JP2006080312A - Light emitting device and its manufacturing method - Google Patents

Light emitting device and its manufacturing method Download PDF

Info

Publication number
JP2006080312A
JP2006080312A JP2004262906A JP2004262906A JP2006080312A JP 2006080312 A JP2006080312 A JP 2006080312A JP 2004262906 A JP2004262906 A JP 2004262906A JP 2004262906 A JP2004262906 A JP 2004262906A JP 2006080312 A JP2006080312 A JP 2006080312A
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
sealing member
light
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004262906A
Other languages
Japanese (ja)
Other versions
JP4590994B2 (en
JP2006080312A5 (en
Inventor
Kunihiro Jinme
邦博 甚目
Yoshinobu Suehiro
好伸 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2004262906A priority Critical patent/JP4590994B2/en
Priority to US11/220,903 priority patent/US7842526B2/en
Publication of JP2006080312A publication Critical patent/JP2006080312A/en
Publication of JP2006080312A5 publication Critical patent/JP2006080312A5/ja
Application granted granted Critical
Publication of JP4590994B2 publication Critical patent/JP4590994B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device and its manufacturing method in which the occurrence of damage due to thermal expansion and high temperature caused by a sealing material is prevented and sufficient light reflection can be obtained. <P>SOLUTION: A surface-mounted light emitting element 13 is mounted on a ceramic substrate 11 with through-holes 12a and 12b, upper surface pads 11a and 11b and lower surface pads 11c and 11d formed thereon. A glass sealing member 14 is sealed to cover the light emitting element 13. The glass sealing member 14 is externally formed in the shape of inverted pyramid by a tapered surface 14a spreading toward the outside. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光装置およびその製造方法に関し、特に、封止材に起因する熱膨張および高温度によるダメージの発生を防止し、また、十分な光反射が得られる発光装置およびその製造方法に関する。   The present invention relates to a light-emitting device and a method for manufacturing the same, and more particularly to a light-emitting device that prevents thermal expansion caused by a sealing material and damage due to a high temperature and that provides sufficient light reflection, and a method for manufacturing the same.

従来の発光装置として、封止部材にエポキシ樹脂を充填したものが知られている(例えば、特許文献1参照。)。この発光装置について、図を示して以下に説明する。   As a conventional light emitting device, a sealing member in which an epoxy resin is filled is known (see, for example, Patent Document 1). This light emitting device will be described below with reference to the drawings.

図15は、従来の発光装置を示す断面図である。この発光装置100は、凹部101Aを有した樹脂部101と、樹脂部101にインサート成形されたリード102,103と、凹部101Aの底面に露出するリード102上に、銀(Ag)ペーストなどの接着剤104を介してマウントされた発光素子105と、この発光素子105の2つの電極(図示せず)とリード102,103とを接続する金(Au)などによるボンディングワイヤ106,107と、蛍光体108を含有して凹部101A内に充填された封止体109と、凹部101Aの内面に形成された反射膜110とを備えている。   FIG. 15 is a cross-sectional view showing a conventional light emitting device. The light emitting device 100 includes a resin portion 101 having a recess 101A, leads 102 and 103 insert-molded in the resin portion 101, and a lead 102 exposed on the bottom surface of the recess 101A, such as an adhesive such as silver (Ag) paste. A light emitting element 105 mounted via an agent 104, bonding wires 106 and 107 made of gold (Au) or the like for connecting two electrodes (not shown) of the light emitting element 105 and the leads 102 and 103, and a phosphor. A sealing body 109 containing 108 and filled in the recess 101A, and a reflective film 110 formed on the inner surface of the recess 101A.

リード102,103は、リードフレームから所定部分を切断して形成され、それぞれの一端は近接対向するように配置され、それぞれの他端は互いに反対方向に延在し、樹脂部101から外部へ引き出されている。   The leads 102 and 103 are formed by cutting a predetermined portion from the lead frame, each one end is disposed so as to be close to each other, each other end extends in the opposite direction, and is pulled out from the resin portion 101 to the outside. It is.

凹部101Aは、下側に向って内径が小さくなる傾斜面を有する略楕円形あるいは円形を成している。反射膜110は、アルミニウム等を用いて、凹部101Aの傾斜面の全域に形成されている。   The recess 101A has a substantially elliptical shape or a circular shape having an inclined surface whose inner diameter decreases toward the lower side. The reflective film 110 is formed over the entire inclined surface of the recess 101A using aluminum or the like.

発光素子105は、例えば、有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)や分子線エピタキシャル成長法(MBE:Molecular Beam Exitaxy)等の結晶成長法を用いて、基板上に窒化物半導体からなる発光層を有する積層構造を形成したものである。   The light emitting element 105 is formed from a nitride semiconductor on a substrate using a crystal growth method such as metal organic chemical vapor deposition (MOCVD) or molecular beam exit growth (MBE). A laminated structure having a light emitting layer is formed.

封止体109は、その材料にシリコーン樹脂を用いている。これにより、発光ピーク波長が400nm未満の短波長光に対しても十分な耐久性を得ることができる。   The sealing body 109 uses a silicone resin as its material. Thereby, sufficient durability can be obtained even for short wavelength light having an emission peak wavelength of less than 400 nm.

蛍光体108は、1種類または数種類を用いることができる。例えば、複数を用いる場合、赤色に発光する蛍光体、緑色に発光する蛍光体、青色に発光する蛍光体の3種の組み合わせがある。蛍光体110によって波長変換が行え、例えば、蛍光体110を赤色蛍光体、緑色蛍光体、および青色蛍光体を含むようにした場合、発光素子105から放出された紫外光などの光が、蛍光体108によって波長変換され、これらによる2次光が発光素子105による1次光に混合され、発光装置100の発光光として取り出される。   One type or several types of phosphors 108 can be used. For example, when a plurality of phosphors are used, there are three combinations of phosphors that emit red light, phosphors that emit green light, and phosphors that emit blue light. Wavelength conversion can be performed by the phosphor 110. For example, when the phosphor 110 includes a red phosphor, a green phosphor, and a blue phosphor, light such as ultraviolet light emitted from the light emitting element 105 is converted into the phosphor. The wavelength is converted by 108, and the secondary light from these is mixed with the primary light by the light emitting element 105 and extracted as the light emitted from the light emitting device 100.

上記した発光装置100によれば、封止体109に蛍光体110を含有させたことにより、蛍光体110は発光素子105による1次光を吸収して可視光を放出するので、発光素子105の発光波長が変化しても色調が変化しない発光装置100を得ることができる。   According to the light emitting device 100 described above, since the phosphor 110 is contained in the sealing body 109, the phosphor 110 absorbs primary light from the light emitting element 105 and emits visible light. A light emitting device 100 in which the color tone does not change even when the emission wavelength changes can be obtained.

また、封止体にエポキシ樹脂を用い、樹脂部に白色樹脂を用い、発光素子からの光を散乱および反射させる構成の発光装置も知られている。
特開2002−314142号公報([0026]〜[0038]、図1)
There is also known a light-emitting device that uses an epoxy resin for a sealing body and a white resin for a resin portion to scatter and reflect light from a light-emitting element.
JP 2002-314142 A ([0026] to [0038], FIG. 1)

しかし、従来の発光装置によると、封止体109にシリコーン樹脂を用いた場合、耐候性、耐光性、機械的耐久性等には優れるが、熱膨張を生じるために封止時にボンディングワイヤ106,107に変形を生じさせやすい。熱膨張の小さい材料にガラスがあるが、ガラスは粘度が高いため、加工温度を高くせざるをえず、発光素子にダメージを与えるおそれがある。また、封止体109にエポキシ樹脂を用いた場合、発光素子による光や熱で黄色に変化し、発光素子発する光を吸収し、発光装置の発光出力が低下する。   However, according to the conventional light emitting device, when a silicone resin is used for the sealing body 109, it is excellent in weather resistance, light resistance, mechanical durability, etc., but because of thermal expansion, the bonding wire 106, 107 is easily deformed. There is glass as a material having a small thermal expansion. However, since glass has a high viscosity, the processing temperature must be increased, and the light emitting element may be damaged. In addition, when an epoxy resin is used for the sealing body 109, the light emitting element turns yellow due to light or heat from the light emitting element, absorbs light emitted from the light emitting element, and decreases the light emission output of the light emitting device.

更に、凹部101A内の反射膜110は、アルミニウムにした場合には、光を金属吸収するために高い反射効率が得られず、また、銀にした場合には、劣化時に黒化して反射効率を低下させる。   Further, when the reflective film 110 in the recess 101A is made of aluminum, high reflection efficiency cannot be obtained because the metal is absorbed by light, and when it is made of silver, the reflection film 110 is blackened at the time of deterioration to improve the reflection efficiency. Reduce.

また、樹脂部に白色樹脂を用いた場合、集光性が得られず、十分な光の取り出し効率を得ることができない。   Moreover, when white resin is used for the resin part, light condensing performance cannot be obtained, and sufficient light extraction efficiency cannot be obtained.

従って、本発明の目的は、封止材に起因する熱膨張および高温度によるダメージの発生を防止し、また、十分な光反射が得られる発光装置およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a light emitting device that prevents thermal expansion and damage due to high temperature caused by a sealing material, and provides sufficient light reflection, and a method for manufacturing the same.

本発明は、上記目的を達成するため、発光素子と、前記発光素子をマウントするとともに電力の供給を行う電力供給部と、前記発光素子を封止する無機封止材料とを有し、前記無機封止材料は、前記発光素子の中心軸に対し、側面方向に、外側に向かって広がるテーパ面形状を有することを特徴とする発光装置を提供する。   In order to achieve the above object, the present invention includes a light emitting element, a power supply unit that mounts the light emitting element and supplies power, and an inorganic sealing material that seals the light emitting element. The sealing material has a tapered surface shape that spreads outward in the lateral direction with respect to the central axis of the light emitting element.

また、本発明は、上記目的を達成するため、表面実装型の複数の発光素子を絶縁性の基板上に所定間隔にマウントする第1の工程と、前記複数の発光素子を覆うようにして一様な厚みにガラス封止部材を形成する第2の工程と、前記複数の発光素子のそれぞれの周囲にテーパ面が形成されるように前記基板および前記ガラス封止部材を切断する第3の工程を含むことを特徴とする発光装置の製造方法を提供する。   In order to achieve the above object, the present invention provides a first step of mounting a plurality of surface-mounted light emitting elements on an insulating substrate at predetermined intervals, and covering the plurality of light emitting elements. A second step of forming the glass sealing member in such a thickness, and a third step of cutting the substrate and the glass sealing member so that a tapered surface is formed around each of the plurality of light emitting elements. The manufacturing method of the light-emitting device characterized by including this is provided.

本発明の発光装置によれば、発光素子を無機封止部材によって封止し、その外面にテーパ面を設けたことにより、樹脂材を封止に用いた場合に生じていた熱膨張や高温度によるダメージの発生が防止され、光出力の低下を防止できるとともに、良好な集光特性を得ることができる。   According to the light-emitting device of the present invention, the light-emitting element is sealed with an inorganic sealing member, and the outer surface thereof is provided with a tapered surface. The occurrence of damage due to is prevented, the light output can be prevented from being lowered, and good light collecting characteristics can be obtained.

また、本発明の発光装置の製造方法によれば、ガラス封止部材を形成した後、発光素子のそれぞれの周囲にテーパ面を形成するように基板およびガラス封止部材を切断することにより、量産性および生産性を向上させることができる。また、光反射性材料等を用いることなく光反射性の良好な光反射面を簡単に形成することができる。   Further, according to the method for manufacturing a light emitting device of the present invention, after forming the glass sealing member, the substrate and the glass sealing member are cut so as to form a tapered surface around each of the light emitting elements. And productivity can be improved. In addition, a light reflecting surface with good light reflectivity can be easily formed without using a light reflecting material or the like.

[第1の実施の形態]
(発光装置の構成)
図1は、本発明の第1の実施の形態に係る発光装置の構成を示し、同図中、(a)は平面図、(b)は(a)のA−A線の断面図である。
[First Embodiment]
(Configuration of light emitting device)
1A and 1B show a configuration of a light-emitting device according to a first embodiment of the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line AA in FIG. .

この発光装置1は、上面パッド11a,11bおよび下面パッド11c,11dが形成されたセラミック(ガラス含有Al)基板11と、このセラミック基板11に形成されるとともにCuによるビアポスト(via post)15が埋め込まれたスルーホール12a,12bと、スルーホール12a,12bに接続された上面パッド11a,11b上にバンプ13a,13bを介してマウントおよび接続された発光素子13と、発光素子13およびセラミック基板11の上面の露出部を覆うようにして逆三角形に封止されたガラス封止部材14とを備える。 The light-emitting device 1 includes a ceramic (glass-containing Al 2 O 3 ) substrate 11 on which upper surface pads 11a and 11b and lower surface pads 11c and 11d are formed, and a via post formed on the ceramic substrate 11 and made of Cu. Through-holes 12a and 12b in which 15 is embedded, light-emitting element 13 mounted and connected via bumps 13a and 13b on upper surface pads 11a and 11b connected to through-holes 12a and 12b, light-emitting element 13 and ceramic And a glass sealing member 14 sealed in an inverted triangle so as to cover the exposed portion of the upper surface of the substrate 11.

セラミック基板11は、ガラス含有Alの他に、Al、AlN等の材料を用いることができる。 The ceramic substrate 11 can be made of a material such as Al 2 O 3 or AlN in addition to glass-containing Al 2 O 3 .

スルーホール12aは、上面パッド11aと下面パッド11cを接続するように形成されており、同様に、スルーホール12bは、上面パッド11bと下面パッド11dを接続するように形成されている。   The through hole 12a is formed so as to connect the upper surface pad 11a and the lower surface pad 11c, and similarly, the through hole 12b is formed so as to connect the upper surface pad 11b and the lower surface pad 11d.

発光素子13は、フリップチップ型であり、マウント面には上面パッド11a,11bに接続される図示せぬ一対の電極が設けられている。   The light emitting element 13 is of a flip chip type, and a pair of electrodes (not shown) connected to the upper surface pads 11a and 11b are provided on the mount surface.

ガラス封止部材14は、低融点ガラスとしてのリン酸系ガラス(熱膨張率11.4×10−6/℃、Tg390℃、n=1.59)によって形成されており、その側面には、上方に向って横方向の断面積が大きくなるテーパ面14aが形成されている。これにより、ガラス封止部材14は逆ピラミッド形の外形を成している。この形状は、製造方法において説明するように、ダイシング加工により作製されている。 The glass sealing member 14 is formed of phosphoric acid-based glass (thermal expansion coefficient 11.4 × 10 −6 / ° C., Tg 390 ° C., n = 1.59) as a low melting point glass, A tapered surface 14a is formed with a lateral cross-sectional area that increases upward. Thereby, the glass sealing member 14 has an outer shape of an inverted pyramid shape. This shape is produced by dicing as described in the manufacturing method.

図2〜図7は、本発明の第1の実施の形態に係る発光装置の製造方法の各工程を示す。ここでは、第1の実施の形態の発光装置1の製造方法について説明する。   2-7 shows each process of the manufacturing method of the light-emitting device based on the 1st Embodiment of this invention. Here, a method for manufacturing the light emitting device 1 of the first embodiment will be described.

(発光装置1の製造方法)
図2は、製造工程の第1段階におけるウエハー状のセラミック基板の断面図を示す。この工程では、セラミック基板11の上面および下面には、図示せぬ配線パターンが予め形成されている。この配線パターンに接続されるようにして、スルーホール12a,12bを一定間隔に形成する。
(Method for manufacturing light-emitting device 1)
FIG. 2 shows a cross-sectional view of the wafer-like ceramic substrate in the first stage of the manufacturing process. In this step, wiring patterns (not shown) are formed in advance on the upper and lower surfaces of the ceramic substrate 11. Through holes 12a and 12b are formed at regular intervals so as to be connected to the wiring pattern.

図3は、図2に続く工程を示す断面図である。図2で形成したスルーホール12a,12bのそれぞれの内部にビアポスト15の埋め込みを行う。更に、スルーホール12a,12bの上下面に接続させて、配線パターン上に上面パッド11a,11bおよび下面パッド11c,11dを形成する。   FIG. 3 is a cross-sectional view showing a step following FIG. Via posts 15 are buried in the through holes 12a and 12b formed in FIG. Further, the upper surface pads 11a and 11b and the lower surface pads 11c and 11d are formed on the wiring pattern by being connected to the upper and lower surfaces of the through holes 12a and 12b.

図4は、図3に続く工程を示す断面図である。この工程では、予めバンプ13a,13bを形成済みの発光素子13を用意する。この発光素子13は、バンプ13a,13bの形成面を下にし、更に極性を合わせた状態で、上面パッド11a,11b上にマウントされる。なお、セラミック基板11と発光素子13との間に熱膨張率の小なるフィラーを充填しても良い。   FIG. 4 is a cross-sectional view showing a step following FIG. In this step, the light emitting element 13 having the bumps 13a and 13b formed in advance is prepared. The light-emitting element 13 is mounted on the upper surface pads 11a and 11b with the formation surfaces of the bumps 13a and 13b facing down and the polarities being matched. Note that a filler having a small coefficient of thermal expansion may be filled between the ceramic substrate 11 and the light emitting element 13.

図5は、図4に続く工程を示す断面図である。この工程では、リン酸系ガラスによるガラス封止部材14を加圧プレスにより熱圧着する。この厚みは、ガラス封止部材14の上面のサイズに対応して決められる。   FIG. 5 is a cross-sectional view showing a step that follows FIG. In this step, the glass sealing member 14 made of phosphate glass is thermocompression bonded by a pressure press. This thickness is determined according to the size of the upper surface of the glass sealing member 14.

図6は、図5に続く工程を示す断面図である。この工程では、隣接する発光素子13との中間位置で、逆V字形のテーパブレード20によりセラミック基板11およびガラス封止部材14のダイシングを行う。このテーパブレード20を回転させながら、刃先がガラス封止部材14の上面に達してガラス封止部材14が切断されるまで図6の上方向に移動させる。そして、刃先を90°回転させて先の切断方向と直交する方向にセラミック基板11およびガラス封止部材14のダイシングを行うことにより、ガラス封止部材14の4辺にテーパ面14aが形成される。テーパブレード20によるダイシングが終了すると、発光素子13の相互間が分離され、図7に示すように、同一仕様の複数の発光装置1が完成する。   FIG. 6 is a cross-sectional view showing a step following FIG. In this step, the ceramic substrate 11 and the glass sealing member 14 are diced by the inverted V-shaped taper blade 20 at an intermediate position between the adjacent light emitting elements 13. While the taper blade 20 is rotated, the taper blade 20 is moved upward in FIG. 6 until the cutting edge reaches the upper surface of the glass sealing member 14 and the glass sealing member 14 is cut. And the taper surface 14a is formed in four sides of the glass sealing member 14 by rotating the blade edge | tip 90 degrees and dicing the ceramic substrate 11 and the glass sealing member 14 in the direction orthogonal to a previous cutting direction. . When dicing by the taper blade 20 is completed, the light emitting elements 13 are separated from each other, and a plurality of light emitting devices 1 having the same specifications are completed as shown in FIG.

(第1の実施の形態の効果)
第1の実施の形態によれば、下記の効果を奏する。
(Effects of the first embodiment)
According to the first embodiment, the following effects are obtained.

(1)低融点ガラスを用い、高粘度状態でホットプレス加工を行うことで、結晶成長温度に対し充分に低い加工が可能になる。 (1) By using a low-melting glass and hot pressing in a high viscosity state, processing sufficiently lower than the crystal growth temperature is possible.

(2)セラミック基板11とガラス封止部材14とが酸化物を介した化学結合に基づいて接着することにより強固な封着強度が得られる。そのため、接合面積が小さい小形パッケージであっても具現化できる。 (2) A strong sealing strength can be obtained by bonding the ceramic substrate 11 and the glass sealing member 14 based on a chemical bond through an oxide. Therefore, even a small package with a small bonding area can be realized.

(3)封止ガラスとセラミック基板11とは熱膨張率が同等であるため、高温で接着された後、常温あるいは低温状態としても剥離、クラック等の接着不良が生じにくい。しかも、ガラスは引っ張り応力にはクラックが生じないが、圧縮応力にはクラックは生じにくく、封止ガラスはセラミック基板11に対しやや熱膨張率が小さいものとしてある。発明者の確認では、−40℃←→100℃の液相冷熱衝激試験1000サイクルでも剥離、クラックは生じていない。また、5mm×5mmサイズのガラス片のセラミック基板11への接合基礎確認として、ガラス、セラミック基板11とも種々の熱膨張率の組み合わせで実験を行ったところ、熱膨張率が高い方の部材に対する低い方の部材の熱膨張率の比が0.85以上ではクラックを生じることなく接合が行えることを確認した。部材の剛性やサイズ等にも依存するが、熱膨張率が同等というのは、この程度の範囲を示す。 (3) Since the sealing glass and the ceramic substrate 11 have the same thermal expansion coefficient, poor adhesion such as peeling and cracking hardly occurs even after being bonded at a high temperature and at a normal temperature or a low temperature. Moreover, cracks do not occur in tensile stress in glass, but cracks do not easily occur in compressive stress, and sealing glass has a slightly smaller thermal expansion coefficient than ceramic substrate 11. According to the inventor's confirmation, peeling and cracking did not occur even in 1000 cycles of the liquid phase cooling / heating impulse test of −40 ° C. ← → 100 ° C. In addition, as a basic confirmation of joining a glass piece of 5 mm × 5 mm size to the ceramic substrate 11, an experiment was conducted with glass and the ceramic substrate 11 in various combinations of thermal expansion coefficients. When the ratio of the thermal expansion coefficients of the other member was 0.85 or more, it was confirmed that bonding could be performed without causing cracks. Although it depends on the rigidity and size of the member, the fact that the coefficient of thermal expansion is the same indicates this range.

(4)フリップチップ接合によりワイヤを不要できるので、高粘度状態での加工に対しても電極の不具合を生じない。封止加工時の低融点ガラスの粘度は10から10ポアズと硬く、熱硬化処理前のエポキシ樹脂が5ポアズ程度の液状であることと比較して物性が大きく異なるため、素子表面の電極とリード等の給電部材とをワイヤで電気的に接続するフェイスアップ型の発光素子を封止する場合、ガラス封止加工時にワイヤの潰れや変形を生じることがあるが、このような問題を生じない。また、素子表面の電極を金(Au)等のバンプを介してリード等の給電部材にフリップチップ接合するフリップチップ型の発光素子13を封止する場合、ガラスの粘度に基づいて発光素子13に給電部材方向への圧力が付加され、そのことによるバンプの潰れやバンプ間での短絡が生じるが、これも防ぐことができる。 (4) Since a wire can be dispensed with by flip-chip bonding, there is no problem with electrodes even when processing in a high viscosity state. Since the viscosity of the low melting point glass at the time of sealing is as hard as 10 8 to 10 9 poise and the physical properties are significantly different from that of the epoxy resin before the thermosetting treatment is about 5 poise, the electrode on the surface of the element When sealing a face-up type light emitting element that electrically connects a power supply member such as a lead with a wire, the wire may be crushed or deformed during the glass sealing process. Absent. Further, when the flip chip type light emitting element 13 in which the electrode on the surface of the element is flip chip bonded to a power supply member such as a lead via a bump such as gold (Au) is sealed, the light emitting element 13 is formed based on the viscosity of the glass. Pressure is applied in the direction of the power supply member, which causes collapse of the bumps and short circuit between the bumps, which can also be prevented.

(5)低融点ガラスとセラミック基板11とを平行にセットし、高粘度状態でホットプレス加工することで、低融点ガラスがセラミック基板11の表面に平行移動して密着し、GaN系発光素子13を封止するためにボイドが生じない。 (5) The low-melting glass and the ceramic substrate 11 are set in parallel and hot-pressed in a high-viscosity state, so that the low-melting glass is translated and adhered to the surface of the ceramic substrate 11, and the GaN-based light emitting device 13 In order to seal, no voids are generated.

(6)セラミック基板11の配線用回路パターン4はビアホール3Aにて裏面に引き出されるため、ガラスが不必要な箇所へ入り込むことや、電気端子が覆われること等への特別な対策をとることなく板状の低融点ガラスを複数デバイスに対して一括封止加工するだけで、ダイサーカットに基づいて複数の発光装置1を容易に量産することができる。なお、低融点ガラスは高粘度状態で加工されるため、樹脂のように充分な対策をとる必要はなくビアホールによらなくても外部端子が裏面に引き出されていれば充分に量産対応可能である。 (6) Since the circuit pattern 4 for wiring on the ceramic substrate 11 is pulled out to the back surface via the via hole 3A, no special measures are taken to prevent the glass from entering unnecessary portions or covering the electrical terminals. A plurality of light-emitting devices 1 can be easily mass-produced based on dicer cut only by batch-sealing a plate-like low melting point glass to a plurality of devices. Since low-melting glass is processed in a high-viscosity state, it is not necessary to take sufficient measures as in the case of a resin, and it is possible to sufficiently support mass production if the external terminals are pulled out to the back surface without using via holes. .

(7)GaN系発光素子13をフリップ実装とすることで、ガラス封止を具現化するにあたっての問題点を克服するとともに0.5mm角といった超小型の発光装置1を具現化できるという効果もある。これは、ワイヤのボンディングスペースが不要で、かつ、ガラス封止部材14とセラミック基板11とは同等の熱膨張率部材が選択されるとともに、化学結合に基づく強固な接合によって、わずかなスペースでの接着でも界面剥離が生じないことによる。 (7) The flip-mounting of the GaN-based light emitting element 13 overcomes the problems associated with realizing glass sealing and has the effect of realizing an ultra-small light emitting device 1 of 0.5 mm square. . This is because a wire bonding space is not required, and the glass sealing member 14 and the ceramic substrate 11 are selected to have the same coefficient of thermal expansion, and by a strong bonding based on a chemical bond, a small space can be obtained. This is due to the fact that no interfacial delamination occurs even with adhesion.

(8)無機材料としての低融点ガラスからなるガラス封止部材14で発光素子13を封止することにより、光劣化に対する耐久性と防湿性を付与でき、発光素子13の発光に伴って生じる熱を速やかに外部放散させることができる。特に、GaN系の発光素子13では、発光出力低下要因は、主として封止部の劣化によるものであることから、ガラス封止とすることで極めて出力劣化の小なる発光装置1が得られる。また、ガラス封止材料においては、樹脂封止材料より屈折率の大なるものを選択することも可能となるので、外部放射効率の向上に有効である。 (8) By sealing the light emitting element 13 with the glass sealing member 14 made of low-melting glass as an inorganic material, durability against light deterioration and moisture resistance can be imparted, and heat generated with light emission of the light emitting element 13 Can be quickly dissipated to the outside. In particular, in the GaN-based light emitting element 13, the light emission output lowering factor is mainly due to the deterioration of the sealing portion. Therefore, the light emitting device 1 with extremely small output deterioration can be obtained by glass sealing. In addition, it is possible to select a glass sealing material having a higher refractive index than that of the resin sealing material, which is effective in improving external radiation efficiency.

(9)セラミック基板11上の発光素子13を低融点ガラスからなるガラス封止部材14により封止したため、樹脂材を封止に用いた場合に生じていた不具合を解消できるため、光出力の低下を防止することができる。 (9) Since the light emitting element 13 on the ceramic substrate 11 is sealed with the glass sealing member 14 made of low-melting glass, it is possible to eliminate a problem that has occurred when the resin material is used for sealing, so that the light output is reduced. Can be prevented.

(10)ガラス封止部材14の側面にテーパ面14aが設けられていることにより、このテーパ面14aでの全反射に基づいて、ガラス封止部材14から光取り出しを図ることができ、光取り出し効率が向上し、良好な集光特性を得ることができる。 (10) Since the tapered surface 14a is provided on the side surface of the glass sealing member 14, light can be extracted from the glass sealing member 14 based on total reflection on the tapered surface 14a. Efficiency is improved and good light collecting characteristics can be obtained.

(11)外枠(図15、凹部101A)が不要となるので、コンパクトなサイズのデバイスとできる。 (11) Since the outer frame (FIG. 15, concave portion 101A) is not required, a device having a compact size can be obtained.

(12)ガラス封止部材14のテーパ面14aの角度は、テーパブレード20の刃先の角度で調整できるため、切断時の角度設定等の面倒な作業が不要となり、光の出射角の変更が容易に行え、客先の要求や製品バリエーションの増加等に対し、容易に対応することができる。 (12) Since the angle of the taper surface 14a of the glass sealing member 14 can be adjusted by the angle of the blade edge of the taper blade 20, troublesome work such as angle setting at the time of cutting becomes unnecessary, and the light emission angle can be easily changed. It is possible to respond easily to customer requests and increased product variations.

(13)1枚のウエハー状のセラミック基板11上に複数の発光素子13を設けた後、全ての発光素子13を覆うようにガラス封止部材14を形成し、テーパブレード20によりテーパ面を有した個々の発光装置1に分離することにより、ガラス封止部材14の全反射に基づく光取り出し構造を有する発光装置1を容易に形成できるとともに、量産性および生産性を向上させることができる。 (13) After providing a plurality of light emitting elements 13 on a single wafer-like ceramic substrate 11, a glass sealing member 14 is formed so as to cover all the light emitting elements 13, and a tapered surface is provided by the taper blade 20. By separating into the individual light emitting devices 1, the light emitting device 1 having a light extraction structure based on the total reflection of the glass sealing member 14 can be easily formed, and mass productivity and productivity can be improved.

なお、第1の実施の形態において、低融点ガラスにリン酸系ガラスを用いた発光装置1を説明したが、ガラス封止部材14は他のガラス材料であっても良い。このようなガラス材料として、例えば、珪酸系ガラス(熱膨張率:6.5×10−6/℃、転移点Tg:500℃)がある。この珪酸系ガラスを用いた場合にはAl基板(熱膨張率:7.0×10−6/℃)を用いることが好ましい。 In addition, in 1st Embodiment, although the light-emitting device 1 which used phosphoric acid type glass for low melting glass was demonstrated, the glass sealing member 14 may be another glass material. As such a glass material, for example, there is silicate glass (thermal expansion coefficient: 6.5 × 10 −6 / ° C., transition point Tg: 500 ° C.). When this silicate glass is used, it is preferable to use an Al 2 O 3 substrate (thermal expansion coefficient: 7.0 × 10 −6 / ° C.).

また、ダイシング時の凹凸が問題になる場合には、ガラス封止部材14と同等の屈折率を有する透明樹脂コートをダイシング面に施すことにより、改善することができる。   Moreover, when the unevenness | corrugation at the time of dicing becomes a problem, it can improve by giving the transparent resin coat which has a refractive index equivalent to the glass sealing member 14 to a dicing surface.

[第2の実施の形態]
図8は、本発明の第2の実施の形態に係る発光装置の構成を示し、同図中、(a)は平面図、(b)は(a)のB−B線の断面図である。
[Second Embodiment]
FIG. 8 shows a configuration of a light emitting device according to a second embodiment of the present invention, in which (a) is a plan view and (b) is a sectional view taken along line BB in (a). .

(発光装置1の構成)
本実施の形態の発光装置1は、第1の実施の形態において、ガラス封止部材14の周辺を垂直にカットし、ガラス封止部材14の外形を小さくしたものであり、他の構成は第1の実施の形態と同様である。
(Configuration of light-emitting device 1)
The light emitting device 1 of the present embodiment is obtained by cutting the periphery of the glass sealing member 14 vertically and reducing the outer shape of the glass sealing member 14 in the first embodiment. This is the same as the first embodiment.

図9〜図11は、本発明の第2の実施の形態に係る発光装置の製造方法を示す。ここでは、第2の実施の形態の発光装置1を製造する場合について説明する。   9 to 11 show a method for manufacturing a light-emitting device according to the second embodiment of the present invention. Here, the case where the light-emitting device 1 of 2nd Embodiment is manufactured is demonstrated.

(発光装置1の製造方法)
まず、第1の実施の形態の図2〜図5に示したようにして、ガラス封止部材14を形成するまでの工程を完了させる。次に、図9に示すように、刃幅が広く、かつ所望のテーパ角度に合わせた刃先角度θを有する第1のテーパブレード21を用い、この第1のテーパブレード21を回転させながらガラス封止部材14の所定の高さまで上昇させ、ガラス封止部材14の途中までダイシングし、テーパ面14aを形成する。
(Method for manufacturing light-emitting device 1)
First, as shown in FIGS. 2 to 5 of the first embodiment, the steps until the glass sealing member 14 is formed are completed. Next, as shown in FIG. 9, a first taper blade 21 having a wide blade width and a cutting edge angle θ adjusted to a desired taper angle is used, and the first taper blade 21 is rotated while the glass sealing is performed. The stopper member 14 is raised to a predetermined height, and the glass sealing member 14 is diced halfway to form a tapered surface 14a.

次に、図10に示すように、テーパブレードを第1のテーパブレード21よりも刃幅の狭い第2のテーパブレード22に交換する。第2のテーパブレード22の刃幅Wbは、発光装置1が完成後のガラス封止部材14の幅WmになるようなWbに設定する。なお、第2のテーパブレード22の刃先角度は、テーパ面14aとは無関係であるので、任意に設けることができる。   Next, as shown in FIG. 10, the taper blade is replaced with a second taper blade 22 having a narrower blade width than the first taper blade 21. The blade width Wb of the second taper blade 22 is set to Wb so as to be the width Wm of the glass sealing member 14 after the light emitting device 1 is completed. The cutting edge angle of the second taper blade 22 is not related to the taper surface 14a and can be arbitrarily set.

この第2のテーパブレード22の中心を第1のテーパブレード21の中心に合致させ、その状態のまま第2のテーパブレード22を回転させながら上昇させ、ガラス封止部材14のダイシングを行う。第2のテーパブレード22の胴部がガラス封止部材14を突き抜けると、図11に示すように、第2の実施の形態に示した図8の発光装置1が完成する。   The center of the second taper blade 22 is made coincident with the center of the first taper blade 21, and the second taper blade 22 is raised while rotating in this state, and the glass sealing member 14 is diced. When the body of the second taper blade 22 penetrates the glass sealing member 14, the light-emitting device 1 of FIG. 8 shown in the second embodiment is completed as shown in FIG.

(第2の実施の形態の効果)
第2の実施の形態によれば、テーパ面14aの上部の上部の所定部分がカットされたことにより、第1の実施の形態により得られる効果に加え、発光装置1の小型化が可能となる。
(Effect of the second embodiment)
According to the second embodiment, a predetermined portion of the upper portion of the tapered surface 14a is cut, so that the light emitting device 1 can be downsized in addition to the effects obtained by the first embodiment. .

なお、第2の実施の形態において、ガラス封止部材14の外面にガラス封止部材14の屈折率よりも低屈折率の透明膜をコートすることができる。これにより、ガラス封止部材14のテーパ面14aに汚れ等が付着しても反射率が低下しないものとすることができ、従って、発光素子13からの光の取り出し効率を安定させることができる。   In the second embodiment, a transparent film having a lower refractive index than the refractive index of the glass sealing member 14 can be coated on the outer surface of the glass sealing member 14. Thereby, even if dirt etc. adhere to taper surface 14a of glass sealing member 14, it can be assumed that a reflectance does not fall, and the extraction efficiency of light from light emitting element 13 can be stabilized.

なお、図4のようにセラミック基板11に発光素子13をマウントする。そして、これらを分離し、ガラスモールド型にセットし、図9のような状態としても良い。つまり、上面平坦面形成用ガラスモールド上金型と、下面テーパ面形成用ガラスモールド下金型によって光学面形成しても良い。そしてこの後、図10に示すように分離することで、同様の形状を得ることができる。   In addition, the light emitting element 13 is mounted on the ceramic substrate 11 as shown in FIG. And these are isolate | separated, It is good also as a state like FIG. That is, the optical surface may be formed by a glass mold upper mold for forming the upper flat surface and a glass mold lower mold for forming the lower tapered surface. Then, the same shape can be obtained by separating as shown in FIG.

[第3の実施の形態]
図12は、本発明の第3の実施の形態に係る発光装置を示し、同図中、(a)は平面図、(b)は(a)のC−C線の断面図である。
[Third Embodiment]
12A and 12B show a light emitting device according to a third embodiment of the present invention, in which FIG. 12A is a plan view and FIG. 12B is a cross-sectional view taken along line CC in FIG.

(発光装置1の構成)
本実施の形態の発光装置1は、図8に示した第2の実施の形態において、セラミック基板11の側面およびガラス封止部材14の側面を取り囲むように白色の樹脂材による白色樹脂部30を設けたものであり、他の構成は第2の実施の形態と同様である。
(Configuration of light-emitting device 1)
In the light emitting device 1 of the present embodiment, in the second embodiment shown in FIG. 8, the white resin portion 30 made of a white resin material is provided so as to surround the side surface of the ceramic substrate 11 and the side surface of the glass sealing member 14. The other configurations are the same as those of the second embodiment.

白色樹脂部30は、ガラス封止部材14の屈折率nが1.7とすれば、1.4程度の屈折率の樹脂材を用いる。白色樹脂部30は、少なくともガラス封止部材14の側面に設けられていればよく、また、その厚みは、ガラス封止部材14との境界面で全反射が得られさえすればよく、必要以上の厚みを有する必要はない。   If the refractive index n of the glass sealing member 14 is 1.7, the white resin portion 30 uses a resin material having a refractive index of about 1.4. The white resin portion 30 only needs to be provided at least on the side surface of the glass sealing member 14, and the thickness only needs to obtain total reflection at the boundary surface with the glass sealing member 14, which is more than necessary. It is not necessary to have the thickness.

(第3の実施の形態の効果)
第3の実施の形態によれば、白色樹脂部30を設けたことにより、ガラス封止部材14の側面に反射膜を設けたのと同等の機能を得ることができ、しかも、アルミニウム反射膜のような金属反射吸収や、銀反射膜のような黒化が生じないため、発光装置1の発光出力の低下を防止することができる。その他の効果は、第2の実施の形態と同様である。
(Effect of the third embodiment)
According to the third embodiment, by providing the white resin portion 30, it is possible to obtain the same function as that provided with the reflective film on the side surface of the glass sealing member 14, and the aluminum reflective film. Since such metal reflection absorption and blackening unlike the silver reflection film do not occur, it is possible to prevent the light emission output of the light emitting device 1 from being lowered. Other effects are the same as those of the second embodiment.

なお、第3の実施の形態において、白色樹脂部30に代えて、例えば、ガラス封止部材14の側面に屈折率n=1.4の透明樹脂コートを施し、この透明樹脂コートの表面に屈折率nが1.5の白色樹脂コートを設ける構成にしてもよい。これにより、n=1.4のコートによる全反射効果を一部得ることができるとともに、周囲の塵や埃の影響を受け易い環境で用いた場合でも、特性の変化を生じ難くすることができ、白色樹脂部30の厚さを無視できるものとしてコンパクト化を図ることができる。   In the third embodiment, instead of the white resin portion 30, for example, a transparent resin coat having a refractive index n = 1.4 is applied to the side surface of the glass sealing member 14, and the surface of the transparent resin coat is refracted. A white resin coat having a rate n of 1.5 may be provided. As a result, it is possible to obtain a part of the total reflection effect by the coating of n = 1.4, and it is possible to make it difficult to change the characteristics even when used in an environment that is easily affected by surrounding dust. Further, it is possible to reduce the size of the white resin portion 30 so that the thickness of the white resin portion 30 can be ignored.

また、白色樹脂コートに限らず、発光波長に対し反射率が高いものであれば、他の色であっても良く、セラミックコートを施しても良い。   In addition to the white resin coat, other colors may be used as long as the reflectance is high with respect to the emission wavelength, and a ceramic coat may be applied.

[第4の実施の形態]
図13は、本発明の第4の実施の形態に係る発光装置を示し、同図中、(a)は平面図、(b)は(a)のD−D線の断面図である。
[Fourth Embodiment]
13A and 13B show a light emitting device according to a fourth embodiment of the present invention, in which FIG. 13A is a plan view and FIG. 13B is a sectional view taken along line DD in FIG.

(発光装置1の構成)
本実施の形態の発光装置1は、図12に示した第3の実施の形態において、ガラス封止部材14の上面に透明なガラスまたは樹脂に蛍光体31を含有させた板材32を設けたものであり、その他の構成は第3の実施の形態と同様である。
(Configuration of light-emitting device 1)
In the light emitting device 1 of the present embodiment, in the third embodiment shown in FIG. 12, the glass sealing member 14 is provided with a plate material 32 containing phosphor 31 in transparent glass or resin on the upper surface thereof. Other configurations are the same as those of the third embodiment.

蛍光体31は、YAG蛍光体、珪酸塩蛍光体、或いは、これらを所定の割合で混合したもの等を用いることができる。   As the phosphor 31, a YAG phosphor, a silicate phosphor, or a mixture of these at a predetermined ratio can be used.

(第4の実施の形態の効果)
第4の実施の形態によれば、蛍光体31を含有した板材32をガラス封止部材14の上面に設けたことにより、発光素子13からの光に対する波長変換が可能になるため、自由度の高いスペクトル特性を得ることができる。その他の効果は、第3の実施の形態と同様である。
(Effect of the fourth embodiment)
According to the fourth embodiment, since the plate material 32 containing the phosphor 31 is provided on the upper surface of the glass sealing member 14, wavelength conversion with respect to the light from the light emitting element 13 can be performed. High spectral characteristics can be obtained. Other effects are the same as those of the third embodiment.

なお、第4の実施の形態において、蛍光体31を含有する板材32に代えて、或いは板材32に重ねて紫外線をカットするフィルタを用いてもよい。また、板材32を設けず、ガラス封止部材14に蛍光体を含有させた構成であってもよい。   In the fourth embodiment, a filter that cuts ultraviolet rays may be used instead of the plate material 32 containing the phosphor 31 or on the plate material 32. Moreover, the structure which made the glass sealing member 14 contain fluorescent substance without providing the board | plate material 32 may be sufficient.

[第5の実施の形態]
図14は、本発明の第5の実施の形態に係る発光装置を示し、同図中、(a)は平面図、(b)は(a)のE−E線の断面図である。
[Fifth Embodiment]
14A and 14B show a light emitting device according to a fifth embodiment of the present invention, in which FIG. 14A is a plan view and FIG. 14B is a sectional view taken along line EE of FIG.

(発光装置1の構成)
本実施の形態の発光装置1は、図12に示した第3の実施の形態において、複数の発光素子13A〜13Iをマウントするとともに、これらの接続状況に合わせてパッドの増設および配置の変更を行ってマルチ発光型にしたものである。セラミック基板11は、図示しない層内配線パターンによって複数の発光素子13A〜13Iを電気的に接続している。他の構成は第5の実施の形態と同様である。
(Configuration of light-emitting device 1)
The light emitting device 1 according to the present embodiment mounts a plurality of light emitting elements 13A to 13I in the third embodiment shown in FIG. 12, and adds pads and changes the arrangement in accordance with the connection status. This is a multi-emission type. The ceramic substrate 11 electrically connects the plurality of light emitting elements 13A to 13I by an intra-layer wiring pattern (not shown). Other configurations are the same as those of the fifth embodiment.

発光素子13A〜13Iは、同一色であっても、R(赤),G(緑),B(青)の組み合わせであってもよい。また、ここでは、発光素子を9個としているが、任意の個数にすることができる。また、発光素子13A〜13Iを個々に駆動する構成にすることも、3個の発光素子を直列したものを3つ並列に接続する回路構成や、9個の発光素子を直列接続する回路構成にすることも可能である。   The light emitting elements 13A to 13I may be the same color or a combination of R (red), G (green), and B (blue). Here, although nine light emitting elements are used, any number can be used. In addition, a configuration in which the light emitting elements 13A to 13I are individually driven may be a circuit configuration in which three light emitting elements in series are connected in parallel, or a circuit configuration in which nine light emitting elements are connected in series. It is also possible to do.

(第5の実施の形態の効果)
第5の実施の形態によれば、ガラス封止部材14のサイズを大きくするのみで、任意の数の発光素子をマウントすることができ、容易に発光出力を増大することができるので、発光装置1の大出力化が可能になる。また、発光色の異なる複数の発光素子を組み合わせることにより、容易に混色の発光色や白色光を得ることができる。
(Effect of 5th Embodiment)
According to the fifth embodiment, it is possible to mount an arbitrary number of light emitting elements simply by increasing the size of the glass sealing member 14, and to easily increase the light emission output. 1 output can be increased. Further, by combining a plurality of light emitting elements having different emission colors, a mixed emission color or white light can be easily obtained.

[他の実施の形態]
なお、本発明は、上記各実施の形態に限定されず、その要旨を変更しない範囲内で種々な変形が可能である。例えば、第4の実施の形態以外の実施の形態において、蛍光体31を含有した板材32を設け、或いは、ガラス封止部材14に蛍光体31を含有させることができる。また、第5の実施の形態に示したマルチ発光型の構成は、第1,第2および第4の実施の形態に対しても適用可能である。
[Other embodiments]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, in embodiments other than the fourth embodiment, a plate material 32 containing the phosphor 31 may be provided, or the glass sealing member 14 may contain the phosphor 31. The multi-light emission type configuration shown in the fifth embodiment is also applicable to the first, second, and fourth embodiments.

電力供給部を回路パターンが形成されたセラミック基板11として説明したが、金属リードを用いても良い。リードが突出する分コンパクト性が劣るが、樹脂封止と比較して硬質のガラスを用いている分、コンパクトなものとしても、リードの保持に必要な強度を保つことができる。   Although the power supply unit has been described as the ceramic substrate 11 on which the circuit pattern is formed, a metal lead may be used. Although the compactness is inferior due to the protrusion of the lead, the strength necessary for holding the lead can be maintained even if it is compact because the hard glass is used as compared with the resin sealing.

また、LED素子2の封止材料をガラスとして説明したが、用途によってはガラスの一部が結晶化して白濁したものであっても良く、化学的に安定な無機材料で電力受供給部との良好な接合ができるものであれば、ガラス状態の材料に限るものではない。   Moreover, although the sealing material of LED element 2 was demonstrated as glass, depending on a use, a part of glass may crystallize and become cloudy, and it is a chemically stable inorganic material. The material is not limited to a glassy material as long as good bonding can be achieved.

本発明の第1の実施の形態に係る発光装置の構成を示し、同図中、(a)は平面図、(b)は(a)のA−A線の断面図である。The structure of the light-emitting device which concerns on the 1st Embodiment of this invention is shown, In the same figure, (a) is a top view, (b) is sectional drawing of the AA line of (a). 製造工程の第1段階におけるウエハー状のセラミック基板の断面図を示す。Sectional drawing of the wafer-shaped ceramic substrate in the 1st step of a manufacturing process is shown. 図2に続く工程を示す断面図である。FIG. 3 is a cross-sectional view showing a step that follows FIG. 2. 図3に続く工程を示す断面図である。FIG. 4 is a cross-sectional view showing a step that follows FIG. 3. 図4に続く工程を示す断面図である。FIG. 5 is a cross-sectional view showing a step that follows FIG. 4. 図5に続く工程を示す断面図である。FIG. 6 is a cross-sectional view showing a step that follows FIG. 5. 図6に続く工程を示す断面図である。FIG. 7 is a cross-sectional view showing a step that follows FIG. 6. 本発明の第2の実施の形態に係る発光装置の構成を示し、同図中、(a)は平面図、(b)は(a)のB−B線の断面図である。The structure of the light-emitting device concerning the 2nd Embodiment of this invention is shown, In the same figure, (a) is a top view, (b) is sectional drawing of the BB line of (a). 本発明の第2の実施の形態に係る発光装置の製造方法の第1の工程を示す断面図である。It is sectional drawing which shows the 1st process of the manufacturing method of the light-emitting device which concerns on the 2nd Embodiment of this invention. 図9に続く工程を示す断面図である。FIG. 10 is a cross-sectional view showing a step that follows FIG. 9. 図10に続く工程を示す断面図である。It is sectional drawing which shows the process following FIG. 本発明の第3の実施の形態に係る発光装置を示し、同図中、(a)は平面図、(b)は(a)のC−C線の断面図である。The light-emitting device which concerns on the 3rd Embodiment of this invention is shown, (a) is a top view, (b) is sectional drawing of CC line of (a). 本発明の第4の実施の形態に係る発光装置を示し、同図中、(a)は平面図、(b)は(a)のD−D線の断面図である。The light-emitting device which concerns on the 4th Embodiment of this invention is shown, In this figure, (a) is a top view, (b) is sectional drawing of the DD line of (a). 本発明の第5の実施の形態に係る発光装置を示し、同図中、(a)は平面図、(b)は(a)のE−E線の断面図である。The light-emitting device which concerns on the 5th Embodiment of this invention is shown, (a) is a top view, (b) is sectional drawing of the EE line | wire of (a). 従来の発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional light-emitting device.

符号の説明Explanation of symbols

1…発光装置 11…セラミック基板 11a…上面パッド、11b…上面パッド 11c…下面パッド 11d…下面パッド、12a…スルーホール 12b…スルーホール 13…発光素子、13a…バンプ 13b…バンプ 13A〜13I…発光素子、14…ガラス封止部材 14a…テーパ面 15…ビアポスト、20…テーパブレード 21…第1のテーパブレード、22…第2のテーパブレード 30…白色樹脂部 31…蛍光体、32…板材 100…発光装置 101A凹部 101…樹脂部、102…リード 103…リード 104…接着剤 105…発光素子、106…ボンディングワイヤ 107…ボンディングワイヤ、108…蛍光体 109…封止体 110…反射膜 110…蛍光体 DESCRIPTION OF SYMBOLS 1 ... Light-emitting device 11 ... Ceramic substrate 11a ... Upper surface pad, 11b ... Upper surface pad 11c ... Lower surface pad 11d ... Lower surface pad, 12a ... Through hole 12b ... Through hole 13 ... Light emitting element, 13a ... Bump 13b ... Bump 13A-13I ... Light emission Element, 14 ... Glass sealing member 14a ... Tapered surface 15 ... Via post, 20 ... Taper blade 21 ... First taper blade, 22 ... Second taper blade 30 ... White resin part 31 ... Phosphor, 32 ... Plate material 100 ... Light emitting device 101A recess 101 ... resin part, 102 ... lead 103 ... lead 104 ... adhesive 105 ... light emitting element, 106 ... bonding wire 107 ... bonding wire, 108 ... phosphor 109 ... sealing body 110 ... reflective film 110 ... phosphor

Claims (14)

発光素子と、
前記発光素子をマウントするとともに電力の供給を行う電力供給部と、
前記発光素子を封止する無機封止材料とを有し、
前記無機封止材料は、前記発光素子の中心軸に対し、側面方向に、外側に向かって広がるテーパ面形状を有することを特徴とする発光装置。
A light emitting element;
A power supply unit that mounts the light emitting element and supplies power;
An inorganic sealing material for sealing the light emitting element,
The light-emitting device, wherein the inorganic sealing material has a tapered surface shape that extends outward in a side surface direction with respect to a central axis of the light-emitting element.
前記発光素子は、前記電力供給部にフリップ実装されることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the light emitting element is flip-mounted on the power supply unit. 前記電力供給部は、電力の供給を行う導電パターンを形成されたセラミック基板であることを特徴とする請求項1または2に記載の発光装置。   The light emitting device according to claim 1, wherein the power supply unit is a ceramic substrate on which a conductive pattern for supplying power is formed. 前記無機封止材料は、ガラスであることを特徴とする請求項1から3のいずれか1項に記載の発光装置。   The light emitting device according to any one of claims 1 to 3, wherein the inorganic sealing material is glass. 前記無機封止部材は、逆ピラミッド形状を成していることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the inorganic sealing member has an inverted pyramid shape. 前記無機封止部材は、前記テーパ面の上部に垂直面が形成されていることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the inorganic sealing member has a vertical surface formed on an upper portion of the tapered surface. 前記無機封止部材のテーパ面は、前記発光素子の発光スペクトルに対し高反射率の部材が設けられていることを特徴とする請求項1から6のいずれか1項に記載の発光装置。   7. The light emitting device according to claim 1, wherein the tapered surface of the inorganic sealing member is provided with a member having a high reflectance with respect to an emission spectrum of the light emitting element. 前記発光素子の発光スペクトルに対し高反射率の部材は、屈折率が前記無機封止部材の屈折率よりも小さいことを特徴とする請求項5に記載の発光装置。   The light emitting device according to claim 5, wherein a member having a high reflectance with respect to an emission spectrum of the light emitting element has a refractive index smaller than a refractive index of the inorganic sealing member. 前記無機封止部材は、その光出射面に蛍光体を含む透明な部材が設けられていることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the inorganic sealing member is provided with a transparent member including a phosphor on a light emitting surface thereof. 前記無機封止部材は、蛍光体を含有していることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the inorganic sealing member contains a phosphor. 前記発光素子は、複数の発光素子からなることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the light emitting element includes a plurality of light emitting elements. 表面実装型の複数の発光素子を絶縁性の基板上に所定間隔にマウントする第1の工程と、
前記複数の発光素子を覆うようにして一様な厚みにガラス封止部材を形成する第2の工程と、
前記複数の発光素子のそれぞれの周囲にテーパ面が形成されるように前記基板および前記ガラス封止部材を切断する第3の工程を含むことを特徴とする発光装置の製造方法。
A first step of mounting a plurality of surface-mounted light emitting elements on an insulating substrate at a predetermined interval;
A second step of forming a glass sealing member in a uniform thickness so as to cover the plurality of light emitting elements;
The manufacturing method of the light-emitting device characterized by including the 3rd process of cut | disconnecting the said board | substrate and the said glass sealing member so that a taper surface may be formed in each circumference | surroundings of these light emitting elements.
前記第3の工程は、前記テーパ面の角度に合致した刃先角度を有するテーパブレードによって前記基板および前記ガラス封止部材を切断することを特徴とする請求項12に記載の発光装置の製造方法。   13. The method for manufacturing a light emitting device according to claim 12, wherein in the third step, the substrate and the glass sealing member are cut by a taper blade having a cutting edge angle that matches an angle of the taper surface. 前記第3の工程は、前記テーパ面の角度に合致した刃先角度を有する第1のテーパブレードによって途中まで前記基板および前記ガラス封止部材を切断した後、前記第1のテーパブレードの刃幅より狭い刃幅を有する第2のテーパブレードによって前記ガラス封止部材が分断されるまで前記ガラス封止部材を切断することを特徴とする請求項12に記載の発光装置の製造方法。   In the third step, the substrate and the glass sealing member are cut halfway by the first taper blade having a blade edge angle that matches the angle of the taper surface, and then the blade width of the first taper blade is determined. 13. The method for manufacturing a light emitting device according to claim 12, wherein the glass sealing member is cut until the glass sealing member is divided by a second taper blade having a narrow blade width.
JP2004262906A 2004-09-09 2004-09-09 Light emitting device and manufacturing method thereof Expired - Fee Related JP4590994B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004262906A JP4590994B2 (en) 2004-09-09 2004-09-09 Light emitting device and manufacturing method thereof
US11/220,903 US7842526B2 (en) 2004-09-09 2005-09-08 Light emitting device and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262906A JP4590994B2 (en) 2004-09-09 2004-09-09 Light emitting device and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2006080312A true JP2006080312A (en) 2006-03-23
JP2006080312A5 JP2006080312A5 (en) 2008-08-21
JP4590994B2 JP4590994B2 (en) 2010-12-01

Family

ID=36159522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262906A Expired - Fee Related JP4590994B2 (en) 2004-09-09 2004-09-09 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4590994B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277592A (en) * 2007-04-28 2008-11-13 Nichia Corp Nitride semiconductor light emitting element, light emitting device having the same and method of manufacturing nitride semiconductor light emitting element
JP2009130205A (en) * 2007-11-26 2009-06-11 Toyoda Gosei Co Ltd Light-emitting device, substrate device, and method of manufacturing light-emitting device
KR100904178B1 (en) 2007-07-27 2009-06-23 삼성전기주식회사 Illuminator
JP2009164567A (en) * 2007-12-13 2009-07-23 Panasonic Electric Works Co Ltd Light emitting device
JP2009535798A (en) * 2006-04-25 2009-10-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Embedded LED
JP2010510659A (en) * 2006-11-15 2010-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Light emitting diode with textured phosphor conversion layer
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP2011529628A (en) * 2008-07-29 2011-12-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor elements
JP2012009794A (en) * 2010-06-28 2012-01-12 Panasonic Corp Light emitting device, back light unit, liquid crystal display, and illumination device
JP2012033823A (en) * 2010-08-02 2012-02-16 Stanley Electric Co Ltd Light emitting device and method for manufacturing the same
JP2012069975A (en) * 2011-11-07 2012-04-05 Kyocera Corp Light emitting device and lighting system
KR101299563B1 (en) * 2012-08-24 2013-08-23 주식회사 씨티랩 Method of manufacutruing semiconductor device structure
JP2013235847A (en) * 2006-07-10 2013-11-21 Toshiba Lighting & Technology Corp Illuminating device
JP2014011415A (en) * 2012-07-03 2014-01-20 Mitsubishi Electric Corp Light emitting device, lighting device, and display device
JP2014082300A (en) * 2012-10-16 2014-05-08 Erumu:Kk Light-emitting device
JP2015138839A (en) * 2014-01-21 2015-07-30 豊田合成株式会社 Light emitting device and manufacturing method of the same
JP2017050366A (en) * 2015-08-31 2017-03-09 日亜化学工業株式会社 Composite substrate, light emitting device, and manufacturing method for light emitting device
JP2020053617A (en) * 2018-09-28 2020-04-02 日亜化学工業株式会社 Light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017079311A (en) 2015-10-22 2017-04-27 豊田合成株式会社 Manufacturing method for light-emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373888U (en) * 1976-11-19 1978-06-20
JPH118414A (en) * 1997-06-18 1999-01-12 Sony Corp Semiconductor device and semiconductor light-emitting device
JPH11177129A (en) * 1997-12-16 1999-07-02 Rohm Co Ltd Chip type led, led lamp and led display
JP2002368286A (en) * 2001-06-11 2002-12-20 Citizen Electronics Co Ltd Light-emitting diode and method of manufacturing the same
JP2003101077A (en) * 2001-09-25 2003-04-04 Pentax Corp Light-emitting diode
JP2004207367A (en) * 2002-12-24 2004-07-22 Toyoda Gosei Co Ltd Light emitting diode and light emitting diode arrangement plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5373888U (en) * 1976-11-19 1978-06-20
JPH118414A (en) * 1997-06-18 1999-01-12 Sony Corp Semiconductor device and semiconductor light-emitting device
JPH11177129A (en) * 1997-12-16 1999-07-02 Rohm Co Ltd Chip type led, led lamp and led display
JP2002368286A (en) * 2001-06-11 2002-12-20 Citizen Electronics Co Ltd Light-emitting diode and method of manufacturing the same
JP2003101077A (en) * 2001-09-25 2003-04-04 Pentax Corp Light-emitting diode
JP2004207367A (en) * 2002-12-24 2004-07-22 Toyoda Gosei Co Ltd Light emitting diode and light emitting diode arrangement plate

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535798A (en) * 2006-04-25 2009-10-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Embedded LED
JP2013235847A (en) * 2006-07-10 2013-11-21 Toshiba Lighting & Technology Corp Illuminating device
JP2010510659A (en) * 2006-11-15 2010-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Light emitting diode with textured phosphor conversion layer
JP2008277592A (en) * 2007-04-28 2008-11-13 Nichia Corp Nitride semiconductor light emitting element, light emitting device having the same and method of manufacturing nitride semiconductor light emitting element
KR100904178B1 (en) 2007-07-27 2009-06-23 삼성전기주식회사 Illuminator
JP2009130205A (en) * 2007-11-26 2009-06-11 Toyoda Gosei Co Ltd Light-emitting device, substrate device, and method of manufacturing light-emitting device
JP2009164567A (en) * 2007-12-13 2009-07-23 Panasonic Electric Works Co Ltd Light emitting device
US9831394B2 (en) 2008-07-29 2017-11-28 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
US9099622B2 (en) 2008-07-29 2015-08-04 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
US10580941B2 (en) 2008-07-29 2020-03-03 Osram Oled Gmbh Optoelectronic semiconductor component
JP2011529628A (en) * 2008-07-29 2011-12-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor elements
JP2011222751A (en) * 2010-04-09 2011-11-04 Nippon Electric Glass Co Ltd Wavelength conversion member and semiconductor light-emitting element device having and using the wavelength conversion member
JP2012009794A (en) * 2010-06-28 2012-01-12 Panasonic Corp Light emitting device, back light unit, liquid crystal display, and illumination device
JP2012033823A (en) * 2010-08-02 2012-02-16 Stanley Electric Co Ltd Light emitting device and method for manufacturing the same
JP2012069975A (en) * 2011-11-07 2012-04-05 Kyocera Corp Light emitting device and lighting system
JP2014011415A (en) * 2012-07-03 2014-01-20 Mitsubishi Electric Corp Light emitting device, lighting device, and display device
KR101299563B1 (en) * 2012-08-24 2013-08-23 주식회사 씨티랩 Method of manufacutruing semiconductor device structure
JP2014082300A (en) * 2012-10-16 2014-05-08 Erumu:Kk Light-emitting device
JP2015138839A (en) * 2014-01-21 2015-07-30 豊田合成株式会社 Light emitting device and manufacturing method of the same
JP2017050366A (en) * 2015-08-31 2017-03-09 日亜化学工業株式会社 Composite substrate, light emitting device, and manufacturing method for light emitting device
US10566504B2 (en) 2015-08-31 2020-02-18 Nichia Corporation Composite board, light-emitting device, and manufacturing method of light-emitting device
US11011682B2 (en) 2015-08-31 2021-05-18 Nichia Corporation Composite board, light-emitting device, and manufacturing method of light-emitting device
JP2020053617A (en) * 2018-09-28 2020-04-02 日亜化学工業株式会社 Light-emitting device
JP7054005B2 (en) 2018-09-28 2022-04-13 日亜化学工業株式会社 Light emitting device

Also Published As

Publication number Publication date
JP4590994B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4590994B2 (en) Light emitting device and manufacturing method thereof
EP2596948B1 (en) Method of making a semiconductor device
US7842526B2 (en) Light emitting device and method of producing same
US8294160B2 (en) Light emitting device including a sealing portion, and method of making the same
JP4961887B2 (en) Solid state device
JP4529319B2 (en) Semiconductor chip and manufacturing method thereof
US8490431B2 (en) Optical device and method for making the same
US8129743B2 (en) Light emitting device
JP4492378B2 (en) Light emitting device and manufacturing method thereof
CN100511732C (en) Light emitting device
TWI479677B (en) Light emitting diode package structure
US10461227B2 (en) Method for manufacturing light emitting device, and light emitting device
WO2013137356A1 (en) Semiconductor light emitting device and method for manufacturing same
TWI720972B (en) Chip package structure and method of manufacturing the same
US20030010986A1 (en) Light emitting semiconductor device with a surface-mounted and flip-chip package structure
US20080284310A1 (en) Light emitting device, light source and method of making the device
WO2013168802A1 (en) Led module
JP2006108640A (en) Light emitting device
CN103339749A (en) Wafer-level light emitting diode package and method for manufacturing thereof
JP2012069645A (en) Semiconductor light-emitting device and manufacturing method therefor
JP2012079776A (en) Semiconductor light-emitting device and method of manufacturing the same
JP4637160B2 (en) Method for manufacturing solid element device
US20150200336A1 (en) Wafer level contact pad standoffs with integrated reflector
JP5407116B2 (en) Light emitting device
JP2005123657A (en) Chip-type light emitting device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4590994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees