JP6388051B2 - Light source device and image projection device - Google Patents

Light source device and image projection device Download PDF

Info

Publication number
JP6388051B2
JP6388051B2 JP2017075096A JP2017075096A JP6388051B2 JP 6388051 B2 JP6388051 B2 JP 6388051B2 JP 2017075096 A JP2017075096 A JP 2017075096A JP 2017075096 A JP2017075096 A JP 2017075096A JP 6388051 B2 JP6388051 B2 JP 6388051B2
Authority
JP
Japan
Prior art keywords
light
excitation light
fluorescent member
phosphor
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017075096A
Other languages
Japanese (ja)
Other versions
JP2017134417A (en
Inventor
由和 小松
由和 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2017075096A priority Critical patent/JP6388051B2/en
Publication of JP2017134417A publication Critical patent/JP2017134417A/en
Application granted granted Critical
Publication of JP6388051B2 publication Critical patent/JP6388051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光源装置及び画像投影装置に関し、より詳細には、例えばプロジェクタ等の投影型画像表示装置(画像投影装置)の光源として用いる光源装置及びそれを備える画像投影装置に関する。   The present invention relates to a light source device and an image projecting device, and more particularly to a light source device used as a light source of a projection type image display device (image projecting device) such as a projector and an image projecting device including the same.

近年、家庭内での映画鑑賞や会議でのプレゼンテーション等において、例えばプロジェクタ等の投影型画像表示装置を用いる機会が増えている。このようなプロジェクタでは、一般に、光源として、例えば高輝度の水銀ランプ等の放電型ランプが用いられる。また、最近の固体発光素子(例えば半導体レーザ、発光ダイオード等)の開発技術の進展に伴い、固体発光素子を利用したプロジェクタも提案されている(例えば特許文献1参照)。   In recent years, opportunities for using a projection type image display device such as a projector have increased in appreciation of movies at home and presentations at conferences. In such a projector, a discharge lamp such as a high-intensity mercury lamp is generally used as a light source. A projector using a solid-state light-emitting element has also been proposed with the progress of development technology of recent solid-state light-emitting elements (for example, semiconductor lasers, light-emitting diodes) (see, for example, Patent Document 1).

特許文献1で提案されているプロジェクタは、DLP(Digital Light Processing:登録商標)方式のプロジェクタである。この方式のプロジェクタでは、異なる色の光を1秒間に数千回程度、時分割で表示することにより画像をフルカラー表示する。   The projector proposed in Patent Document 1 is a DLP (Digital Light Processing: registered trademark) type projector. This type of projector displays images in full color by displaying light of different colors in a time-sharing manner several thousand times per second.

特許文献1のプロジェクタは、青色光(励起光)を射出する発光ダイオード(励起光源)と、励起光の出射側に設けられた透明基材と、透明基板を励起光の出射方向に直交する面内において回転させるモータとから成る光源装置を備える。   The projector disclosed in Patent Document 1 includes a light emitting diode (excitation light source) that emits blue light (excitation light), a transparent base material provided on the emission side of excitation light, and a surface orthogonal to the emission direction of excitation light. A light source device including a motor that rotates inside.

この特許文献1の光源装置では、透明基材上に、励起光の照射により赤色光を発光する赤色蛍光体層、励起光の照射により緑色光を発光する緑色蛍光体層、及び、励起光を素通りさせる領域が互いに異なる領域に形成される。それゆえ、特許文献1のプロジェクタにおいて、所定の回転数で回転する透明基材に励起光を照射すると、青色光(励起光)、励起光により励起された赤色光及び緑色光が時分割で光源装置から射出される。   In the light source device of Patent Document 1, a red phosphor layer that emits red light when irradiated with excitation light, a green phosphor layer that emits green light when irradiated with excitation light, and excitation light on a transparent substrate. The regions to be passed through are formed in different regions. Therefore, in the projector of Patent Document 1, when excitation light is irradiated onto a transparent substrate that rotates at a predetermined rotation speed, blue light (excitation light), red light and green light excited by the excitation light are time-divisionally light sources. Injected from the device.

特開2009−277516号公報JP 2009-277516 A

上述のように、従来、水銀ランプを用いないプロジェクタが提案されており、このようなプロジェクタでは、水銀レスのプロジェクタを実現することができ、近年の環境問題に対応することが可能である。また、例えば半導体レーザ、発光ダイオード等の固体発光素子を光源として用いた場合、水銀ランプに比べて長寿命であり、輝度低下も小さいという利点も得られる。   As described above, a projector that does not use a mercury lamp has been conventionally proposed. With such a projector, a mercury-free projector can be realized, and it is possible to cope with recent environmental problems. Further, when a solid-state light emitting element such as a semiconductor laser or a light emitting diode is used as a light source, there are advantages that it has a longer life than a mercury lamp and a decrease in luminance is small.

しかしながら、上記特許文献1で提案されている技術は、DLP(登録商標)方式のプロジェクタ等のように、互いに波長の異なる複数の単色光を時分割で射出する光源装置(照明装置)にのみ適用可能である。例えば、3LCD(Liquid Crystal Display)方式のプロジェクタ等の画像表示装置のように、白色光を射出する光源装置を必要とする用途には適用することができない。   However, the technique proposed in Patent Document 1 is applied only to a light source device (illumination device) that emits a plurality of monochromatic lights having different wavelengths in a time-division manner, such as a DLP (registered trademark) projector. Is possible. For example, it cannot be applied to an application that requires a light source device that emits white light, such as an image display device such as a 3LCD (Liquid Crystal Display) projector.

本発明は、上記現状を鑑みなされたものであり、本発明の目的は、例えば3LCD方式のプロジェクタ等の様々な用途に対しても適用可能な水銀レスの光源装置及びそれを備える画像投影装置を提供することである。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a mercury-less light source device that can be applied to various uses such as a 3LCD projector, and an image projection device including the mercury-free light source device. Is to provide.

上記課題を解決するために、本発明の光源装置は、レーザ光源と、単一の蛍光部材と、光学系と、駆動部と、を備える構成とし、各部の機能を次のようにする。レーザ光源は、青色光を含む第1の波長帯にピーク波長を有する励起光を射出する。単一の蛍光部材は、励起光が照射されることにより緑色光及び赤色光を含む第2の波長帯にピーク波長を有する発光光を発光する単一の蛍光体と、蛍光体に対して励起光の入射側に配置され、励起光の反射を防止する反射防止膜と、反射防止膜に対して励起光の入射側とは反対側に設けられ、所定角度以下の入射角の励起光を透過し、発光光を反射する反射膜と、を有し、発光光を射出する。光学系は、蛍光部材との間の距離が1mm以下となるように設けられ、蛍光部材から射出された発光光を平行光に変換する。駆動部は、蛍光部材の中心に駆動軸が接続され、蛍光体に照射される励起光の照射位置が時間とともに蛍光部材の回転円周方向に移動するよう蛍光部材を回転させる。そして、駆動部が蛍光部材を所定方向に回転させ、且つ、励起光が回転円周方向の一周に渡って蛍光体に照射される間、回転円周方向に沿って連続して形成され、単一の発光特性を具備する蛍光体は発光光を発光する。なお、ここでいう「波長」は、単一波長だけでなく所定の波長帯域も含む意味である。 In order to solve the above problems, the light source device of the present invention is configured to include a laser light source, a single fluorescent member, an optical system, and a drive unit, and the function of each unit is as follows. The laser light source emits excitation light having a peak wavelength in a first wavelength band including blue light. A single fluorescent member is excited with respect to a single phosphor that emits emitted light having a peak wavelength in the second wavelength band including green light and red light when irradiated with excitation light, and the phosphor. An antireflection film that is disposed on the light incident side and prevents reflection of the excitation light, and is provided on the opposite side of the antireflection film from the incident side of the excitation light, and transmits excitation light having an incident angle equal to or smaller than a predetermined angle. And a reflective film that reflects the emitted light, and emits the emitted light. The optical system is provided such that the distance to the fluorescent member is 1 mm or less, and converts the emitted light emitted from the fluorescent member into parallel light. The drive unit has a drive shaft connected to the center of the fluorescent member, and rotates the fluorescent member so that the irradiation position of the excitation light applied to the phosphor moves in the rotation circumferential direction of the fluorescent member with time. Then, while the drive unit rotates the fluorescent member in a predetermined direction and the excitation light is irradiated to the phosphor over one rotation of the rotation circumferential direction, it is continuously formed along the rotation circumferential direction. A phosphor having one emission characteristic emits emitted light . The “wavelength” here means not only a single wavelength but also a predetermined wavelength band.

また、本発明の画像投影装置は、光源装置部と、画像投影部とを備える構成とし、各部の機能を次のようにする。光源装置部は、上記本発明の光源装置と同様の構成にする。そして、画像投影部は、光源装置部から射出された光を用いて所定の画像光を生成し、該生成した画像光を外部に投影する。   Moreover, the image projector of this invention is set as the structure provided with a light source device part and an image projector, and the function of each part is as follows. The light source device section has the same configuration as the light source device of the present invention. The image projection unit generates predetermined image light using the light emitted from the light source device unit, and projects the generated image light to the outside.

本発明では、蛍光体に照射される励起光の照射位置が時間とともに回転円周方向に移動するよう蛍光体に励起光が照射されることにより、青色光を含む第1の波長帯にピーク波長を有する励起光の波長帯とは異なる、緑色光及び赤色光を含む第2の波長帯にピーク波長を有する発光光を発光する。   In the present invention, the excitation light is irradiated on the phosphor so that the irradiation position of the excitation light irradiated on the phosphor moves in the rotation circumferential direction with time, so that the peak wavelength is in the first wavelength band including blue light. Emission light having a peak wavelength in a second wavelength band including green light and red light, which is different from the wavelength band of the excitation light having λ, is emitted.

上述のように、本発明では、第1の波長帯を有する励起光と、第2の波長帯を有する発光光との組み合わせを適宜設定することにより、単一の蛍光体から発光光を射出することができる。また、反射防止膜を設けることによって、単一の蛍光部材に入射する前に発生する励起光の反射を防止することができる。また、駆動部が、単一の蛍光部材を、励起光の照射面内の所定方向に回転させている状態で、励起光源が、励起光を蛍光体に照射するため、励起光の照射位置には、励起されていない蛍光体原子が次々と配置されることになり、蛍光体をより効率よく発光させることができる。また、蛍光体に照射される励起光の照射位置が変わるので、蛍光体の温度上昇を防止しつつ、時間的に同一なスペクトルの光を安定的に生成できる。そして、本発明によれば、例えば3LCD方式のプロジェクタ等の様々な用途に対しても適用可能な水銀レスの光源装置及びそれを備える画像投影装置を提供することができる。   As described above, in the present invention, emission light is emitted from a single phosphor by appropriately setting a combination of excitation light having the first wavelength band and emission light having the second wavelength band. be able to. Further, by providing the antireflection film, it is possible to prevent reflection of the excitation light generated before entering the single fluorescent member. In addition, the excitation light source irradiates the phosphor with the excitation light while the drive unit rotates the single fluorescent member in a predetermined direction within the excitation light irradiation surface. In this case, phosphor atoms that are not excited are arranged one after another, and the phosphor can emit light more efficiently. Moreover, since the irradiation position of the excitation light applied to the phosphor changes, it is possible to stably generate light having the same spectrum in time while preventing the temperature of the phosphor from rising. According to the present invention, it is possible to provide a mercury-free light source device that can be applied to various uses such as a 3LCD projector, and an image projection device including the same.

本発明の一実施形態に係る画像表示装置の概略ブロック構成図である。1 is a schematic block configuration diagram of an image display device according to an embodiment of the present invention. 本発明の一実施形態に係る光源装置部(照明装置)に用いる蛍光部材の概略構成図である。It is a schematic block diagram of the fluorescent member used for the light source device part (illuminating device) which concerns on one Embodiment of this invention. 蛍光部材で用いる反射膜の一構成例を示す図である。It is a figure which shows the example of 1 structure of the reflecting film used with a fluorescent member. 蛍光部材で用いる反射膜の透過率と光入射角との関係を示す図である。It is a figure which shows the relationship between the transmittance | permeability of the reflective film used with a fluorescent member, and a light incident angle. 蛍光体での発光の様子及び反射膜表面での光反射の様子を示す図である。It is a figure which shows the mode of the light emission in a fluorescent substance, and the mode of the light reflection in the reflective film surface. 本発明の一実施形態に係る光源装置部(照明装置)の出射光のスペクトル特性である。It is the spectrum characteristic of the emitted light of the light source device part (illuminating device) which concerns on one Embodiment of this invention.

以下に、本発明の実施形態に係る照明装置及びそれを備える画像表示装置の一例を、図面を参照しながら下記の順で説明する。なお、本実施形態では、画像表示装置として、3LCD方式のプロジェクタ(画像投影装置)を例に挙げ説明するが、本発明はこれに限定されない。
1.画像表示装置の構成例
2.光源装置部(照明装置)の構成例
3.蛍光部材の構成例
4.光源装置部の動作例
Hereinafter, an example of an illumination device according to an embodiment of the present invention and an image display device including the illumination device will be described in the following order with reference to the drawings. In the present embodiment, a 3LCD projector (image projection apparatus) will be described as an example of the image display apparatus, but the present invention is not limited to this.
1. 1. Configuration example of image display device 2. Configuration example of light source device section (illumination device) 3. Configuration example of fluorescent member Example of operation of light source unit

[1.画像表示装置の構成例]
図1に、本発明の一実施形態に係る画像表示装置の概略構成を示す。なお、図1では、説明を簡略化するため、主に、本実施形態の画像表示装置10において画像光を外部に投影する際に動作する要部のみを示す。また、図1には、透過型のLCD光変調素子を用いた3LCD方式のプロジェクタの構成例を示すが、本発明はこれに限定されない。本発明は、反射型のLCD光変調素子を用いる3LCD方式のプロジェクタにも適用可能である。
[1. Configuration example of image display apparatus]
FIG. 1 shows a schematic configuration of an image display apparatus according to an embodiment of the present invention. In FIG. 1, for the sake of simplification of description, only main parts that operate when image light is projected to the outside in the image display apparatus 10 of the present embodiment are mainly shown. FIG. 1 shows a configuration example of a 3LCD type projector using a transmissive LCD light modulation element, but the present invention is not limited to this. The present invention can also be applied to a 3LCD projector using a reflective LCD light modulation element.

画像表示装置10は、光源装置部1(照明装置)と、光学エンジン部2(画像投影部)とを備える。なお、光源装置部1の構成の説明は後で詳述する。   The image display device 10 includes a light source device unit 1 (illumination device) and an optical engine unit 2 (image projection unit). The configuration of the light source device unit 1 will be described in detail later.

光学エンジン部2は、光源装置部1から射出された光(この例では白色光LW)を光学的に処理して画像光LIを生成し、その画像光LIを外部の例えばスクリーン等に拡大投影する。光学エンジン部2は、例えば、分光光学系20と、3つのLCD光変調素子(以下では、それぞれ第1LCDパネル21〜第3LCDパネル23という)と、プリズム24と、投影光学系25とを有する。なお、光学エンジン部2の構成は、図1に示す例に限定されず、例えば用途等に応じて適宜変更できる。例えば、各部間の光路上に必要となる各種光学素子を適宜配置してもよい。   The optical engine unit 2 optically processes light emitted from the light source device unit 1 (in this example, white light LW) to generate image light LI, and enlarges and projects the image light LI onto an external screen, for example, To do. The optical engine unit 2 includes, for example, a spectroscopic optical system 20, three LCD light modulation elements (hereinafter referred to as a first LCD panel 21 to a third LCD panel 23, respectively), a prism 24, and a projection optical system 25. In addition, the structure of the optical engine part 2 is not limited to the example shown in FIG. 1, For example, it can change suitably according to a use etc. For example, various optical elements necessary for the optical path between the parts may be appropriately arranged.

また、この例の光学エンジン部2では、第1LCDパネル21の光出射面と、第3LCDパネル23の光出射面とが対向するように両者を配置し、その両者の対向方向に直交する方向に第2LCDパネル22を配置する。そして、第1LCDパネル21〜第3LCDパネル23の光出射面で囲まれた領域にプリズム24を配置する。また、この例では、プリズム24を挟んで、第2LCDパネル22の光出射面と対向する位置に投影光学系25を配置する。なお、分光光学系20は、第1LCDパネル21〜第3LCDパネル23の光入射側に設けられる。   Moreover, in the optical engine part 2 of this example, both are arrange | positioned so that the light-projection surface of the 1st LCD panel 21 and the light-projection surface of the 3rd LCD panel 23 may oppose, and it is in the direction orthogonal to the opposing direction of both. A second LCD panel 22 is arranged. Then, the prism 24 is disposed in a region surrounded by the light emission surfaces of the first LCD panel 21 to the third LCD panel 23. In this example, the projection optical system 25 is disposed at a position facing the light emitting surface of the second LCD panel 22 with the prism 24 interposed therebetween. The spectroscopic optical system 20 is provided on the light incident side of the first LCD panel 21 to the third LCD panel 23.

分光光学系20は、例えばダイクロイックミラー、反射ミラー等で構成され、光源装置部1から入射される白色光LWを、青色光LB、緑色光LG及び赤色光LRに分光し、各波長成分の光を対応するLCDパネルに射出する。この例では、分光光学系20は、分光した青色光LB、緑色光LG及び赤色光LRをそれぞれ、第1LCDパネル21、第2LCDパネル22及び第3LCDパネル23に射出する。   The spectroscopic optical system 20 includes, for example, a dichroic mirror, a reflection mirror, and the like, and splits the white light LW incident from the light source device unit 1 into the blue light LB, the green light LG, and the red light LR, and the light of each wavelength component. To the corresponding LCD panel. In this example, the spectroscopic optical system 20 emits the split blue light LB, green light LG, and red light LR to the first LCD panel 21, the second LCD panel 22, and the third LCD panel 23, respectively.

第1LCDパネル21〜第3LCDパネル23のそれぞれは、透過型のLCDパネルで構成される。各LCDパネルは、図示しないパネルドライブ部からの駆動信号に基づいて、液晶セル(不図示)に封入された液晶分子の配列を変化させることにより、入射光を液晶セル単位で透過または遮断する(変調する)。そして、各LCDパネルは、変調した所定波長の光(変調光)をプリズム24に射出する。   Each of the first LCD panel 21 to the third LCD panel 23 is composed of a transmissive LCD panel. Each LCD panel changes the arrangement of liquid crystal molecules sealed in a liquid crystal cell (not shown) based on a drive signal from a panel drive unit (not shown), thereby transmitting or blocking incident light in units of liquid crystal cells ( Modulate). Each LCD panel emits modulated light having a predetermined wavelength (modulated light) to the prism 24.

プリズム24は、第1LCDパネル21〜第3LCDパネル23からそれぞれ入射された各波長成分の変調光を合波し、その合波光、すなわち、画像光LIを投影光学系25に射出する。   The prism 24 combines the modulated light of each wavelength component incident from the first LCD panel 21 to the third LCD panel 23 and emits the combined light, that is, the image light LI to the projection optical system 25.

投影光学系25は、プリズム24から入射された画像光を、例えば外部のスクリーン等の表示面に拡大投影する。   The projection optical system 25 enlarges and projects the image light incident from the prism 24 onto a display surface such as an external screen.

[2.光源装置部1の構成例]
次に、本実施形態の光源装置部1の内部構成を、図1を参照しながら説明する。
[2. Configuration example of light source device unit 1]
Next, the internal configuration of the light source device unit 1 of the present embodiment will be described with reference to FIG.

光源装置部1は、励起光源11と、第1集光光学系12(第1光学系)と、蛍光部材13と、モータ14(駆動部)と、第2集光光学系15(第2光学系)とを備える。そして、本実施形態の光源装置部1では、励起光源11の励起光Lの出射口側から、第1集光光学系12、蛍光部材13及び第2集光光学系15が、この順で配置される。この際、第1集光光学系12、蛍光部材13内の後述する層状の蛍光体32(以下、蛍光体層32という)、及び、第2集光光学系15が、励起光Lの光路上に位置するように配置する。   The light source unit 1 includes an excitation light source 11, a first condensing optical system 12 (first optical system), a fluorescent member 13, a motor 14 (driving unit), and a second condensing optical system 15 (second optical). System). And in the light source device part 1 of this embodiment, the 1st condensing optical system 12, the fluorescent member 13, and the 2nd condensing optical system 15 are arrange | positioned in this order from the exit opening side of the excitation light L of the excitation light source 11. Is done. At this time, the first condensing optical system 12, a layered phosphor 32 (hereinafter referred to as a phosphor layer 32) in the fluorescent member 13, and the second condensing optical system 15 are on the optical path of the excitation light L. Place it so that it is located in

励起光源11は、所定波長(第1の波長)の光を射出する固体発光素子で構成する。この例では、励起光源11として、波長445nmの青色光を射出する青色レーザを用いる。なお、本実施形態では、蛍光体層32に入射する励起光Lの波長を、蛍光部材13内の後述する蛍光体層32における発光光の波長より短くする。   The excitation light source 11 is composed of a solid light emitting element that emits light of a predetermined wavelength (first wavelength). In this example, a blue laser that emits blue light having a wavelength of 445 nm is used as the excitation light source 11. In the present embodiment, the wavelength of the excitation light L incident on the phosphor layer 32 is made shorter than the wavelength of the emitted light in the phosphor layer 32 described later in the phosphor member 13.

また、励起光源11として青色レーザを用いる場合、一つの青色レーザで所定出力の励起光Lを得る構成にしてもよいが、複数の青色レーザから射出される光を合波して所定出力の励起光Lを得る構成にしてもよい。さらに、青色光(励起光L)の波長は445nmに限定されず、青色光と呼ばれる光の波長帯域内の波長であれば任意の波長を用いることができる。   Further, when a blue laser is used as the excitation light source 11, a configuration in which the excitation light L having a predetermined output is obtained with one blue laser may be used. However, the light emitted from a plurality of blue lasers may be combined to be excited with a predetermined output. The light L may be obtained. Furthermore, the wavelength of blue light (excitation light L) is not limited to 445 nm, and any wavelength can be used as long as it is within the wavelength band of light called blue light.

第1集光光学系12は、励起光源11から射出された励起光Lを集光し、該集光された励起光L(以下、集光光という)を蛍光部材13に射出する。この際、集光光が、所定の入射角θで蛍光部材13に入射されるように、第1集光光学系12の例えばレンズ構成、焦点距離及び配置位置等のパラメータを設計する。また、集光光の入射角θは、例えば、蛍光部材13内の後述する反射膜31の透過特性(透過率の入射角依存性)に応じて適宜設定される。   The first condensing optical system 12 condenses the excitation light L emitted from the excitation light source 11 and emits the condensed excitation light L (hereinafter referred to as “condensed light”) to the fluorescent member 13. At this time, parameters such as a lens configuration, a focal length, and an arrangement position of the first condensing optical system 12 are designed so that the condensed light is incident on the fluorescent member 13 at a predetermined incident angle θ. Moreover, the incident angle θ of the condensed light is appropriately set according to, for example, the transmission characteristics (reflection angle dependency of the transmittance) of the reflection film 31 described later in the fluorescent member 13.

なお、第1集光光学系12で励起光Lのスポット径を絞ると、高光密度の励起光Lを蛍光部材13に照射することができる。しかしながら、励起光Lのスポットを絞りすぎると、照射領域内の蛍光体原子を発光させるために必要な光量より大きな光量の励起光Lを照射することになる。この場合、照射領域において、蛍光体原子の発光に関与しない光量が増加するので、入射された励起光Lの光量に対する発光量の割合が減少し、蛍光体層32の発光効率が低下する。それゆえ、本実施形態では、集光光のスポット径が、発光効率が低下しないような径になるように、第1集光光学系12の構成を設計する。   Note that when the spot diameter of the excitation light L is reduced by the first condensing optical system 12, the fluorescent member 13 can be irradiated with the excitation light L having a high light density. However, if the spot of the excitation light L is too narrow, the excitation light L having a light amount larger than the light amount necessary for causing the phosphor atoms in the irradiation region to emit light is irradiated. In this case, the amount of light that does not contribute to the light emission of the phosphor atoms in the irradiation region increases, so the ratio of the light emission amount to the amount of incident excitation light L decreases, and the light emission efficiency of the phosphor layer 32 decreases. Therefore, in the present embodiment, the configuration of the first condensing optical system 12 is designed so that the spot diameter of the condensed light is a diameter that does not decrease the light emission efficiency.

逆に、集光光のスポット径を広げすぎると、蛍光部材13からの発光光の広がりが増大する。この場合には、第1集光光学系12で、集光光のスポット径が広がりすぎないように調整してもよいし、第2集光光学系15で、広がった発光光を所定の径の平行光に変換するような構成にしてもよい。   Conversely, if the spot diameter of the condensed light is too wide, the spread of the emitted light from the fluorescent member 13 increases. In this case, the first condensing optical system 12 may be adjusted so that the spot diameter of the condensed light does not spread too much, or the light emitted by the second condensing optical system 15 may be adjusted to a predetermined diameter. It may be configured to convert the light into parallel light.

蛍光部材13は、第1集光光学系12を介して入射された励起光L(青色光)により、所定波長帯域(第2の波長)の光を発光するとともに、励起光Lの一部を透過させる。この例では、光学エンジン部2に入射する光を白色光LWとするので、蛍光部材13は、励起光Lにより、緑色光及び赤色光を含む波長帯域(約480〜680nm)の光を発光する。そして、本実施形態では、緑色光及び赤色光を含む波長帯域の発光光と蛍光部材13を透過する励起光L(青色光)の一部とを合波して白色光LWを生成する。なお、蛍光部材13のより詳細な構成は、後で詳述する。   The fluorescent member 13 emits light of a predetermined wavelength band (second wavelength) by the excitation light L (blue light) incident through the first condensing optical system 12, and a part of the excitation light L is emitted. Make it transparent. In this example, since the light incident on the optical engine unit 2 is white light LW, the fluorescent member 13 emits light in a wavelength band (about 480 to 680 nm) including green light and red light by the excitation light L. . In this embodiment, the white light LW is generated by combining the emission light in the wavelength band including the green light and the red light and a part of the excitation light L (blue light) transmitted through the fluorescent member 13. A more detailed configuration of the fluorescent member 13 will be described later.

モータ14は、蛍光部材13を所定の回転数で回転駆動する。この際、モータ14は、励起光Lの照射方向に直交する面(後述する蛍光体層32の励起光Lの照射面)に沿う方向に、蛍光部材13が回転するように蛍光部材13を駆動する。   The motor 14 rotationally drives the fluorescent member 13 at a predetermined rotational speed. At this time, the motor 14 drives the fluorescent member 13 so that the fluorescent member 13 rotates in a direction along a surface orthogonal to the irradiation direction of the excitation light L (an irradiation surface of the phosphor layer 32 to be described later). To do.

モータ14の回転軸14aは、蛍光部材13の後述する透明基板30の中心に取り付けられており、固定ハブ14bにより透明基板30を回転軸14aに固定する。そして、モータ14で蛍光部材13を回転駆動することにより、蛍光部材13内の励起光Lの照射位置が、励起光Lの照射方向に直交する面内において回転数に対応した速度で時間的に移動する。   The rotating shaft 14a of the motor 14 is attached to the center of a transparent substrate 30 (to be described later) of the fluorescent member 13, and the transparent substrate 30 is fixed to the rotating shaft 14a by a fixing hub 14b. Then, the fluorescent member 13 is rotationally driven by the motor 14 so that the irradiation position of the excitation light L in the fluorescent member 13 is temporally at a speed corresponding to the number of rotations in a plane orthogonal to the irradiation direction of the excitation light L. Moving.

上述のように蛍光部材13をモータ14で回転駆動して蛍光部材13内の励起光Lの照射位置を時間とともに移動させることにより、照射位置の温度上昇を抑制することができ、蛍光体層32の発光効率の低下を防止することができる。また、蛍光体原子が励起光Lを吸収して発光するまでに多少時間(例えば数nsec程度)が掛かり、その励起期間中に、次の励起光Lが蛍光体原子に照射されてもその励起光Lに対しては発光しない。しかしながら、本実施形態のように蛍光部材13内の励起光Lの照射位置を時間とともに移動させることにより、励起光Lの照射位置には、励起されていない蛍光体原子が次々と配置されることになり、蛍光体層32をより効率よく発光させることができる。   As described above, the fluorescent member 13 is rotationally driven by the motor 14 and the irradiation position of the excitation light L in the fluorescent member 13 is moved with time, whereby the temperature rise of the irradiation position can be suppressed, and the phosphor layer 32. It is possible to prevent a decrease in luminous efficiency. Further, it takes some time (for example, about several nsec) until the phosphor atoms absorb the excitation light L and emit light, and even if the next excitation light L is irradiated to the phosphor atoms during the excitation period, the excitation is performed. The light L is not emitted. However, by moving the irradiation position of the excitation light L in the fluorescent member 13 with time as in the present embodiment, phosphor atoms that are not excited are successively arranged at the irradiation position of the excitation light L. Thus, the phosphor layer 32 can emit light more efficiently.

なお、本実施形態では、モータ14により蛍光部材13を回転駆動する例を示すが、本発明はこれに限定されず、蛍光部材13中の励起光Lの照射位置が時間とともに移動する構成であれば任意の構成にすることができる。例えば、蛍光部材13を、励起光Lの照射方向に直交する面内(後述する蛍光体層32の励起光Lの照射面内)の所定方向に直線的に往復運動させることにより、励起光Lの照射位置を時間とともに移動させてもよい。また、蛍光部材13を固定し、励起光源11を蛍光部材13に対して相対的に移動させることにより、励起光Lの照射位置を時間とともに移動させてもよい。   In this embodiment, an example in which the fluorescent member 13 is rotationally driven by the motor 14 is shown. However, the present invention is not limited to this, and the irradiation position of the excitation light L in the fluorescent member 13 may move with time. Any configuration can be used. For example, the excitation light L is reciprocated linearly in a predetermined direction in a plane orthogonal to the irradiation direction of the excitation light L (in the irradiation surface of the excitation light L of the phosphor layer 32 described later). The irradiation position may be moved with time. Alternatively, the irradiation position of the excitation light L may be moved with time by fixing the fluorescent member 13 and moving the excitation light source 11 relative to the fluorescent member 13.

第2集光光学系15は、蛍光部材13から射出された光(白色光LW)を集光して平行光に変換する。そして、第2集光光学系15は、平行光を光学エンジン部2の分光光学系20に導く。なお、第2集光光学系15は、1枚のコリメートレンズで構成してもよいし、複数のレンズを用いて入射光を平行光に変換する構成にしてもよい。また、蛍光部材13からの発光光は、ランバーシアン(均等拡散)状に広がる光であるので、第2集光光学系15と蛍光部材13(より詳細には後述する蛍光体層32)との間の距離はできる限り短くすることが好ましい。   The second condensing optical system 15 condenses the light emitted from the fluorescent member 13 (white light LW) and converts it into parallel light. The second condensing optical system 15 guides the parallel light to the spectroscopic optical system 20 of the optical engine unit 2. Note that the second condensing optical system 15 may be configured by a single collimating lens, or may be configured to convert incident light into parallel light using a plurality of lenses. Further, since the emitted light from the fluorescent member 13 is light that spreads in a Lambertian (uniform diffusion) shape, the second condensing optical system 15 and the fluorescent member 13 (more specifically, a phosphor layer 32 described later) are used. It is preferable to make the distance between them as short as possible.

なお、本実施形態では、光源装置部1内に、第1集光光学系12及び第2集光光学系15を備える例を説明したが、本発明はこれに限定されない。例えば、光源装置部1からの出射光の出力が小さくても問題のない用途等に本実施形態の光源装置部1を適用する場合には、第1集光光学系12及び第2集光光学系15のいずれか一方又は両方を備えない構成にしてもよい。   In the present embodiment, the example in which the first condensing optical system 12 and the second condensing optical system 15 are provided in the light source device unit 1 has been described, but the present invention is not limited to this. For example, when the light source device unit 1 of the present embodiment is applied to an application where there is no problem even if the output light from the light source device unit 1 is small, the first condensing optical system 12 and the second condensing optical system are used. You may make it the structure which does not have any one or both of the systems 15.

[3.蛍光部材の構成例]
次に、蛍光部材13のより詳細な構成を、図2(a)〜(c)を参照しながら説明する。なお、図2(a)は、第2集光光学系15側から見た蛍光部材13の正面図であり、図2(b)は、図2(a)中のA−A断面図であり、図2(c)は、第1集光光学系12側から見た蛍光部材13の正面図である。
[3. Configuration example of fluorescent member]
Next, a more detailed configuration of the fluorescent member 13 will be described with reference to FIGS. 2A is a front view of the fluorescent member 13 viewed from the second condensing optical system 15 side, and FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A. FIG. 2C is a front view of the fluorescent member 13 viewed from the first condensing optical system 12 side.

蛍光部材13は、円盤状の透明基板30と、透明基板30の一方の表面上に形成された反射膜31及び蛍光体層32(蛍光体)と、透明基板30の他方の表面上に形成された反射防止膜33とを有する。   The fluorescent member 13 is formed on the disk-shaped transparent substrate 30, the reflective film 31 and the phosphor layer 32 (phosphor) formed on one surface of the transparent substrate 30, and the other surface of the transparent substrate 30. And an antireflection film 33.

透明基板30は、例えばガラス、透明樹脂等の透明材料で形成される。なお、透明基板30の厚さ等のサイズは、例えば必要とする透過率、強度等を考慮して適宜設定される。   The transparent substrate 30 is made of a transparent material such as glass or transparent resin. The size such as the thickness of the transparent substrate 30 is appropriately set in consideration of, for example, necessary transmittance and strength.

反射膜31は、図2(a)に示すように、透明基板30の一方の表面上にドーナツ状に形成される。そして、ドーナツ状の反射膜31と透明基板30とが同心円となるように、反射膜31が透明基板30上に配置される。なお、反射膜31の半径方向の幅は、第1集光光学系12により集光される励起光L(集光光)のスポットサイズより大きくなるように設定される。   The reflective film 31 is formed in a donut shape on one surface of the transparent substrate 30 as shown in FIG. The reflective film 31 is disposed on the transparent substrate 30 so that the donut-shaped reflective film 31 and the transparent substrate 30 are concentric. Note that the radial width of the reflective film 31 is set to be larger than the spot size of the excitation light L (condensed light) collected by the first condensing optical system 12.

また、反射膜31は、蛍光体層32で励起された光(発光光)を第2集光光学系15側に反射するだけでなく、蛍光体層32内で散乱及び反射された励起光L(青色光)も第2集光光学系15側に反射する。   The reflective film 31 not only reflects the light (emitted light) excited by the phosphor layer 32 to the second light collecting optical system 15 side but also the excitation light L scattered and reflected in the phosphor layer 32. (Blue light) is also reflected to the second condensing optical system 15 side.

ここで、図3に、反射膜31の一構成例を示す。反射膜31は、例えばSiO2層やMgF2層等からなる第1の誘電体層31aと、例えばTiO2層やTa2O3層等からなる第2の誘電体層31bとを透明基板30上に交互に積層して形成される。すなわち、反射膜31は、ダイクロイックミラー(ダイクロイック膜)で構成することができる。なお、第1の誘電体層31a及び第2の誘電体層31bの積層数は、通常、数層〜数十層である。また、第1の誘電体層31a及び第2の誘電体層31bは、例えば蒸着法やスパッタ法等の積層手法を用いて形成される。   Here, FIG. 3 shows a configuration example of the reflective film 31. The reflective film 31 is formed by alternately laminating a first dielectric layer 31a made of, for example, an SiO2 layer or an MgF2 layer and a second dielectric layer 31b made of, for example, a TiO2 layer or a Ta2O3 layer on the transparent substrate 30. Formed. That is, the reflective film 31 can be formed of a dichroic mirror (dichroic film). In addition, the number of laminated layers of the first dielectric layer 31a and the second dielectric layer 31b is usually several to several tens. Further, the first dielectric layer 31a and the second dielectric layer 31b are formed using a lamination method such as a vapor deposition method or a sputtering method.

反射膜31を例えば図3に示すようなダイクロイックミラーで構成した場合には、各誘電体層の積層数、各誘電体層の厚さ、各誘電体層の形成材料等を調整することにより、反射膜31に入射する光の透過率(反射率)の入射角依存性を設定しやすくなる。図4に、本実施形態で用いる反射膜31の光透過率の入射角依存性の一例を示す。図4に示す特性の横軸は入射光の波長であり、縦軸は透過率である。   When the reflective film 31 is configured by a dichroic mirror as shown in FIG. 3, for example, by adjusting the number of dielectric layers stacked, the thickness of each dielectric layer, the formation material of each dielectric layer, etc. It becomes easy to set the incident angle dependency of the transmittance (reflectance) of light incident on the reflective film 31. FIG. 4 shows an example of the incident angle dependence of the light transmittance of the reflective film 31 used in this embodiment. The horizontal axis of the characteristic shown in FIG. 4 is the wavelength of incident light, and the vertical axis is the transmittance.

図4に示す例では、反射膜31は、赤色光及び緑色光を含む波長帯域(約480〜680nmに渡る波長領域)の光を、その入射角θに関係なく選択的に反射するように設計されている。それゆえ、赤色光及び緑色光を含む波長帯域の光(蛍光体層32からの発光光)に対しては、その光の入射角θに関係なく、透過率が略零となる。すなわち、赤色光及び緑色光を含む波長領域の光は、入射角θに関係なく、反射膜31で全て反射される。   In the example shown in FIG. 4, the reflective film 31 is designed to selectively reflect light in a wavelength band (wavelength region extending over about 480 to 680 nm) including red light and green light regardless of the incident angle θ. Has been. Therefore, the transmittance of the light in the wavelength band including the red light and the green light (the light emitted from the phosphor layer 32) is substantially zero regardless of the incident angle θ of the light. That is, the light in the wavelength region including red light and green light is all reflected by the reflective film 31 regardless of the incident angle θ.

一方、波長445nmの青色光(励起光L)に対しては、その入射角θが約20度以下であるときに青色光が透過し、入射角θが約20度より大きい場合には青色光が反射されるように、反射膜31が設計されている。それゆえ、図4に示すように、青色光(励起光L)の波長445nm(太破線)では、光の入射角θが0度(実線)及び15度(破線)の時は、透過率が大きくなる。また、青色光の入射角θが30度(一点鎖線)、45度(点線)及び60度(二点鎖線)の時は、波長445nmにおける透過率が小さくなる。すなわち、蛍光体層32内で散乱及び反射された励起光Lのうち、約20度より大きな入射角θで反射膜31に入射する励起光成分は、反射膜31で第2集光光学系15に向かう方向に反射される。   On the other hand, for blue light (excitation light L) having a wavelength of 445 nm, blue light is transmitted when the incident angle θ is approximately 20 degrees or less, and blue light is transmitted when the incident angle θ is greater than approximately 20 degrees. The reflective film 31 is designed so that is reflected. Therefore, as shown in FIG. 4, at a wavelength of 445 nm (thick broken line) of blue light (excitation light L), when the incident angle θ of light is 0 degrees (solid line) and 15 degrees (broken line), the transmittance is growing. Further, when the incident angle θ of blue light is 30 degrees (dashed line), 45 degrees (dotted line), and 60 degrees (dashed line), the transmittance at a wavelength of 445 nm is small. That is, of the excitation light L scattered and reflected in the phosphor layer 32, the excitation light component incident on the reflection film 31 at an incident angle θ greater than about 20 degrees is reflected by the second light collection optical system 15 at the reflection film 31. Reflected in the direction toward.

なお、上述のように、反射膜31の透過率の入射角依存性に応じて第1集光光学系12の構成が設計される。例えば、反射膜31が、図4に示すような透過率の入射角依存性を有する場合には、励起光Lの利用効率を低下させないために、集光された励起光Lの入射角θが、約20度以下になるように、第1集光光学系12が設計される。   Note that, as described above, the configuration of the first condensing optical system 12 is designed according to the incident angle dependency of the transmittance of the reflective film 31. For example, when the reflection film 31 has the incident angle dependency of the transmittance as shown in FIG. 4, the incident angle θ of the condensed excitation light L is set so as not to reduce the utilization efficiency of the excitation light L. The first condensing optical system 12 is designed to be about 20 degrees or less.

蛍光体層32は、励起光Lの入射により、所定波長帯域の光を発光する層状の蛍光体である。本実施形態では、励起光Lの透過光と蛍光体層32での発光光とを合波して白色光LWを生成するので、蛍光体層32としては、例えばYAG(Yttrium Aluminum Garnet)系蛍光材料等で形成する。この場合、青色の励起光Lが入射されると、蛍光体層32からは波長480〜680nmの帯域の光(黄色光)が発光される。なお、蛍光体層32としては、赤色光及び緑色光を含む波長帯域の光を発光する膜であれば、任意の材料で構成することができるが、発光効率及び耐熱性の観点ではYAG系蛍光体材料を用いることが好ましい。   The phosphor layer 32 is a layered phosphor that emits light in a predetermined wavelength band when the excitation light L enters. In the present embodiment, the transmitted light of the excitation light L and the light emitted from the phosphor layer 32 are combined to generate white light LW. As the phosphor layer 32, for example, YAG (Yttrium Aluminum Garnet) fluorescence It is made of materials. In this case, when the blue excitation light L is incident, the phosphor layer 32 emits light having a wavelength of 480 to 680 nm (yellow light). The phosphor layer 32 can be made of any material as long as it is a film that emits light in a wavelength band including red light and green light. However, in terms of light emission efficiency and heat resistance, YAG-based fluorescence can be used. It is preferable to use a body material.

また、蛍光体層32は、蛍光材料とバインダとを混合した所定の蛍光剤を反射膜31上に塗布することにより形成される。図2(a)〜(c)に示す例では蛍光体層32を反射膜31の全面に渡って形成するので、蛍光体層32の表面形状もドーナッツ状となる。なお、蛍光体層32は、励起光Lが入射される領域に形成されていればよいので、蛍光体層32の形状は、図2(a)〜(c)に示す例に限定されず、例えば、蛍光体層32の半径方向の幅が、反射膜31のそれより狭くてもよい。   The phosphor layer 32 is formed by applying a predetermined fluorescent agent mixed with a fluorescent material and a binder on the reflective film 31. In the example shown in FIGS. 2A to 2C, since the phosphor layer 32 is formed over the entire surface of the reflective film 31, the surface shape of the phosphor layer 32 is also a donut shape. In addition, since the fluorescent substance layer 32 should just be formed in the area | region where the excitation light L injects, the shape of the fluorescent substance layer 32 is not limited to the example shown to Fig.2 (a)-(c), For example, the radial width of the phosphor layer 32 may be narrower than that of the reflective film 31.

また、蛍光体層32での発光量及び励起光Lの透過量は、例えば蛍光体層32の厚さや蛍光体密度(含有量)等により調整することができる。それゆえ、本実施形態では、光源装置部1からの出射光が白色光となるように、蛍光体層32の厚さや蛍光体密度等を調整する。   Further, the light emission amount and the transmission amount of the excitation light L in the phosphor layer 32 can be adjusted by, for example, the thickness of the phosphor layer 32, the phosphor density (content), or the like. Therefore, in the present embodiment, the thickness of the phosphor layer 32, the phosphor density, and the like are adjusted so that the emitted light from the light source device unit 1 becomes white light.

反射防止膜33は、透明基板30の励起光Lの入射側表面に設けられ、励起光Lの集光光を蛍光部材13に入射した際に、その入射面で発生する励起光Lの反射を防止する。これにより、励起光Lの利用効率を向上させることができる。   The antireflection film 33 is provided on the surface on the incident side of the excitation light L of the transparent substrate 30, and reflects the excitation light L generated on the incident surface when the condensed light of the excitation light L is incident on the fluorescent member 13. To prevent. Thereby, the utilization efficiency of the excitation light L can be improved.

なお、上記実施形態では、蛍光部材13に、反射膜31及び反射防止膜33を設ける例を説明したが、本発明はこれに限定されない。例えば、光源装置部1からの出射光の出力が小さくても問題のない用途等に本実施形態の光源装置部1を適用する場合には、反射膜31及び反射防止膜33のいずれか一方又は両方を備えない構成にしてもよい。さらに、上記実施形態の蛍光部材13では、透明基板30上に反射膜31を介して層状の蛍光体(蛍光体層32)を設ける例を説明したが、本発明はこれに限定されない。例えば、蛍光体を十分な剛性を有する板状部材で構成した場合には、透明基板30を設けなくてもよい。   In the above embodiment, the example in which the reflective film 31 and the antireflection film 33 are provided on the fluorescent member 13 has been described. However, the present invention is not limited to this. For example, when the light source device unit 1 according to the present embodiment is applied to an application where there is no problem even if the output light from the light source device unit 1 is small, either one of the reflective film 31 and the antireflection film 33 or You may make it the structure which does not have both. Furthermore, although the example which provides the layered fluorescent substance (phosphor layer 32) via the reflecting film 31 on the transparent substrate 30 was demonstrated in the fluorescent member 13 of the said embodiment, this invention is not limited to this. For example, when the phosphor is formed of a plate member having sufficient rigidity, the transparent substrate 30 may not be provided.

[4.光源装置部の動作例]
図5に、本実施形態の光源装置部1の動作の様子を示す。本実施形態の光源装置部1では、まず、励起光源11から射出された励起光L(この例では青色光)を、第1集光光学系12で集光する。そして、その集光光(集光された励起光L)は、蛍光部材13の反射防止膜33側から所定の入射角θで蛍光部材13に入射される。なお、本実施形態では、モータ14により、蛍光部材13を所定の回転数で回転させた状態で、集光光を蛍光部材13に照射する。
[4. Example of operation of light source unit]
FIG. 5 shows the operation of the light source device unit 1 of the present embodiment. In the light source device unit 1 of the present embodiment, first, the excitation light L (blue light in this example) emitted from the excitation light source 11 is condensed by the first condensing optical system 12. Then, the condensed light (the condensed excitation light L) is incident on the fluorescent member 13 at a predetermined incident angle θ from the antireflection film 33 side of the fluorescent member 13. In this embodiment, the fluorescent light 13 is irradiated to the fluorescent member 13 by the motor 14 in a state where the fluorescent member 13 is rotated at a predetermined rotational speed.

蛍光部材13に入射された集光光は、反射防止膜33、透明基板30及び反射膜31を通過して蛍光体層32に入射される。なお、上述のように、反射膜31は、所定の入射角θ以下の励起光Lを透過するように設計されているので、蛍光部材13に入射された集光光は、反射膜31で反射されない。   The condensed light incident on the fluorescent member 13 passes through the antireflection film 33, the transparent substrate 30, and the reflective film 31 and is incident on the phosphor layer 32. As described above, since the reflection film 31 is designed to transmit the excitation light L having a predetermined incident angle θ or less, the condensed light incident on the fluorescent member 13 is reflected by the reflection film 31. Not.

そして、集光光(励起光L)が蛍光体層32に入射されると、その一部は、蛍光体層32を通過するが、残りは、主に、蛍光体層32で吸収される。この吸収された励起光Lにより、蛍光体層32が励起され、蛍光体層32から所定波長帯域の光(この例では赤色光及び緑色光を含む黄色光)が発光する。この結果、励起光Lの透過成分と、蛍光体層32からの発光光とが合波され、蛍光体層32から白色光が射出される。   When condensed light (excitation light L) is incident on the phosphor layer 32, a part thereof passes through the phosphor layer 32, but the rest is mainly absorbed by the phosphor layer 32. The phosphor layer 32 is excited by the absorbed excitation light L, and light in a predetermined wavelength band (yellow light including red light and green light in this example) is emitted from the phosphor layer 32. As a result, the transmission component of the excitation light L and the emitted light from the phosphor layer 32 are combined, and white light is emitted from the phosphor layer 32.

なお、この際、蛍光体層32の発光光は、第2集光光学系15に向かう方向だけでなく、透明基板30に向かう方向にも射出される。また、蛍光体層32に入射された励起光Lの一部は、蛍光体層32内で透明基板30に向かう方向にも散乱及び反射される。しかしながら、本実施形態の蛍光部材13では、上述のように、透明基板30と蛍光体層32との間に反射膜31を設けているので、透明基板30に向かう方向に射出された発光光及び励起光成分は、反射膜31により第2集光光学系15に向かう方向に反射される。この際、反射膜31で反射された励起光成分は、蛍光体層32で吸収され、さらに蛍光体層32を発光させる。それゆえ、本実施形態のように、透明基板30と蛍光体層32との間に反射膜31を設けた場合には、励起光Lの利用効率を向上させることができ、発光光の光量をより増大させることができる。   At this time, the light emitted from the phosphor layer 32 is emitted not only in the direction toward the second condensing optical system 15 but also in the direction toward the transparent substrate 30. A part of the excitation light L incident on the phosphor layer 32 is also scattered and reflected in the direction toward the transparent substrate 30 in the phosphor layer 32. However, in the fluorescent member 13 of the present embodiment, as described above, the reflective film 31 is provided between the transparent substrate 30 and the phosphor layer 32, so that the emitted light emitted in the direction toward the transparent substrate 30 and The excitation light component is reflected by the reflective film 31 in the direction toward the second condensing optical system 15. At this time, the excitation light component reflected by the reflective film 31 is absorbed by the phosphor layer 32 and further causes the phosphor layer 32 to emit light. Therefore, when the reflective film 31 is provided between the transparent substrate 30 and the phosphor layer 32 as in the present embodiment, the utilization efficiency of the excitation light L can be improved, and the amount of emitted light can be reduced. Can be increased.

また、実際に、本発明者は、光源装置部1の各部のパラメータを次のように設定して、光源装置部1からの出射光のスペクトル特性を調べた。
励起光源11(青色レーザ)の波長:445nm
励起光Lの集光径:1mm
励起光Lの入射角θ:20度以下
蛍光部材13の回転数:3000rpm
第2集光光学系15及び蛍光体層32間の距離:1mm以下
透明基板30の形成材料:ガラス
透明基板30の直径:30mm
反射膜31の透過特性:図4に示す特性
蛍光体層32の形成材料:YAG系蛍光体
蛍光体層32の厚さ:50μm
蛍光体層32の幅:5mm
Actually, the present inventor set the parameters of each part of the light source device unit 1 as follows, and examined the spectral characteristics of the emitted light from the light source device unit 1.
Wavelength of excitation light source 11 (blue laser): 445 nm
Condensing diameter of excitation light L: 1 mm
Incident angle θ of excitation light L: 20 degrees or less Number of rotations of fluorescent member 13: 3000 rpm
Distance between second condensing optical system 15 and phosphor layer 32: 1 mm or less Forming material of transparent substrate 30: Glass Diameter of transparent substrate 30: 30 mm
Transmission characteristics of the reflective film 31: characteristics shown in FIG. 4 Material for forming the phosphor layer 32: YAG-based phosphor Thickness of the phosphor layer 32: 50 μm
Width of phosphor layer 32: 5 mm

図6に、上記条件で得られた光源装置部1からの出射光のスペクトル特性を示す。なお、図6に示す特性では、横軸が波長であり、縦軸が出射光の強度(任意単位)である。図6から明らかなように、上記条件では、出射光に、波長445nm付近の光成分(青色光成分)と、約480〜680nmに渡る波長領域の光成分、すなわち、赤色光成分及び緑色光成分を含む光成分とが含まれていることが分かる。このことからも、本実施形態の光源装置部1から、白色光LWが出射されていることが分かる。   FIG. 6 shows the spectral characteristics of the emitted light from the light source unit 1 obtained under the above conditions. In the characteristics shown in FIG. 6, the horizontal axis is the wavelength, and the vertical axis is the intensity (arbitrary unit) of the emitted light. As is apparent from FIG. 6, under the above conditions, the emitted light includes a light component in the vicinity of a wavelength of 445 nm (blue light component) and a light component in a wavelength region extending over about 480 to 680 nm, that is, a red light component and a green light component. It can be seen that a light component including This also shows that the white light LW is emitted from the light source device unit 1 of the present embodiment.

上述のように、本実施形態では、固体発光素子を用いて白色光を光源装置部1から射出することができる。それゆえ、本実施形態は、例えば3LCD方式のプロジェクタ等のように、白色光を射出する光源装置を必要とする用途にも適用可能である。すなわち、本実施形態では、様々な用途に適用可能な水銀レスの光源装置部1(照明装置)及びそれを備える画像表示装置10を提供することができる。   As described above, in the present embodiment, white light can be emitted from the light source device unit 1 using a solid light emitting element. Therefore, the present embodiment can also be applied to applications that require a light source device that emits white light, such as a 3LCD projector. That is, in the present embodiment, it is possible to provide a mercury-less light source device unit 1 (illumination device) that can be applied to various uses and an image display device 10 including the same.

本実施形態の光源装置部1は、水銀ランプを用いる必要が無いので、近年の環境問題に対応することができる。また、本実施形態では、水銀ランプに比べてより長寿命で且つ輝度低下も小さい光源装置部1及び画像表示装置10を提供することができる。さらに、本実施形態のように、励起光源11に固体発光素子を用いた場合には、水銀ランプに比べて点灯時間をより短縮することができる。   Since the light source device unit 1 of this embodiment does not need to use a mercury lamp, it can cope with recent environmental problems. Further, in the present embodiment, it is possible to provide the light source device unit 1 and the image display device 10 that have a longer lifetime and a lower luminance reduction than the mercury lamp. Further, when a solid light emitting element is used as the excitation light source 11 as in the present embodiment, the lighting time can be further shortened as compared with a mercury lamp.

また、本実施形態の光源装置部1のように励起光源11として半導体レーザを用いた場合には、例えばLED(Light Emitting Diode)等の固体光源に比べても、十分高輝度の光を射出することができ、高輝度光源の実現が可能になる。さらに、本実施形態のように、青色光レーザで蛍光体層32を発光させて白色光LWを生成する構成は、赤色光、緑色光及び青色光の各固体光源を個別に用意して白色光を生成する構成に比べてより安価である。   Further, when a semiconductor laser is used as the excitation light source 11 as in the light source device unit 1 of the present embodiment, light with sufficiently high luminance is emitted even when compared with a solid light source such as an LED (Light Emitting Diode). Therefore, a high-intensity light source can be realized. Further, as in the present embodiment, the configuration in which the phosphor layer 32 is caused to emit light by the blue light laser to generate the white light LW is prepared by separately preparing solid light sources of red light, green light, and blue light separately. It is cheaper than the structure which produces | generates.

上記実施形態では、光源装置部1(照明装置)を3LCD方式のプロジェクタに適用する例を説明したが、本発明はこれに限定されず、白色光を必要とする任意の画像表示装置に適用可能であり、同様の効果が得られる。   In the above embodiment, the example in which the light source device unit 1 (illumination device) is applied to a 3LCD projector has been described, but the present invention is not limited to this, and can be applied to any image display device that requires white light. The same effect can be obtained.

また、上記実施形態では、光源装置部1(照明装置)の出射光を白色光とする例を説明したが、本発明はこれに限定されない。例えば、出射光としてシアン光(またはマゼンダ光)を必要とする用途では、励起光Lとして青色光を用い、蛍光体層32を緑色光(または赤色光)のみを発光する蛍光材料で形成すればよい。すなわち、必要とする出射光の波長(色)に応じて、励起光Lの波長と蛍光体層32の形成材料との組み合わせを適宜選択すればよい。   Moreover, although the said embodiment demonstrated the example which made the emitted light of the light source device part 1 (illuminating device) white light, this invention is not limited to this. For example, in applications that require cyan light (or magenta light) as the emitted light, blue light is used as the excitation light L, and the phosphor layer 32 is formed of a fluorescent material that emits only green light (or red light). Good. That is, a combination of the wavelength of the excitation light L and the material for forming the phosphor layer 32 may be appropriately selected according to the required wavelength (color) of the emitted light.

1…光源装置部(照明装置)、2…光学エンジン部(画像投影部)、10…画像表示装置、11…励起光源、12…第1集光光学系、13…蛍光部材、14…モータ、15…第2集光光学系、20…分光光学系、21…第1LCDパネル、22…第2LCDパネル、23…第3LCDパネル、24…プリズム、25…投影光学系、30…透明基板、31…反射膜、32…蛍光体層(蛍光体)、33…反射防止膜
DESCRIPTION OF SYMBOLS 1 ... Light source device part (illuminating device), 2 ... Optical engine part (image projection part), 10 ... Image display apparatus, 11 ... Excitation light source, 12 ... 1st condensing optical system, 13 ... Fluorescent member, 14 ... Motor, DESCRIPTION OF SYMBOLS 15 ... 2nd condensing optical system, 20 ... Spectroscopic optical system, 21 ... 1st LCD panel, 22 ... 2nd LCD panel, 23 ... 3rd LCD panel, 24 ... Prism, 25 ... Projection optical system, 30 ... Transparent substrate, 31 ... Reflective film, 32 ... phosphor layer (phosphor), 33 ... antireflection film

Claims (9)

青色光を含む第1の波長帯にピーク波長を有する励起光を射出するレーザ光源と、
前記励起光が照射されることにより緑色光及び赤色光を含む第2の波長帯にピーク波長を有する発光光を発光する単一の蛍光体と、前記蛍光体に対して前記励起光の入射側に配置され、前記励起光の反射を防止する反射防止膜と、前記反射防止膜に対して前記励起光の入射側とは反対側に設けられ、所定角度以下の入射角の前記励起光を透過し、前記発光光を反射する反射膜と、を有し、前記発光光を射出する単一の蛍光部材と、
前記蛍光部材との間の距離が1mm以下となるように設けられ、前記蛍光部材から射出された前記発光光を平行光に変換する光学系と、
前記蛍光部材の中心に駆動軸が接続され、前記蛍光体に照射される前記励起光の照射位置が時間とともに前記蛍光部材の回転円周方向に移動するよう前記蛍光部材を回転させる駆動部と、を備え、
前記駆動部が前記蛍光部材を所定方向に回転させ、且つ、前記励起光が前記回転円周方向の一周に渡って前記蛍光体に照射される間、前記回転円周方向に沿って連続して形成され、単一の発光特性を具備する前記蛍光体は前記発光光を発光する
光源装置。
A laser light source that emits excitation light having a peak wavelength in a first wavelength band including blue light;
A single phosphor that emits emitted light having a peak wavelength in a second wavelength band including green light and red light when irradiated with the excitation light, and an incident side of the excitation light with respect to the phosphor An antireflection film for preventing reflection of the excitation light, and provided on the opposite side of the antireflection film from the incident side of the excitation light and transmitting the excitation light with an incident angle equal to or less than a predetermined angle And a reflective film that reflects the emitted light, and a single fluorescent member that emits the emitted light,
An optical system provided so that a distance between the fluorescent member and the fluorescent member is 1 mm or less, and converts the emitted light emitted from the fluorescent member into parallel light;
A drive unit connected to a drive shaft at the center of the fluorescent member, and a drive unit that rotates the fluorescent member so that an irradiation position of the excitation light irradiated to the phosphor moves with time in a rotation circumferential direction of the fluorescent member; With
While the driving unit rotates the fluorescent member in a predetermined direction, and the excitation light is applied to the phosphor over one circumference of the rotating circumferential direction, the driving unit continuously continues along the rotating circumferential direction. The phosphor formed and having a single emission characteristic emits the emitted light.
前記蛍光部材を前記駆動軸に固定する固定ハブをさらに備える
請求項1に記載の光源装置。
The light source device according to claim 1, further comprising a fixing hub that fixes the fluorescent member to the drive shaft.
前記蛍光体上に照射される前記励起光のスポット径が所定のスポット径となるように前記励起光を集光する集光光学系をさらに備え、
前記スポット径が、前記蛍光体の特性に基づいて決定される
請求項1又は2に記載の光源装置。
A condensing optical system for condensing the excitation light so that the spot diameter of the excitation light irradiated on the phosphor has a predetermined spot diameter;
The spot diameter is, the light source apparatus according to claim 1 or 2 is determined based on the characteristics of the phosphor.
前記反射膜は、前記励起光を透過するとともに前記蛍光体で発光された前記発光光を反射する
請求項に記載の光源装置。
The light source device according to claim 3 , wherein the reflective film transmits the excitation light and reflects the emitted light emitted from the phosphor.
前記蛍光体は、前記反射膜上に形成される
請求項に記載の光源装置。
The light source device according to claim 4 , wherein the phosphor is formed on the reflective film.
前記集光光学系は、前記励起光の前記反射防止膜への入射角が前記所定角度以下になるように前記励起光を集光する
請求項4又は5に記載の光源装置。
The light source device according to claim 4 , wherein the condensing optical system condenses the excitation light such that an incident angle of the excitation light to the antireflection film is equal to or less than the predetermined angle.
前記所定角度が20度である
請求項に記載の光源装置。
The light source device according to claim 6 , wherein the predetermined angle is 20 degrees.
前記第1の波長帯が430〜480nmであり、前記第2の波長帯が480〜680nmである
請求項1〜のいずれか1項に記載の光源装置。
The light source device according to any one of claims 1 to 7 , wherein the first wavelength band is 430 to 480 nm, and the second wavelength band is 480 to 680 nm.
青色光を含む第1の波長帯にピーク波長を有する励起光を射出するレーザ光源と、
前記励起光が照射されることにより緑色光及び赤色光を含む第2の波長帯にピーク波長を有する発光光を発光する単一の蛍光体と、前記蛍光体に対して前記励起光の入射側に配置され、前記励起光の反射を防止する反射防止膜と、前記反射防止膜に対して前記励起光の入射側とは反対側に設けられ、所定角度以下の入射角の前記励起光を透過し、前記発光光を反射する反射膜と、を有し、前記発光光を射出する単一の蛍光部材と、
前記蛍光部材との間の距離が1mm以下となるように設けられ、前記蛍光部材から射出された前記発光光を平行光に変換する光学系と、
前記蛍光部材の中心に駆動軸が接続され、前記蛍光体に照射される前記励起光の照射位置が時間とともに前記蛍光部材の回転円周方向に移動するよう前記蛍光部材を回転させる駆動部と、を有する光源装置部と、
前記光源装置部から射出された光を用いて所定の画像光を生成し、該生成した画像光を外部に投影する画像投影部と、を備え、
前記駆動部が前記蛍光部材を所定方向に回転させ、且つ、前記励起光が前記回転円周方向の一周に渡って前記蛍光体に照射される間、前記回転円周方向に沿って連続して形成され、単一の発光特性を具備する前記蛍光体は前記発光光を発光する
画像投影装置。
A laser light source that emits excitation light having a peak wavelength in a first wavelength band including blue light;
A single phosphor that emits emitted light having a peak wavelength in a second wavelength band including green light and red light when irradiated with the excitation light, and an incident side of the excitation light with respect to the phosphor An antireflection film for preventing reflection of the excitation light, and provided on the opposite side of the antireflection film from the incident side of the excitation light and transmitting the excitation light with an incident angle equal to or less than a predetermined angle And a reflective film that reflects the emitted light, and a single fluorescent member that emits the emitted light,
An optical system provided so that a distance between the fluorescent member and the fluorescent member is 1 mm or less, and converts the emitted light emitted from the fluorescent member into parallel light;
A drive unit connected to a drive shaft at the center of the fluorescent member, and a drive unit that rotates the fluorescent member so that an irradiation position of the excitation light irradiated to the phosphor moves with time in a rotation circumferential direction of the fluorescent member; A light source unit having
An image projection unit that generates predetermined image light using light emitted from the light source device unit, and projects the generated image light to the outside;
While the driving unit rotates the fluorescent member in a predetermined direction, and the excitation light is applied to the phosphor over one circumference of the rotating circumferential direction, the driving unit continuously continues along the rotating circumferential direction. The image projection apparatus, wherein the phosphor having a single light emission characteristic emits the emitted light .
JP2017075096A 2017-04-05 2017-04-05 Light source device and image projection device Active JP6388051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017075096A JP6388051B2 (en) 2017-04-05 2017-04-05 Light source device and image projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017075096A JP6388051B2 (en) 2017-04-05 2017-04-05 Light source device and image projection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015123652A Division JP6279516B2 (en) 2015-06-19 2015-06-19 Light source device and image projection device

Publications (2)

Publication Number Publication Date
JP2017134417A JP2017134417A (en) 2017-08-03
JP6388051B2 true JP6388051B2 (en) 2018-09-12

Family

ID=59503591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017075096A Active JP6388051B2 (en) 2017-04-05 2017-04-05 Light source device and image projection device

Country Status (1)

Country Link
JP (1) JP6388051B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251504B2 (en) 2020-03-19 2023-04-04 株式会社デンソー rotary actuator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7799494A (en) * 1993-09-17 1995-04-03 Proxima Corporation Compact projection illumination system and method of using same
JP4182804B2 (en) * 2003-04-28 2008-11-19 セイコーエプソン株式会社 Illumination device and projection display device
US20070187580A1 (en) * 2006-02-14 2007-08-16 Microvision, Inc. Photoluminescent light sources, and scanned beam systems and methods of using same
JP2008052070A (en) * 2006-08-25 2008-03-06 Samsung Electronics Co Ltd Color wheel, visible light source, and projection image display device and method
US7547114B2 (en) * 2007-07-30 2009-06-16 Ylx Corp. Multicolor illumination device using moving plate with wavelength conversion materials
JP2009042569A (en) * 2007-08-09 2009-02-26 Panasonic Corp Projection type display
JP5527571B2 (en) * 2008-09-30 2014-06-18 カシオ計算機株式会社 Light emitting device, light source device, and projector using the light source device
JP5152586B2 (en) * 2008-09-30 2013-02-27 カシオ計算機株式会社 Light source device and projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251504B2 (en) 2020-03-19 2023-04-04 株式会社デンソー rotary actuator

Also Published As

Publication number Publication date
JP2017134417A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP5767444B2 (en) Light source device and image projection device
JP5770433B2 (en) Light source device and image projection device
JP6137238B2 (en) Light source device and image projection device
JP6388051B2 (en) Light source device and image projection device
JP6819759B2 (en) Light source device and image projection device
JP6353583B2 (en) Light source device and image projection device
JP6149991B2 (en) Light source device and image projection device
JP6453495B2 (en) Light source device and image projection device
JP6279516B2 (en) Light source device and image projection device
JP6680340B2 (en) Light source device and image projection device
JP5949983B2 (en) Light source device and projector
JP6680312B2 (en) Light source device and image projection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180730

R151 Written notification of patent or utility model registration

Ref document number: 6388051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151