deflecting portion.
  • the light is emitted so as to narrow in the line direction.
  • an image forming apparatus reflecting one aspect of the present invention includes a light source that emits light of a first wavelength and at least one lens having positive power.
  • a condensing optical system including a mirror; the wavelength conversion member that receives the light of the first wavelength via the optical system; a light modulation element that forms an image; and An illumination unit that guides light, and a projection optical system that projects image light from the light modulation element.
  • the present invention it is possible to provide a wavelength conversion member that can improve the light distribution characteristics of an image to form a high-quality image, and an image forming apparatus using the wavelength conversion member.
  • FIG. 1 is a schematic configuration diagram of an image projection apparatus 100 as an image forming apparatus according to an embodiment.
  • 3 is a perspective view of a phosphor wheel 106.
  • FIG. 2 is a schematic cross-sectional view of a phosphor wheel 106.
  • FIG. It is the figure which looked at the optical deflection
  • FIG. 10 is a simulation diagram showing an example of an optical path of an incident light beam and an outgoing light beam in a cross-sectional view in which one of the optical elements of the second embodiment is cut along the axis of a conical surface. It is a simulation figure showing an example of an optical path of an incident light beam and an outgoing light beam in a sectional view which cut one optical element of a modification by a plane containing an object axis. It is sectional drawing which changes and shows the condensing position of the incident light to a fluorescent substance layer.
  • Example 2A-2C It is a figure which shows the light distribution characteristic in the emitted light when the output surface normal line of a fluorescent substance layer is set to 0 degree
  • FIG. 1 is a schematic configuration diagram of an image projection apparatus 100 as an image forming apparatus according to the present embodiment.
  • a configuration example of an image projection apparatus using a reflective LCD light modulation element (LCOS: Liquid crystal on silicon) as a light modulation element is shown, but the present invention is not limited to this, and a mirror array (DMD: Digital Mirror Device) is shown.
  • LCOS Liquid crystal on silicon
  • DMD Digital Mirror Device
  • a light modulation element using transmissive liquid crystal may be employed.
  • a plurality of light modulation elements may be used in combination.
  • the image projection apparatus 100 includes an illumination unit IL from the light source 101 to the front of the LCD light modulation element 113, and an optical engine unit OE from the LCD light modulation element 113 to the projection lens 114.
  • the optical engine unit OE has a function of optically processing the light emitted from the illumination unit IL to generate image light and enlarging and projecting the image light on an external object plane.
  • the object plane is a wall, a screen, a whiteboard, a three-dimensional object, or the like.
  • the optical engine unit OE includes an LCD light modulation element 113, a polarization beam splitter 112 serving as a branching element for illumination light and projection light, and a projection lens 114 for enlarging and projecting an image generated by the LCD light modulation element 113. .
  • the polarization beam splitter 112 is also used in the illumination unit IL described later.
  • the configuration of the optical engine unit OE may be any configuration that includes the above-described three elements as a minimum configuration and that includes a branching element in the optical path between the LCD light modulation element 113 and the projection lens 114. If necessary, other optical elements may be added on the optical path. Examples of such an optical element include a wave plate that changes the polarization state, a polarizing filter, and a filter that corrects the color.
  • the LCD light modulation element 113 changes the alignment of the liquid crystal molecules and changes the polarization state of the incident light in response to the signal decomposed into the R component, G component, and B component corresponding to the image from the control unit CONT. Is combined with the polarizing film of the polarizing beam splitter to generate a modulated image.
  • the LCD light modulation element 113 can generate an image by a so-called color field sequential method in which the R component, the G component, and the B component are respectively divided in time, and can project a full-color image.
  • the arrangement (field) of the liquid crystal cells changed to form the R component, G component, and B component images of the LCD light modulation element 113, and R (red light) and G (green light) of the illumination unit IL.
  • B (blue light) emission timing is synchronized.
  • the illumination unit IL includes a first light source 101, a beam reduction optical system 102 including a positive lens and a negative lens, a bandpass polarization filter 103, a quarter wavelength plate 104, and at least one positive lens (or A condensing lens 105 which is a condensing optical system including a mirror), a phosphor wheel 106 which is a wavelength conversion member, a motor 107 as a rotation driving unit, a first relay optical system 108, a light pipe 109, The second relay optical system 110 and the polarization beam splitter 112 are included.
  • the first light source 101 is driven to emit light in synchronization with the rotation of the motor 107 by the laser driver DR.
  • the band-pass polarization filter 103 is inclined at an angle of 45 degrees with respect to the optical axis, transmits P-polarized light of ⁇ 20 nm with respect to the first wavelength of 450 nm, and has S-polarized light and a long wavelength of 500 nm or more. It has the characteristic of reflecting the light.
  • the condensing lens 105 only needs to be set so as to be focused on the phosphor wheel 106 with a light beam diameter of a predetermined size. good.
  • FIG. 2 is a perspective view of the phosphor wheel 106
  • FIG. 3 is a schematic cross-sectional view of the phosphor wheel 106
  • the phosphor wheel 106 includes a first light conversion unit 106 b in the form of a band along the circumferential direction in the vicinity of the outer periphery of the upper surface of the substrate 106 a that is a transparent disk-shaped glass, and subsequently the second light.
  • the conversion unit 106j is formed.
  • the light conversion portions 106b and 106j are formed only for 2/3 of the substrate 106a, and the rest is obtained by forming the reflection portion 106c on the substrate 106a.
  • the 1st light conversion part 106b is formed in 1/3 circumference of the board
  • the 2nd light conversion part 106j is formed in another 1/3 circumference
  • another 1/3 circumference is reflection of the board
  • a hole 106p for connecting to the rotating shaft of the motor 107 is formed in the center of the substrate 106a.
  • the substrate 106a is not necessarily made of glass, and may be a material with low absorption or a material with good heat conduction.
  • a metal material such as copper or aluminum may be used as the material with good heat conduction.
  • the light conversion units 106b and 106j have the same configuration except for the phosphor layer, and a reflection layer 106c, a phosphor layer 106d, and a light deflection unit 106e as a reflection unit are stacked from the substrate 106a side. Is formed.
  • the reflective layer 106c is formed by evaporating silver or the like on the substrate 106a.
  • cerium activated yttrium aluminum garnet (a typical chemical structure of the crystal matrix of this phosphor is Y 3 (Al, Ga) 5 O 12 ), Ce or cerium activated lutetium aluminum garnet (LuAG: Ce), or ⁇ sialon phosphor can be used, but when the light of the first wavelength is incident, as the light of the second wavelength Any phosphor capable of emitting fluorescence having a peak wavelength from 500 nm to 560 nm may be used.
  • a Sr sialon phosphor (Sr 2 Si 7 Al 3 ON 13 : Eu) or the like can be used as the phosphor layer 106d of the second light conversion unit 106j.
  • any phosphor may be used as long as it emits fluorescent light having a peak wavelength from 600 nm to 650 nm as the second wavelength light.
  • the thickness of the phosphor layer 106d is 45 ⁇ m.
  • the thickness of the phosphor layer 106j is preferably different from the thickness of the phosphor layer 106d. .
  • the phosphor layers 106d and 106j containing the inorganic phosphor include phosphor particles having a median diameter d50 of about 8 ⁇ m to 20 ⁇ m (here 10 ⁇ m) and a binder material for fixing the phosphor particles.
  • each optical element 106h is composed of a base portion 106f having a base thickness in contact with the phosphor layer 106d and a conical surface 106g bonded thereon and in contact with air. Become.
  • the optical element 106h is not limited to a conical surface as long as it has a condensing function, and may have an aspherical surface or a spherical surface that becomes a quadrangular pyramid or a convex lens.
  • the optical elements 106h are arranged in a matrix.
  • matrix shape refers to a lattice shape in which the sides of one base 106h are abutted against the sides of three adjacent bases 106h as shown in FIG. It also includes a shape in which the side of one base portion 106h is arranged with only a side of one adjacent base portion 106h but without a gap.
  • the bottom surface of the base portion 106h can be hexagonal and can be arranged in a hexagonal close-packed, so-called honeycomb shape without gaps. The efficiency can be further improved.
  • the gaps CL may be formed between the adjacent conical surfaces 106g by cutting the four corners of the bottom surface of the conical surface 106g with an arc. The base 106f is exposed from the gap CL.
  • the angle ⁇ of the tip in the cross section passing through the axis of the conical surface 106g is 90 degrees (rise angle is 45 degrees).
  • the height H1 of the conical surface 106g is 100 ⁇ m when the material has a refractive index of 1.59.
  • the height H2 of the transparent base portion 106f that supports the conical surface 106g is 125 ⁇ m when the material has a refractive index of 1.67, and thus the overall height of the light deflection portion 106e is 225 ⁇ m.
  • the pitch p of the conical surface 106g is 150 ⁇ m.
  • Adjacent bases 106f are joined together to form an integral plate.
  • the tip of the conical surface 106g is preferably sharp, but it may be a curved surface or a flat surface (shown by a dotted line in FIG. 3) because it is relatively difficult to form a sharp tip.
  • the area of the curved surface or plane is 1/25, preferably 1/50 or less of the area of the base 106f. In this case, it is assumed that the conical surface also includes a shape whose tip is a flat surface or a curved surface.
  • the light deflection unit 106e is formed by transfer of a mold from a resin or glass material (inorganic material) having a glass transition point (Tg) of 150 ° C. or higher, and particularly in the case of a resin, the heat resistance is 100 ° C. or higher and near 450 nm.
  • a material with low absorption is preferable, and a COP material such as “ZEONEX” manufactured by Nippon Zeon Co., Ltd. can be used as the thermoplastic resin.
  • an acrylic photo-curing resin or a thermosetting resin may be used as long as the conditions are satisfied.
  • the first light source 101 includes a solid-state light emitting element 101a that emits light having a first wavelength and a collimating lens array 101b.
  • the solid-state light emitting device 101a uses a blue semiconductor laser array that can emit a plurality of blue lights having a wavelength of 450 nm simultaneously in order to obtain a predetermined output by multiplexing. From the solid-state light emitting device 101a, a plurality of linearly polarized blue lights having the same polarization state are emitted.
  • the first wavelength may be any wavelength that is shorter than the wavelength of the fluorescent light emitted from the phosphor layer (second wavelength) and can be recognized as blue, but is preferably 480 nm or less. .
  • the phosphor wheel 106 rotates in synchronization with the field of the LCD light modulation element 113, that is, each color field and segment (the first light conversion unit 106b which is a green light emitting region of the phosphor wheel 106, the red light emitting).
  • the second light conversion unit 106j that is a region and the non-conversion unit 106k that is a blue reflection region are controlled to synchronize. Specifically, blue light is incident on the light modulation element 113 in the blue color field of the LCD light modulation element 113, green light is incident on the edge color field, and red light is incident on the red color field. It has become.
  • blue light of linearly polarized light (P-polarized light with respect to the bandpass polarization filter 103) emitted from the solid-state light emitting element 101a of the first light source 101 passes through the collimator lens array 101b to become a plurality of parallel light beams.
  • the collimated light beam is narrowed down by the beam reduction optical system 102, passes through the band-pass polarizing filter 103, enters the quarter-wave plate 104, is converted into a circularly polarized state, and is collected by the condenser lens 105.
  • the light is collected and condensed as spot light on the surface side of the substrate 106a of the phosphor wheel 106 (the side where the light conversion units 106b and 106j are formed).
  • the phosphor wheel 106 connected to the rotation shaft of the motor 107 is driven to rotate at a predetermined speed.
  • the spot light is incident on one of the first light conversion unit 106b, the second light conversion unit 106j, and the non-conversion unit 106k according to the rotational position of the phosphor wheel 106.
  • Most of the spot light incident on the first light conversion unit 106b is divided by the light deflecting unit 106e and condensed on the phosphor layer 106d, and green phosphor is generated by exciting the phosphor.
  • This fluorescence becomes scattered light (Lambertian light distribution). Since the phosphor is located on the light condensing surface of the light deflection unit 106e, the fluorescence excited by the phosphor is on the phosphor layer 106d side of the light deflection unit 106e.
  • the light is refracted so as to be condensed at the flat portion and the surface 106g (toward the side closer to the normal line of the substrate), and the light distribution of fluorescence is narrowed in the normal direction of the substrate.
  • the light beam is emitted at an angle close to the incident angle of the light beam incident on the light deflection unit 106e.
  • the fluorescence toward the back side of the phosphor layer 106d is reflected by the reflecting portion 106c and then passes through the phosphor layer 106d and is emitted from the light deflecting portion 106e.
  • the thickness of the phosphor layer 106d is relatively thin.
  • the light converging (deflecting) action of the light deflecting unit 106e is maintained.
  • the return light from the phosphor wheel 106 approaches the parallel light flux when passing through the condenser lens 105, and it is possible to minimize the etendue deterioration.
  • the light having the first wavelength incident on the condensing lens 105 is collected by the condensing lens 105 and is incident on the light deflecting unit 106e as spot light with a small diameter of about ⁇ 1 mm to ⁇ 3 mm, for example.
  • the spot light collected by the condenser lens 105 is directly incident on the phosphor layer 106d without passing through the light deflecting unit 106e, the following two problems may occur.
  • the spot light focused to a small diameter by the condensing lens 105 is divided and dispersed by the optical element 106h of the light deflection unit 106e, so that each light quantity is reduced and a relatively thin phosphor. Since the light can be condensed on the layer 106d, deterioration of the phosphor layer 106d can be suppressed.
  • the fluorescence generated from the phosphor layer 106d becomes the return light of the Lambertian light distribution, but is refracted and collected by the flat surface and the surface 106g of the light deflector 106e, and is incident on the light deflector 106e. Since the light is emitted at an angle close to an angle, a parallel light beam can be emitted using the condenser lens 105 having an NA that is twice or less that of the incident light beam.
  • the spot light incident on the second light conversion unit 106j is divided by the light deflecting unit 106e, and the divided light is condensed on the phosphor layer 106d, and the phosphor is excited to red. Fluorescence occurs.
  • the small difference between the NA of the forward light flux that has passed through the condenser lens 105 and the NA of the return path before the return light from the phosphor wheel 106 enters the condenser lens 105 minimizes the deterioration of the etendue. This means that it can be limited to the limit.
  • the spot light (blue light) incident on the non-converting portion 106k is directly reflected by the reflecting portion 106c and passes through the condenser lens 105 again to become a parallel light beam.
  • blue light passes through the quarter-wave plate 104 and becomes S-polarized, and green light and red light are reflected by the bandpass polarization filter 103 regardless of polarization.
  • the Illumination light in which blue light, green light, and red light sequentially reflected by the bandpass polarization filter 103 is incident on the light pipe 109 via the first relay optical system 108, and is then reflected by the second light.
  • the light passes through the relay optical system 110, is reflected by the polarization beam splitter 112, and enters the LCD light modulation element 113.
  • the illumination light is guided to the LCD light modulation element 113 in a state in which the luminance unevenness due to the light source and the phosphor layer is alleviated. Yes.
  • a so-called polarization conversion element that uniformly aligns the polarization state is inserted in the optical path from the bandpass polarization filter 103 to the polarization beam splitter 112 in order to reduce light loss due to polarization. May be.
  • the LCD light modulation element 113 becomes a blue color field when blue light is incident, a green color field when green light is incident, and a red color field when red light is incident.
  • Divided images can be formed and projected through the projection lens 114 of the optical engine unit OE. A person who observes each projected image can visually recognize a full-color image obtained by adding the components by the afterimage effect of the eyes.
  • the phosphor wheel 106 includes the first light that converts blue light into green light.
  • the conversion unit 106b and the non-conversion unit 106k may be provided, and instead, the red light emitted from the red semiconductor light source may be guided to the LCD light modulation element 113 using a dichroic filter or the like.
  • the horizontal axis indicates the angle ( ⁇ ) with respect to the emission surface normal of the phosphor layer of 0 degree
  • the vertical axis indicates a predetermined solid angle in which the angle of the horizontal axis is a half apex angle. This is the density of the light beam contained in (referred to as the amount of light energy).
  • the solid angle at that time is represented by 2 ⁇ (1-cos ⁇ ) using the angle ⁇ on the horizontal axis.
  • a comparative example without an optical deflecting unit a first example in which a regular quadrangular pyramid is formed as an optical element of the optical deflecting unit (see FIG. 8), and a second example in which a cone is formed as an optical element of the optical deflecting unit. (See FIG. 9).
  • the amount of light energy increases rapidly in the range where the angle ⁇ is about 60 degrees or more.
  • This is the emission surface method of the phosphor layer.
  • the amount of light energy decreases in the vicinity of the line direction, that is, an illumination optical system with a high NA is required, and the amount of light that is effectively used as illumination light tends to decrease.
  • the amount of light energy is increased in the range where the angle ⁇ is 60 degrees or less compared to the comparative example.
  • the amount of light energy is increased in the range where the angle ⁇ is 65 degrees or less compared to the comparative example, and the first embodiment is compared with the first embodiment.
  • the amount of energy exceeds almost the entire area, indicating that there are many light beams that can be effectively used in the illumination optical system with a lower NA.
  • FIG. 10 is a diagram showing the light distribution characteristics of the emitted light when the emission surface normal of the phosphor layer is 0 degree.
  • the emitted light has a Lambertian emission distribution.
  • the luminance in the direction of the emission angle of 0 degree is increased about twice, and the light use efficiency at a low NA can be improved.
  • the luminance in the direction of the emission angle of 0 degrees is more than doubled as compared with the first embodiment, and the light utilization efficiency is further improved. Can do.
  • FIG. 11 is a simulation view showing an example of the optical paths of the incident light beam and the outgoing light beam in a cross-sectional view of one of the optical elements of the second embodiment cut along the axis of the conical surface.
  • the example which injected the parallel light beam is shown.
  • Part of the light beam incident on the optical element is refracted by the conical surface 106g, exits from the base 106f, and then is condensed on a phosphor layer (not shown) on the inner side and scattered from the condensing point.
  • a phosphor layer not shown
  • the optical element may be replaced with a conical surface to be an aspherical surface 106g 'targeted for the axis (third embodiment).
  • FIG. 12 is a simulation diagram showing an example of an optical path of an incident light beam and an outgoing light beam in a cross-sectional view in which one of optical elements as the third embodiment is cut along a plane including a symmetry axis. It turns out that 3rd Example has a high condensing effect compared with 2nd Example. Therefore, it is assumed that a higher effect can be obtained.
  • FIG. 13A shows an embodiment 2A having an optical element of a light deflecting portion in which a cone is formed and having a condensing position as the center of the phosphor layer.
  • FIG. 13B shows a second B embodiment in which a cone is similarly formed as an optical element of the light deflector, but the light condensing position is 0.1 mm before the phosphor layer 106d.
  • FIG. 13C similarly shows a second C embodiment in which a cone is formed as an optical element of the light deflector, but the condensing position is 0.1 mm behind the phosphor layer 106d.
  • FIG. 14 is a diagram showing the light distribution characteristics of the emitted light when the emission surface normal of the phosphor layer is set to 0 degree in Examples 2A to 2C.
  • the emitted light becomes a light distribution of the Lambertian and the light use efficiency is low.
  • the amount of light in the direction of the emission angle of 0 degrees is increased, and the light use efficiency can be improved.
  • the amount of light in the direction of the emission angle of 0 degree is the largest in the 2A example, that is, the light distribution characteristic of the emitted light is the best when the light is condensed on the phosphor layer 106d.
  • the condensing state varies depending on the position (distance from the optical axis, etc.) of the optical element 106h in the light deflecting unit 106e, the condensing position of all the optical elements 106h is within the phosphor layer 106d.
  • the second B if the condensing position is not separated from the phosphor layer 106d. Since the light distribution characteristics of the emitted light can be improved as shown in the 2C embodiment, there is an effect in increasing the light use efficiency.
  • the pitch p of the optical element will be considered. 15 and 16, in Example 2A, the pitch p (see FIG. 3) of the optical element is changed in accordance with a multiple of the average (median diameter) of the particle diameter of the phosphor layer (for example, 5 times if x5).
  • the center luminance values (vertical axis) of the light emitted from the light deflecting unit are respectively shown in comparison.
  • the pitch p of the optical element is set to be not more than four times the average (median diameter) of the particle diameter of the phosphor layer. It can be seen that if the average particle diameter (median diameter) of the phosphor layer is 5 times or more, a sufficient amount of energy can be secured and illumination light with high luminance can be realized. However, if it is too large, the effect of division is reduced, so it is desirable that the average particle diameter (median diameter) of the phosphor layer be 20 times or less.
  • the pitch p of the optical element is 10 times or more the average (median diameter) of the particle diameter of the phosphor layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)

Abstract

Provided are: a wavelength conversion member with which it is possible to improve a light distribution characteristic for the purpose of producing a high quality image; and an image formation device using the same. By using optical elements 106h of a light deflection section 106e to divide a spotlight narrowed to a small diameter by a condenser lens 105, it is possible to condense the light into a relatively thin phosphor layer 106d while reducing each light intensity, and deterioration of the phosphor layer 106d can therefore be suppressed. Furthermore, fluorescence produced from the phosphor layer 106d becomes return light in a scattered state but is refracted by the optical elements 106h of the light deflection section 106e and emitted at an angle close to the incident angle of a light beam incident on the light deflection section 106e. It is therefore possible to restrict expansion of light distribution and emit a parallel light beam by using the low NA condenser lens 105.

Description

波長変換部材及び画像形成装置Wavelength conversion member and image forming apparatus
 本発明は、波長変換部材及び画像形成装置に関し、特に小型の画像投影装置のような画像形成装置に好適に用いられる波長変換部材及びそれを用いた画像形成装置に関する。 The present invention relates to a wavelength conversion member and an image forming apparatus, and more particularly to a wavelength conversion member suitably used for an image forming apparatus such as a small image projection apparatus and an image forming apparatus using the same.
 画像形成装置の一種である画像投影装置においては、液晶パネルやミラー偏向型のデジタルマイクロミラーデバイス(DMD)等を用いて投影画像を形成しているが、かかる画像を投影するための光源として、従来から放電ランプが広く利用されている。しかしながら、放電ランプは寿命が短く信頼性が低いという問題点があり、更には環境保護の要請もある。
これに対し、近年では半導体レーザや発光ダイオードの固体光源の開発が進み、画像投影装置の光源として用いられるようになってきた。
In an image projection apparatus which is a kind of image forming apparatus, a projection image is formed using a liquid crystal panel, a mirror deflection type digital micromirror device (DMD), or the like. As a light source for projecting such an image, Conventionally, discharge lamps have been widely used. However, the discharge lamp has a problem that its life is short and its reliability is low, and there is also a demand for environmental protection.
On the other hand, in recent years, solid-state light sources such as semiconductor lasers and light emitting diodes have been developed, and have been used as light sources for image projection apparatuses.
 ここで、投影画像を形成する際には、光の三原色として、赤色、緑色、青色の三色の高強度光が必要になるが、例えば半導体レーザとしては、赤色のレーザと青色のレーザは高輝度のものが実用化されているのに対し、十分に高輝度の緑色のレーザがまだ実用化されていないという問題がある。そこで、青色レーザ光を波長変換して、緑色の高強度光を創成しようとする試みがある。又、青色レーザ光を波長変換して赤色の高強度光を創成することも行われている。例えば特許文献1には、青色レーザ光を赤色蛍光体層に入射させることで赤色光を励起させ、また青色レーザ光を緑色蛍光体層に入射させることで緑色光を励起させる蛍光ホイールが開示されている。 Here, when forming a projected image, high intensity light of three colors of red, green, and blue is required as the three primary colors of light. For example, as a semiconductor laser, a red laser and a blue laser are high. There is a problem that a sufficiently high-brightness green laser has not yet been put into practical use, whereas a bright one has been put into practical use. Therefore, there is an attempt to create green high-intensity light by converting the wavelength of blue laser light. In addition, wavelength conversion of blue laser light has been performed to create red high-intensity light. For example, Patent Document 1 discloses a fluorescent wheel that excites red light by causing blue laser light to enter the red phosphor layer and excites green light by causing blue laser light to enter the green phosphor layer. ing.
 一方、画像投影装置の小型化や省エネを推進する上では、光源自体をなるべく小さくしつつ、光の利用効率を高めたいという要請もある。一般に、画像投影装置の光利用効率を高くする手法として、光源の発光面積と光源から出射する光束の立体角との積であるエタンデユを小さくすることが挙げられる。 On the other hand, in order to promote downsizing and energy saving of the image projection apparatus, there is a demand to increase the light use efficiency while minimizing the light source itself. In general, as a method of increasing the light use efficiency of the image projection apparatus, there is a method of reducing the Etendue, which is the product of the light emitting area of the light source and the solid angle of the light beam emitted from the light source.
 このような課題に対して、特許文献2では、蛍光体層の表面に微細な凹凸形状を設けて、光の利用効率を向上させる工夫がなされている。 In order to solve such a problem, Patent Document 2 has been devised to improve the light utilization efficiency by providing a fine uneven shape on the surface of the phosphor layer.
特開2009-277516号公報JP 2009-277516 A 特開2012-68465号公報JP 2012-68465 A
 ここで、特許文献2において、蛍光体層の励起光入射面に、複数の正四角錐又は球面体の一部を切断して底面を六角形とした部位(凹凸構造)を形成しているので、この凹凸構造に照射された角度が一緒であっても照射される位置によって屈折方向が変化し、蛍光体層内で様々な方向に励起光が拡散される。これにより、蛍光体層内の広い範囲に励起光が行き渡るため、蛍光体に照射される励起光が増加することとなり、励起光の利用効率を高くできるとされている。しかしながら、特許文献2に示す技術では、蛍光体層の表面に凹凸構造を形成しているので、凹凸構造に入射直後において蛍光体層の内包する粒子に散乱が生じた光については、入射点からランバーシャン発光することとなり、凹凸構造を設けた効果が少なく、光学系の光の有効利用が十分に図れないという問題がある。 Here, in Patent Document 2, a portion (uneven structure) having a hexagonal bottom surface is formed by cutting a part of a plurality of regular quadrangular pyramids or spherical bodies on the excitation light incident surface of the phosphor layer. Even if the irradiating structure is irradiated at the same angle, the refraction direction changes depending on the irradiation position, and the excitation light is diffused in various directions in the phosphor layer. Thereby, since the excitation light spreads over a wide range in the phosphor layer, the excitation light irradiated to the phosphor increases, and it is said that the utilization efficiency of the excitation light can be increased. However, in the technique shown in Patent Document 2, since the concavo-convex structure is formed on the surface of the phosphor layer, the light scattered in the particles included in the phosphor layer immediately after entering the concavo-convex structure is from the incident point. There is a problem that the Lambertian light emission occurs, the effect of providing the uneven structure is small, and the light of the optical system cannot be effectively used.
 詳細には、凹凸構造より進入した励起光を受けて蛍光体奥側で発光した蛍光光は全方位に射出されるが、励起光入射面が様々な角度を有しているため、例え励起光入射面に一度反射されて蛍光板の反射面に照射された光束も、次に励起光入射面に照射された場合には異なる角度の励起光入射面に照射される確率が高くなり、出射光として有効に利用されるとされている。しかしながら、これを言い換えると、励起光入射面から出射する光はランダムな方向へと向かい、配光特性がランバーシャンのまま蛍光体の発光面積が広がり結果としてエタンデュが悪化するという問題がある。 Specifically, the fluorescent light emitted from the back side of the phosphor upon receiving the excitation light entering from the concavo-convex structure is emitted in all directions, but the excitation light incident surface has various angles. The luminous flux once reflected on the incident surface and irradiated on the reflecting surface of the fluorescent plate is also more likely to be irradiated on the excitation light incident surface at a different angle when it is irradiated on the excitation light incident surface next time. It is supposed to be used effectively. However, in other words, there is a problem in that the light emitted from the excitation light incident surface is directed in a random direction, and the emission area of the phosphor is widened with the light distribution characteristic being Lambertian, resulting in deterioration of the etendue.
 本発明はこのような課題に鑑みてなされたものであり、高画質な画像をするために光の配光特性を改善できる波長変換部材及びそれを用いた画像形成装置を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a wavelength conversion member capable of improving the light distribution characteristics of a light to form a high-quality image and an image forming apparatus using the wavelength conversion member. To do.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した波長変換部材は、
 基板の少なくとも一部に、基板側から順に反射部と蛍光体層と光偏向部とが、この順序で配置される波長変換部材であって、
 前記光偏向部は、集光作用を持つ複数の光学要素を有し、前記複数の光学要素が並べて配置され、
 前記光偏向部の前記光学要素に入射した第1の波長の光は、前記複数の光学要素によって分割されて前記蛍光体層に入射し、前記蛍光体層によって前記第1の波長とは異なる第2の波長の光に変換され、前記第2の波長の光は前記蛍光体層から直接もしくは前記反射部で反射された後に、前記光偏向部で屈折されて、配光分布が前記基板の法線方向に狭まるように出射するよう構成されている。
In order to achieve at least one of the objects described above, the wavelength conversion member reflecting one aspect of the present invention is:
A wavelength conversion member in which a reflection portion, a phosphor layer, and a light deflection portion are arranged in this order in order from at least a portion of the substrate,
The light deflection unit has a plurality of optical elements having a light collecting action, and the plurality of optical elements are arranged side by side,
The light having the first wavelength incident on the optical element of the light deflector is divided by the plurality of optical elements and incident on the phosphor layer, and the first wavelength differs from the first wavelength by the phosphor layer. 2 is converted into light having a wavelength of 2, and the light having the second wavelength is reflected from the phosphor layer directly or after being reflected by the reflecting portion and then refracted by the light deflecting portion. The light is emitted so as to narrow in the line direction.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した画像形成装置は、第1の波長の光を出射する光源と、少なくとも一枚の正のパワーを有するレンズまたはミラーを含む集光光学系と、前記光学系を介して前記第1の波長の光を入射する上記波長変換部材と、画像を形成する光変調素子と、前記光変調素子に波長変換部材からの光を導く照明部と、前記光変調素子からの画像光と投影する投影光学系とを有する。 In order to achieve at least one of the above objects, an image forming apparatus reflecting one aspect of the present invention includes a light source that emits light of a first wavelength and at least one lens having positive power. A condensing optical system including a mirror; the wavelength conversion member that receives the light of the first wavelength via the optical system; a light modulation element that forms an image; and An illumination unit that guides light, and a projection optical system that projects image light from the light modulation element.
 本発明によれば、高画質な画像をするために光の配光特性を改善できる波長変換部材及びそれを用いた画像形成装置を提供することができる。 According to the present invention, it is possible to provide a wavelength conversion member that can improve the light distribution characteristics of an image to form a high-quality image, and an image forming apparatus using the wavelength conversion member.
本実施の形態にかかる画像形成装置としての画像投影装置100の概略構成図である。1 is a schematic configuration diagram of an image projection apparatus 100 as an image forming apparatus according to an embodiment. 蛍光体ホイール106の斜視図である。3 is a perspective view of a phosphor wheel 106. FIG. 蛍光体ホイール106の概略断面図である。2 is a schematic cross-sectional view of a phosphor wheel 106. FIG. 光偏向部106eを側方から見た図である。It is the figure which looked at the optical deflection | deviation part 106e from the side. 光偏向部106eを入射側から見た図である。It is the figure which looked at the optical deflection | deviation part 106e from the incident side. 変形例にかかる光偏向部106eを入射側から見た図である。It is the figure which looked at the optical deflection | deviation part 106e concerning a modification from the incident side. エネルギー量と角度θとの関係をシミュレーションした図である。It is the figure which simulated the relationship between energy amount and angle (theta). 第1実施例の斜視図である。It is a perspective view of 1st Example. 第2実施例の斜視図である。It is a perspective view of 2nd Example. 蛍光体層の出射面法線を0度としたときの出射光における配光特性を示す図である。It is a figure which shows the light distribution characteristic in an emitted light when the output surface normal line of a fluorescent substance layer is 0 degree. 第2実施例の光学要素の1つを円錐面の軸線に沿って切断した断面図において、入射光束と出射光束の光路の例を示すシミュレーション図である。FIG. 10 is a simulation diagram showing an example of an optical path of an incident light beam and an outgoing light beam in a cross-sectional view in which one of the optical elements of the second embodiment is cut along the axis of a conical surface. 変形例の光学要素の1つを対象軸を含む平面で切断した断面図において、入射光束と出射光束の光路の例を示すシミュレーション図である。It is a simulation figure showing an example of an optical path of an incident light beam and an outgoing light beam in a sectional view which cut one optical element of a modification by a plane containing an object axis. 蛍光体層への入射光の集光位置を変えて示す断面図である。It is sectional drawing which changes and shows the condensing position of the incident light to a fluorescent substance layer. 第2A~第2C実施例における、蛍光体層の出射面法線を0度としたときの出射光における配光特性を示す図である。It is a figure which shows the light distribution characteristic in the emitted light when the output surface normal line of a fluorescent substance layer is set to 0 degree | times in Example 2A-2C. 実施例2Aについて光学要素のピッチを変えて比較検討した結果を示す図である。It is a figure which shows the result of having examined comparatively by changing the pitch of an optical element about Example 2A. 実施例2Aについて光学要素のピッチを変えて比較検討した結果を示す図である。It is a figure which shows the result of having examined comparatively by changing the pitch of an optical element about Example 2A.
 以下、本実施の形態を、図面を参照して説明する。図1は、本実施の形態にかかる画像形成装置としての画像投影装置100の概略構成図である。ここでは、光変調素子として、反射型のLCD光変調素子(LCOS:Liquid crystal on silicon)を用いた画像投影装置の構成例を示すが、これに限定されずミラーアレイ(DMD:Digital Mirror Device)や透過型液晶を用いた光変調素子を採用しても良い。又、複数の光変調素子を組合せて用いても良い。 Hereinafter, the present embodiment will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an image projection apparatus 100 as an image forming apparatus according to the present embodiment. Here, a configuration example of an image projection apparatus using a reflective LCD light modulation element (LCOS: Liquid crystal on silicon) as a light modulation element is shown, but the present invention is not limited to this, and a mirror array (DMD: Digital Mirror Device) is shown. Alternatively, a light modulation element using transmissive liquid crystal may be employed. A plurality of light modulation elements may be used in combination.
 画像投影装置100は、光源101からLCD光変調素子113の手前までの照明部ILと、LCD光変調素子113から投影レンズ114までの光学エンジン部OEとを備える。光学エンジン部OEは、照明部ILから射出された光を光学的に処理して画像光を生成し、その画像光を外部の物体面に拡大投影する機能を有する。物体面とは、壁、スクリーン、ホワイトボードや、立体物などである。光学エンジン部OEは、LCD光変調素子113と、照明光と投影光の分岐素子となる偏光ビームスプリッタ112と、LCD光変調素子113で生成された像を拡大投影する投影レンズ114で構成される。偏光ビームスプリッタ112は、後に述べる照明部ILでも共用される。 The image projection apparatus 100 includes an illumination unit IL from the light source 101 to the front of the LCD light modulation element 113, and an optical engine unit OE from the LCD light modulation element 113 to the projection lens 114. The optical engine unit OE has a function of optically processing the light emitted from the illumination unit IL to generate image light and enlarging and projecting the image light on an external object plane. The object plane is a wall, a screen, a whiteboard, a three-dimensional object, or the like. The optical engine unit OE includes an LCD light modulation element 113, a polarization beam splitter 112 serving as a branching element for illumination light and projection light, and a projection lens 114 for enlarging and projecting an image generated by the LCD light modulation element 113. . The polarization beam splitter 112 is also used in the illumination unit IL described later.
 光学エンジン部OEの構成は、最小構成として上述の3要素を備え、LCD光変調素子113と投影レンズ114の光路中に分岐素子が入る構成であれば良い。また、必要に応じて、光路上にその他の光学素子を加えても良い。そのような光学素子としては、例えば、偏光状態を変化させる波長板や、偏光フィルタ、色味を補正するフィルタ等がある。 The configuration of the optical engine unit OE may be any configuration that includes the above-described three elements as a minimum configuration and that includes a branching element in the optical path between the LCD light modulation element 113 and the projection lens 114. If necessary, other optical elements may be added on the optical path. Examples of such an optical element include a wave plate that changes the polarization state, a polarizing filter, and a filter that corrects the color.
 LCD光変調素子113は、制御部CONTからの画像に対応してR成分、G成分、B成分に分解された信号に対し、液晶分子の配列を変化させ、入射光の偏光状態を変えた光を偏光ビームスプリッタの偏光膜と組み合わせることで、変調された画像を生成する。 The LCD light modulation element 113 changes the alignment of the liquid crystal molecules and changes the polarization state of the incident light in response to the signal decomposed into the R component, G component, and B component corresponding to the image from the control unit CONT. Is combined with the polarizing film of the polarizing beam splitter to generate a modulated image.
 また、その際に、LCD光変調素子113を、R成分、G成分、B成分についてそれぞれ時間的に分割されたいわゆるカラーフィールドシーケンシャル方式で画像を生成し、フルカラーの映像を投影することができる。このとき、LCD光変調素子113のR成分、G成分、B成分の画像を形成するために変化した液晶セルの配列(フィールド)と、照明部ILのR(赤色光)、G(緑色光)、B(青色光)の発光タイミングとを同期させている。 At that time, the LCD light modulation element 113 can generate an image by a so-called color field sequential method in which the R component, the G component, and the B component are respectively divided in time, and can project a full-color image. At this time, the arrangement (field) of the liquid crystal cells changed to form the R component, G component, and B component images of the LCD light modulation element 113, and R (red light) and G (green light) of the illumination unit IL. , B (blue light) emission timing is synchronized.
 一方、照明部ILは、第1光源101と、正レンズ及び負レンズを含むビーム縮小光学系102と、バンドパス偏光フィルタ103と、1/4波長板104と、少なくとも1枚の正レンズ(又はミラーでも良い)を含む集光光学系である集光レンズ105と、波長変換部材である蛍光体ホイール106と、回転駆動部としてのモータ107と、第1リレー光学系108と、ライトパイプ109と、第2リレー光学系110と、偏光ビームスプリッタ112とを有する。第1光源101は、レーザドライバDRによりモータ107の回転に同期して発光駆動される。バンドパス偏光フィルタ103は、光軸に対して45度の角度で傾いており、第1の波長である450nmに対して±20nmのP偏光の光を透過し、S偏光と500nm以上の長波長の光を反射する特性を有する。この際、集光レンズ105は蛍光体ホイール106に所定のサイズの光束径で集光されるように設定されていれば良く、更には所定サイズの径であれば、平行な光束であっても良い。 On the other hand, the illumination unit IL includes a first light source 101, a beam reduction optical system 102 including a positive lens and a negative lens, a bandpass polarization filter 103, a quarter wavelength plate 104, and at least one positive lens (or A condensing lens 105 which is a condensing optical system including a mirror), a phosphor wheel 106 which is a wavelength conversion member, a motor 107 as a rotation driving unit, a first relay optical system 108, a light pipe 109, The second relay optical system 110 and the polarization beam splitter 112 are included. The first light source 101 is driven to emit light in synchronization with the rotation of the motor 107 by the laser driver DR. The band-pass polarization filter 103 is inclined at an angle of 45 degrees with respect to the optical axis, transmits P-polarized light of ± 20 nm with respect to the first wavelength of 450 nm, and has S-polarized light and a long wavelength of 500 nm or more. It has the characteristic of reflecting the light. At this time, the condensing lens 105 only needs to be set so as to be focused on the phosphor wheel 106 with a light beam diameter of a predetermined size. good.
 図2は、蛍光体ホイール106の斜視図であり、図3は、蛍光体ホイール106の概略断面図である。図2において、蛍光体ホイール106は、透明な円盤状のガラスである基板106aの上面外周近傍において、周方向に沿って帯状に第1の光変換部106bと、これに続けて第2の光変換部106jとを形成したものである。但し、光変換部106b、106jは、基板106aの2/3周分しか形成されておらず、残りは基板106aに反射部106cを形成したものである。つまり、基板106aの1/3周に第1の光変換部106bが形成され、別の1/3周に第2の光変換部106jが形成され、別の1/3周は基板106aの反射部106cのみを形成した非変換部106kである。尚、基板106aの中央には、モータ107の回転軸と連結するための孔106pが形成されている。基板106aは必ずしもガラスである必要はなく、吸収の少ない材料または、熱伝導の良い材料であればよく、熱伝導の良い材料として例えば銅やアルミニウム等の金属材料を用いても良い。 FIG. 2 is a perspective view of the phosphor wheel 106, and FIG. 3 is a schematic cross-sectional view of the phosphor wheel 106. In FIG. 2, the phosphor wheel 106 includes a first light conversion unit 106 b in the form of a band along the circumferential direction in the vicinity of the outer periphery of the upper surface of the substrate 106 a that is a transparent disk-shaped glass, and subsequently the second light. The conversion unit 106j is formed. However, the light conversion portions 106b and 106j are formed only for 2/3 of the substrate 106a, and the rest is obtained by forming the reflection portion 106c on the substrate 106a. That is, the 1st light conversion part 106b is formed in 1/3 circumference of the board | substrate 106a, the 2nd light conversion part 106j is formed in another 1/3 circumference, and another 1/3 circumference is reflection of the board | substrate 106a. This is a non-conversion part 106k in which only the part 106c is formed. In the center of the substrate 106a, a hole 106p for connecting to the rotating shaft of the motor 107 is formed. The substrate 106a is not necessarily made of glass, and may be a material with low absorption or a material with good heat conduction. For example, a metal material such as copper or aluminum may be used as the material with good heat conduction.
 図3において、光変換部106b、106jは、蛍光体層以外は同じ構成を有しており、基板106a側から、反射部としての反射層106c、蛍光体層106d、光偏向部106eとを積層して形成されている。反射層106cは、基板106a上に銀などを蒸着してなる。第1の光変換部106bの蛍光体層106dとしては、セリウム賦活イットリウムアルミニウムガーネット(YAG:Ce)(この蛍光体の結晶母体の代表的な化学組織はY3(Al,Ga)512である)、Ce又はセリウム賦活ルテチウム・アルミニウム・ガーネット(LuAG:Ce)、またはβサイアロン蛍光体等を用いることができるが、第1の波長の光を入射したときに、第2の波長の光として500nmから560nmにピーク波長がある蛍光発光を行える蛍光体であれば良い。一方、第2の光変換部106jの蛍光体層106dとしては、Srサイアロン蛍光体(Sr2Si7Al3ON13:Eu)等を用いることができるが、第1の波長の光を入射したときに、第2の波長の光として600nmから650nmにピーク波長がある蛍光発光を行える蛍光体であれば良い。本実施の形態では、蛍光体層106dの厚みは45μmであるが、緑色光と赤色光の共役関係がずれることから、蛍光体層106jの厚みは蛍光体層106dの厚みと異ならせることが望ましい。無機蛍光体を含む蛍光体層106d、106jは、メディアン径d50が8μm~20μm程度(ここでは10μm)の蛍光体粒子と前記蛍光体粒子を固定するバインダー材を内包している。 In FIG. 3, the light conversion units 106b and 106j have the same configuration except for the phosphor layer, and a reflection layer 106c, a phosphor layer 106d, and a light deflection unit 106e as a reflection unit are stacked from the substrate 106a side. Is formed. The reflective layer 106c is formed by evaporating silver or the like on the substrate 106a. As the phosphor layer 106d of the first light conversion unit 106b, cerium activated yttrium aluminum garnet (YAG: Ce) (a typical chemical structure of the crystal matrix of this phosphor is Y 3 (Al, Ga) 5 O 12 ), Ce or cerium activated lutetium aluminum garnet (LuAG: Ce), or β sialon phosphor can be used, but when the light of the first wavelength is incident, as the light of the second wavelength Any phosphor capable of emitting fluorescence having a peak wavelength from 500 nm to 560 nm may be used. On the other hand, a Sr sialon phosphor (Sr 2 Si 7 Al 3 ON 13 : Eu) or the like can be used as the phosphor layer 106d of the second light conversion unit 106j. In some cases, any phosphor may be used as long as it emits fluorescent light having a peak wavelength from 600 nm to 650 nm as the second wavelength light. In the present embodiment, the thickness of the phosphor layer 106d is 45 μm. However, since the conjugate relationship between the green light and the red light is shifted, the thickness of the phosphor layer 106j is preferably different from the thickness of the phosphor layer 106d. . The phosphor layers 106d and 106j containing the inorganic phosphor include phosphor particles having a median diameter d50 of about 8 μm to 20 μm (here 10 μm) and a binder material for fixing the phosphor particles.
 図4は、光偏向部106eを側方から見た図であり、図5は、光偏向部106eを入射側から見た図である。図に示すように、光変換部106b、106jで共通に用いられる光偏向部106eは、それぞれ同一形状である複数の微小な光学要素106hの集合体である。より具体的には、個々の光学要素106hは、図4に示すように、蛍光体層106dに接するベースの厚みを有する基部106fと、その上に接合され空気に接している円錐面106gとからなる。但し、光学要素106hは、集光作用を持つ形状であれば、円錐面に限らず、四角錐や凸レンズとなる非球面或いは球面を有していても良い。 4 is a view of the light deflection unit 106e as viewed from the side, and FIG. 5 is a view of the light deflection unit 106e as viewed from the incident side. As shown in the figure, the light deflection unit 106e used in common by the light conversion units 106b and 106j is an aggregate of a plurality of minute optical elements 106h having the same shape. More specifically, as shown in FIG. 4, each optical element 106h is composed of a base portion 106f having a base thickness in contact with the phosphor layer 106d and a conical surface 106g bonded thereon and in contact with air. Become. However, the optical element 106h is not limited to a conical surface as long as it has a condensing function, and may have an aspherical surface or a spherical surface that becomes a quadrangular pyramid or a convex lens.
 この光学要素106hはマトリクス状に並べられている。「マトリクス状」とは、図5に示すように1つの基部106hの辺を、隣接する3つの基部106hの辺と突き合わせて隙間なく配置した格子形状の他、図6(a)に示すように、1つの基部106hの辺を、隣接する1つの基部106hの辺のみと突き合わせて隙間なく配置した形状も含む。例えば基部106hの底面を六角形状として、六方最密充填、所謂ハニカム状に隙間なく配置することもできるが、正方形状の基部106hをマトリクス状に隙間なく配置することで、ロスが少なく光の利用効率をより向上できる。尚、図6(b)に示すように、円錐面106gの底面の四隅を円弧でカットするようにして、隣接する円錐面106gの間に隙間CLを形成するようにしても良い。隙間CLから基部106fが露出している。 The optical elements 106h are arranged in a matrix. As shown in FIG. 6 (a), “matrix shape” refers to a lattice shape in which the sides of one base 106h are abutted against the sides of three adjacent bases 106h as shown in FIG. It also includes a shape in which the side of one base portion 106h is arranged with only a side of one adjacent base portion 106h but without a gap. For example, the bottom surface of the base portion 106h can be hexagonal and can be arranged in a hexagonal close-packed, so-called honeycomb shape without gaps. The efficiency can be further improved. As shown in FIG. 6B, the gaps CL may be formed between the adjacent conical surfaces 106g by cutting the four corners of the bottom surface of the conical surface 106g with an arc. The base 106f is exposed from the gap CL.
 図3を参照して、円錐面106gの軸線を通る断面における先端の角度αは90度(立ち上がり角度が45度)である。又、円錐面106gの高さH1は、屈折率1.59の素材であるときは100μmとする。円錐面106gを支持する透明な基部106fの高さH2は、屈折率1.67の素材であるときは125μmとし、よって光偏向部106e全体の高さは225μmである。円錐面106gのピッチpは150μmである。 Referring to FIG. 3, the angle α of the tip in the cross section passing through the axis of the conical surface 106g is 90 degrees (rise angle is 45 degrees). The height H1 of the conical surface 106g is 100 μm when the material has a refractive index of 1.59. The height H2 of the transparent base portion 106f that supports the conical surface 106g is 125 μm when the material has a refractive index of 1.67, and thus the overall height of the light deflection portion 106e is 225 μm. The pitch p of the conical surface 106g is 150 μm.
 隣接する基部106f同士が接合されて一体の板状物が構成されている。円錐面106gの先端は尖っていることが望ましいが、尖った先端の形成上比較的困難であるから、曲面もしくは平面(図3に点線で図示)であっても良い。但し、曲面もしくは平面の面積は、基部106fの面積の1/25好ましくは1/50以下であるのが良い。本件では、このように先端が平面あるいは曲面状になっている形状も円錐面に含まれるものとする。 Adjacent bases 106f are joined together to form an integral plate. The tip of the conical surface 106g is preferably sharp, but it may be a curved surface or a flat surface (shown by a dotted line in FIG. 3) because it is relatively difficult to form a sharp tip. However, the area of the curved surface or plane is 1/25, preferably 1/50 or less of the area of the base 106f. In this case, it is assumed that the conical surface also includes a shape whose tip is a flat surface or a curved surface.
 光偏向部106eは、ガラス転移点(Tg)が150℃以上の樹脂またはガラス材(無機材料)から金型の転写によって形成され、特に樹脂の場合は耐熱性が100℃以上で、450nm近傍の吸収が少ない材料が好ましく、熱可塑性樹脂では日本ゼオン株式会社の製品名「ゼオネックス」等のCOP材などを用いることが出来る。又、条件を満たせばアクリル系の光硬化性樹脂や熱硬化性樹脂を用いてもよい。 The light deflection unit 106e is formed by transfer of a mold from a resin or glass material (inorganic material) having a glass transition point (Tg) of 150 ° C. or higher, and particularly in the case of a resin, the heat resistance is 100 ° C. or higher and near 450 nm. A material with low absorption is preferable, and a COP material such as “ZEONEX” manufactured by Nippon Zeon Co., Ltd. can be used as the thermoplastic resin. Further, an acrylic photo-curing resin or a thermosetting resin may be used as long as the conditions are satisfied.
 光学要素106hに対して第1の波長の光が入射したときに、その30%以上の光は2次元的に並べられた微細な光学要素106hにより分割されて、蛍光体層106dに集光されるようになっている。 When light of the first wavelength is incident on the optical element 106h, 30% or more of the light is divided by the fine optical element 106h arranged two-dimensionally and collected on the phosphor layer 106d. It has become so.
 第1光源101は、第1の波長の光を出射する固体発光素子101aと、コリメートレンズアレイ101bとで構成されている。固体発光素子101aは、合波によって所定出力を得るために、ここでは波長450nmの青色光を複数本同時に出射できる青色半導体レーザアレイを用いる。固体発光素子101aからは、偏光状態のそろった直線偏光の青色光を複数本射出する。なお、第1の波長としては、上述する蛍光体層で蛍光発光する光の波長(第2の波長)より短く、青色と認識できる波長帯域のものであれば良いが、好ましくは480nm以下である。 The first light source 101 includes a solid-state light emitting element 101a that emits light having a first wavelength and a collimating lens array 101b. The solid-state light emitting device 101a uses a blue semiconductor laser array that can emit a plurality of blue lights having a wavelength of 450 nm simultaneously in order to obtain a predetermined output by multiplexing. From the solid-state light emitting device 101a, a plurality of linearly polarized blue lights having the same polarization state are emitted. The first wavelength may be any wavelength that is shorter than the wavelength of the fluorescent light emitted from the phosphor layer (second wavelength) and can be recognized as blue, but is preferably 480 nm or less. .
 本実施の形態の動作について説明する。ここで、蛍光体ホイール106は、LCD光変調素子113のフィールドに同期して回転し、すなわち各カラーフィールドとセグメント(蛍光体ホイール106の緑色発光領域である第1の光変換部106b、赤色発光領域である第2の光変換部106j、青色反射領域である非変換部106k)が同期するよう制御されている。具体的には、LCD光変調素子113における青のカラーフィールドでは青色光が光変調素子113に入射し、縁のカラーフィールドでは、緑色光が入射し、赤のカラーフィールドでは赤色光が入射するようになっている。 The operation of this embodiment will be described. Here, the phosphor wheel 106 rotates in synchronization with the field of the LCD light modulation element 113, that is, each color field and segment (the first light conversion unit 106b which is a green light emitting region of the phosphor wheel 106, the red light emitting). The second light conversion unit 106j that is a region and the non-conversion unit 106k that is a blue reflection region are controlled to synchronize. Specifically, blue light is incident on the light modulation element 113 in the blue color field of the LCD light modulation element 113, green light is incident on the edge color field, and red light is incident on the red color field. It has become.
 まず、第1光源101の固体発光素子101a出射された直線偏光(バンドパス偏光フィルタ103に対してP偏光)の青色光は、コリメートレンズアレイ101bを通過して複数の平行光束とされ、その複数の平行光束は、ビーム縮小光学系102で光束径を絞り込まれ、バンドパス偏光フィルタ103を通過し、1/4波長板104に入射して円偏光状態に変換され、更に集光レンズ105により集光されて、蛍光体ホイール106の基板106aの表面側(光変換部106b、106jが形成された側)にスポット光として集光する。尚、モータ107の回転軸に連結された蛍光体ホイール106は、所定の速度で回転駆動されている。 First, blue light of linearly polarized light (P-polarized light with respect to the bandpass polarization filter 103) emitted from the solid-state light emitting element 101a of the first light source 101 passes through the collimator lens array 101b to become a plurality of parallel light beams. The collimated light beam is narrowed down by the beam reduction optical system 102, passes through the band-pass polarizing filter 103, enters the quarter-wave plate 104, is converted into a circularly polarized state, and is collected by the condenser lens 105. The light is collected and condensed as spot light on the surface side of the substrate 106a of the phosphor wheel 106 (the side where the light conversion units 106b and 106j are formed). The phosphor wheel 106 connected to the rotation shaft of the motor 107 is driven to rotate at a predetermined speed.
 かかるスポット光は、蛍光体ホイール106の回転位置に応じて、第1の光変換部106b、第2の光変換部106j、非変換部106kのいずれかに入射する。第1の光変換部106bに入射したスポット光の大部分は、光偏向部106eにより分割され蛍光体層106dに集光され、蛍光体が励起されることで緑色の蛍光が発生する。この蛍光は散乱光(ランバーシャン配光)となるが、蛍光体が光偏向部106eの集光面に位置するため蛍光体で励起された蛍光は、光偏向部106eの蛍光体層106d側の平面部及び面106gで集光されるように(基板の法線に近づく側に)屈折し、蛍光の配光分布が基板の法線方向に狭められる。その結果、光偏向部106eに入射した光束の入射角に近い角度で出射されることとなる。又、蛍光体層106dの奥側に向かう蛍光は反射部106cで反射した後、蛍光体層106dを通過して光偏向部106eから出射するが、蛍光体層106dの厚さが比較的薄いので、この反射光の大部分においても光偏向部106eの集光(偏向)作用が維持されることとなる。これにより、蛍光体ホイール106からの戻り光が、集光レンズ105を通過した際に平行光束に近づき、エタンデュの悪化を最小限に抑えることが可能となる。 The spot light is incident on one of the first light conversion unit 106b, the second light conversion unit 106j, and the non-conversion unit 106k according to the rotational position of the phosphor wheel 106. Most of the spot light incident on the first light conversion unit 106b is divided by the light deflecting unit 106e and condensed on the phosphor layer 106d, and green phosphor is generated by exciting the phosphor. This fluorescence becomes scattered light (Lambertian light distribution). Since the phosphor is located on the light condensing surface of the light deflection unit 106e, the fluorescence excited by the phosphor is on the phosphor layer 106d side of the light deflection unit 106e. The light is refracted so as to be condensed at the flat portion and the surface 106g (toward the side closer to the normal line of the substrate), and the light distribution of fluorescence is narrowed in the normal direction of the substrate. As a result, the light beam is emitted at an angle close to the incident angle of the light beam incident on the light deflection unit 106e. Further, the fluorescence toward the back side of the phosphor layer 106d is reflected by the reflecting portion 106c and then passes through the phosphor layer 106d and is emitted from the light deflecting portion 106e. However, since the thickness of the phosphor layer 106d is relatively thin. Even in the majority of the reflected light, the light converging (deflecting) action of the light deflecting unit 106e is maintained. As a result, the return light from the phosphor wheel 106 approaches the parallel light flux when passing through the condenser lens 105, and it is possible to minimize the etendue deterioration.
 ここで、集光レンズ105の作用と、光偏向部106eの作用とを説明する。集光レンズ105に入射した第1の波長の光は、集光レンズ105にて集光され、例えばφ1mm~φ3mm程度の小径に絞られたスポット光として光偏向部106eに入射する。しかるに、光偏向部106eを介することなく、集光レンズ105により集光されたスポット光を直接、蛍光体層106dに入射させると、以下に述べる2つの課題が生じうる。
(1)集光レンズ105により1点にスポット光を集光した場合、集光位置のエネルギー密度が高くなりすぎてしまい、蛍光体層106dの早期劣化が生じる恐れがある。
(2)蛍光体層106dは本来的に散乱作用を有するので、集光レンズ105が離れた位置にある場合、蛍光体層106dから散乱されつつ出射した蛍光光が集光レンズ105に取り込まれず、光の利用効率のロスが発生する。
Here, the operation of the condenser lens 105 and the operation of the light deflection unit 106e will be described. The light having the first wavelength incident on the condensing lens 105 is collected by the condensing lens 105 and is incident on the light deflecting unit 106e as spot light with a small diameter of about φ1 mm to φ3 mm, for example. However, if the spot light collected by the condenser lens 105 is directly incident on the phosphor layer 106d without passing through the light deflecting unit 106e, the following two problems may occur.
(1) When spot light is condensed at one point by the condensing lens 105, the energy density at the condensing position becomes too high, and the phosphor layer 106d may be deteriorated at an early stage.
(2) Since the phosphor layer 106d inherently has a scattering action, when the condensing lens 105 is at a distant position, fluorescent light emitted while being scattered from the phosphor layer 106d is not taken into the condensing lens 105, Loss of light utilization efficiency occurs.
 この2つの課題を解決する方策として、例えば集光位置をずらし、大きなNAを持つ集光レンズ105を設けることも理論的には可能であるが、集光レンズの大型化を招き好ましくない。なぜなら、第1の波長の光をレーザ光とした場合に必要な集光レンズ105のNAは、第1の波長の光を集光するためにNA0.4程度必要である一方、戻り光としての第2の波長の光を集光するためにNA0.95以上必要となり、つまり2.5倍の径を有する集光レンズが必要になってしまうからである。そこで、本実施の形態では、集光レンズ105により小径に絞られたスポット光を、光偏向部106eの光学要素106hにて分割分散することで、各光量を低下させつつ、比較的薄い蛍光体層106dに集光させることが可能になるため、蛍光体層106dの劣化を抑制することができる。又、蛍光体層106dから生じた蛍光はランバーシャン配光の戻り光となるが、光偏向部106eの平面部及び面106gにより屈折されて集光され、光偏向部106eに入射した光束の入射角に近い角度で出射されるので、入射光束に対し2倍以下のNAの集光レンズ105を用いて平行光束を出射できるのである。 As a measure for solving these two problems, for example, it is theoretically possible to dispose the condensing position and provide a condensing lens 105 having a large NA, but this is not preferable because the condensing lens is increased in size. This is because the NA of the condensing lens 105 required when the light of the first wavelength is laser light needs about NA 0.4 to condense the light of the first wavelength, This is because NA of 0.95 or more is required to collect the light of the second wavelength, that is, a condensing lens having a diameter of 2.5 times is required. Therefore, in the present embodiment, the spot light focused to a small diameter by the condensing lens 105 is divided and dispersed by the optical element 106h of the light deflection unit 106e, so that each light quantity is reduced and a relatively thin phosphor. Since the light can be condensed on the layer 106d, deterioration of the phosphor layer 106d can be suppressed. The fluorescence generated from the phosphor layer 106d becomes the return light of the Lambertian light distribution, but is refracted and collected by the flat surface and the surface 106g of the light deflector 106e, and is incident on the light deflector 106e. Since the light is emitted at an angle close to an angle, a parallel light beam can be emitted using the condenser lens 105 having an NA that is twice or less that of the incident light beam.
 同様に、第2の光変換部106jに入射したスポット光の大部分は、光偏向部106eにより分割され、分割光がそれぞれ蛍光体層106dに集光され、蛍光体が励起されることで赤色の蛍光が発生する。又、集光レンズ105を通過した往路の光束のNAと蛍光体ホイール106からの戻り光が集光レンズ105に入射する前の復路のNAとの差が小さいということは、エタンデュの悪化を最小限に抑えることが可能となっていることを表している。これに対し、非変換部106kに入射したスポット光(青色光)は、反射部106cにより直接反射されて再度集光レンズ105を通過して平行光束となる。 Similarly, most of the spot light incident on the second light conversion unit 106j is divided by the light deflecting unit 106e, and the divided light is condensed on the phosphor layer 106d, and the phosphor is excited to red. Fluorescence occurs. In addition, the small difference between the NA of the forward light flux that has passed through the condenser lens 105 and the NA of the return path before the return light from the phosphor wheel 106 enters the condenser lens 105 minimizes the deterioration of the etendue. This means that it can be limited to the limit. On the other hand, the spot light (blue light) incident on the non-converting portion 106k is directly reflected by the reflecting portion 106c and passes through the condenser lens 105 again to become a parallel light beam.
 集光レンズ105を通過した平行光束のうち、青色光は1/4波長板104を通過することでS偏光状態となり、緑色光、赤色光においては偏光に関係なくバンドパス偏光フィルタ103で反射される。バンドパス偏光フィルタ103で反射された青色光、緑色光、赤色光が順次入れ替わる照明光は、第1リレー光学系108を介してライトパイプ109内に入射し、ここで多重反射した後、第2リレー光学系110を通過して、偏光ビームスプリッタ112で反射して、LCD光変調素子113に入射する。ライトパイプ109と第2リレー光学系110を通ることにより、照明光は光源や蛍光体層による輝度ムラが緩和された状態でLCD光変調素子113に導かれるので、輝度ムラの小さな照明となっている。尚、図示してはいないが、偏光による光のロスを低減するために、偏光状態を一様に揃える、所謂偏光変換素子をバンドパス偏光フィルタ103から偏光ビームスプリッタ112までの光路中に挿入しても良い。 Of the parallel light flux that has passed through the condenser lens 105, blue light passes through the quarter-wave plate 104 and becomes S-polarized, and green light and red light are reflected by the bandpass polarization filter 103 regardless of polarization. The Illumination light in which blue light, green light, and red light sequentially reflected by the bandpass polarization filter 103 is incident on the light pipe 109 via the first relay optical system 108, and is then reflected by the second light. The light passes through the relay optical system 110, is reflected by the polarization beam splitter 112, and enters the LCD light modulation element 113. By passing through the light pipe 109 and the second relay optical system 110, the illumination light is guided to the LCD light modulation element 113 in a state in which the luminance unevenness due to the light source and the phosphor layer is alleviated. Yes. Although not shown, a so-called polarization conversion element that uniformly aligns the polarization state is inserted in the optical path from the bandpass polarization filter 103 to the polarization beam splitter 112 in order to reduce light loss due to polarization. May be.
 更に、LCD光変調素子113は、青色光を入射するときは青のカラーフィールドとなり、緑色光を入射するときは緑のカラーフィールドとなり、赤色光を入射するときは赤のカラーフィールドとなり、それぞれ時間的に分割された画像を形成し、光学エンジン部OEの投影レンズ114を介して投影することができる。投影された各画像を観察する者は、目の残像効果によって各成分を足し合わせたフルカラーの画像を視認することができる。 Furthermore, the LCD light modulation element 113 becomes a blue color field when blue light is incident, a green color field when green light is incident, and a red color field when red light is incident. Divided images can be formed and projected through the projection lens 114 of the optical engine unit OE. A person who observes each projected image can visually recognize a full-color image obtained by adding the components by the afterimage effect of the eyes.
 又、以上の実施の形態では、蛍光体ホイール106に2つの光変換部106b、106jを形成した例を示したが、例えば蛍光体ホイール106には青色光を緑色光に変換する第1の光変換部106bと非変換部106kを設け、その代わりに赤色の半導体光源から出射させた赤色光を、ダイクロイックフィルタなどを用いてLCD光変調素子113へと導くようにしても良い。 In the above embodiment, the example in which the two light conversion units 106b and 106j are formed on the phosphor wheel 106 has been described. For example, the phosphor wheel 106 includes the first light that converts blue light into green light. Alternatively, the conversion unit 106b and the non-conversion unit 106k may be provided, and instead, the red light emitted from the red semiconductor light source may be guided to the LCD light modulation element 113 using a dichroic filter or the like.
 以下、本発明者らの行った検討結果について、図7、10のシミュレーション結果を参照して説明する。図7において、横軸は、蛍光体層の出射面法線を0度とした時に、それに対する角度(θ)を示し、縦軸は、横軸の角度を半頂角とした所定の立体角に内包される光束の密度(光のエネルギー量という)である。その時の立体角は横軸の角度θを用いて、2π(1-cosθ)で表される。ここでは、光偏向部がない比較例と、光偏向部の光学要素として正四角錐を形成した第1実施例(図8参照)と、光偏向部の光学要素として円錐を形成した第2実施例(図9参照)とを比較して図示している。 Hereinafter, the examination results performed by the present inventors will be described with reference to the simulation results of FIGS. In FIG. 7, the horizontal axis indicates the angle (θ) with respect to the emission surface normal of the phosphor layer of 0 degree, and the vertical axis indicates a predetermined solid angle in which the angle of the horizontal axis is a half apex angle. This is the density of the light beam contained in (referred to as the amount of light energy). The solid angle at that time is represented by 2π (1-cos θ) using the angle θ on the horizontal axis. Here, a comparative example without an optical deflecting unit, a first example in which a regular quadrangular pyramid is formed as an optical element of the optical deflecting unit (see FIG. 8), and a second example in which a cone is formed as an optical element of the optical deflecting unit. (See FIG. 9).
 図7のシミュレーション結果によれば、光偏向部がない比較例では、角度θが60度前後以上の範囲で光のエネルギー量が急激に増大しているが、これは蛍光体層の出射面法線方向近傍で光のエネルギー量が低くなり、すなわち高NAの照明光学系が必要となり照明光として有効に用いられる光の量が低下しやすいことを意味している。一方、光偏向部の光学要素として正四角錐を形成した第1実施例では、比較例に対して角度θが60度以下の範囲で光のエネルギー量が増大している。更に、光偏向部の光学要素として円錐を形成した第2実施例では、比較例に対して角度θが65度以下の範囲で光のエネルギー量が増大していると共に、第1実施例に対しても、ほぼ全域でエネルギー量が上回っており、より低いNAの照明光学系で有効に使える光束が多いことを示している。 According to the simulation result of FIG. 7, in the comparative example without the light deflecting portion, the amount of light energy increases rapidly in the range where the angle θ is about 60 degrees or more. This is the emission surface method of the phosphor layer. This means that the amount of light energy decreases in the vicinity of the line direction, that is, an illumination optical system with a high NA is required, and the amount of light that is effectively used as illumination light tends to decrease. On the other hand, in the first example in which a regular quadrangular pyramid is formed as an optical element of the light deflection unit, the amount of light energy is increased in the range where the angle θ is 60 degrees or less compared to the comparative example. Furthermore, in the second embodiment in which a cone is formed as the optical element of the light deflecting unit, the amount of light energy is increased in the range where the angle θ is 65 degrees or less compared to the comparative example, and the first embodiment is compared with the first embodiment. However, the amount of energy exceeds almost the entire area, indicating that there are many light beams that can be effectively used in the illumination optical system with a lower NA.
 図10は、蛍光体層の出射面法線を0度としたときの出射光における配光特性を示す図である。図10に示すように、光偏向部がない比較例では、出射光がランバーシャンの発光分布となっている。これに対し、第1実施例では、出射角度0度の方向における輝度が約2倍に増大しており、低NAでの光の利用効率を高めることができる。更に、光偏向部の光学要素として円錐を形成した第2実施例では、出射角度0度の方向における輝度が、第1実施例よりも倍以上増大しており、光の利用効率を更に高めることができる。 FIG. 10 is a diagram showing the light distribution characteristics of the emitted light when the emission surface normal of the phosphor layer is 0 degree. As shown in FIG. 10, in the comparative example having no light deflecting portion, the emitted light has a Lambertian emission distribution. On the other hand, in the first embodiment, the luminance in the direction of the emission angle of 0 degree is increased about twice, and the light use efficiency at a low NA can be improved. Furthermore, in the second embodiment in which a cone is formed as an optical element of the light deflector, the luminance in the direction of the emission angle of 0 degrees is more than doubled as compared with the first embodiment, and the light utilization efficiency is further improved. Can do.
 図11は、第2実施例の光学要素の1つを円錐面の軸線に沿って切断した断面図において、入射光束と出射光束の光路の例を示すシミュレーション図であるが、ここでは光学要素に平行光束を入射した例を示している。光学要素に入射した光束の一部は、円錐面106gで屈折され、基部106fを出射した後に、その奥側の蛍光体層(不図示)に集光され、且つ集光点から散乱した蛍光が基部106fに入射して、円錐面106gから屈折して出射する様子が分かる。尚、円錐面106gに入射した光は入射角に応じて屈折または反射する。この反射光は、再び蛍光体層に戻り、奥側の反射部で反射されて、再び蛍光体層から出射する。以上を繰り返すことで、ほぼ全ての光が出射することとなる。 FIG. 11 is a simulation view showing an example of the optical paths of the incident light beam and the outgoing light beam in a cross-sectional view of one of the optical elements of the second embodiment cut along the axis of the conical surface. The example which injected the parallel light beam is shown. Part of the light beam incident on the optical element is refracted by the conical surface 106g, exits from the base 106f, and then is condensed on a phosphor layer (not shown) on the inner side and scattered from the condensing point. It can be seen that the light enters the base portion 106f and is refracted and emitted from the conical surface 106g. The light incident on the conical surface 106g is refracted or reflected according to the incident angle. This reflected light returns to the phosphor layer again, is reflected by the reflection part on the back side, and is emitted from the phosphor layer again. By repeating the above, almost all light is emitted.
 光学要素を円錐面に替えて、軸対象の非球面106g’としてもよい(第3実施例)。図12は、第3実施例としての光学要素の1つを対称軸を含む平面で切断した断面図において、入射光束と出射光束の光路の例を示すシミュレーション図である。第3実施例は、第2実施例に比べて高い集光作用を持つことが分かる。そのため、より高い効果を得られることが想定される。 The optical element may be replaced with a conical surface to be an aspherical surface 106g 'targeted for the axis (third embodiment). FIG. 12 is a simulation diagram showing an example of an optical path of an incident light beam and an outgoing light beam in a cross-sectional view in which one of optical elements as the third embodiment is cut along a plane including a symmetry axis. It turns out that 3rd Example has a high condensing effect compared with 2nd Example. Therefore, it is assumed that a higher effect can be obtained.
 更に、蛍光体層への入射光の集光位置について考察する。図13(a)は、円錐を形成した光偏向部の光学要素を有し、集光位置を蛍光体層の中心とした第2A実施例を示している。図13(b)は、同様に光偏向部の光学要素として円錐を形成しているが、蛍光体層106dより0.1mm手前を集光位置とする第2B実施例を示している。図13(c)は、同様に光偏向部の光学要素として円錐を形成しているが、蛍光体層106dより0.1mm奥側を集光位置とする第2C実施例を示している。 Furthermore, the condensing position of incident light on the phosphor layer will be considered. FIG. 13A shows an embodiment 2A having an optical element of a light deflecting portion in which a cone is formed and having a condensing position as the center of the phosphor layer. FIG. 13B shows a second B embodiment in which a cone is similarly formed as an optical element of the light deflector, but the light condensing position is 0.1 mm before the phosphor layer 106d. FIG. 13C similarly shows a second C embodiment in which a cone is formed as an optical element of the light deflector, but the condensing position is 0.1 mm behind the phosphor layer 106d.
 図14は、第2A~2C実施例における、蛍光体層の出射面法線を0度としたときの出射光における配光特性を示す図である。図14に示すように、光偏向部がない比較例では、出射光がランバーシャンの配光分布となり光の利用効率が低いといえる。これに対し、第2A~2C実施例のいずれも、出射角度0度の方向における光量が増大しており、光の利用効率を高めることができる。但し、出射角度0度の方向における光量が最も増大しているのは第2A実施例であり、すなわち蛍光体層106dに集光したときが出射光の配光特性が最も良くなる。しかしながら、光偏向部106eの中でも光学要素106h個々の位置(光軸からの距離等)によっては集光状態が異なるので、全ての光学要素106hによる集光位置を蛍光体層106d内とすることは困難である。そこで、光偏向部106eに入射した第1の波長の光の内、30%以上を蛍光体層106d内に集光させれば、その出射光の配光特性は、第2A実施例に示すものと同様となり、高い光の利用効率を確保できる。又、光偏向部106eに入射した第1の波長の光の内、蛍光体層106d内に集光しないものであっても、集光位置が蛍光体層106dから離れていなければ、第2B、2C実施例に示すように出射光の配光特性を向上できるので、光の利用効率を高める上で効果がある。 FIG. 14 is a diagram showing the light distribution characteristics of the emitted light when the emission surface normal of the phosphor layer is set to 0 degree in Examples 2A to 2C. As shown in FIG. 14, in the comparative example having no light deflection unit, it can be said that the emitted light becomes a light distribution of the Lambertian and the light use efficiency is low. On the other hand, in all of the second A to 2C embodiments, the amount of light in the direction of the emission angle of 0 degrees is increased, and the light use efficiency can be improved. However, the amount of light in the direction of the emission angle of 0 degree is the largest in the 2A example, that is, the light distribution characteristic of the emitted light is the best when the light is condensed on the phosphor layer 106d. However, since the condensing state varies depending on the position (distance from the optical axis, etc.) of the optical element 106h in the light deflecting unit 106e, the condensing position of all the optical elements 106h is within the phosphor layer 106d. Have difficulty. Therefore, if 30% or more of the light having the first wavelength incident on the light deflecting unit 106e is condensed in the phosphor layer 106d, the light distribution characteristic of the emitted light is that shown in the second embodiment. It is possible to secure high light use efficiency. In addition, even if the light having the first wavelength incident on the light deflecting unit 106e is not condensed in the phosphor layer 106d, the second B, if the condensing position is not separated from the phosphor layer 106d. Since the light distribution characteristics of the emitted light can be improved as shown in the 2C embodiment, there is an effect in increasing the light use efficiency.
 更に、光学要素のピッチpについて考察する。図15,16は、実施例2Aについて、光学要素のピッチp(図3参照)を蛍光体層の粒子径の平均(メディアン径)の倍数に応じて変更(例えば×5であれば5倍を意味する)して、光偏向部なしの比較例と比較してシミュレーションした結果を示す図である。図15は、光偏向部から出射する光のエネルギー量(縦軸)を、角度θ=30度、60度、90度と3種類に変えて比較した結果を示しており、図16は、角度θ=90度の場合、光偏向部から出射する光の中心輝度値(縦軸)を、それぞれ比較して示している。図15、16の検討結果によれば、光学要素のピッチpを、蛍光体層の粒子径の平均(メディアン径)の4倍以下としてもある程度効果は得られるが、光学要素のピッチpを、蛍光体層の粒子径の平均(メディアン径)の5倍以上とすれば、十分なエネルギー量を確保でき、また高輝度の照明光を実現できることが分かる。但し、余り大きくしすぎると分割の効果が低下するので、蛍光体層の粒子径の平均(メディアン径)の20倍以下とすることが望ましい。好ましくは、光学要素のピッチpを、蛍光体層の粒子径の平均(メディアン径)の10倍以上とすることである。 Furthermore, the pitch p of the optical element will be considered. 15 and 16, in Example 2A, the pitch p (see FIG. 3) of the optical element is changed in accordance with a multiple of the average (median diameter) of the particle diameter of the phosphor layer (for example, 5 times if x5). It is a diagram showing a result of simulation compared with a comparative example without a light deflection unit. FIG. 15 shows the result of comparing the amount of energy (vertical axis) of the light emitted from the light deflecting unit with three types of angles θ = 30 degrees, 60 degrees, and 90 degrees, and FIG. In the case of θ = 90 degrees, the center luminance values (vertical axis) of the light emitted from the light deflecting unit are respectively shown in comparison. According to the examination results of FIGS. 15 and 16, an effect can be obtained to some extent even if the pitch p of the optical element is set to be not more than four times the average (median diameter) of the particle diameter of the phosphor layer. It can be seen that if the average particle diameter (median diameter) of the phosphor layer is 5 times or more, a sufficient amount of energy can be secured and illumination light with high luminance can be realized. However, if it is too large, the effect of division is reduced, so it is desirable that the average particle diameter (median diameter) of the phosphor layer be 20 times or less. Preferably, the pitch p of the optical element is 10 times or more the average (median diameter) of the particle diameter of the phosphor layer.
 本発明は、本明細書に記載の実施形態や実施例に限定されるものではなく、他の実施形態・実施例を含むことは、本明細書に記載された実施形態や実施例や技術思想から本分野の当業者にとって明らかである。明細書の記載及び実施形態・実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments and examples described in the present specification, and includes other embodiments and examples, and includes the embodiments, examples, and technical ideas described in the present specification. To those skilled in the art. The description of the specification and the embodiments / examples are for illustrative purposes only, and the scope of the present invention is indicated by the claims to be described later.
100      画像投影装置
101      光源
101a     固体発光素子
101b     コリメートレンズアレイ
102      ビーム縮小光学系
103      バンドパス偏光フィルタ
104      1/4波長板
105      集光レンズ
106      蛍光体ホイール
106a     ガラス基板
106b     第1の光変換部
106c     反射層(反射部)
106d     蛍光体層
106e     光偏向部
106f     基部
106g     円錐面
106g’    非球面
106h     光学要素
106j     第2の光変換部
106k     非変換部
106p     孔
107      モータ
108      第1リレー光学系
109      ライトパイプ
110      第2リレー光学系
112      偏光ビームスプリッタ
113      LCD光変調素子
114      投影レンズ
CONT     制御部
DR       レーザドライバ
IL       照明部
OE       光学エンジン部
DESCRIPTION OF SYMBOLS 100 Image projector 101 Light source 101a Solid light emitting element 101b Collimating lens array 102 Beam reduction optical system 103 Band pass polarizing filter 104 1/4 wavelength plate 105 Condensing lens 106 Phosphor wheel 106a Glass substrate 106b 1st light conversion part 106c Reflection Layer (reflection part)
106d phosphor layer 106e light deflector 106f base 106g conical surface 106g ′ aspherical surface 106h optical element 106j second light converter 106k nonconverter 106p hole 107 motor 108 first relay optical system 109 light pipe 110 second relay optical system 112 Polarizing beam splitter 113 LCD light modulation element 114 Projection lens CONT Control unit DR Laser driver IL Illumination unit OE Optical engine unit

Claims (16)

  1.  基板の少なくとも一部に、基板側から順に反射部と蛍光体層と光偏向部とが、この順序で配置される波長変換部材であって、
     前記光偏向部は、集光作用を持つ複数の光学要素を有し、前記複数の光学要素が並べて配置され、
     前記光偏向部の前記光学要素に入射した第1の波長の光は、前記複数の光学要素によって分割されて前記蛍光体層に入射し、前記蛍光体層によって前記第1の波長とは異なる第2の波長の光に変換され、前記第2の波長の光は前記蛍光体層から直接もしくは前記反射部で反射された後に、前記光偏向部で屈折されて、配光分布が前記基板の法線方向に狭まるように出射するよう構成されている波長変換部材。
    A wavelength conversion member in which a reflection portion, a phosphor layer, and a light deflection portion are arranged in this order in order from at least a portion of the substrate,
    The light deflection unit has a plurality of optical elements having a light collecting action, and the plurality of optical elements are arranged side by side,
    The light having the first wavelength incident on the optical element of the light deflector is divided by the plurality of optical elements and incident on the phosphor layer, and the first wavelength differs from the first wavelength by the phosphor layer. 2 is converted into light having a wavelength of 2, and the light having the second wavelength is reflected from the phosphor layer directly or after being reflected by the reflecting portion and then refracted by the light deflecting portion. A wavelength conversion member configured to emit light so as to narrow in a line direction.
  2.  前記光偏向部の光学要素の前記第1の波長の光が入射する面は、球面又は非球面を含む請求項1に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein a surface on which light of the first wavelength of the optical element of the light deflection unit is incident includes a spherical surface or an aspherical surface.
  3.  前記光偏向部の光学要素の前記第1の波長の光が入射する面は、円錐面を含む請求項1に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein a surface on which light of the first wavelength of the optical element of the light deflection unit is incident includes a conical surface.
  4.  前記光偏向部の光学要素は、前記第2の波長の光の出射側から見てマトリクス状に配置されている請求項1~3のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 3, wherein the optical elements of the light deflector are arranged in a matrix as viewed from the light emission side of the second wavelength.
  5.  前記光偏向部は、ガラス転移点(Tg)が150℃以上の材料から形成されている請求項1~4のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 4, wherein the light deflection section is made of a material having a glass transition point (Tg) of 150 ° C or higher.
  6.  前記光偏向部は、無機材料から形成されている請求項1~5のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 5, wherein the light deflection section is made of an inorganic material.
  7.  前記蛍光体層は、無機蛍光体を含む層からなる請求項1~6のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 6, wherein the phosphor layer is composed of a layer containing an inorganic phosphor.
  8.  前記蛍光体層は、メディアン径d50が8μm~20μmである粒子サイズを持つ複数の粒子を混入している請求項1~7のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 7, wherein the phosphor layer is mixed with a plurality of particles having a particle size having a median diameter d50 of 8 µm to 20 µm.
  9.  前記光偏向部の光学要素のピッチは、前記蛍光体層の粒子径の平均(メディアン径)に対し5倍~20倍である請求項8に記載の波長変換部材。 The wavelength conversion member according to claim 8, wherein the pitch of the optical elements of the light deflection unit is 5 to 20 times the average (median diameter) of the particle diameter of the phosphor layer.
  10.  前記第2の波長のうち最も光強度が高い波長は500nm~560nmのいずれかである請求項1~9のいずれかに記載の波長変換部材。 The wavelength converting member according to any one of claims 1 to 9, wherein a wavelength having the highest light intensity among the second wavelengths is any of 500 nm to 560 nm.
  11.  前記第1の波長は480nm以下である請求項1~10のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 10, wherein the first wavelength is 480 nm or less.
  12.  前記蛍光体層及び前記光偏向部は、前記波長変換部材の周方向の一部に設けられ、前記反射部は、前記波長変換部材の全周にわたって設けられている請求項1~11のいずれかに記載の波長変換部材。 The phosphor layer and the light deflection section are provided in a part of a circumferential direction of the wavelength conversion member, and the reflection section is provided over the entire circumference of the wavelength conversion member. The wavelength conversion member as described in 2.
  13.  第1の波長の光を出射する光源と、少なくとも一枚の正のパワーを有するレンズまたはミラーを含む集光光学系と、前記光学系を介して前記第1の波長の光を入射する請求項1~12のいずれかに記載の波長変換部材と、画像を形成する光変調素子と、前記光変調素子に前記波長変換部材からの光を導く照明部と、前記光変調素子からの画像光を投影する投影光学系とを有する画像形成装置。 A light source that emits light of a first wavelength, a condensing optical system that includes at least one lens or mirror having positive power, and light of the first wavelength is incident through the optical system. The wavelength conversion member according to any one of 1 to 12, a light modulation element that forms an image, an illumination unit that guides light from the wavelength conversion member to the light modulation element, and image light from the light modulation element An image forming apparatus having a projection optical system for projecting.
  14.  前記光源は半導体レーザである請求項13に記載の画像形成装置。 The image forming apparatus according to claim 13, wherein the light source is a semiconductor laser.
  15.  前記波長変換部材を回転させる回転駆動部を有し、前記波長変換部材は、前記回転駆動部によって前記波長変換部材を回転させることによって、前記集光光学系を介して集光された前記第1の波長の光が前記光偏向部に入射する位置と、それ以外の位置とを選択的にとる請求項13又は14に記載の画像形成装置。 A rotation drive unit configured to rotate the wavelength conversion member; and the wavelength conversion member is condensed through the condensing optical system by rotating the wavelength conversion member by the rotation drive unit. The image forming apparatus according to claim 13, wherein a position where light having a wavelength of 1 is incident on the light deflection unit and a position other than the position are selectively taken.
  16. 前記第1の波長の光が、前記光偏向部に入射している時間と、前記それ以外の位置に入射している時間とに同期させて、前記光変調素子への画像信号を制御する制御部を有する請求項15に記載の画像形成装置。 Control for controlling the image signal to the light modulation element in synchronization with the time when the light of the first wavelength is incident on the light deflector and the time when the light is incident on the other position. The image forming apparatus according to claim 15, further comprising a portion.
PCT/JP2015/083354 2014-12-15 2015-11-27 Wavelength conversion member and image formation device WO2016098560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-252642 2014-12-15
JP2014252642 2014-12-15

Publications (1)

Publication Number Publication Date
WO2016098560A1 true WO2016098560A1 (en) 2016-06-23

Family

ID=56126457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083354 WO2016098560A1 (en) 2014-12-15 2015-11-27 Wavelength conversion member and image formation device

Country Status (1)

Country Link
WO (1) WO2016098560A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107783362A (en) * 2017-11-29 2018-03-09 济南金永大传媒科技有限公司 A kind of shaped fluorescent pink colour wheel for high brightness laser projection
WO2018154873A1 (en) * 2017-02-24 2018-08-30 コニカミノルタ株式会社 Wavelength conversion member and image forming device
CN108983540A (en) * 2017-06-03 2018-12-11 上海午井光电科技有限公司 Fluorescence colour wheel and preparation method thereof
CN112534314A (en) * 2018-08-28 2021-03-19 松下知识产权经营株式会社 Color conversion element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505658A (en) * 2007-11-28 2011-02-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system, method and projection device for controlling light emitted during spoke time
JP2011118187A (en) * 2009-12-04 2011-06-16 Citizen Holdings Co Ltd Light deflection element, light source apparatus and display apparatus
JP2012108435A (en) * 2010-11-19 2012-06-07 Minebea Co Ltd Color wheel and manufacturing method of the same
JP2012247625A (en) * 2011-05-27 2012-12-13 Minebea Co Ltd Color wheel
JP2014529096A (en) * 2011-08-16 2014-10-30 イー・アイ・エス・オプティックス・リミテッドEis Optics Limited Optical wheel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505658A (en) * 2007-11-28 2011-02-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination system, method and projection device for controlling light emitted during spoke time
JP2011118187A (en) * 2009-12-04 2011-06-16 Citizen Holdings Co Ltd Light deflection element, light source apparatus and display apparatus
JP2012108435A (en) * 2010-11-19 2012-06-07 Minebea Co Ltd Color wheel and manufacturing method of the same
JP2012247625A (en) * 2011-05-27 2012-12-13 Minebea Co Ltd Color wheel
JP2014529096A (en) * 2011-08-16 2014-10-30 イー・アイ・エス・オプティックス・リミテッドEis Optics Limited Optical wheel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154873A1 (en) * 2017-02-24 2018-08-30 コニカミノルタ株式会社 Wavelength conversion member and image forming device
CN108983540A (en) * 2017-06-03 2018-12-11 上海午井光电科技有限公司 Fluorescence colour wheel and preparation method thereof
CN107783362A (en) * 2017-11-29 2018-03-09 济南金永大传媒科技有限公司 A kind of shaped fluorescent pink colour wheel for high brightness laser projection
CN107783362B (en) * 2017-11-29 2023-09-29 深圳市大晟云视传媒科技有限公司 Conical fluorescent powder color wheel for high-brightness laser projection
CN112534314A (en) * 2018-08-28 2021-03-19 松下知识产权经营株式会社 Color conversion element

Similar Documents

Publication Publication Date Title
JP5672949B2 (en) Light source device and projector
EP3722874B1 (en) Light source device, image projection apparatus, light source optical system
JP5770433B2 (en) Light source device and image projection device
JP5673119B2 (en) Light source device and projector
JP5605047B2 (en) Light source device and projection display device using the same
JP2016070947A (en) Wavelength conversion element, light source device, and projector
JP6919434B2 (en) Wavelength converters, light source devices and projectors
JP2012142222A (en) Light source device and projector
WO2016098560A1 (en) Wavelength conversion member and image formation device
JP2012128121A (en) Illumination device and projector
JP2019049619A (en) Wavelength conversion element, light source device, and projector
JP6977285B2 (en) Wavelength converters, light source devices and projectors
WO2016121721A1 (en) Wavelength conversion member, and image formation device
JP2013105143A (en) Light source device and projector
JP5803447B2 (en) Light source device and projector
WO2016121720A1 (en) Wavelength conversion member, and image formation device
JP2016114728A (en) Wavelength conversion member and image forming apparatus
JP6137238B2 (en) Light source device and image projection device
US11333961B2 (en) Wavelength converter, light source apparatus, and projector
JP5949984B2 (en) Light source device and projector
JP2018138949A (en) Wavelength conversion member and image forming apparatus
WO2018154873A1 (en) Wavelength conversion member and image forming device
JP6353583B2 (en) Light source device and image projection device
JP6388051B2 (en) Light source device and image projection device
JP6149991B2 (en) Light source device and image projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP