JP5724461B2 - Method for manufacturing wavelength conversion member, wavelength conversion member produced thereby, and wavelength conversion element - Google Patents

Method for manufacturing wavelength conversion member, wavelength conversion member produced thereby, and wavelength conversion element Download PDF

Info

Publication number
JP5724461B2
JP5724461B2 JP2011045921A JP2011045921A JP5724461B2 JP 5724461 B2 JP5724461 B2 JP 5724461B2 JP 2011045921 A JP2011045921 A JP 2011045921A JP 2011045921 A JP2011045921 A JP 2011045921A JP 5724461 B2 JP5724461 B2 JP 5724461B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
phosphor
powder
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011045921A
Other languages
Japanese (ja)
Other versions
JP2012180488A (en
Inventor
忠仁 古山
忠仁 古山
俊輔 藤田
俊輔 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2011045921A priority Critical patent/JP5724461B2/en
Publication of JP2012180488A publication Critical patent/JP2012180488A/en
Application granted granted Critical
Publication of JP5724461B2 publication Critical patent/JP5724461B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、波長変換部材の製造方法およびそれにより作製された波長変換部材、ならびに当該波長変換部材を用いた波長変換素子に関するものである。   The present invention relates to a method for manufacturing a wavelength conversion member, a wavelength conversion member produced thereby, and a wavelength conversion element using the wavelength conversion member.

近年、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)を用いた光源などの、蛍光ランプや白熱灯に変わる次世代の光源に対する注目が高まってきている。そのような次世代光源の一例として、例えば下記の特許文献1には、青色光を出射するLEDの光出射側にLEDからの光の一部を吸収し、黄色の光を出射する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。   In recent years, attention has been paid to next-generation light sources such as light sources using light emitting diodes (LEDs) and laser diodes (LDs), such as fluorescent lamps and incandescent lamps. As an example of such a next-generation light source, for example, in Patent Document 1 below, a wavelength conversion member that absorbs part of light from an LED and emits yellow light on the light emitting side of the LED that emits blue light. A light source in which is arranged is disclosed. This light source emits white light which is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.

波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体粉末を分散させたものが用いられている。しかしながら、樹脂マトリクス中に無機蛍光体粉末を分散させた波長変換部材を用いた場合、LEDからの光により樹脂が劣化し、光源の輝度が低くなりやすいという問題がある。特に、LEDからの光が、青色光などの波長が短く、エネルギーが強い光である場合は、このような問題が生じやすい。   As the wavelength conversion member, a material in which an inorganic phosphor powder is dispersed in a resin matrix has been conventionally used. However, when the wavelength conversion member in which the inorganic phosphor powder is dispersed in the resin matrix is used, there is a problem that the resin is deteriorated by the light from the LED and the luminance of the light source tends to be lowered. In particular, when the light from the LED is light having a short wavelength such as blue light and strong energy, such a problem is likely to occur.

上記問題に鑑み、例えば、下記の特許文献2には、ガラス中に無機蛍光体粉末を分散させた波長変換部材が提案されている。特許文献2に記載の波長変換部材は、樹脂を含まず、無機固体のみから構成されるため、優れた耐熱性及び耐候性を有している。従って、この波長変換部材を用いることにより輝度が低下しにくい光源を実現することができる。   In view of the above problem, for example, Patent Document 2 below proposes a wavelength conversion member in which inorganic phosphor powder is dispersed in glass. Since the wavelength conversion member described in Patent Document 2 does not contain a resin and is composed of only an inorganic solid, it has excellent heat resistance and weather resistance. Therefore, by using this wavelength conversion member, it is possible to realize a light source whose luminance is not easily lowered.

特開2000−208815号公報JP 2000-208815 A 特開2003−258308号公報JP 2003-258308 A

ガラス中に無機蛍光体粉末を分散させた波長変換部材を用いた光源を高輝度化するためには、励起光の強度を高めればよいが、それだけでは、無機蛍光体粉末から発生する蛍光に対して、透過する励起光の色合いが強くなり、所望の白色光が得られにくい。そのため、励起光の強度を高めると同時に、波長変換部材における無機蛍光体粉末の含有量を多くして、蛍光強度も高める必要がある。   In order to increase the brightness of the light source using the wavelength conversion member in which the inorganic phosphor powder is dispersed in the glass, it is only necessary to increase the intensity of the excitation light. Thus, the hue of the transmitted excitation light becomes strong and it is difficult to obtain desired white light. For this reason, it is necessary to increase the intensity of the excitation light and at the same time increase the content of the inorganic phosphor powder in the wavelength conversion member to increase the fluorescence intensity.

しかしながら、波長変換部材における無機蛍光体粉末の含有量を多くすると、緻密な焼結体が得られにくくなり、波長変換部材中に気孔が発生しやすくなる。波長変換部材中に気孔が多く存在すると、光が散乱しやすくなり、発光強度が低下しやすくなる。   However, when the content of the inorganic phosphor powder in the wavelength conversion member is increased, it becomes difficult to obtain a dense sintered body, and pores are easily generated in the wavelength conversion member. If there are many pores in the wavelength conversion member, light is likely to be scattered, and the emission intensity is likely to be reduced.

本発明は、以上の点に鑑みてなされたものであり、その目的は、ガラス中に無機蛍光体粉末を分散させた波長変換部材を用いた光源の高輝度化を図ることにある。   This invention is made | formed in view of the above point, The objective is to attain high brightness of the light source using the wavelength conversion member which disperse | distributed inorganic fluorescent substance powder in glass.

本発明は、(1)無機蛍光体粉末とガラス粉末とを含む混合粉末を、1.013×10Pa未満の雰囲気中で焼成する工程、(2)ガラス粉末の軟化点±150℃の温度範囲において、成形型を用いて混合粉末をプレスし、焼結体を得る工程、(3)1.013×10Pa以上の雰囲気で加圧しながら、および/または、成形型を用いてプレスしながら焼結体を冷却する工程、を含むことを特徴とする波長変換部材の製造方法に関する。 The present invention includes (1) a step of firing a mixed powder containing an inorganic phosphor powder and a glass powder in an atmosphere of less than 1.013 × 10 5 Pa, and (2) a temperature at which the softening point of the glass powder is ± 150 ° C. In the range, the mixed powder is pressed using a molding die to obtain a sintered body, (3) pressed under an atmosphere of 1.013 × 10 5 Pa or more and / or using a molding die. The present invention also relates to a method for producing a wavelength conversion member, comprising a step of cooling a sintered body.

以下に、本発明の製造方法において、各工程により得られる効果を説明する。   Below, the effect obtained by each process in the manufacturing method of this invention is demonstrated.

まず、工程(1)において、無機蛍光体粉末とガラス粉末とを含む混合粉末を、1.013×10Pa(1気圧)より低い雰囲気中で焼成することにより、無機蛍光体粉末およびガラス粉末の各粒子間に存在するガスを効果的に排出することができ、波長変換部材における気孔の発生を抑制することができる。 First, in the step (1), the mixed powder containing the inorganic phosphor powder and the glass powder is baked in an atmosphere lower than 1.013 × 10 5 Pa (1 atm) to thereby obtain the inorganic phosphor powder and the glass powder. The gas existing between the particles can be effectively discharged, and the generation of pores in the wavelength conversion member can be suppressed.

次に、工程(2)において、ガラス粉末の軟化点±150℃の温度範囲(ガラス粉末の軟化点−150℃〜ガラス粉末の軟化点+150℃)において、成形型を用いて混合粉末をプレスすることにより、無機蛍光体粉末およびガラス粉末が互いに押し付けられると同時に、軟化流動したガラス粉末がバインダーの役割をして、緻密な焼結体を得ることができる。   Next, in the step (2), the mixed powder is pressed using a mold in a temperature range of glass powder softening point ± 150 ° C. (glass powder softening point−150 ° C. to glass powder softening point + 150 ° C.). As a result, the inorganic phosphor powder and the glass powder are pressed against each other, and at the same time, the softened and fluidized glass powder serves as a binder to obtain a dense sintered body.

さらに、工程(3)において、1.013×10Pa以上の雰囲気で加圧しながら、および/または、成形型を用いてプレスしながら冷却することにより、焼結体内部において閉じ込められた気泡が膨張したり、新たな気孔が発生することを抑制できる。 Furthermore, in the step (3), air bubbles trapped inside the sintered body are cooled while being pressurized in an atmosphere of 1.013 × 10 5 Pa or more and / or while being pressed using a mold. It is possible to suppress expansion and generation of new pores.

以上により、本発明の製造方法によると、無機蛍光体粉末とガラス粉末とを含む波長変換部材において、部材中の無機蛍光体粉末の含有量が多い場合であっても、緻密に焼結固化することができ、単位体積あたりに存在する無機蛍光体粉末の比率を高めることができる。結果として、当該波長変換部材を用いた光源の高輝度化を達成することが可能となる。   As described above, according to the production method of the present invention, in the wavelength conversion member including the inorganic phosphor powder and the glass powder, the material is densely sintered and solidified even when the content of the inorganic phosphor powder in the member is large. The ratio of the inorganic phosphor powder present per unit volume can be increased. As a result, it is possible to achieve high brightness of the light source using the wavelength conversion member.

第二に、本発明の波長変換部材の製造方法は、工程(2)または(3)において、プレスを2×10Pa以上の圧力で行うことが好ましい。 2ndly, it is preferable that the manufacturing method of the wavelength conversion member of this invention performs a press by the pressure of 2 * 10 < 6 > Pa or more in process (2) or (3).

第三に、本発明の波長変換部材の製造方法は、工程(3)において、冷却を不活性雰囲気中で行うことが好ましい。   Thirdly, it is preferable that the manufacturing method of the wavelength conversion member of this invention performs cooling in an inert atmosphere in a process (3).

当該構成によれば、無機蛍光体粉末やガラス粉末が酸化により性状変化することを抑制できる。具体的には、無機蛍光体粉末の蛍光強度が低下したり、ガラス粉末が変色したりすることを抑制できる。   According to the said structure, it can suppress that an inorganic fluorescent substance powder and glass powder change a property by oxidation. Specifically, it can suppress that the fluorescence intensity of inorganic fluorescent substance powder falls or discoloration of glass powder.

第四に、本発明の波長変換部材の製造方法は、ガラス粉末の軟化点が900℃以下であることが好ましい。   Fourthly, in the method for producing a wavelength conversion member of the present invention, the softening point of the glass powder is preferably 900 ° C. or lower.

当該構成によれば、焼結時に無機蛍光体粉末の劣化を抑制することが可能となる。   According to the said structure, it becomes possible to suppress deterioration of inorganic fluorescent substance powder at the time of sintering.

第五に、本発明の波長変換部材の製造方法は、無機蛍光体粉末が、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、YAG系化合物蛍光体から選ばれた1種以上からなることが好ましい。   Fifth, in the method for producing a wavelength conversion member of the present invention, the inorganic phosphor powder comprises an oxide phosphor, a nitride phosphor, an oxynitride phosphor, a chloride phosphor, an acid chloride phosphor, and a sulfide. Preferably, the phosphor comprises at least one selected from phosphors, oxysulfide phosphors, halide phosphors, chalcogenide phosphors, aluminate phosphors, halophosphate phosphors, and YAG compound phosphors.

第六に、本発明の波長変換部材の製造方法は、無機蛍光体粉末の平均粒子径D50が50μm以下であることが好ましい。 Sixth, in the method for producing a wavelength conversion member of the present invention, the average particle diameter D50 of the inorganic phosphor powder is preferably 50 μm or less.

当該構成によれば、無機蛍光体粉末の各粒子間の隙間を小さくして、気孔の少ない緻密な波長変換部材を得ることができる。   According to the said structure, the clearance gap between each particle | grains of inorganic fluorescent substance powder can be made small, and a precise | minute wavelength conversion member with few pores can be obtained.

第七に、本発明は、前記いずれかの製造方法により作製されたことを特徴とする波長変換部材に関する。   Seventh, the present invention relates to a wavelength conversion member manufactured by any one of the above-described manufacturing methods.

第八に、本発明の波長変換部材は、無機蛍光体粉末を30〜99.9質量%含有することが好ましい。   Eighth, the wavelength conversion member of the present invention preferably contains 30 to 99.9% by mass of inorganic phosphor powder.

当該構成によれば、波長変換部材の単位体積における無機蛍光体粉末の含有量を多くすることができ、当該波長変換部材を用いた光源の高輝度化を達成することが可能となる。   According to the said structure, content of the inorganic fluorescent substance powder in the unit volume of a wavelength conversion member can be increased, and it becomes possible to achieve high brightness of the light source using the said wavelength conversion member.

第九に、本発明の波長変換部材は、気孔率が35%以下であることが好ましい。   Ninth, the wavelength conversion member of the present invention preferably has a porosity of 35% or less.

当該構成によれば、波長変換部材内での光の散乱が抑制され、当該波長変換部材を用いた光源の高輝度化を達成することが可能となる。   According to the said structure, scattering of the light in the wavelength conversion member is suppressed, and it becomes possible to achieve high brightness of the light source using the said wavelength conversion member.

第十に、本発明は、ガラス粉末と平均粒子径D50が50μm以下である無機蛍光体粉末とを含む混合粉末の焼結体からなり、無機蛍光体粉末の含有量が30〜99.9質量%であることを特徴とする波長変換部材に関する。 Tenth, the present invention is formed of a sintered body of powder mixture of glass powder and the average particle diameter D 50 containing an inorganic phosphor powder is 50μm or less, the content of the inorganic phosphor powder is 30 to 99.9 It is related with the wavelength conversion member characterized by being the mass%.

第十一に、本発明は、前記いずれかの波長変換部材を熱伝導性部材に接合してなることを特徴とする波長変換素子に関する。   Eleventhly, the present invention relates to a wavelength conversion element characterized in that any one of the wavelength conversion members is bonded to a heat conductive member.

波長変換部材は、励起光を照射されることにより発熱し、輝度低下する傾向がある。これは、無機蛍光体粉末の温度消光が原因と考えられる。特に、励起光の強度が高い場合は、輝度低下の程度が大きくなる。そこで、波長変換部材を熱伝導性部材に接合してなる波長変換素子であれば、波長変換部材において発生した熱が効率的に熱伝導性部材に伝導し、放熱される。このため、波長変換部材の温度上昇を抑制することができ、波長変換部材の温度上昇にともなう輝度低下を抑制することができる。   The wavelength converting member generates heat when irradiated with excitation light, and tends to decrease in luminance. This is considered to be caused by temperature quenching of the inorganic phosphor powder. In particular, when the intensity of the excitation light is high, the degree of luminance reduction increases. Then, if it is a wavelength conversion element formed by joining a wavelength conversion member to a heat conductive member, the heat generated in the wavelength conversion member is efficiently conducted to the heat conductive member and radiated. For this reason, the temperature rise of the wavelength conversion member can be suppressed, and the brightness | luminance fall accompanying the temperature rise of a wavelength conversion member can be suppressed.

第十二に、本発明の波長変換素子は、波長変換部材と熱伝導性部材との間に反射層を有することが好ましい。   12thly, it is preferable that the wavelength conversion element of this invention has a reflection layer between a wavelength conversion member and a heat conductive member.

波長変換素子としては、一般に、励起光と蛍光体から発生する蛍光との合成光を、励起光と反対側から取り出す「透過型」と、当該合成光を励起光と同じ側から取り出す「反射型」が挙げられる。本発明では、波長変換部材と熱伝導性部材との間に反射層を設けることにより、「反射型」波長変換素子とすることができる。   As a wavelength conversion element, generally, a “transmission type” that extracts synthetic light of excitation light and fluorescence generated from a phosphor from the side opposite to the excitation light, and a “reflection type” that extracts the synthetic light from the same side as the excitation light. ". In the present invention, a “reflection type” wavelength conversion element can be obtained by providing a reflective layer between the wavelength conversion member and the heat conductive member.

特に、波長変換部材中における無機蛍光体粉末の含有量が多い場合は、「透過型」波長変換素子では、励起光が波長変換部材内部で散乱して透過しにくくなる。結果として、所望の色合いを有する光が得られにくくなる。一方、「反射型」波長変換素子であれば、波長変換部材中における無機蛍光体粉末の含有量が多い場合であっても、所望の色合いを有する光が得られやすい。これは、波長変換部材中で励起光が散乱しても、各散乱光が反射層により反射されて励起光側に効率よく取り出すことができるためである。   In particular, when the content of the inorganic phosphor powder in the wavelength conversion member is large, in the “transmission type” wavelength conversion element, the excitation light is scattered inside the wavelength conversion member and hardly transmitted. As a result, it becomes difficult to obtain light having a desired hue. On the other hand, in the case of a “reflection type” wavelength conversion element, light having a desired color is easily obtained even when the content of the inorganic phosphor powder in the wavelength conversion member is large. This is because even if excitation light is scattered in the wavelength conversion member, each scattered light is reflected by the reflective layer and can be efficiently extracted to the excitation light side.

第十三に、本発明は、前記いずれかの波長変換素子と発光素子を備えていることを特徴とする光源に関する。   Thirteenthly, the present invention relates to a light source comprising any one of the wavelength conversion elements and a light emitting element.

第十四に、本発明の光源は、プロジェクター用であることが好ましい。   14thly, it is preferable that the light source of this invention is for projectors.

本発明の製造方法の実施の形態1を説明する模式的斜視図である。It is a typical perspective view explaining Embodiment 1 of the manufacturing method of this invention. 本発明の製造方法の実施の形態2を説明する模式的斜視図である。It is a typical perspective view explaining Embodiment 2 of the manufacturing method of this invention. 本発明の波長変換素子の模式的斜視図である。It is a typical perspective view of the wavelength conversion element of the present invention.

以下、図面を用いて本発明の製造方法の実施の形態を説明する。ただし、本発明は以下の実施の形態のみに限定されるものではない。   Hereinafter, embodiments of the manufacturing method of the present invention will be described with reference to the drawings. However, the present invention is not limited only to the following embodiments.

<実施の形態1>
図1に、本発明の製造方法の実施の形態1を説明する模式的斜視図を示す。
<Embodiment 1>
In FIG. 1, the typical perspective view explaining Embodiment 1 of the manufacturing method of this invention is shown.

まず、工程(1)において、無機蛍光体粉末とガラス粉末を含む混合粉末2を、上パンチ1a、ダイス1b、下パンチ1cから構成される成形型1に投入し、焼成を行う。   First, in the step (1), the mixed powder 2 containing the inorganic phosphor powder and the glass powder is put into a mold 1 composed of an upper punch 1a, a die 1b, and a lower punch 1c, and is fired.

工程(1)における雰囲気中の圧力は、1.013×10Pa未満、1×10Pa以下、1×10Pa以下、特に1Pa以下であることが好ましい。当該圧力が大きすぎると、波長変換部材中に気孔が発生して光が散乱しやすくなり、当該波長変換部材を用いた光源の発光強度が低下する傾向がある。 The pressure in the atmosphere in the step (1) is preferably less than 1.013 × 10 5 Pa, 1 × 10 4 Pa or less, 1 × 10 2 Pa or less, particularly 1 Pa or less. When the pressure is too large, pores are generated in the wavelength conversion member and light is easily scattered, and the light emission intensity of the light source using the wavelength conversion member tends to decrease.

なお、本実施の形態では、混合粉末2を成形せず、そのまま焼成を行っているが、混合粉末2を上パンチ1aを用いて加圧して予備成形体とした後に焼成を行ってもよい。また、上パンチ1aにて混合粉末2をプレスした状態で焼成を行ってもよい。   In the present embodiment, the mixed powder 2 is not molded but fired as it is. However, the mixed powder 2 may be fired after being pressed using the upper punch 1a to form a preform. Alternatively, firing may be performed while the mixed powder 2 is pressed by the upper punch 1a.

次に、工程(2)において、ガラス粉末の軟化点付近で、上パンチ1aにより混合粉末2をプレスしながら、さらに焼成を行い、焼結体3を得る。   Next, in step (2), the sintered powder 3 is obtained by further firing while pressing the mixed powder 2 with the upper punch 1a near the softening point of the glass powder.

工程(2)において、混合粉末2をプレスする際の温度は、ガラス粉末の軟化点±150℃、ガラス粉末の軟化点±120℃、ガラス粉末の軟化点±100℃、ガラス粉末の軟化点±80℃、特にガラス粉末の軟化点±50℃の範囲内であることが好ましい。プレス温度が当該範囲より高い場合は、ガラス粉末が変質し、その結果、得られる波長変換部材を用いた光源の発光強度が低下する傾向がある。一方、混合粉末2のプレス温度が当該範囲より低い場合は、ガラス粉末の軟化流動しにくく、緻密な焼結体3が得られにくくなる。結果として、得られる波長変換部材中の気孔が多くなって機械的強度が低下したり、当該波長変換部材を用いた光源の発光強度が低下する傾向がある。   In step (2), the temperature at which the mixed powder 2 is pressed is as follows: glass powder softening point ± 150 ° C., glass powder softening point ± 120 ° C., glass powder softening point ± 100 ° C., glass powder softening point ± It is preferable to be within the range of 80 ° C., particularly the softening point of glass powder ± 50 ° C. When the press temperature is higher than the above range, the glass powder is altered, and as a result, the light emission intensity of the light source using the obtained wavelength conversion member tends to decrease. On the other hand, when the pressing temperature of the mixed powder 2 is lower than the above range, the glass powder is difficult to soften and flow, and it becomes difficult to obtain a dense sintered body 3. As a result, the pores in the obtained wavelength conversion member are increased, and the mechanical strength tends to decrease, or the light emission intensity of the light source using the wavelength conversion member tends to decrease.

なお、混合粉末2をプレスする際の温度は、上記の通りガラス粉末の軟化点に応じて決まるが、具体的には、300〜1000℃、特に300〜900℃の範囲を満たすことが好ましい。プレス温度は、混合粉末2の焼成最高温度と一致させることが好ましい。   In addition, although the temperature at the time of pressing the mixed powder 2 is decided according to the softening point of glass powder as above-mentioned, specifically, it is preferable to satisfy | fill the range of 300-1000 degreeC, especially 300-900 degreeC. The pressing temperature is preferably matched with the maximum firing temperature of the mixed powder 2.

プレス圧力は2×10Pa以上、5×10Pa以上、1×10Pa以上、特に2×10Pa以上であることが好ましい。当該圧力が小さすぎると、波長変換部材内部に気孔が発生しやすくなる。なお、上限については特に限定されないが、現実的には1×1010以下、特に1×10以下である。 The pressing pressure is preferably 2 × 10 6 Pa or more, 5 × 10 6 Pa or more, 1 × 10 7 Pa or more, particularly 2 × 10 7 Pa or more. If the pressure is too small, pores are likely to be generated inside the wavelength conversion member. In addition, although it does not specifically limit about an upper limit, Actually, it is 1 * 10 <10 > or less, Especially 1 * 10 < 9 > or less.

プレス時間は、混合粉末2が十分に焼結すれば特に限定されないが、例えば、0.1〜5時間、特に0.5〜2時間の間で適宜選択される。   The pressing time is not particularly limited as long as the mixed powder 2 is sufficiently sintered. For example, the pressing time is appropriately selected from 0.1 to 5 hours, particularly 0.5 to 2 hours.

成形型1の材質としては、黒鉛、タングステン、セラミックなどが挙げられる。成形型の表面にBN等の離型用粉末を塗布しておけば、焼結体の成形型への融着を抑制することができる。   Examples of the material of the mold 1 include graphite, tungsten, and ceramic. If a release powder such as BN is applied to the surface of the mold, the fusion of the sintered body to the mold can be suppressed.

なお、工程(2)における雰囲気は特に限定されないが、ガラス粉末や無機蛍光体粉末の酸化を抑制する観点から、工程(1)と同様に減圧雰囲気とするか、あるいは、後述する工程(3)と同様に不活性雰囲気とすることが好ましい。   In addition, the atmosphere in the step (2) is not particularly limited, but from the viewpoint of suppressing the oxidation of the glass powder and the inorganic phosphor powder, the atmosphere is reduced in the same manner as in the step (1), or the step (3) described later. It is preferable to make it an inert atmosphere like.

さらに、工程(3)において、1.013×10Pa以上の雰囲気で加圧しながら焼結体3を冷却し、波長変換部材4を得る。 Furthermore, in the step (3), the sintered compact 3 is cooled while being pressurized in an atmosphere of 1.013 × 10 5 Pa or more, and the wavelength conversion member 4 is obtained.

工程(3)における雰囲気中の圧力は、1.013×10Pa以上、2×10Pa以上、5×10Pa以上、特に1×10Pa以上であることが好ましい。当該圧力が小さすぎる場合は、焼結体3内部において閉じ込められた気泡が膨張したり、新たな気孔が発生する傾向がある。なお、上限は特に限定されないが、現実的には1×10以下、特に5×10以下である。 The pressure in the atmosphere in the step (3) is preferably 1.013 × 10 5 Pa or more, 2 × 10 5 Pa or more, 5 × 10 5 Pa or more, particularly 1 × 10 6 Pa or more. When the pressure is too small, bubbles trapped inside the sintered body 3 tend to expand or new pores are generated. The upper limit is not particularly limited, but is practically 1 × 10 7 or less, particularly 5 × 10 6 or less.

なお、冷却中の雰囲気はアルゴン、ネオン等の希ガス元素や窒素等の不活性雰囲気であることが好ましい。冷却中の雰囲気を不活性雰囲気とすることで、無機蛍光体粉末やガラス粉末が酸化により性状変化することを抑制できる。具体的には、無機蛍光体粉末の蛍光強度が低下したり、ガラス粉末が変色したりすることを抑制できる。   Note that the cooling atmosphere is preferably an inert atmosphere such as nitrogen or a rare gas element such as argon or neon. By making the atmosphere during cooling into an inert atmosphere, it is possible to suppress the property change of the inorganic phosphor powder and the glass powder due to oxidation. Specifically, it can suppress that the fluorescence intensity of inorganic fluorescent substance powder falls or discoloration of glass powder.

無機蛍光体粉末としては、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、YAG系化合物蛍光体から選ばれた1種以上からなるものが挙げられる。   Examples of the inorganic phosphor powder include oxide phosphor, nitride phosphor, oxynitride phosphor, chloride phosphor, acid chloride phosphor, sulfide phosphor, oxysulfide phosphor, and halide fluorescence. Body, chalcogenide phosphor, aluminate phosphor, halophosphate phosphor, and YAG compound phosphor.

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の蛍光(波長が440〜480nmの蛍光)を発する無機蛍光体の具体例としては、Sr(POCl:Eu2+、(Sr,Ba)MgAl1017:Eu2+などが挙げられる。 Specific examples of inorganic phosphors that emit blue fluorescence (fluorescence having a wavelength of 440 to 480 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm include Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba) MgAl 10 O 17 : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光(波長が500〜540nmの蛍光)を発する無機蛍光体の具体例としては、SrAl:Eu2+、SrGa:Eu2+などが挙げられる。 Specific examples of the inorganic phosphor that emits green fluorescence (fluorescence having a wavelength of 500 to 540 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm are SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4. : Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光(波長が500〜540nmの蛍光)を発する無機蛍光体の具体例としては、SrAl:Eu2+、SrGa:Eu2+などが挙げられる。 Specific examples of inorganic phosphors that emit green fluorescence (fluorescence having a wavelength of 500 to 540 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ and SrGa 2 S 4 : Eu 2+. Etc.

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光(波長が540〜595nmの蛍光)を発する無蛍光体の具体例としては、ZnS:Eu2+などが挙げられる。 A specific example of a non-fluorescent material that emits yellow fluorescence (fluorescence having a wavelength of 540 to 595 nm) when irradiated with excitation light of ultraviolet to near ultraviolet with a wavelength of 300 to 440 nm includes ZnS: Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると黄色の蛍光(波長が540〜595nmの蛍光)を発する無機蛍光体の具体例としては、Y(Al,Gd)12:Ce2+などが挙げられる。 Specific examples of inorganic phosphors that emit yellow fluorescence (fluorescence with a wavelength of 540 to 595 nm) when irradiated with blue excitation light with a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 2+ and the like. Can be mentioned.

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光(波長が600〜700nmの蛍光)を発する無機蛍光体の具体例としては、GdGa12:Cr3+、CaGa:Mn2+などが挙げられる。 Specific examples of inorganic phosphors that emit red fluorescence (fluorescence having a wavelength of 600 to 700 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 to 440 nm include Gd 3 Ga 4 O 12 : Cr 3+ and CaGa 2. S 4 : Mn 2+ and the like can be mentioned.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光(波長が600〜700nmの蛍光)を発する無機蛍光体の具体例としては、MgTiO:Mn4+、KSiF:Mn4+などが挙げられる。 Specific examples of inorganic phosphors that emit red fluorescence (fluorescence having a wavelength of 600 to 700 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Mg 2 TiO 4 : Mn 4+ and K 2 SiF 6 : Mn 4+. Etc.

なお、励起光の波長域や発光させたい色に合わせて複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して、白色光を得たい場合は、青色、緑色、赤色(さらに黄色)の蛍光を発する無機蛍光体粉末を混合して使用すればよい。   A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of the excitation light and the color to be emitted. For example, when it is desired to obtain white light by irradiating ultraviolet excitation light, inorganic phosphor powders that emit blue, green, and red (further yellow) fluorescence may be mixed and used.

無機蛍光体粉末の平均粒子径D50は50μm以下、特に25μm以下であることが好ましい。無機蛍光体粉末の平均粒子径D50が大きすぎると、緻密な焼結体が得られにくくなる。また、発光色が不均一になる場合がある。一方、無機蛍光体粉末の平均粒子径D50が小さすぎると、発光強度が低下する場合がある。よって、無機蛍光体粉末の平均粒子径D50は1μm以上、特に5μm以上であることが好ましい。 The average particle diameter D50 of the inorganic phosphor powder is preferably 50 μm or less, particularly preferably 25 μm or less. When the average particle diameter D 50 of the inorganic phosphor powder is too large, dense sintered body is difficult to obtain. In addition, the emission color may be non-uniform. On the other hand, when the average particle diameter D 50 of the inorganic phosphor powder is too small, the emission intensity decreases. Therefore, the average particle diameter D 50 of the inorganic phosphor powder 1μm or more, and particularly preferably 5μm or more.

波長変換部材4における無機蛍光体粉末の含有量は30〜99.9質量%、35〜99質量%、50〜95質量%、特に70〜90質量%であることが好ましい。無機蛍光体粉末の含有量が少なすぎると、波長変換部材4を用いた光源の輝度が低くなる傾向がある。一方、無機蛍光体粉末の含有量が多すぎると、相対的にガラス粉末の含有量が少なくなって、緻密な焼結体が得られにくくなる。   The content of the inorganic phosphor powder in the wavelength conversion member 4 is preferably 30 to 99.9% by mass, 35 to 99% by mass, 50 to 95% by mass, and particularly preferably 70 to 90% by mass. When there is too little content of inorganic fluorescent substance powder, there exists a tendency for the brightness | luminance of the light source using the wavelength conversion member 4 to become low. On the other hand, when there is too much content of inorganic fluorescent substance powder, content of glass powder will decrease relatively and it will become difficult to obtain a precise | minute sintered compact.

本発明の製造方法において使用するガラス粉末には、無機蛍光体粉末を互いに結着させるバインダーとしての役割と、無機蛍光体粉末を安定に保持するための媒体としての役割がある。また、使用するガラスの組成系によって、波長変換部材の色調が異なり、無機蛍光体粉末との反応性に差が出るため、種々の条件を考慮して使用するガラスの組成を選択する必要がある。   The glass powder used in the production method of the present invention has a role as a binder that binds the inorganic phosphor powder to each other and a role as a medium for stably holding the inorganic phosphor powder. In addition, since the color tone of the wavelength conversion member varies depending on the composition system of the glass used, and the reactivity with the inorganic phosphor powder varies, it is necessary to select the glass composition to be used in consideration of various conditions. .

ガラス粉末としては、900℃以下、特に850℃以下の軟化点を有するガラスからなるものを用いることが好ましい。ガラスの軟化点が高くなると、焼成温度も高くなるため、無機蛍光体粉末が劣化して、発光効率の高い波長変換部材が得られにくくなる。   The glass powder is preferably made of glass having a softening point of 900 ° C. or lower, particularly 850 ° C. or lower. When the softening point of the glass is increased, the firing temperature is also increased, so that the inorganic phosphor powder is deteriorated and it is difficult to obtain a wavelength conversion member having high luminous efficiency.

ガラス粉末の具体例としては、SiO−B−RO(RはMg、Ca、Sr、Baのいずれか1種以上を表す)系ガラス、SiO−B−R’O(R’はLi、Na、Kのいずれか1種以上を表す)系ガラス、SiO−B−Al系ガラス、SiO−B−ZnO系ガラス、ZnO−B系ガラス、SnO−P系ガラス等が挙げられる。低温で焼成したい場合、比較的容易に軟化点を低下させることが可能なZnO−B系ガラスまたはSnO−P系ガラスを選択すればよく、波長変換部材の耐候性を向上させたい場合は、SiO−B−RO系ガラス、SiO−B−R’O系ガラス、SiO−B−Al系ガラスまたはSiO−B−ZnO系ガラスを選択すればよい。 Specific examples of the glass powder include SiO 2 —B 2 O 3 —RO (R represents one or more of Mg, Ca, Sr, and Ba) -based glass, SiO 2 —B 2 O 3 —R ′ 2. O (R ′ represents one or more of Li, Na, and K) glass, SiO 2 —B 2 O 3 —Al 2 O 3 glass, SiO 2 —B 2 O 3 —ZnO glass, ZnO -B 2 O 3 based glass, SnO-P 2 O 5 based glass. When firing at a low temperature, ZnO—B 2 O 3 glass or SnO—P 2 O 5 glass capable of lowering the softening point can be selected relatively easily, and the weather resistance of the wavelength conversion member is improved. When it is desired to make it, SiO 2 —B 2 O 3 —RO glass, SiO 2 —B 2 O 3 —R ′ 2 O glass, SiO 2 —B 2 O 3 —Al 2 O 3 glass or SiO 2 — A B 2 O 3 —ZnO-based glass may be selected.

ガラス粉末としてSiO−B−RO系ガラスを用いる場合、モル%で、SiO 30〜80%、B 1〜30%、MgO 0〜10%、CaO 0〜30%、SrO 0〜20%、BaO 0〜40%、RO 5〜45%、Al 0〜10%、ZnO 0〜10%を含有するものを使用することが好ましい。 When SiO 2 —B 2 O 3 —RO-based glass is used as the glass powder, in mol%, SiO 2 30 to 80%, B 2 O 3 1 to 30%, MgO 0 to 10%, CaO 0 to 30%, It is preferable to use one containing SrO 0 to 20%, BaO 0 to 40%, RO 5 to 45%, Al 2 O 3 0 to 10%, ZnO 0 to 10%.

ガラス粉末としてSiO−B−R’O系ガラスを用いる場合、モル%で、SiO 30〜80%、B 1〜55%、LiO 0〜20%、NaO 0〜25%、KO 0〜25%、RO 5〜35%、Al 0〜10%、ZnO 0〜10%を含有するものを使用することが好ましい。 When SiO 2 —B 2 O 3 —R ′ 2 O glass is used as the glass powder, it is mol%, SiO 2 30 to 80%, B 2 O 3 1 to 55%, Li 2 O 0 to 20%, Na 2 O 0~25%, K 2 O 0~25%, R 2 O 5~35%, Al 2 O 3 0~10%, it is preferable to use those containing 0% ZnO.

ガラス粉末としてSiO−B−Al系ガラスを用いる場合、モル%で、SiO 30〜70%、B 15〜55%、Al 15〜55%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%を含有するものを使用することが好ましい。 When SiO 2 —B 2 O 3 —Al 2 O 3 glass is used as the glass powder, it is mol%, SiO 2 30 to 70%, B 2 O 3 15 to 55%, Al 2 O 3 15 to 55%, li 2 O 0~10%, Na 2 O 0~10%, K 2 O 0~10%, 0~10% MgO, CaO 0~10%, SrO 0~10%, containing 0% BaO It is preferable to use one.

ガラス粉末としてSiO−B−ZnO系ガラスを用いる場合、モル%で、SiO 5〜50%、B 15〜55%、ZnO 30〜80%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%を含有するものを使用することが好ましい。 When SiO 2 —B 2 O 3 —ZnO-based glass is used as the glass powder, the molar percentage is SiO 2 5-50%, B 2 O 3 15-55%, ZnO 30-80%, Li 2 O 0-10. %, Na 2 O 0-10%, K 2 O 0-10%, MgO 0-10%, CaO 0-10%, SrO 0-10%, BaO 0-10% preferable.

ガラス粉末としてZnO−B系ガラスを用いる場合、モル%で、ZnO 30〜80%、B 20〜70%、SiO 0〜5%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%を含有するものを使用することが好ましい。 When using a ZnO-B 2 O 3 based glass as the glass powder, in mol%, 30~80% ZnO, B 2 O 3 20~70%, SiO 2 0~5%, Li 2 O 0~10%, Na 2 O 0~10%, K 2 O 0~10%, 0~10% MgO, CaO 0~10%, SrO 0~10%, it is preferable to use those containing 0% BaO.

ガラス粉末としてSnO−P系ガラスを用いる場合、モル%で、SnO 35〜80%、P 5〜40%、B 0〜30%、Al 0〜10%、SiO 0〜10%、LiO 0〜10%、NaO 0〜10%、KO 0〜10%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%を含有するものを使用することが好ましい。 When using a SnO-P 2 O 5 based glass as the glass powder, in mol%, SnO 35~80%, P 2 O 5 5~40%, B 2 O 3 0~30%, Al 2 O 3 0~10 %, SiO 2 0~10%, Li 2 O 0~10%, Na 2 O 0~10%, K 2 O 0~10%, 0~10% MgO, CaO 0~10%, SrO 0~10% It is preferable to use those containing 0 to 10% of BaO.

なお、混合粉末2(あるいは波長変換部材4)には、無機蛍光体粉末およびガラス粉末以外にも、例えばアルミナ粉末やシリカ粉末等の光拡散材が含まれていてもよい。   The mixed powder 2 (or wavelength conversion member 4) may contain a light diffusing material such as alumina powder or silica powder in addition to the inorganic phosphor powder and the glass powder.

<実施の形態2>
本実施の形態は、実施の形態1と比較して、工程(1)および(2)については同様であり、工程(3)のみ異なっている。具体的は、本実施の形態では、工程(3)において、成形型1を用いて焼結体3をプレスしながら冷却を行うことにより、波長変換部材4を作製している。
<Embodiment 2>
In the present embodiment, steps (1) and (2) are the same as in the first embodiment, and only step (3) is different. Specifically, in the present embodiment, in the step (3), the wavelength conversion member 4 is manufactured by performing cooling while pressing the sintered body 3 using the mold 1.

工程(3)におけるプレス圧力は2×10Pa以上、5×10Pa以上、1×10Pa以上、特に2×10Pa以上であることが好ましい。当該圧力が小さすぎると、焼結体3内部において閉じ込められた気泡が膨張したり、新たな気孔が発生する傾向がある。なお、上限については特に限定されないが、現実的には1×1010Pa以下、特に1×10Pa以下である。 The pressing pressure in the step (3) is preferably 2 × 10 6 Pa or more, 5 × 10 6 Pa or more, 1 × 10 7 Pa or more, particularly 2 × 10 7 Pa or more. When the pressure is too small, bubbles trapped inside the sintered body 3 tend to expand or new pores are generated. In addition, although it does not specifically limit about an upper limit, Actually, it is 1 * 10 < 10 > Pa or less, Especially 1 * 10 < 9 > Pa or less.

なお、工程(3)において、実施の形態1と同様に、雰囲気の圧力を1.013×10Pa以上としても構わない。 In step (3), as in the first embodiment, the atmospheric pressure may be 1.013 × 10 5 Pa or more.

波長変換部材4の気孔率は35%、20%、10%以下、5%以下、特に2%以下であることが好ましい。気孔率が高すぎると、波長変換部材4の単位体積あたりに存在する無機蛍光体粉末が少なくなるとともに、波長変換部材4中において光が散乱しやすくなり、当該波長変換部材4を用いた光源の発光強度が低下する傾向がある。また、波長変換部材4の機械的強度が低下する傾向がある。   The porosity of the wavelength conversion member 4 is preferably 35%, 20%, 10% or less, 5% or less, and particularly preferably 2% or less. If the porosity is too high, the amount of inorganic phosphor powder present per unit volume of the wavelength conversion member 4 is reduced, and light is easily scattered in the wavelength conversion member 4, so that the light source using the wavelength conversion member 4 There is a tendency for the emission intensity to decrease. Moreover, there exists a tendency for the mechanical strength of the wavelength conversion member 4 to fall.

波長変換部材4には、研磨、切断等の後加工を施しても構わない。   The wavelength conversion member 4 may be subjected to post-processing such as polishing and cutting.

波長変換部材4はそのまま使用することもできるが、図3に示すように、波長変換部材4に熱伝導性部材5を接合してなる波長変換素子6として使用しても構わない。これにより、既述の通り、波長変換部材4において発生した熱が効率的に熱伝導性部材5に伝導し、放熱されるため、波長変換部材4の温度上昇を抑制することができ、波長変換部材4の温度上昇にともなう輝度低下を抑制することができる。   Although the wavelength conversion member 4 can be used as it is, as shown in FIG. 3, it may be used as a wavelength conversion element 6 formed by bonding a heat conductive member 5 to the wavelength conversion member 4. Thereby, as described above, since the heat generated in the wavelength conversion member 4 is efficiently conducted to the heat conductive member 5 and radiated, the temperature increase of the wavelength conversion member 4 can be suppressed, and the wavelength conversion is performed. It is possible to suppress a decrease in luminance due to the temperature increase of the member 4.

熱伝導性部材5の材質としては、Cu、Al等の金属や、それらのうち1種以上を含む合金、またはその他の物質との複合体(例えば、AlとSiCを混合焼結してなる複合体等)などが挙げられる。   The material of the heat conductive member 5 is a metal such as Cu or Al, an alloy containing one or more of them, or a composite of another substance (for example, a composite formed by mixing and sintering Al and SiC). Body etc.).

また、波長変換部材4と熱伝導性部材5の間に反射層(図示せず)を設けることにより、反射型の波長変換素子とすることも可能である。   Further, by providing a reflective layer (not shown) between the wavelength conversion member 4 and the heat conductive member 5, a reflective wavelength conversion element can be obtained.

反射層としては、Ag、Al、Au、PdおよびTi等の金属、またはそれらのうち1種以上を含む合金などが挙げられる。   Examples of the reflective layer include metals such as Ag, Al, Au, Pd, and Ti, or alloys containing one or more of them.

波長変換素子6は、LEDやLD等の発光素子と組み合わせることにより、例えばプロジェクター用光源として使用することができる。   The wavelength conversion element 6 can be used as a light source for a projector, for example, by combining with a light emitting element such as an LED or an LD.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

表1〜10は本発明の実施例1〜12および比較例1〜12を示している。   Tables 1-10 show Examples 1-12 of the present invention and Comparative Examples 1-12.

(a)ガラス粉末の作製
まず、表に示す組成となるように、各原料粉末を秤量して混合し、原料バッチを調整した。原料バッチを白金坩堝に投入し、900〜1400℃で1時間溶融してガラス化し、その後、フィルム状に成形した。フィルム状ガラスをボールミルで粉砕した後、165メッシュの篩に通して分級し、平均粒径が45μmのガラス粉末を得た。
(A) Production of Glass Powder First, each raw material powder was weighed and mixed so as to have the composition shown in the table to prepare a raw material batch. The raw material batch was put into a platinum crucible, melted at 900 to 1400 ° C. for 1 hour to be vitrified, and then formed into a film. The glass film was pulverized with a ball mill and then passed through a 165 mesh sieve to obtain a glass powder having an average particle size of 45 μm.

得られたガラス粉末について、軟化点を測定した。ガラス粉末の軟化点は、マクロ型示差熱分析計を用いて測定を行い、得られたグラフの第四の変曲点の値により評価した。   The softening point was measured about the obtained glass powder. The softening point of the glass powder was measured using a macro type differential thermal analyzer, and evaluated based on the value of the fourth inflection point of the obtained graph.

(b)波長変換部材の作製
上記により得られたガラス粉末に対し、無機蛍光体粉末を表に示す配合比となるように混合した。得られた混合粉末を図1に示すような成形型に投入し、プレス成形することにより予備成形体を作製した。その後、表に示す条件にて焼成を行った。
(B) Production of Wavelength Conversion Member The inorganic phosphor powder was mixed with the glass powder obtained as described above so as to have a blending ratio shown in the table. The obtained mixed powder was put into a mold as shown in FIG. 1 and press-molded to prepare a preform. Thereafter, firing was performed under the conditions shown in the table.

まず、工程(1)において、表に記載の雰囲気にて、焼成温度となるまで焼成(昇温)した。   First, in step (1), firing (temperature increase) was performed in the atmosphere shown in the table until the firing temperature was reached.

次に、工程(2)において、表に記載の焼成温度およびプレス圧にて、成形型を用いてプレスを行った。比較例についてはプレスは行わなかった。なお、工程(2)では、工程(1)の雰囲気を保持していた。   Next, in step (2), pressing was performed using a mold at the firing temperature and pressing pressure described in the table. The comparative example was not pressed. In step (2), the atmosphere of step (1) was maintained.

さらに、工程(3)において、表に記載の雰囲気にて、冷却を行った。なお、一部の実施例については、表に記載のプレス圧にて、成形型を用いてプレスを行った。   Furthermore, in the step (3), cooling was performed in the atmosphere described in the table. In some examples, pressing was performed using a mold at the pressing pressure described in the table.

以上のようにして、直径20mm、厚さ1mmの円盤状の焼結体(波長変換部材)を得た。   As described above, a disk-shaped sintered body (wavelength conversion member) having a diameter of 20 mm and a thickness of 1 mm was obtained.

(c)波長変換部材の特性評価
得られた焼結体について、気孔率および発光強度を測定した。結果を表に示す。
(C) Characteristic Evaluation of Wavelength Conversion Member The porosity and luminescence intensity of the obtained sintered body were measured. The results are shown in the table.

気孔率は、アルキメデス法を用いて焼結体のかさ密度を測定し、次に、焼成体を粉砕してウルトラピクノメーターにより焼成体の真密度を測定し、(1−かさ密度/真密度)×100(%)の式により求めた。   The porosity is determined by measuring the bulk density of the sintered body using the Archimedes method, then pulverizing the fired body and measuring the true density of the fired body with an ultra pycnometer. (1-bulk density / true density) It calculated | required by the type | formula of x100 (%).

発光強度は次のようにして測定した。まず、厚み0.6mm、外形25mmの正方形に切断加工したCu板表面に、高熱伝導性グリスを用いて波長変換部材を固定し、図3に示すような波長変換素子を作製した。次に、電流2A、励起波長440nmのレーザー光を波長変換素子の波長変換部材側に垂直に入射させ、ダイクロイックミラーで反射光に含まれる励起光を取り除き、NDフィルターで光の強度を減衰させた後、得られた蛍光ピーク強度を測定した。なお、発光強度は、各表において、蛍光ピーク強度の値が最も小さい例の発光強度を100(%)とし、当該発光強度に対する相対値で示した。   The emission intensity was measured as follows. First, a wavelength conversion member was fixed to a Cu plate surface cut into a square having a thickness of 0.6 mm and an outer shape of 25 mm using high thermal conductive grease, and a wavelength conversion element as shown in FIG. 3 was produced. Next, a laser beam having an electric current of 2A and an excitation wavelength of 440 nm was vertically incident on the wavelength conversion member side of the wavelength conversion element, the excitation light contained in the reflected light was removed by the dichroic mirror, and the light intensity was attenuated by the ND filter. Thereafter, the obtained fluorescence peak intensity was measured. In each table, the emission intensity is shown as a relative value with respect to the emission intensity, with the emission intensity of the example having the smallest fluorescence peak intensity being 100 (%).

表から明らかなように、実施例1〜12の製造方法によって作製された波長変換部材は、気孔率が9%以下と小さく、発光強度も良好であることがわかる。   As is apparent from the table, it can be seen that the wavelength conversion members produced by the production methods of Examples 1 to 12 have a porosity of as small as 9% or less and good emission intensity.

一方、比較例1、3および5〜12では、工程(1)において、1.013×10Pa以上の雰囲気下で焼成を行っており、工程(2)において、プレス成形を行わなかった。また、比較例2および4では、工程(2)において、プレス成形を行わず、工程(3)において、1.013×10Paより低い雰囲気下(プレス成形なし)で冷却を行った。そのため、比較例1〜12の製造方法によって作製された波長変換部材は、気孔率が38%以上と大きくなり、発光強度にも劣っていた。 On the other hand, in Comparative Examples 1, 3, and 5 to 12, firing was performed in an atmosphere of 1.013 × 10 5 Pa or higher in the step (1), and no press molding was performed in the step (2). In Comparative Examples 2 and 4, press molding was not performed in step (2), and cooling was performed in an atmosphere lower than 1.013 × 10 5 Pa (no press molding) in step (3). Therefore, the wavelength conversion member produced by the manufacturing method of Comparative Examples 1 to 12 has a porosity as high as 38% or more and is inferior in light emission intensity.

1 成形型
1a 上パンチ
1b ダイス
1c 下パンチ
2 混合粉末
3 焼結体
4 波長変換部材
5 熱伝導性部材
6 波長変換素子
P 加圧方向
DESCRIPTION OF SYMBOLS 1 Mold 1a Upper punch 1b Dies 1c Lower punch 2 Mixed powder 3 Sintered body 4 Wavelength conversion member 5 Thermally conductive member 6 Wavelength conversion element P Pressure direction

Claims (14)

(1)無機蛍光体粉末とガラス粉末とを含む混合粉末を、1.013×10Pa未満の雰囲気中で成形型を用いてプレスした状態で焼成する工程、(2)ガラス粉末の軟化点±150℃の温度範囲において、成形型を用いて混合粉末をプレスしながらさらに焼成を行い、焼結体を得る工程、(3)成形型を用いてプレスしながら焼結体を冷却する工程、を含むことを特徴とする波長変換部材の製造方法。 (1) A step of firing a mixed powder containing an inorganic phosphor powder and a glass powder in a pressed state using a mold in an atmosphere of less than 1.013 × 10 5 Pa, and (2) a softening point of the glass powder. in a temperature range of ± 0.99 ° C., while the mixed powder using a mold and pressed, further baked to obtain a sintered body, to cool the sintered body while pressing with (3) forming the shape type A process for producing a wavelength conversion member, comprising: a step. 工程(2)または(3)において、プレスを2×10Pa以上の圧力で行うことを特徴とする請求項1に記載の波長変換部材の製造方法。 2. The method for producing a wavelength conversion member according to claim 1, wherein in the step (2) or (3), pressing is performed at a pressure of 2 × 10 6 Pa or more. 工程(3)において、冷却を不活性雰囲気中で行うことを特徴とする請求項1または2に記載の波長変換部材の製造方法。   The method for manufacturing a wavelength conversion member according to claim 1 or 2, wherein in step (3), cooling is performed in an inert atmosphere. ガラス粉末の軟化点が900℃以下であることを特徴とする請求項1〜3のいずれかに記載の波長変換部材の製造方法。   The softening point of glass powder is 900 degrees C or less, The manufacturing method of the wavelength conversion member in any one of Claims 1-3 characterized by the above-mentioned. 無機蛍光体粉末が、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、YAG系化合物蛍光体から選ばれた1種以上からなることを特徴とする請求項1〜4のいずれかに記載の波長変換部材の製造方法。   Inorganic phosphor powder is oxide phosphor, nitride phosphor, oxynitride phosphor, chloride phosphor, acid chloride phosphor, sulfide phosphor, oxysulfide phosphor, halide phosphor, chalcogen The wavelength conversion member according to any one of claims 1 to 4, wherein the wavelength conversion member comprises at least one selected from a fluoride phosphor, an aluminate phosphor, a halophosphate phosphor, and a YAG compound phosphor. Manufacturing method. 無機蛍光体粉末の平均粒子径D50が50μm以下であることを特徴とする請求項1〜5のいずれかに記載の波長変換部材の製造方法。 Method for manufacturing a wavelength conversion member according to claim 1, wherein an average particle diameter D 50 of the inorganic phosphor powder is characterized in that it is 50μm or less. 請求項1〜6のいずれかに記載の製造方法により作製されたことを特徴とする波長変換部材。   A wavelength conversion member produced by the production method according to claim 1. 無機蛍光体粉末を30〜99.9質量%含有することを特徴とする請求項7に記載の波長変換部材。   The wavelength conversion member according to claim 7, comprising 30 to 99.9% by mass of inorganic phosphor powder. 気孔率が35%以下であることを特徴とする請求項7または8に記載の波長変換部材。   The wavelength conversion member according to claim 7 or 8, wherein the porosity is 35% or less. ガラス粉末と平均粒子径D50が50μm以下である無機蛍光体粉末とを含む混合粉末の焼結体からなり、無機蛍光体粉末の含有量が30〜99.9質量%であることを特徴とする波長変換部材。 It consists of a sintered body of a mixed powder containing glass powder and an inorganic phosphor powder having an average particle diameter D50 of 50 μm or less, and the content of the inorganic phosphor powder is 30 to 99.9% by mass Wavelength conversion member to be used. 請求項7〜10のいずれかに記載の波長変換部材を熱伝導性部材に接合してなることを特徴とする波長変換素子。   A wavelength conversion element obtained by bonding the wavelength conversion member according to claim 7 to a heat conductive member. 波長変換部材と熱伝導性部材との間に反射層を有することを特徴とする請求項11に記載の波長変換素子。   The wavelength conversion element according to claim 11, further comprising a reflective layer between the wavelength conversion member and the heat conductive member. 請求項11または12に記載の波長変換素子と発光素子を備えていることを特徴とする光源。   A light source comprising the wavelength conversion element according to claim 11 and a light emitting element. プロジェクター用であることを特徴とする請求項13に記載の光源 The light source according to claim 13, wherein the light source is used for a projector .
JP2011045921A 2011-03-03 2011-03-03 Method for manufacturing wavelength conversion member, wavelength conversion member produced thereby, and wavelength conversion element Expired - Fee Related JP5724461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011045921A JP5724461B2 (en) 2011-03-03 2011-03-03 Method for manufacturing wavelength conversion member, wavelength conversion member produced thereby, and wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011045921A JP5724461B2 (en) 2011-03-03 2011-03-03 Method for manufacturing wavelength conversion member, wavelength conversion member produced thereby, and wavelength conversion element

Publications (2)

Publication Number Publication Date
JP2012180488A JP2012180488A (en) 2012-09-20
JP5724461B2 true JP5724461B2 (en) 2015-05-27

Family

ID=47011950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011045921A Expired - Fee Related JP5724461B2 (en) 2011-03-03 2011-03-03 Method for manufacturing wavelength conversion member, wavelength conversion member produced thereby, and wavelength conversion element

Country Status (1)

Country Link
JP (1) JP5724461B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10158057B2 (en) 2010-10-28 2018-12-18 Corning Incorporated LED lighting devices
CN103189326B (en) 2010-10-28 2015-12-02 康宁股份有限公司 For the phosphor-containing frit material of LED illumination application
WO2013148783A1 (en) 2012-03-30 2013-10-03 Corning Incorporated Bismuth borate glass encapsulant for led phosphors
US10017849B2 (en) 2012-11-29 2018-07-10 Corning Incorporated High rate deposition systems and processes for forming hermetic barrier layers
US9202996B2 (en) 2012-11-30 2015-12-01 Corning Incorporated LED lighting devices with quantum dot glass containment plates
KR20160040696A (en) 2013-08-05 2016-04-14 코닝 인코포레이티드 Luminescent coatings and devices
JP6497544B2 (en) * 2015-01-28 2019-04-10 日本電気硝子株式会社 Crystallized glass phosphor and wavelength conversion member using the same
KR102449778B1 (en) * 2015-12-22 2022-10-04 엘지이노텍 주식회사 Phosphor plate and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855869B2 (en) * 2006-08-25 2012-01-18 日亜化学工業株式会社 Method for manufacturing light emitting device
DE102008021438A1 (en) * 2008-04-29 2009-12-31 Schott Ag Conversion material in particular for a, a semiconductor light source comprising white or colored light source, method for its preparation and this conversion material comprising light source
JP5527571B2 (en) * 2008-09-30 2014-06-18 カシオ計算機株式会社 Light emitting device, light source device, and projector using the light source device

Also Published As

Publication number Publication date
JP2012180488A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5724461B2 (en) Method for manufacturing wavelength conversion member, wavelength conversion member produced thereby, and wavelength conversion element
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP7022398B2 (en) Wavelength conversion member and light emitting device using it
TWI715784B (en) Wavelength conversion member and light-emitting device using the same
JP2012185980A (en) Wavelength conversion element, light source including the same and manufacturing method of the same
JP5549539B2 (en) Wavelength conversion element, light source including the same, and manufacturing method thereof
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2007311743A (en) Method of manufacturing emission color conversion member, and emission color conversion member
WO2015093267A1 (en) Wavelength-conversion member and light-emitting device
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
JP2014112696A (en) Wavelength conversion element, and light source with the same
KR102654998B1 (en) Glass used in wavelength conversion materials, wavelength conversion materials, wavelength conversion members, and light emitting devices
JP6861952B2 (en) Wavelength conversion member and light emitting device using it
JP7205808B2 (en) WAVELENGTH CONVERSION MEMBER AND LIGHT-EMITTING DEVICE USING THE SAME
JP2020045255A (en) Powder material for wavelength conversion member
JP7339609B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP7004235B2 (en) Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5724461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees