JP5549539B2 - Wavelength conversion element, light source including the same, and manufacturing method thereof - Google Patents

Wavelength conversion element, light source including the same, and manufacturing method thereof Download PDF

Info

Publication number
JP5549539B2
JP5549539B2 JP2010241905A JP2010241905A JP5549539B2 JP 5549539 B2 JP5549539 B2 JP 5549539B2 JP 2010241905 A JP2010241905 A JP 2010241905A JP 2010241905 A JP2010241905 A JP 2010241905A JP 5549539 B2 JP5549539 B2 JP 5549539B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
light
heat
wavelength
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010241905A
Other languages
Japanese (ja)
Other versions
JP2012094419A (en
Inventor
忠仁 古山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2010241905A priority Critical patent/JP5549539B2/en
Publication of JP2012094419A publication Critical patent/JP2012094419A/en
Application granted granted Critical
Publication of JP5549539B2 publication Critical patent/JP5549539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、波長変換素子、それを備える光源及びその製造方法に関する。   The present invention relates to a wavelength conversion element, a light source including the same, and a method for manufacturing the same.
近年、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)を用いた光源などの、蛍光ランプや白熱灯に変わる次世代の光源に対する注目が高まってきている。そのような次世代光源の一例として、例えば下記の特許文献1には、青色光を出射するLEDの光出射側にLEDからの光の一部を吸収し、黄色の光を出射する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。   In recent years, attention has been paid to next-generation light sources such as light sources using light emitting diodes (LEDs) and laser diodes (LDs), such as fluorescent lamps and incandescent lamps. As an example of such a next-generation light source, for example, in Patent Document 1 below, a wavelength conversion member that absorbs part of light from an LED and emits yellow light on the light emitting side of the LED that emits blue light. A light source in which is arranged is disclosed. This light source emits white light which is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.
波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体粉末を分散させたものが用いられている。しかしながら、樹脂マトリクス中に無機蛍光体粉末を分散させた波長変換部材では、LEDからの光により樹脂が劣化し、光源の輝度が低くなりやすいという問題がある。特に、LEDからの光が、青色光などの波長が短く、エネルギーが強い光である場合は、このような問題が生じやすい。   As the wavelength conversion member, a material in which an inorganic phosphor powder is dispersed in a resin matrix has been conventionally used. However, in the wavelength conversion member in which the inorganic phosphor powder is dispersed in the resin matrix, there is a problem that the resin is deteriorated by the light from the LED and the luminance of the light source tends to be lowered. In particular, when the light from the LED is light having a short wavelength such as blue light and strong energy, such a problem is likely to occur.
このような問題に鑑み、例えば、下記の特許文献2には、ガラス中に無機蛍光体粉末を分散させた波長変換部材が提案されている。特許文献2に記載の波長変換部材は、樹脂を含まず、無機固体のみから構成されるため、優れた耐熱性及び耐候性を有している。従って、この波長変換部材を用いることにより輝度が低下しにくい光源を実現することができる。   In view of such a problem, for example, Patent Document 2 below proposes a wavelength conversion member in which inorganic phosphor powder is dispersed in glass. Since the wavelength conversion member described in Patent Document 2 does not contain a resin and is composed of only an inorganic solid, it has excellent heat resistance and weather resistance. Therefore, by using this wavelength conversion member, it is possible to realize a light source whose luminance is not easily lowered.
特開2000−208815号公報JP 2000-208815 A 特開2003−258308号公報JP 2003-258308 A
波長変換部材を用いた光源を高輝度化するためには、発光素子から出射する励起光の強度を高める必要がある。しかしながら、高強度の励起光を出射する発光素子を用いた場合は、特許文献2に記載のように、ガラス中に無機蛍光体粉末を分散させた波長変換部材を用いたとしても、輝度低下を十分に抑制できないという問題がある。   In order to increase the brightness of the light source using the wavelength conversion member, it is necessary to increase the intensity of the excitation light emitted from the light emitting element. However, when a light-emitting element that emits high-intensity excitation light is used, even if a wavelength conversion member in which inorganic phosphor powder is dispersed in glass is used as described in Patent Document 2, the luminance is reduced. There is a problem that it cannot be sufficiently suppressed.
本発明は、係る点に鑑みてなされたものであり、その目的は、波長変換部材を用いた光源の輝度低下を抑制することにある。   This invention is made | formed in view of the point which concerns, The objective is to suppress the luminance fall of the light source using a wavelength conversion member.
本発明者は、鋭意研究の結果、高強度の励起光を出射する発光素子を用いた場合の輝度低下は、波長変換部材に入射した光のうち、励起に使用されなかった光が熱に変換され、波長変換部材の温度が上昇することによる熱消光が原因であることを見出した。その結果、本発明者らは、本発明を成すに至った。   As a result of diligent research, the present inventor has found that when a light emitting element that emits high-intensity excitation light is used, the luminance is reduced by converting light that has not been used for excitation into heat among light incident on the wavelength conversion member. The present inventors have found that thermal quenching due to an increase in the temperature of the wavelength conversion member is the cause. As a result, the present inventors came to make this invention.
すなわち、本発明に係る波長変換素子は、波長変換部材と、放熱部材とを備えている。波長変換部材は、無機材料からなる。放熱部材は、凹部または貫通孔を有する。放熱部材の熱伝導率は、波長変換部材の熱伝導率よりも高い。波長変換部材は、凹部または貫通孔の壁面に接している。   That is, the wavelength conversion element according to the present invention includes a wavelength conversion member and a heat dissipation member. The wavelength conversion member is made of an inorganic material. The heat dissipation member has a recess or a through hole. The heat conductivity of the heat dissipation member is higher than the heat conductivity of the wavelength conversion member. The wavelength conversion member is in contact with the wall surface of the recess or the through hole.
本発明では、熱伝導率が高い放熱部材が波長変換部材と接するように設けられている。このため、波長変換部材の熱が効率的に放熱部材に伝導し、放熱部材から放熱される。このため、波長変換部材の温度上昇を抑制することができる。従って、本発明に係る波長変換素子を使用することによって、発光素子からの励起光の強度が高い場合であっても、輝度低下を抑制することができる。   In the present invention, the heat radiating member having a high thermal conductivity is provided so as to be in contact with the wavelength conversion member. For this reason, the heat | fever of a wavelength conversion member is efficiently conducted to a heat radiating member, and is radiated from a heat radiating member. For this reason, the temperature rise of the wavelength conversion member can be suppressed. Therefore, by using the wavelength conversion element according to the present invention, it is possible to suppress a decrease in luminance even when the intensity of excitation light from the light emitting element is high.
波長変換部材は、放熱部材の凹部または貫通孔に嵌合されていることが好ましい。この構成によれば、波長変換部材と放熱部材との密着度が大きくなり、両部材の接触部における熱伝導率を高めることができる。従って、波長変換部材の放熱を促進することができ、波長変換部材の温度上昇をより効果的に抑制することができる。   It is preferable that the wavelength conversion member is fitted in the recess or the through hole of the heat dissipation member. According to this configuration, the degree of adhesion between the wavelength conversion member and the heat dissipation member is increased, and the thermal conductivity at the contact portion between both members can be increased. Therefore, the heat dissipation of the wavelength conversion member can be promoted, and the temperature increase of the wavelength conversion member can be more effectively suppressed.
放熱部材の熱伝導率は、150W/mK以上であることが好ましい。この構成によれば、放熱部材からの放熱をより促進することができる。従って、波長変換部材の温度上昇をより効果的に抑制することができる。このような放熱部材の熱伝導率を実現するために、放熱部材は、熱伝導率の高い金属や合金からなることが好ましい。具体的には、放熱部材は、Cu、Al、Ag及びAuからなる群から選ばれた金属またはCu、Al、Ag及びAuからなる群から選ばれた一種以上の金属を含む合金からなることが好ましい。   The heat conductivity of the heat dissipating member is preferably 150 W / mK or more. According to this configuration, heat dissipation from the heat dissipation member can be further promoted. Therefore, the temperature increase of the wavelength conversion member can be more effectively suppressed. In order to realize the thermal conductivity of such a heat radiating member, the heat radiating member is preferably made of a metal or alloy having a high thermal conductivity. Specifically, the heat dissipating member may be made of a metal selected from the group consisting of Cu, Al, Ag and Au, or an alloy containing one or more metals selected from the group consisting of Cu, Al, Ag and Au. preferable.
放熱部材は、第1及び第2の主面を有する板状に形成されており、第1及び第2の主面の少なくとも一方には、複数の突起部が形成されていることが好ましい。この構成によれば、放熱部材の表面積を大きくすることができる。このため、放熱部材からの放熱をより効果的に促進させることができる。その結果、波長変換部材の温度上昇をより効果的に抑制することができる。   The heat radiating member is preferably formed in a plate shape having first and second main surfaces, and a plurality of protrusions are preferably formed on at least one of the first and second main surfaces. According to this configuration, the surface area of the heat dissipation member can be increased. For this reason, the heat dissipation from a heat radiating member can be promoted more effectively. As a result, the temperature increase of the wavelength conversion member can be more effectively suppressed.
放熱部材の体積は、波長変換部材の体積の1倍以上であることが好ましい。この構成によれば、放熱部材の熱容量を大きくすることができる。従って、波長変換部材の温度上昇をより効果的に抑制することができる。   The volume of the heat radiating member is preferably at least one time the volume of the wavelength conversion member. According to this configuration, the heat capacity of the heat dissipation member can be increased. Therefore, the temperature increase of the wavelength conversion member can be more effectively suppressed.
波長変換部材は、直径が20mm以下である円柱状であることが好ましい。波長変換部材の直径を20mm以下と小さくすることで、波長変換部材の中心部分の熱が放熱部材に伝導しやすくなる。従って、波長変換部材の温度上昇をより効果的に抑制することができる。   The wavelength conversion member preferably has a cylindrical shape with a diameter of 20 mm or less. By reducing the diameter of the wavelength conversion member to 20 mm or less, the heat at the center of the wavelength conversion member is easily conducted to the heat dissipation member. Therefore, the temperature increase of the wavelength conversion member can be more effectively suppressed.
波長変換部材の長さは、0.1mm〜2mmの範囲内にあることが好ましい。この構成によれば、波長変換部材の長さ方向中央部において生じた熱も効率的に放熱することができる。   The length of the wavelength conversion member is preferably in the range of 0.1 mm to 2 mm. According to this configuration, heat generated in the central portion in the length direction of the wavelength conversion member can also be efficiently radiated.
波長変換部材の熱膨張率と放熱部材の熱膨張率との差は、90×10−7/℃以下であることが好ましい。波長変換部材の熱膨張率と放熱部材の熱膨張率との差を90×10−7/℃以下と小さくすることで、波長変換素子の温度が上昇した際に、波長変換部材に大きな応力が加わったり、波長変換部材が放熱部材から脱落したりすることを効果的に抑制することができる。 The difference between the thermal expansion coefficient of the wavelength conversion member and the thermal expansion coefficient of the heat radiating member is preferably 90 × 10 −7 / ° C. or less. By reducing the difference between the thermal expansion coefficient of the wavelength conversion member and the thermal expansion coefficient of the heat dissipation member to 90 × 10 −7 / ° C. or less, when the temperature of the wavelength conversion element rises, a large stress is applied to the wavelength conversion member. It is possible to effectively prevent the wavelength conversion member from falling off the heat dissipation member.
放熱部材の熱膨張係数は、波長変換部材の熱膨張係数よりも大きいことが好ましい。この構成によれば、波長変換素子の温度が上昇したときにおいても、波長変換部材が放熱部材から脱落することを抑制することができる。   The thermal expansion coefficient of the heat radiating member is preferably larger than the thermal expansion coefficient of the wavelength conversion member. According to this configuration, even when the temperature of the wavelength conversion element rises, it is possible to prevent the wavelength conversion member from dropping from the heat dissipation member.
波長変換部材は、無機蛍光体粉末が分散しているガラスからなるものであってもよい。その場合、ガラスの軟化温度は、600℃以下であることが好ましい。この場合、波長変換素子を加熱プレスにより好適に形成することができる。また、加熱プレスにより波長変換素子を作製する場合において、放熱部材に要求される耐熱性が低くなる。従って、放熱部材の選択自由度が向上する。また、加熱プレス時における無機蛍光体粉末の劣化を抑制できる。   The wavelength conversion member may be made of glass in which inorganic phosphor powder is dispersed. In that case, it is preferable that the softening temperature of glass is 600 degrees C or less. In this case, the wavelength conversion element can be suitably formed by a hot press. Further, when the wavelength conversion element is manufactured by a hot press, the heat resistance required for the heat radiating member is lowered. Accordingly, the degree of freedom in selecting the heat radiating member is improved. Moreover, the deterioration of the inorganic phosphor powder at the time of hot pressing can be suppressed.
軟化温度が低いガラスとしては、例えば、SnO−P系ガラスや、SnO−P系ガラスなどのスズとリン酸とを必須成分として含むスズ含有リン酸塩系ガラスが挙げられる。 Examples of the glass having a low softening temperature include tin-containing phosphate glass containing tin and phosphoric acid as essential components, such as SnO—P 2 O 5 glass and SnO 2 —P 2 O 5 glass. It is done.
なお、本発明において、「軟化温度」は、ガラス粉末のDTA(示差熱分析)により測定した温度である。   In the present invention, “softening temperature” is a temperature measured by DTA (differential thermal analysis) of glass powder.
本発明に係る光源は、上記本発明に係る波長変換素子と、発光素子とを備えている。発光素子は、波長変換素子に対して励起光を出射する。   A light source according to the present invention includes the wavelength conversion element according to the present invention and a light emitting element. The light emitting element emits excitation light to the wavelength conversion element.
上述のように、本発明に係る波長変換素子では、波長変換部材の温度が上昇しにくく、熱消光しにくい。従って、本発明に係る光源は、レーザー素子等の高出力の発光素子を使用した場合であっても、使用に際して、輝度低下しにくい。   As described above, in the wavelength conversion element according to the present invention, the temperature of the wavelength conversion member is unlikely to rise, and thermal quenching is difficult. Therefore, the light source according to the present invention is less likely to decrease in luminance even when a high-power light-emitting element such as a laser element is used.
本発明に係る波長変換素子の製造方法は、上記本発明に係る波長変換素子を製造するための方法である。本発明に係る波長変換素子の製造方法は、無機蛍光体粉末が分散しているガラスからなり、凹部または貫通孔よりも細いプリフォームを放熱部材の凹部または貫通孔内に挿入する工程と、凹部または貫通孔内に挿入されたプリフォームを加熱プレスすることによりプリフォームから波長変換部材を作製する工程とを備えている。この方法により、上記本発明に係る波長変換素子を容易かつ安価に製造することができる。   The manufacturing method of the wavelength conversion element according to the present invention is a method for manufacturing the wavelength conversion element according to the present invention. The method of manufacturing a wavelength conversion element according to the present invention includes a step of inserting a preform, which is made of glass in which an inorganic phosphor powder is dispersed, and is thinner than the recess or the through hole, into the recess or the through hole of the heat radiating member; Or the process of producing a wavelength conversion member from preform by carrying out the heat press of the preform inserted in the through-hole. By this method, the wavelength conversion element according to the present invention can be easily and inexpensively manufactured.
加熱プレスは、600℃以下で行うことが好ましい。そうすることにより、無機蛍光体粉末や放熱部材の劣化を抑制することができる。   The hot pressing is preferably performed at 600 ° C. or lower. By doing so, deterioration of inorganic fluorescent substance powder and a heat radiating member can be suppressed.
放熱部材として、波長変換部材よりも熱膨張係数が大きな部材を用いることが好ましい。この場合、加熱プレスにより波長変換部材を放熱部材に焼き嵌め、強固に固定することができる。波長変換部材をより強固に固定する観点からは、波長変換部材の熱膨張率と放熱部材の熱膨張率との差が10×10−7/℃以上であることが好ましい。 As the heat radiating member, it is preferable to use a member having a larger thermal expansion coefficient than the wavelength conversion member. In this case, the wavelength conversion member can be shrink-fitted onto the heat radiating member by a heat press and firmly fixed. From the viewpoint of fixing the wavelength conversion member more firmly, the difference between the coefficient of thermal expansion of the wavelength conversion member and the coefficient of thermal expansion of the heat dissipation member is preferably 10 × 10 −7 / ° C. or more.
本発明によれば、波長変換部材を用いた光源の輝度低下を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the brightness fall of the light source using the wavelength conversion member can be suppressed.
第1の実施形態に係る光源の模式図である。It is a schematic diagram of the light source which concerns on 1st Embodiment. 第1の実施形態における波長変換素子の略図的斜視図である。1 is a schematic perspective view of a wavelength conversion element in a first embodiment. 図2の線III−IIIにおける略図的断面図である。FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG. 2. 波長変換素子の製造工程を説明するための略図的断面図である。It is schematic-drawing sectional drawing for demonstrating the manufacturing process of a wavelength conversion element. 第2の実施形態における波長変換素子の略図的斜視図である。It is a schematic perspective view of the wavelength conversion element in the second embodiment. 第3の実施形態における波長変換素子の略図的斜視図である。It is a schematic perspective view of the wavelength conversion element in the third embodiment. 第4の実施形態における波長変換素子の略図的断面図である。It is a schematic sectional drawing of the wavelength conversion element in 4th Embodiment. 第4の実施形態に係る光源の模式図である。It is a schematic diagram of the light source which concerns on 4th Embodiment. 第5の実施形態における波長変換素子の略図的断面図である。It is schematic-drawing sectional drawing of the wavelength conversion element in 5th Embodiment. 第6の実施形態における波長変換素子の略図的断面図である。It is schematic-drawing sectional drawing of the wavelength conversion element in 6th Embodiment. 第6の実施形態における波長変換素子の略図的斜視図である。It is a schematic perspective view of the wavelength conversion element in the sixth embodiment.
以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は単なる例示である。本発明は、以下の実施形態に何ら限定されない。   Hereinafter, an example of the preferable form which implemented this invention is demonstrated. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
(第1の実施形態)
図1は、第1の実施形態に係る光源の模式図である。図1に示すように、光源2は、波長変換素子1と、発光素子3とを備えている。波長変換素子1は、発光素子3から出射された光L0が照射された際に、光L0よりも波長の長い光L2を出射する。また、光L0の一部は、波長変換素子1を透過する。このため、波長変換素子1からは、透過光L1と光L2との合成光である光L3が出射する。このため、光源2から出射する光L3は、発光素子3から出射する光L0の波長及び強度と、波長変換素子1から出射する光L2の波長及び強度とによって決まる。例えば、光L0が青色光であり、光L2が黄色光である場合は、白色の光L3を得ることができる。
(First embodiment)
FIG. 1 is a schematic diagram of a light source according to the first embodiment. As shown in FIG. 1, the light source 2 includes a wavelength conversion element 1 and a light emitting element 3. The wavelength conversion element 1 emits light L2 having a longer wavelength than the light L0 when irradiated with the light L0 emitted from the light emitting element 3. Further, a part of the light L0 is transmitted through the wavelength conversion element 1. For this reason, the wavelength conversion element 1 emits light L3 that is a combined light of the transmitted light L1 and the light L2. For this reason, the light L3 emitted from the light source 2 is determined by the wavelength and intensity of the light L0 emitted from the light emitting element 3 and the wavelength and intensity of the light L2 emitted from the wavelength conversion element 1. For example, when the light L0 is blue light and the light L2 is yellow light, white light L3 can be obtained.
発光素子3は、波長変換素子1に対して励起光を出射する素子である。発光素子3の種類は特に限定されない。発光素子3は、例えば、LED、LD、エレクトロルミネッセンス発光素子、プラズマ発光素子により構成することができる。光源2の輝度を高める観点からは、発光素子3は、高強度の光を出射するものであることが好ましい。この観点からは、発光素子3は、LEDやLDにより構成されていることが好ましい。   The light emitting element 3 is an element that emits excitation light to the wavelength conversion element 1. The kind of the light emitting element 3 is not particularly limited. The light emitting element 3 can be comprised by LED, LD, an electroluminescent light emitting element, and a plasma light emitting element, for example. From the viewpoint of increasing the luminance of the light source 2, the light emitting element 3 preferably emits high-intensity light. From this viewpoint, it is preferable that the light emitting element 3 is constituted by an LED or an LD.
図2は、波長変換素子1の略図的斜視図である。図3は、波長変換素子1の略図的断面図である。図2及び図3に示すように、波長変換素子1は、波長変換部材10と、放熱部材11とを備えている。   FIG. 2 is a schematic perspective view of the wavelength conversion element 1. FIG. 3 is a schematic cross-sectional view of the wavelength conversion element 1. As shown in FIGS. 2 and 3, the wavelength conversion element 1 includes a wavelength conversion member 10 and a heat dissipation member 11.
波長変換部材10は、発光素子3から出射された光L0の一部を透過する一方、一部を吸収し、光L0よりも波長の長い光L2を出射する部材である。波長変換部材10は、無機蛍光体粉末が分散しているガラスからなる。このように、波長変換部材10を構成している蛍光体粉末とガラスとの両方が無機材料である。このため、波長変換部材10は、高い耐熱性を有する。   The wavelength conversion member 10 is a member that transmits part of the light L0 emitted from the light emitting element 3 and absorbs part of the light L0 and emits light L2 having a longer wavelength than the light L0. The wavelength conversion member 10 is made of glass in which inorganic phosphor powder is dispersed. Thus, both the fluorescent substance powder and glass which comprise the wavelength conversion member 10 are inorganic materials. For this reason, the wavelength conversion member 10 has high heat resistance.
無機蛍光体粉末は、光源2から出射させようとする光L3の波長、発光素子3から出射させる光L0の波長等に応じて適宜選択することができる。   The inorganic phosphor powder can be appropriately selected according to the wavelength of the light L3 to be emitted from the light source 2, the wavelength of the light L0 to be emitted from the light emitting element 3, and the like.
無機蛍光体粉末は、例えば、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体、カルコゲン化物蛍光体、アルミン酸塩蛍光体、ハロリン酸塩化物蛍光体、YAG系化合物蛍光体から選ばれた1種以上からなるものとすることができる。   Examples of the inorganic phosphor powder include oxide phosphors, nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, sulfide phosphors, oxysulfide phosphors, and halide phosphors. , A chalcogenide phosphor, an aluminate phosphor, a halophosphate phosphor, and a YAG compound phosphor.
波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体の具体例としては、Sr(POCl:Eu2+、(Sr,Ba)MgAl1017:Eu2+などが挙げられる。 Specific examples of inorganic phosphors that emit blue light when irradiated with excitation light having a wavelength of 300 to 440 nm include Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ba) MgAl 10 O 17. : Eu 2+ and the like.
波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光(波長が500nm〜540nmの蛍光)を発する無機蛍光体の具体例としては、SrAl:Eu2+、SrGa:Eu2+などが挙げられる。 Specific examples of the inorganic phosphor that emits green fluorescence (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm are SrAl 2 O 4 : Eu 2+ , SrGa 2 S 4. : Eu 2+ and the like.
波長440〜480nmの青色の励起光を照射すると緑色の蛍光(波長が500nm〜540nmの蛍光)を発する無機蛍光体の具体例としては、SrAl:Eu2+、SrGa:Eu2+などが挙げられる。 Specific examples of inorganic phosphors that emit green fluorescence (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include SrAl 2 O 4 : Eu 2+ and SrGa 2 S 4 : Eu 2+. Etc.
波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光(波長が540nm〜595nmの蛍光)を発する無蛍光体の具体例としては、ZnS:Eu2+などが挙げられる。 A specific example of a non-fluorescent material that emits yellow fluorescence (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with excitation light having a wavelength of 300 to 440 nm is ZnS: Eu 2+ .
波長440〜480nmの青色の励起光を照射すると黄色の蛍光(波長が540nm〜595nmの蛍光)を発する無機蛍光体の具体例としては、Y(Al,Gd)12:Ce2+などが挙げられる。 Specific examples of the inorganic phosphor that emits yellow fluorescence (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 2+ and the like. Can be mentioned.
波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光(波長が600nm〜700nmの蛍光)を発する無機蛍光体の具体例としては、GdGa12:Cr3+、CaGa:Mn2+などが挙げられる。 Specific examples of the inorganic phosphor that emits red fluorescence (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with excitation light of ultraviolet to near ultraviolet with a wavelength of 300 to 440 nm include Gd 3 Ga 4 O 12 : Cr 3+ , CaGa 2. S 4 : Mn 2+ and the like can be mentioned.
波長440〜480nmの青色の励起光を照射すると赤色の蛍光(波長が600nm〜700nmの蛍光)を発する無機蛍光体の具体例としては、MgTiO:Mn4+、KSiF:Mn4+などが挙げられる。 Specific examples of inorganic phosphors that emit red fluorescence (fluorescence having a wavelength of 600 nm to 700 nm) when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Mg 2 TiO 4 : Mn 4+ and K 2 SiF 6 : Mn 4+. Etc.
無機蛍光体粉末の平均粒子径(D50)は、特に限定されない。無機蛍光体粉末の平均粒子径(D50)は、例えば、1μm〜50μm程度であることが好ましく、5μm〜25μm程度であることがより好ましい。無機蛍光体粉末の平均粒子径(D50)が大きすぎると、発光色が不均一になる場合がある。一方、無機蛍光体粉末の平均粒子径(D50)が小さすぎると、発光強度が低下する場合がある。 The average particle diameter (D 50 ) of the inorganic phosphor powder is not particularly limited. The average particle diameter (D 50 ) of the inorganic phosphor powder is, for example, preferably about 1 μm to 50 μm, and more preferably about 5 μm to 25 μm. If the average particle size (D 50 ) of the inorganic phosphor powder is too large, the emission color may be non-uniform. On the other hand, if the average particle size (D 50 ) of the inorganic phosphor powder is too small, the emission intensity may be reduced.
波長変換部材10における無機蛍光体粉末の含有量は、特に限定されない。波長変換部材10における無機蛍光体粉末の含有量は、発光素子3から出射される光の強度、無機蛍光体粉末の発光特性、得ようとする光の色度などに応じて適宜設定することができる。波長変換部材10における無機蛍光体粉末の含有量は、一般的には、例えば、0.01質量%〜30重量%程度とすることができ、0.05質量%〜20質量%であることが好ましく、0.08質量%〜15質量%であることがさらに好ましい。波長変換部材10における無機蛍光体粉末の含有量が多すぎると、波長変換部材10における気孔率が高くなり、光源2の発光強度が低下してしまう場合がある。一方、波長変換部材10における無機蛍光体粉末の含有量が少なすぎると、十分に強い蛍光が得られなくなる場合がある。   The content of the inorganic phosphor powder in the wavelength conversion member 10 is not particularly limited. The content of the inorganic phosphor powder in the wavelength conversion member 10 can be appropriately set according to the intensity of light emitted from the light emitting element 3, the light emission characteristics of the inorganic phosphor powder, the chromaticity of the light to be obtained, and the like. it can. In general, the content of the inorganic phosphor powder in the wavelength conversion member 10 can be, for example, about 0.01% by mass to 30% by mass, and is 0.05% by mass to 20% by mass. Preferably, it is 0.08 mass%-15 mass%. When there is too much content of the inorganic fluorescent substance powder in the wavelength conversion member 10, the porosity in the wavelength conversion member 10 will become high, and the emitted light intensity of the light source 2 may fall. On the other hand, if the content of the inorganic phosphor powder in the wavelength conversion member 10 is too small, sufficiently strong fluorescence may not be obtained.
波長変換部材10に含まれる分散媒としてのガラスは、無機蛍光体粉末を好適に分散できるものであれば特に限定されない。波長変換部材10に含まれるガラスは、例えば、珪酸塩系ガラス、硼珪酸塩系ガラス、リン酸塩系ガラス、硼リン酸塩系ガラスなどであってもよい。なかでも、軟化温度が600℃以下のガラスが好ましく用いられる。軟化温度が600℃以下のガラスとしては、例えばSnO−P系ガラスやSnO−P系ガラスなどのスズ含有リン酸塩系ガラスが挙げられる。その中でも、ガラス組成として、モル%表示で、SnO:35〜80%、P:5〜40%及びB:0〜30%を含有するスズ含有硼リン酸塩系ガラスがより好適に用いられる。また、スズ含有硼リン酸塩系ガラスは、上記成分以外にも、本発明の効果を損なわない範囲で、例えばZnO、Ta、TiO、Nb、Gd及びLaの少なくとも一つの成分を、合量で10モル%まで含有していてもよい。 The glass as a dispersion medium contained in the wavelength conversion member 10 is not particularly limited as long as the inorganic phosphor powder can be suitably dispersed. The glass contained in the wavelength conversion member 10 may be, for example, silicate glass, borosilicate glass, phosphate glass, borophosphate glass, or the like. Of these, glass having a softening temperature of 600 ° C. or lower is preferably used. Examples of the glass having a softening temperature of 600 ° C. or lower include tin-containing phosphate glasses such as SnO—P 2 O 5 glasses and SnO 2 —P 2 O 5 glasses. Among them, a tin-containing borophosphate glass containing SnO: 35 to 80%, P 2 O 5 : 5 to 40% and B 2 O 3 : 0 to 30% in terms of mol% as a glass composition. More preferably used. Further, the tin-containing borophosphate-based glass is, for example, ZnO, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 and La in addition to the above components, as long as the effects of the present invention are not impaired. At least one component of 2 O 3 may be contained up to 10 mol% in total.
図2及び図3に示すように、本実施形態では、放熱部材11は、板状に形成されている。もっとも、本発明において、放熱部材11は、板状でなくてもよい。放熱部材11は、例えば棒状に形成されていてもよいし、直方体状に形成されていてもよい。   As shown in FIG.2 and FIG.3, in this embodiment, the heat radiating member 11 is formed in plate shape. But in this invention, the thermal radiation member 11 does not need to be plate shape. For example, the heat radiating member 11 may be formed in a rod shape or a rectangular parallelepiped shape.
放熱部材11には、貫通孔11aが形成されている。上記波長変換部材10は、この貫通孔11a内に収納されている。波長変換部材10は、貫通孔11aの壁面に接している。具体的には、本実施形態では、波長変換部材10は、貫通孔11aに嵌合している。放熱部材11は、波長変換部材10よりも高い熱伝導率を有する。放熱部材11の熱伝導率は、150W/mK以上であることが好ましく、200W/mK以上であることがより好ましく、250W/mK以上であることがさらに好ましい。   A through hole 11 a is formed in the heat dissipation member 11. The wavelength conversion member 10 is accommodated in the through hole 11a. The wavelength conversion member 10 is in contact with the wall surface of the through hole 11a. Specifically, in this embodiment, the wavelength conversion member 10 is fitted in the through hole 11a. The heat dissipation member 11 has a higher thermal conductivity than the wavelength conversion member 10. The heat conductivity of the heat dissipation member 11 is preferably 150 W / mK or more, more preferably 200 W / mK or more, and further preferably 250 W / mK or more.
波長変換部材10の形状寸法は、特に限定されない。本実施形態では、具体的には、波長変換部材10は、直径が20mm以下である円柱状である。波長変換部材10の直径は、0.3mm〜15mmであることが好ましく、0.5mm〜3mmであることがより好ましい。波長変換部材10の長さは、0.1mm〜2mmの範囲内にある。なお、貫通孔11aの長さは、波長変換部材10の長さと等しくてもよいし、異なっていてもよい。もっとも、波長変換部材10の熱の放熱性をより高める観点からは、波長変換部材10は、貫通孔11aの長さ以下の長さを有しており、波長変換部材10の全体が貫通孔11aの内部に位置していることが好ましい。   The shape dimension of the wavelength conversion member 10 is not particularly limited. In the present embodiment, specifically, the wavelength conversion member 10 has a cylindrical shape with a diameter of 20 mm or less. The diameter of the wavelength conversion member 10 is preferably 0.3 mm to 15 mm, and more preferably 0.5 mm to 3 mm. The length of the wavelength conversion member 10 is in the range of 0.1 mm to 2 mm. In addition, the length of the through-hole 11a may be equal to the length of the wavelength conversion member 10, and may differ. However, from the viewpoint of further improving the heat radiation property of the wavelength conversion member 10, the wavelength conversion member 10 has a length equal to or shorter than the length of the through hole 11a, and the entire wavelength conversion member 10 is the through hole 11a. It is preferable that it is located inside.
放熱部材11の材質は、特に限定されない。放熱部材11は、例えば、金属や合金により形成することができる。具体的には、放熱部材11は、例えば、Cu、Al、Ag及びAuからなる群から選ばれた金属またはCu、Al、Ag及びAuからなる群から選ばれた一種以上の金属を含む合金により形成することができる。なかでも、放熱部材11の材質は、熱伝導率が高く、安価であるCuまたはCuを含む合金により形成されていることが好ましい。   The material of the heat radiating member 11 is not particularly limited. The heat radiating member 11 can be formed of, for example, a metal or an alloy. Specifically, the heat dissipation member 11 is made of, for example, a metal selected from the group consisting of Cu, Al, Ag, and Au or an alloy containing one or more metals selected from the group consisting of Cu, Al, Ag, and Au. Can be formed. Especially, it is preferable that the material of the heat radiating member 11 is formed of Cu or an alloy containing Cu, which has high thermal conductivity and is inexpensive.
なお、放熱部材11が、貫通孔11aの表面に反射膜が形成されたものであってもよい。特に、放熱部材11が反射率の低い材料で形成されている場合や、酸化など変性しやすく、変性により反射率が低下しやすい場合には、反射膜が形成されていることが好ましい。反射膜は、例えば、Ag,Al,Au,Pt及びTiからなる群から選ばれた金属や、それらの金属の一種以上を含む合金により形成することができる。   In addition, the heat radiating member 11 may have a reflective film formed on the surface of the through hole 11a. In particular, when the heat dissipating member 11 is formed of a material having low reflectivity, or when the heat dissipation member 11 is easily denatured such as oxidation, and the reflectivity is likely to be lowered due to the modification, it is preferable that a reflective film is formed. The reflective film can be formed of, for example, a metal selected from the group consisting of Ag, Al, Au, Pt, and Ti, or an alloy containing one or more of these metals.
放熱部材11の熱膨張率と、波長変換部材10の熱膨張率との差は、10×10−7/℃〜90×10−7/℃の範囲内にあることが好ましい。また、放熱部材11の熱膨張率は、波長変換部材10の熱膨張率よりも大きいことが好ましい。 The difference between the thermal expansion coefficient of the heat radiating member 11 and the thermal expansion coefficient of the wavelength conversion member 10 is preferably in the range of 10 × 10 −7 / ° C. to 90 × 10 −7 / ° C. Moreover, it is preferable that the thermal expansion coefficient of the heat radiating member 11 is larger than the thermal expansion coefficient of the wavelength conversion member 10.
放熱部材11の大きさは特に限定されないが、放熱部材11は、波長変換部材10に対して十分に大きく、大きな熱容量を有することが好ましい。具体的には、本実施形態では、放熱部材11の体積は、波長変換部材10の体積の1倍〜1000倍であることが好ましく、1倍〜900倍であることがより好ましい。   Although the magnitude | size of the heat radiating member 11 is not specifically limited, It is preferable that the heat radiating member 11 is large enough with respect to the wavelength conversion member 10, and has a big heat capacity. Specifically, in this embodiment, the volume of the heat dissipation member 11 is preferably 1 to 1000 times, more preferably 1 to 900 times the volume of the wavelength conversion member 10.
次に、波長変換素子1の製造方法の一例について説明する。具体的には、ここでは、加熱プレス法を用いた波長変換素子1の製造方法について説明する。   Next, an example of a method for manufacturing the wavelength conversion element 1 will be described. Specifically, here, a method for manufacturing the wavelength conversion element 1 using the hot press method will be described.
まず、放熱部材11と、プリフォーム12とを用意する。このプリフォーム12は、波長変換部材10を作製するためのプリフォームである。このため、プリフォーム12は、無機蛍光体粉末が分散しているガラスからなる。プリフォーム12の形状は、特に限定されない。プリフォーム12は、例えば円柱状であってもよいし、角柱状、球状などであってもよい。本実施形態では、プリフォーム12は、角柱状に形成されている。また、本実施形態では、波長変換部材10と貫通孔11aとの体積が等しいため、プリフォーム12の体積も貫通孔11aとほぼ等しい。よって、プリフォーム12は、貫通孔11aよりも長い。   First, the heat radiating member 11 and the preform 12 are prepared. This preform 12 is a preform for producing the wavelength conversion member 10. For this reason, the preform 12 is made of glass in which inorganic phosphor powder is dispersed. The shape of the preform 12 is not particularly limited. The preform 12 may be, for example, a columnar shape, a prismatic shape, a spherical shape, or the like. In the present embodiment, the preform 12 is formed in a prismatic shape. Moreover, in this embodiment, since the volume of the wavelength conversion member 10 and the through-hole 11a is equal, the volume of the preform 12 is also substantially equal to the through-hole 11a. Therefore, the preform 12 is longer than the through hole 11a.
なお、プリフォーム12の作製方法は、特に限定されない。プリフォーム12は、例えば、ガラス粉末と無機蛍光体粉末との混合粉末をプレス成形した成形体を焼成することにより作製することができる。成形体の焼成は、減圧雰囲気中で行うことが好ましい。具体的には、成形体の焼成は、1.013×10Pa未満で行うことが好ましく、1000Pa以下で行うことがより好ましく、400Pa以下で行うことがさらに好ましい。そうすることによって、波長変換部材10に残存する気泡の量を少なくすることができる。その結果、波長変換部材10を用いた光源の輝度をより高めることができる。なお、焼成工程全体を減圧雰囲気中で行ってもよいし、例えば焼成工程のみを減圧雰囲気中で行い、その前後の昇温工程や降温工程を減圧雰囲気ではない雰囲気で行ってもよい。 The method for producing the preform 12 is not particularly limited. The preform 12 can be produced, for example, by firing a molded body obtained by press molding a mixed powder of glass powder and inorganic phosphor powder. The molded body is preferably fired in a reduced-pressure atmosphere. Specifically, the compact is preferably fired at less than 1.013 × 10 5 Pa, more preferably 1000 Pa or less, and even more preferably 400 Pa or less. By doing so, the amount of bubbles remaining in the wavelength conversion member 10 can be reduced. As a result, the luminance of the light source using the wavelength conversion member 10 can be further increased. Note that the entire firing step may be performed in a reduced pressure atmosphere, for example, only the firing step may be performed in a reduced pressure atmosphere, and the temperature raising step and the temperature lowering step before and after that may be performed in an atmosphere other than the reduced pressure atmosphere.
次に、図4に示すように、プリフォーム12を貫通孔11a内に挿入する。その状態で、プリフォーム12を加熱することにより軟化させ、一対の成形型13,14でプレスする。その後冷却することにより波長変換素子1を完成させることができる。   Next, as shown in FIG. 4, the preform 12 is inserted into the through hole 11a. In this state, the preform 12 is softened by heating and pressed with a pair of molds 13 and 14. The wavelength conversion element 1 can be completed by cooling after that.
ここで、放熱部材11の熱膨張率が波長変換部材10の熱膨張率よりも大きい場合は、冷却工程において放熱部材11が波長変換部材10よりも大きく収縮する。このため、波長変換部材10が、放熱部材11に焼き嵌めされる。このようにすることによって、樹脂や低融点ガラスなどの熱伝導率の低い接着用材料を用いずとも波長変換部材10を放熱部材11に強固に固定することができる。従って、波長変換部材10と放熱部材11との間の熱伝導率を高めることができる。   Here, when the thermal expansion coefficient of the heat radiating member 11 is larger than the thermal expansion coefficient of the wavelength conversion member 10, the heat radiating member 11 contracts more than the wavelength conversion member 10 in the cooling process. For this reason, the wavelength conversion member 10 is shrink-fitted to the heat dissipation member 11. By doing in this way, the wavelength conversion member 10 can be firmly fixed to the heat radiating member 11 without using an adhesive material having a low thermal conductivity such as resin or low melting point glass. Therefore, the thermal conductivity between the wavelength conversion member 10 and the heat dissipation member 11 can be increased.
プリフォーム12の加熱プレスは、600℃以下で行うことが好ましく、500℃以下で行うことがより好ましく、400℃以下で行うことがさらに好ましい。そうすることにより、無機蛍光体粉末の劣化や放熱部材11の損傷を抑制することができる。   The hot pressing of the preform 12 is preferably performed at 600 ° C. or less, more preferably at 500 ° C. or less, and further preferably at 400 ° C. or less. By doing so, degradation of inorganic fluorescent substance powder and damage to the heat radiating member 11 can be suppressed.
以上説明したように、本実施形態では、熱伝導率が高い放熱部材11が波長変換部材10と接するように設けられている。このため、波長変換部材10の熱が効率的に放熱部材11に伝導し、放熱部材11から放熱される。よって、波長変換部材10の温度上昇を抑制することができる。従って、波長変換素子1を備える光源2では、発光素子3からの励起光の強度が高い場合であっても、輝度が低下しにくい。   As described above, in the present embodiment, the heat radiating member 11 having a high thermal conductivity is provided so as to be in contact with the wavelength conversion member 10. For this reason, the heat of the wavelength conversion member 10 is efficiently conducted to the heat radiating member 11 and is radiated from the heat radiating member 11. Therefore, the temperature rise of the wavelength conversion member 10 can be suppressed. Therefore, in the light source 2 including the wavelength conversion element 1, even when the intensity of the excitation light from the light emitting element 3 is high, the luminance is not easily lowered.
また、本実施形態では、放熱部材11の貫通孔11aに波長変換部材10が嵌合している。このため、波長変換部材10と放熱部材11との接触部における熱伝導率を高めることができる。従って、波長変換部材10の放熱を促進することができ、波長変換部材10の温度上昇をより効果的に抑制することができる。   In the present embodiment, the wavelength conversion member 10 is fitted in the through hole 11 a of the heat dissipation member 11. For this reason, the thermal conductivity in the contact part of the wavelength conversion member 10 and the heat radiating member 11 can be raised. Therefore, heat dissipation of the wavelength conversion member 10 can be promoted, and the temperature increase of the wavelength conversion member 10 can be more effectively suppressed.
また、本実施形態では、放熱部材11の熱伝導率が150W/mK以上と高い。このため、放熱部材11からの放熱をより促進することができる。従って、波長変換部材10の放熱をより促進することができる。波長変換部材10の放熱をさらに促進する観点からは、放熱部材11の熱伝導率は、200W/mK以上であることがより好ましく、250W/mK以上であることがさらに好ましい。   Moreover, in this embodiment, the heat conductivity of the heat radiating member 11 is as high as 150 W / mK or more. For this reason, the heat radiation from the heat radiating member 11 can be further promoted. Therefore, heat dissipation of the wavelength conversion member 10 can be further promoted. From the viewpoint of further promoting the heat dissipation of the wavelength conversion member 10, the heat conductivity of the heat dissipation member 11 is more preferably 200 W / mK or more, and further preferably 250 W / mK or more.
このような高い熱伝導率を実現する観点からは、放熱部材11は、熱伝導率の高い金属や合金からなることが好ましい。具体的には、放熱部材11は、Cu、Al、Ag及びAuからなる群から選ばれた金属またはCu、Al、Ag及びAuからなる群から選ばれた一種以上の金属を含む合金からなることが好ましい。   From the viewpoint of realizing such high thermal conductivity, the heat radiating member 11 is preferably made of a metal or alloy having high thermal conductivity. Specifically, the heat dissipating member 11 is made of a metal selected from the group consisting of Cu, Al, Ag and Au or an alloy containing one or more metals selected from the group consisting of Cu, Al, Ag and Au. Is preferred.
また、波長変換部材10の温度上昇を抑制する観点からは、波長変換部材10が小さく、内部の熱が放熱しやすいことが好ましい。このため、波長変換部材10の直径は、20mm以下であることが好ましく、長さは、2mm以下であることが好ましい。但し、波長変換部材10の大きさが小さすぎると、剛性が低くなりすぎたり、製造が困難となったりする。このため、波長変換部材10の直径は、0.5mm以上であることが好ましく、長さは、0.1mm以上であることが好ましい。   Further, from the viewpoint of suppressing the temperature rise of the wavelength conversion member 10, it is preferable that the wavelength conversion member 10 is small and the internal heat is easily radiated. For this reason, the diameter of the wavelength conversion member 10 is preferably 20 mm or less, and the length is preferably 2 mm or less. However, when the size of the wavelength conversion member 10 is too small, the rigidity becomes too low or the manufacture becomes difficult. For this reason, the diameter of the wavelength conversion member 10 is preferably 0.5 mm or more, and the length is preferably 0.1 mm or more.
また、波長変換部材10の温度上昇を抑制する効果をさらに高める観点から、放熱部材11の熱容量が大きいことが好ましい。従って、放熱部材11の体積は、波長変換部材10の体積の1倍以上であることが好ましい。但し、放熱部材11の体積が大きすぎると、波長変換素子1が大型化しすぎる場合がある。従って、放熱部材11の体積は、波長変換部材10の体積の1000倍以下であることが好ましく、900倍以下であることがより好ましい。   Further, from the viewpoint of further enhancing the effect of suppressing the temperature rise of the wavelength conversion member 10, it is preferable that the heat dissipation member 11 has a large heat capacity. Therefore, it is preferable that the volume of the heat radiating member 11 is one or more times the volume of the wavelength conversion member 10. However, if the volume of the heat dissipation member 11 is too large, the wavelength conversion element 1 may be too large. Therefore, the volume of the heat radiating member 11 is preferably 1000 times or less, and more preferably 900 times or less that of the wavelength conversion member 10.
本実施形態では、波長変換部材10の熱膨張率と放熱部材11の熱膨張率との差が、90×10−7/℃以下である。このため、波長変換素子1の温度が上昇した際に、波長変換部材10に大きな応力が加わったり、波長変換部材10が放熱部材11から脱落したりすることを効果的に抑制することができる。 In the present embodiment, the difference between the thermal expansion coefficient of the wavelength conversion member 10 and the thermal expansion coefficient of the heat dissipation member 11 is 90 × 10 −7 / ° C. or less. For this reason, when the temperature of the wavelength conversion element 1 rises, it can suppress effectively that a big stress is added to the wavelength conversion member 10, or the wavelength conversion member 10 falls from the thermal radiation member 11. FIG.
また、本実施形態では、放熱部材11の熱膨張係数は、波長変換部材10の熱膨張係数よりも大きい。このため、波長変換素子1の温度が上昇したときにおいても、波長変換部材10が放熱部材11から脱落することを抑制することができる。   In the present embodiment, the thermal expansion coefficient of the heat radiating member 11 is larger than the thermal expansion coefficient of the wavelength conversion member 10. For this reason, even when the temperature of the wavelength conversion element 1 rises, the wavelength conversion member 10 can be prevented from dropping from the heat dissipation member 11.
本実施形態では、プリフォーム12の加熱プレスにより波長変換部材10を作製する。このため、波長変換部材10を容易かつ安価に作製することができる。また、加熱プレスを600℃以下で行うため、無機蛍光体粉末や放熱部材11の劣化を抑制することができる。無機蛍光体粉末や放熱部材11の劣化をより効果的に抑制する観点からは、加熱プレスを500℃以下で行うことがより好ましく、400℃以下で行うことがさらに好ましい。   In this embodiment, the wavelength conversion member 10 is produced by hot pressing the preform 12. For this reason, the wavelength conversion member 10 can be produced easily and inexpensively. Moreover, since the heating press is performed at 600 ° C. or lower, deterioration of the inorganic phosphor powder and the heat dissipation member 11 can be suppressed. From the viewpoint of more effectively suppressing the deterioration of the inorganic phosphor powder and the heat radiating member 11, the hot pressing is more preferably performed at 500 ° C. or less, and further preferably at 400 ° C. or less.
また、放熱部材11として、波長変換部材10よりも熱膨張係数が大きな部材を用いるため、加熱プレスにより波長変換部材10を放熱部材11に焼き嵌め、強固に固定することができる。波長変換部材10をより強固に固定する観点からは、波長変換部材10の熱膨張率と放熱部材11の熱膨張率との差が5×10−7/℃以上であることが好ましい。 Moreover, since the member with a larger thermal expansion coefficient than the wavelength conversion member 10 is used as the heat radiating member 11, the wavelength conversion member 10 can be shrink-fitted and firmly fixed to the heat radiating member 11 by a heating press. From the viewpoint of fixing the wavelength conversion member 10 more firmly, the difference between the thermal expansion coefficient of the wavelength conversion member 10 and the thermal expansion coefficient of the heat radiating member 11 is preferably 5 × 10 −7 / ° C. or more.
また、加熱プレスは、中性雰囲気または還元雰囲気中で行うことが好ましい。そうすることにより、無機蛍光体粉末の劣化をより効果的に抑制することができる。中性雰囲気の具体例としては、例えば、アルゴンガス雰囲気などの不活性ガス雰囲気や窒素ガス雰囲気などが挙げられる。還元雰囲気の具体例としては、例えば、水素ガス雰囲気や一酸化炭素ガス雰囲気などが挙げられる。   Moreover, it is preferable to perform a heat press in neutral atmosphere or reducing atmosphere. By doing so, deterioration of inorganic fluorescent substance powder can be suppressed more effectively. Specific examples of the neutral atmosphere include an inert gas atmosphere such as an argon gas atmosphere and a nitrogen gas atmosphere. Specific examples of the reducing atmosphere include a hydrogen gas atmosphere and a carbon monoxide gas atmosphere.
以下、本発明実施した好ましい形態の他の例及び変形例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。   Hereinafter, other examples and modifications of the preferred embodiments of the present invention will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.
(第2及び第3の実施形態)
図5は、第2の実施形態における波長変換素子の略図的斜視図である。図6は、第3の実施形態における波長変換素子の略図的斜視図である。
(Second and third embodiments)
FIG. 5 is a schematic perspective view of the wavelength conversion element according to the second embodiment. FIG. 6 is a schematic perspective view of the wavelength conversion element according to the third embodiment.
上記第1の実施形態では、波長変換部材10が円柱状であり、放熱部材11が矩形状である例について説明した。但し、本発明において、波長変換部材及び放熱部材のそれぞれの形状は特に限定されない。例えば、図5に示すように、波長変換部材10は、角柱状であってもよい。また、図6に示すように、放熱部材11は、円板状であってもよい。   In the first embodiment, the example in which the wavelength conversion member 10 is cylindrical and the heat dissipation member 11 is rectangular has been described. However, in the present invention, the shapes of the wavelength conversion member and the heat dissipation member are not particularly limited. For example, as illustrated in FIG. 5, the wavelength conversion member 10 may have a prismatic shape. Moreover, as shown in FIG. 6, the heat radiating member 11 may be disk-shaped.
(第4の実施形態)
図7は、第4の実施形態における波長変換素子の略図的断面図である。図8は、第4の実施形態に係る光源の模式図である。
(Fourth embodiment)
FIG. 7 is a schematic cross-sectional view of the wavelength conversion element according to the fourth embodiment. FIG. 8 is a schematic diagram of a light source according to the fourth embodiment.
上記第1の実施形態では、貫通孔11a内に波長変換部材10が配置されている例について説明した。但し、本発明は、この構成に限定されない。例えば、図7に示すように、放熱部材11の凹部11bに波長変換部材10が嵌合していてもよい。その場合は、図8に示すように、発光素子3を凹部11bの開口側に配置し、反射光を取り出すようにしてもよい。   In the said 1st Embodiment, the example in which the wavelength conversion member 10 is arrange | positioned in the through-hole 11a was demonstrated. However, the present invention is not limited to this configuration. For example, as shown in FIG. 7, the wavelength conversion member 10 may be fitted in the recess 11 b of the heat dissipation member 11. In that case, as shown in FIG. 8, the light emitting element 3 may be arranged on the opening side of the recess 11b to extract the reflected light.
(第5の実施形態)
図9は、第5の実施形態における波長変換素子の略図的断面図である。
(Fifth embodiment)
FIG. 9 is a schematic cross-sectional view of a wavelength conversion element in the fifth embodiment.
図9に示すように、本実施形態では、波長変換部材10がドーム状に形成されている。このようにすることによって、波長変換部材10にレンズとしての機能を付与することもできる。なお、本実施形態のドーム状の波長変換部材10は、突部を有する成形型と、その突部に対応した形状の凹部を有する成形型とを用いてプレスすることにより作製することができる。   As shown in FIG. 9, in this embodiment, the wavelength conversion member 10 is formed in a dome shape. By doing in this way, the function as a lens can also be provided to the wavelength conversion member 10. In addition, the dome-shaped wavelength conversion member 10 of this embodiment can be produced by pressing using a mold having a protrusion and a mold having a recess corresponding to the protrusion.
(第6の実施形態)
図10は、第6の実施形態における波長変換素子の略図的断面図である。図11は、第6の実施形態における波長変換素子の略図的斜視図である。
(Sixth embodiment)
FIG. 10 is a schematic cross-sectional view of a wavelength conversion element in the sixth embodiment. FIG. 11 is a schematic perspective view of the wavelength conversion element according to the sixth embodiment.
図10及び図11に示すように、本実施形態では、放熱部材11の第1及び第2の主面11c、11dの少なくとも一方に突部11eが形成されている。具体的には、第1及び第2の主面11c、11dのそれぞれに複数の線状の突部11eが形成されている。このため、放熱部材11の表面積が大きい。従って、放熱部材11からの放熱をより効果的に促進することができる。その結果、波長変換部材10の温度上昇をより効果的に抑制することができる。   As shown in FIGS. 10 and 11, in this embodiment, a protrusion 11 e is formed on at least one of the first and second main surfaces 11 c and 11 d of the heat dissipation member 11. Specifically, a plurality of linear protrusions 11e are formed on each of the first and second main surfaces 11c and 11d. For this reason, the surface area of the heat dissipation member 11 is large. Therefore, heat dissipation from the heat dissipation member 11 can be more effectively promoted. As a result, the temperature increase of the wavelength conversion member 10 can be more effectively suppressed.
(変形例)
上記第1の実施形態では、無機波長変換部材として、無機蛍光体粉末が分散したガラスからなるものを用いる場合について説明した。但し、本発明は、この構成に限定されない。無機波長変換部材として、例えば、透光性YAG多結晶体や、透光性YAG単結晶を用いてもよい。
(Modification)
In the said 1st Embodiment, the case where what consists of glass in which the inorganic fluorescent substance powder was disperse | distributed was used as an inorganic wavelength conversion member. However, the present invention is not limited to this configuration. As the inorganic wavelength conversion member, for example, a translucent YAG polycrystal or a translucent YAG single crystal may be used.
上記第6の実施形態では、線状の突部11eを第1及び第2の主面11c、11dに形成する例について説明した。但し、本発明は、この構成に限定されない。第1及び第2の主面の少なくとも一方に複数の突起部を設けてもよい。   In the sixth embodiment, the example in which the linear protrusion 11e is formed on the first and second main surfaces 11c and 11d has been described. However, the present invention is not limited to this configuration. A plurality of protrusions may be provided on at least one of the first and second main surfaces.
以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.
(実施例1)
モル%で、SnO:62%、P:22%、B:11%、Al:2%及びMgO:3%のガラス組成を有するバッチを坩堝内で1000℃で2時間加熱した。その後、得られた溶融ガラスの一部をロール成形することにより、ガラスフィルムを作製した。また、溶融ガラスの残りの一部をカーボン枠内に鋳込むことにより、ガラスブロックを作製した。
Example 1
A batch having a glass composition of mol%, SnO: 62%, P 2 O 5 : 22%, B 2 O 3 : 11%, Al 2 O 3 : 2% and MgO: 3% in a crucible at 1000 ° C. Heated for 2 hours. Then, a glass film was produced by roll-forming a part of obtained molten glass. Moreover, the glass block was produced by casting the remaining part of molten glass in a carbon frame.
得られたガラスブロックを、所定の大きさに切り出し、30℃〜380℃の温度範囲における熱膨張係数を、ディラトメーターを用いて測定した。その結果、ガラスの熱膨張係数は140×10−7/℃であった。 The obtained glass block was cut into a predetermined size, and the thermal expansion coefficient in a temperature range of 30 ° C. to 380 ° C. was measured using a dilatometer. As a result, the thermal expansion coefficient of the glass was 140 × 10 −7 / ° C.
次に、上記作製のガラスフィルムを、らいかい機を用いて15分間粉砕した後に、100μmのふるいに通してガラス粉末(D50:14μm、Dmax:145μm)を得た。得られたガラス粉末に対して、バリウムシリケート系黄色蛍光体粉末を添加して混合粉末を作製した。この混合粉末をプレス成形することにより、成形体を作製した。なお、この成形体における無機蛍光体粉末の含有量は、5質量%とした。 Next, the glass film produced as described above was pulverized for 15 minutes using a raking machine, and then passed through a 100 μm sieve to obtain glass powder (D 50 : 14 μm, D max : 145 μm). Barium silicate yellow phosphor powder was added to the obtained glass powder to prepare a mixed powder. A compact was produced by press molding the mixed powder. In addition, content of the inorganic fluorescent substance powder in this molded object was 5 mass%.
次に、成形体を、200Paの減圧雰囲気中において400℃で30分間焼結し、その後、切断加工を行うことにより、0.7mm角、高さ1.8mmの角柱状の波長変換材料プリフォームを作製した。   Next, the compact is sintered at 400 ° C. for 30 minutes in a reduced pressure atmosphere of 200 Pa, and then cut to perform a prismatic wavelength conversion material preform having a 0.7 mm square and a height of 1.8 mm. Was made.
次に、Cu製の放熱部材を10mm角、厚み1mmの板形状に切り出した。その銅板の略中央部に、直径1mmの貫通孔を形成した。次に、放熱部材の貫通孔に波長変換材料プリフォームを挿入した状態で、SYS製の精密ガラスプレス装置を用いて窒素雰囲気中、360℃で加熱プレス成形した。これにより、上記第1の実施形態に係る波長変換素子1と実質的に同様の構成を有する波長変換素子を作製した。なお、加熱プレス成形には、STAVAX製の平型を用いた。   Next, the heat-radiating member made of Cu was cut into a plate shape having a 10 mm square and a thickness of 1 mm. A through hole having a diameter of 1 mm was formed in a substantially central portion of the copper plate. Next, in a state where the wavelength conversion material preform was inserted into the through hole of the heat radiating member, heat press molding was performed at 360 ° C. in a nitrogen atmosphere using a SYS precision glass press apparatus. Thus, a wavelength conversion element having a configuration substantially similar to that of the wavelength conversion element 1 according to the first embodiment was produced. In addition, the flat type made from STAVAX was used for the hot press molding.
(比較例1)
上記実施例1と実質的に同様の組成を有し、かつ同様の寸法を有する波長変換部材を作製した。この比較例1では、この波長変換部材単体を波長変換素子として用いた。
(Comparative Example 1)
A wavelength conversion member having a composition substantially similar to that of Example 1 and having the same dimensions was produced. In this comparative example 1, this single wavelength conversion member was used as a wavelength conversion element.
(比較例2)
上記実施例1と実質的に同様の組成を有し、かつ同様の寸法を有する波長変換部材を作製した。この比較例2では、この波長変換部材を、上記実施例1で用いた放熱部材と実質的に同様の放熱部材の貫通孔に、樹脂(信越化学工業社製LPS−5510)を用いて固定することにより、波長変換素子を作製した。
(Comparative Example 2)
A wavelength conversion member having a composition substantially similar to that of Example 1 and having the same dimensions was produced. In this comparative example 2, this wavelength conversion member is fixed to a through-hole of a heat dissipation member substantially the same as the heat dissipation member used in the first embodiment using a resin (LPS-5510 manufactured by Shin-Etsu Chemical Co., Ltd.). Thus, a wavelength conversion element was produced.
(評価)
上記実施例1及び比較例1,2のそれぞれにおいて作製した波長変換素子に対して、波長460nmの光を出射するLDからの光を5分間照射した。そのときの波長変換部材の温度を測定した。なお、LDに供給した電流は、400mAとした。
(Evaluation)
The wavelength conversion element produced in each of Example 1 and Comparative Examples 1 and 2 was irradiated with light from an LD emitting light having a wavelength of 460 nm for 5 minutes. The temperature of the wavelength conversion member at that time was measured. Note that the current supplied to the LD was 400 mA.
その結果、放熱部材を設けなかった比較例1では、波長変換部材の温度が123.6℃まで上昇し、樹脂接着剤を用いて波長変換部材を放熱部材に固定した比較例2では、波長変換部材の温度が65.5℃℃まで上昇した。それに対して、実施例1では、波長変換部材の温度は、62.6℃までしか上昇しなかった。   As a result, in Comparative Example 1 in which no heat dissipation member was provided, the temperature of the wavelength conversion member rose to 123.6 ° C., and in Comparative Example 2 in which the wavelength conversion member was fixed to the heat dissipation member using a resin adhesive, wavelength conversion was performed. The temperature of the member rose to 65.5 ° C. On the other hand, in Example 1, the temperature of the wavelength conversion member rose only to 62.6 degreeC.
この結果から、波長変換部材を、放熱部材に直接接触するように固定することによって波長変換部材の温度上昇を抑制できることが分かる。   From this result, it can be seen that the temperature increase of the wavelength conversion member can be suppressed by fixing the wavelength conversion member so as to be in direct contact with the heat dissipation member.
1…波長変換素子
2…光源
3…発光素子
10…波長変換部材
11…放熱部材
11a…貫通孔
11b…凹部
11c…第1の主面
11d…第2の主面
11e…突部
12…プリフォーム
13,14…成形型
DESCRIPTION OF SYMBOLS 1 ... Wavelength conversion element 2 ... Light source 3 ... Light emitting element 10 ... Wavelength conversion member 11 ... Radiation member 11a ... Through-hole 11b ... Recess 11c ... 1st main surface 11d ... 2nd main surface 11e ... Projection 12 ... Preform 13, 14 ... Mold

Claims (9)

  1. 無機材料からなる波長変換部材と、凹部または貫通孔を有し、前記波長変換部材よりも熱伝導率が高い放熱部材とを備え、前記波長変換部材が前記凹部または貫通孔の壁面に接している、波長変換素子の製造方法であって、
    無機蛍光体粉末が分散しているガラスからなり、前記凹部または貫通孔よりも細いプリフォームを前記放熱部材の前記凹部または貫通孔内に挿入する工程と、
    前記凹部または貫通孔内に挿入されたプリフォームを加熱プレスすることにより前記プリフォームから前記波長変換部材を作製する工程と、
    を備える、波長変換素子の製造方法。
    A wavelength converting member made of an inorganic material, has a concave portion or the through hole, and a high heat dissipation member thermal conductivity than said wavelength converting member, the wavelength converting member is in contact with the wall surface of the recess or through-hole A method of manufacturing a wavelength conversion element ,
    A step of inserting a preform thinner than the recess or the through hole into the recess or the through hole of the heat dissipation member, made of glass in which inorganic phosphor powder is dispersed;
    Producing the wavelength conversion member from the preform by heat-pressing the preform inserted into the recess or the through hole; and
    A method for manufacturing a wavelength conversion element.
  2. 前記波長変換部材は、前記凹部または貫通孔に嵌合している、請求項1に記載の波長変換素子の製造方法The said wavelength conversion member is a manufacturing method of the wavelength conversion element of Claim 1 currently fitted in the said recessed part or through-hole.
  3. 前記放熱部材の熱伝導率が150W/mK以上である、請求項1または2に記載の波長変換素子の製造方法 The manufacturing method of the wavelength conversion element of Claim 1 or 2 whose thermal conductivity of the said thermal radiation member is 150 W / mK or more.
  4. 前記放熱部材は、金属または合金からなる、請求項1〜3のいずれか一項に記載の波長変換素子の製造方法The said heat radiating member is a manufacturing method of the wavelength conversion element as described in any one of Claims 1-3 which consists of a metal or an alloy.
  5. 前記放熱部材は、Cu、Al、Ag及びAuからなる群から選ばれた金属またはCu、Al、Ag及びAuからなる群から選ばれた一種以上の金属を含む合金からなる、請求項4に記載の波長変換素子の製造方法The heat dissipation member is made of a metal selected from the group consisting of Cu, Al, Ag, and Au or an alloy containing one or more metals selected from the group consisting of Cu, Al, Ag, and Au. Manufacturing method of the wavelength conversion element.
  6. 前記放熱部材は、第1及び第2の主面を有する板状に形成されており、前記第1及び第2の主面の少なくとも一方には、複数の突起部が形成されている、請求項1〜5のいずれか一項に記載の波長変換素子の製造方法The heat dissipation member is formed in a plate shape having first and second main surfaces, and a plurality of protrusions are formed on at least one of the first and second main surfaces. The manufacturing method of the wavelength conversion element as described in any one of 1-5.
  7. 前記波長変換部材の熱膨張率と前記放熱部材の熱膨張率との差は、10×10−7/℃〜90×10−7/℃の範囲内である、請求項1〜6のいずれか一項に記載の波長変換素子の製造方法The difference between the coefficient of thermal expansion of the wavelength conversion member and the coefficient of thermal expansion of the heat radiating member is in the range of 10 × 10 −7 / ° C. to 90 × 10 −7 / ° C. 7 . The manufacturing method of the wavelength conversion element of one term.
  8. 前記放熱部材の熱膨張係数は、前記波長変換部材の熱膨張係数よりも大きい、請求項1
    〜7のいずれか一項に記載の波長変換素子の製造方法
    The thermal expansion coefficient of the said heat radiating member is larger than the thermal expansion coefficient of the said wavelength conversion member.
    The manufacturing method of the wavelength conversion element as described in any one of -7.
  9. 前記波長変換部材は、無機蛍光体粉末が分散しているガラスからなる、請求項1〜8のいずれか一項に記載の波長変換素子の製造方法The said wavelength conversion member is a manufacturing method of the wavelength conversion element as described in any one of Claims 1-8 which consists of glass in which the inorganic fluorescent substance powder is disperse | distributed.
JP2010241905A 2010-10-28 2010-10-28 Wavelength conversion element, light source including the same, and manufacturing method thereof Active JP5549539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241905A JP5549539B2 (en) 2010-10-28 2010-10-28 Wavelength conversion element, light source including the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010241905A JP5549539B2 (en) 2010-10-28 2010-10-28 Wavelength conversion element, light source including the same, and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014002077A Division JP2014112696A (en) 2014-01-09 2014-01-09 Wavelength conversion element, and light source with the same

Publications (2)

Publication Number Publication Date
JP2012094419A JP2012094419A (en) 2012-05-17
JP5549539B2 true JP5549539B2 (en) 2014-07-16

Family

ID=46387534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241905A Active JP5549539B2 (en) 2010-10-28 2010-10-28 Wavelength conversion element, light source including the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5549539B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175706A1 (en) * 2012-05-25 2013-11-28 日本電気株式会社 Optical element, light-emitting device, and projection device
WO2013175752A1 (en) * 2012-05-25 2013-11-28 日本電気株式会社 Wavelength conversion member, optical element, light-emitting device, and projection device
JP6065567B2 (en) * 2012-12-13 2017-01-25 日本電気硝子株式会社 Color wheel for projector and light emitting device for projector
KR102202309B1 (en) * 2012-12-28 2021-01-14 신에쓰 가가꾸 고교 가부시끼가이샤 Wavelength conversion member and light-emitting device
JP6249699B2 (en) * 2013-09-20 2017-12-20 シチズン時計株式会社 LED light emitting device
EP3117267B1 (en) * 2014-03-11 2018-05-02 Osram Sylvania Inc. Light converter assemblies with enhanced heat dissipation
KR101555954B1 (en) * 2014-04-01 2015-09-30 코닝정밀소재 주식회사 Substrate for color conversion of led and method of fabricating threof
JP2016027613A (en) * 2014-05-21 2016-02-18 日本電気硝子株式会社 Wavelength conversion member and light emitting device using the same
JP6459354B2 (en) * 2014-09-30 2019-01-30 日亜化学工業株式会社 Translucent member and method for manufacturing the same, light emitting device and method for manufacturing the same
JP6657559B2 (en) 2014-12-24 2020-03-04 日亜化学工業株式会社 Light emitting device and method of manufacturing the same
JP6497544B2 (en) * 2015-01-28 2019-04-10 日本電気硝子株式会社 Crystallized glass phosphor and wavelength conversion member using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158012B2 (en) * 2002-03-06 2008-10-01 日本電気硝子株式会社 Luminescent color conversion member
JP5124978B2 (en) * 2005-06-13 2013-01-23 日亜化学工業株式会社 Light emitting device
JP5347354B2 (en) * 2007-09-18 2013-11-20 日亜化学工業株式会社 Fluorescent material molded body, method for manufacturing the same, and light emitting device
JP5266603B2 (en) * 2008-02-29 2013-08-21 スタンレー電気株式会社 Semiconductor light emitting device
JP2009277843A (en) * 2008-05-14 2009-11-26 Nec Lighting Ltd Light-emitting device, illuminating apparatus with the same, and back light for liquid crystal display

Also Published As

Publication number Publication date
JP2012094419A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5549539B2 (en) Wavelength conversion element, light source including the same, and manufacturing method thereof
JP2012185980A (en) Wavelength conversion element, light source including the same and manufacturing method of the same
KR102271648B1 (en) Wavelength conversion member and light emitting device using same
JP2014112696A (en) Wavelength conversion element, and light source with the same
JP5724461B2 (en) Method for manufacturing wavelength conversion member, wavelength conversion member produced thereby, and wavelength conversion element
KR20190023047A (en) A wavelength converting member and a light emitting device
KR20190022441A (en) A wavelength converting member and a light emitting device
KR102258536B1 (en) Wavelength-conversion member and light-emitting device
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2012059893A (en) Wavelength conversion member, light source, and manufacturing method for wavelength conversion member
JP5854367B2 (en) Method for manufacturing phosphor composite member
JP2015071699A (en) Wavelength conversion material, wavelength conversion member and light-emitting device
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2018002492A (en) Wavelength conversion member and light-emitting device using the same
JP6617948B2 (en) Wavelength conversion member and light emitting device
WO2019116916A1 (en) Wavelength conversion member and method for manufacturing same, and light-emitting device
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
JP6830751B2 (en) Wavelength conversion member and light emitting device
JP2019105826A (en) Wavelength conversion member, manufacturing method therefor, and light-emitting device
TW202021922A (en) Powder material for wavelength conversion member
JP6924383B2 (en) Manufacturing method of wavelength conversion member
JP2019019012A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
JP2020023438A (en) Wavelength conversion member and light-emitting device using the same
WO2021132212A1 (en) Wavelength conversion member, light-emitting element, and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R150 Certificate of patent or registration of utility model

Ref document number: 5549539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150