JP2004165308A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2004165308A
JP2004165308A JP2002327634A JP2002327634A JP2004165308A JP 2004165308 A JP2004165308 A JP 2004165308A JP 2002327634 A JP2002327634 A JP 2002327634A JP 2002327634 A JP2002327634 A JP 2002327634A JP 2004165308 A JP2004165308 A JP 2004165308A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
submount
emitting device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002327634A
Other languages
Japanese (ja)
Other versions
JP4288931B2 (en
Inventor
Hideo Asakawa
英夫 朝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2002327634A priority Critical patent/JP4288931B2/en
Publication of JP2004165308A publication Critical patent/JP2004165308A/en
Application granted granted Critical
Publication of JP4288931B2 publication Critical patent/JP4288931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device wherein a light emitting element formed with electrodes on one and the same surface can be stably mounted by flip chip bonding technology with respect to lead electrodes located in a concave portion of a package. <P>SOLUTION: The light emitting device comprises the package 7 which has the concvave portion and is formed by insert molding so that the pair of positive and negative lead electrodes 4 may be exposed on the bottom of the concave portion, and the light emitting element 1 mounted face down on the lead electrodes 4. Between the lead electrodes and the light emitting element 1, there is a sub-mount 2 whereon the light emitting element can be mounted. The sub-mount 2 is provided with a conductive member at least on the front surface, and the conductive member is electrically connected to the light emitting element 1 and the lead electrodes 4 via a conductive joint member 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の技術分野】
本発明は、ディスプレイ・光通信やOA機器又は携帯機器の光源に最適な紫外域光から赤色光を発光する発光ダイオードに係わり、特に優れた放熱経路を有し且つ外部からの機械的応力等の耐久性に優れた発光装置に関する。
【0002】
【従来の技術】
今日、発光装置としてRGB(赤、緑、青色)がそれぞれ高輝度に発光可能な発光ダイオードに加え紫外線が発光可能な発光ダイオード、白色発光が可能な発光ダイオードやレーザダイオードが開発された。これらの半導体発光素子は高輝度、低消費電力かつ長寿命という優れた特性を有している。そのため、屋外や屋内の各種ディスプレイ、交通や鉄道などの信号機、各種インジケータや標示や液晶装置のバックライトだけでなく、照明自体として利用されはじめている。
【0003】
このような発光装置として、図14および15に示す表面実装型発光装置が用いられている。図14および15の表面実装型発光装置は、フレームインサートタイプと呼ばれ、発光素子が電気的に接続される正負一対のリード電極が、樹脂によって上下方向から挟み込まれるように、射出成形によってリード電極が樹脂パッケージと一体化される。リード電極の端部は外部へ突出しており、後に端部が折り曲げられることによって配線パターン等と接続される。この樹脂パッケージは開口部が形成され、リード電極上に発光素子が載置されるようにリード電極が露出している。この開口部はテーパー形状を有しており、内壁が傾斜されることで発光素子からの光を効率よく反射させることができる。また、発光素子は、対向面に正負一対の電極が形成されており、上記の樹脂パッケージのリード電極上に、発光素子の一方の電極が接続され、もう一方の電極は、導電性ワイヤーによって他のリード電極に接続されている。
【0004】
【特許文献1】
特開平11−87780号
【0005】
【発明が解決しようとする課題】
しかしながら、窒化ガリウム系化合物半導体など、両面に電極を形成することが困難である発光素子を用い、フレームインサートタイプの樹脂パッケージに載置する場合、フェイスアップによる実装形態であると同一面に電極を形成し2本のワイヤによって電気的に接続する必要がある。このように、ワイヤを2本形成すると、ワイヤが陰となり光の取りだし効率が悪くなるばかりか、ワイヤの断線等による不良が生じ歩留まりが低くなる。そのため、フェイスダウンによる発光素子の実装が好ましいものとなる。しかしながら、フレームインサートタイプでは、0.15mm厚の銅合金属を用いる場合、正負のリード電極の間隔は約0.15mmとするのが限度であり、正負の電極間が0.1mm以下である発光素子をフェイスダウンで安定性良く載置可能な距離とすることは難しい。また、リード電極は樹脂パッケージとの密着性は、必ずしも良好なものとは言えず、発光素子とリード電極との接合時に与えられる熱、加重および超音波による影響を受け、対向する双方のリード電極がそれぞれ微振動してしまうことで充分に合金化することができない。そこで、本発明は、フリップチップ方式による発光素子を用いて、安定性がよく、極めて信頼性に富んだ表面実装型発光装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の請求項1に関わる半導体発光装置は、凹部を有し、その凹部の底面に正負一対のリード電極が露出するようインサート成形されてなるパッケージと、前記リード電極上にフェイスダウン実装されてなる発光素子とを有する発光装置であって、リード電極と発光素子との間に、該発光素子を実装可能なサブマウントを有し、サブマウントは少なくとも表面に導電性部材を有し、導電性部材は、発光素子およびリード電極と導電性接合部材によって電気的に接続されてなる。このような構成からなると、フェイスダウンによる実装で、発光素子とリード電極とを安定性良く電気的に接続することができるため、信頼性に富んだ表面実装型発光装置とすることができる。
【0007】
また、本発明の請求項2に関わる半導体発光装置は、サブマウントが、前記リード電極間方向へ延長された矩形形状からなる。このような構成からなると、サブマウントが正電極上から負電極上を渡って配され、発光素子をリード電極と電気的に接続することができる。
【0008】
また、本発明の請求項3に関わる半導体発光装置は、サブマウントが、短辺の長さが発光素子の対角線より長い。このような構成からなると、導電性接合部材によってサブマウント表面上に形成された導電性部材と発光素子との密着性を高め、安定性良く用いることができる。
【0009】
また、本発明の請求項4に関わる半導体発光装置は、サブマウントが、発光素子の少なくとも2倍以上の面積を有する。このような構成からなると、放熱性が向上し、リード電極上に載置する際などにおいて取り扱いもしやすくなる。
【0010】
また、本発明の請求項5に関わる半導体発光素子は、サブマウントは、厚さ方向に貫通する貫通孔を有し、該貫通孔は内壁に該サブマウント上面および下面の導電性部材と連続する導電性部材を有し、該貫通孔を介して該サブマウントの上面と下面は導通されている。このような構成からなると、発光素子と近い位置に放熱経路をさらに設けることができ、放熱効率を高めることができる。
【0011】
また、本発明の請求項6に関わる半導体発光装置は、貫通孔が複数形成されている。このような構成からなると、上記した放熱効率をさらに高めることができる。
【0012】
また、本発明の請求項7に関わる半導体発光装置は、発光素子の中心軸がサブマウントの中心軸と一致し、貫通孔は、発光素子の外周部において、中心軸に対して対称な位置に形成されている。このような構成からなると、発光素子の載置部の安定性が増し、密着性や放熱経路などにおいても偏りがないため好ましい。
【0013】
また、本発明の請求項8に関わる半導体発光装置は、貫通孔が、円柱形状からなる。このような構成からなると、発光素子が載置されているサブマウントの上面および下面に形成されている導電性部材の導通を取りやすく、熱の流れもよりスムーズなものとなるため好ましい。
【0014】
また、本発明の請求項9に関わる半導体発光装置は、接着部が、貫通孔の内壁の少なくとも一部と接触している。このような構成からなると、サブマウントと導電性接合部材との接着面積をより広くすることができるため、サブマウントのリード電極からの剥離やずれを抑制することができる。
【0015】
また、本発明の請求項10に関わる半導体発光装置は、サブマウントが、ガラスエポキシ樹脂或いはBTレジンからなる。このような構成からなると比較的容易にサブマウントを形成することができる。
【0016】
【発明の実施の形態】
以下、図面を参照して、本発明に関わる実施の形態について説明する。
【0017】
図1および2に本発明の実施の形態に関わる発光装置を示す。
リード電極が一体成形されたパッケージの内部に、リード電極の正負の両電極間を跨るようにサブマウントが配置されている。サブマウントの上面および下面には、導電性部材が形成されいる。サブマウント下面の導電性部材は、リード電極と導通された状態となっている。また、サブマウント上面の導電性部材は、発光素子が電極形成面側を対向させて載置され電気的に接続可能となるように、離間して形成されている。
【0018】
このような構成とすることで、発光素子をフェイスダウンで安定性良く載置することが可能となる。発光素子からの光は、基板側から外部へ出射されることで、外部への光のとりだし効率が良くなり、また、導通させるためのワイヤーを必要としないことから、断線等による不良を出さず、歩留まりを上げることもできる。さらに、サブマウントは比較的硬質な絶縁性基板などに薄い金属薄膜からなる導電性部材が形成されているため、発光素子の電極と導電性部材とを接合させる際に起こる微振動の影響を受けることなく合金化することができる。そのため、発光素子の剥離やずれ等を防ぐことができるため、極めて信頼性の良好な発光装置を提供することが可能となる。
【0019】
また、図3のようにサブマウントに、貫通孔が形成されていると、貫通孔内部にも導電性材料を設けることが可能となり、放熱性を高めることもでき、さらにリード電極上に配される際に用いられる導電性接合部材を貫通孔内部にまで設けることができるため、密着性もよくなる。
【0020】
また、図4の断面図に示されるパッケージ凹部を発光素子が載置されたサブマウントが、リード電極の両電極間を渡るように設置された後、エポキシ樹脂或いはシリコーン樹脂などの透光性樹脂で封止することもできる。このようにすると、発光素子およびサブマウントを保護することができ、また、ガラスフィラーなどを混入させることで光の輝度を高めることもできる。
【0021】
また、図7のようにパッケージ凹部に配する前に、予め発光素子とサブマウントとを封止樹脂によって一体化しておくことも可能である。このようにすると、発光素子とサブマウントの密着性はさらに向上し剥離などを防ぐことができるため、取り扱いやすくなり、蛍光物質や拡散剤などを封止樹脂内部に含有させることで、さらに発光特性を高めることもできる。以下、本発明の実施の形態における各構成について詳述する。
【0022】
(発光素子)
本発明において、発光素子 は特に限定されないが、正負一対の電極を同一面に有するものであり、蛍光物質を用いた場合、前記蛍光物質を励起可能な発光波長を発光することのできる発光層を有する半導体発光素子が好ましい。このような半導体発光素子としてAlInGaPやGaNなど種々の半導体を挙げることができるが、蛍光物質を効率よく励起できる短波長が発光可能な窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造、あるいはダブルヘテロ構造のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。
【0023】
窒化物半導体を使用した場合、半導体基板にはサファイア、スピネル、SiC、Si、ZnO等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性良く形成させるためにはサファイア基板を用いることが好ましい。このサファイア基板上にGaN、AlN、GaAlN等のバッファー層を形成しその上にpn接合を有する窒化物半導体を形成させる。
【0024】
窒化物半導体を使用したpn接合を有する発光素子の例として、バッファ層上に、n型窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガリウムで形成させた第1のクラッド層、窒化インジウム・ガリウムで形成した活性層、p型窒化アルミニウム・ガリウムで形成した第2のクラッド層、p型窒化ガリウムで形成した第2のコンタクト層を順に積層させたダブルヘテロ構造などが挙げられる。
【0025】
窒化物半導体は、不純物をドープしない状態でn型導電性を示す。発光効率を向上させるなど所望のn型窒化物半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。一方、p型窒化物半導体を形成させる場合は、p型ドーパントであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。窒化物半導体は、p型ドーパントをドープしただけではp型化しにくいためp型ドーパント導入後に、炉による加熱やプラズマ照射等により低抵抗化させることが好ましい。電極形成後、半導体ウエハーからチップ状にカットさせることで窒化物半導体からなる発光素子を形成させることができる。
【0026】
本発明の発光ダイオードにおいて、白色系を発光させるには、蛍光物質からの発光波長との補色関係や透光性樹脂の劣化等を考慮して、発光素子の発光波長は400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましい。発光素子と蛍光物質との励起、発光効率をそれぞれ向上させるためには、450nm以上475nm以下がさらに好ましい。
【0027】
(サブマウント)
図2に示すように本発明の実施の形態のサブマントは、上面に形成された導電性部材上に発光素子が載置され、下面に形成された導電性部材は、パッケージと一体化されたリード電極と接合される。導電性部材は、サブマウントの表面に形成された銅などの薄膜をエッチングによってパターン形成されるため、パッケージ内の正負のリード電極間と比較すると、より間隔を狭くして設けることができる。このような構成からなると、発光素子とリード電極とを、安定性良く電気的に接続することができる。サブマントの材料については、加工が容易で耐久性のある材料であれば任意のものを用いることができる。具体例としては、後述するガラスエポキシ樹脂や、或いは銅、アルミニウムや各種合金、セラミックなど種々のものを利用することができる。
【0028】
サブマウントが金属材料などの導電性材料から成るものであると、絶縁性のものと比較して、熱伝導率が高いため、発光素子に生じた熱を効率的に外部へ導くことができる。導電性部材に用いる材料としては、発光素子からの熱を効率よく外部へ取り出すため、熱伝導性の良い材料が好ましく、Au、Cu、Alやこれらの合金などを好適に利用することもできる。特に、銅やアルミニウムは加工のしやすさなどから好適に利用することができる。このようにサブマウントとして導電性材料を用いる場合は、電気的に絶縁すべくSiOやSiNなどの絶縁膜を形成後、銅、金、銀などの薄膜パターンやこれらの金属を含む合金、これらの金属を含む積層膜などCVDやスパッタ或いはメッキによって形成させたものを好適に利用することができる。また反射率の高い金属や合金を発光波長に応じて適宜利用することができる。
【0029】
サブマウントが半導体材料から成るものであると、サブマウント内部に保護素子を備えることも可能であり、静電耐圧を高めることができる。
【0030】
また、絶縁性材料からなるものであると、取り扱いやすくなるため好ましい。例えば上述したガラスエポキシ樹脂の平板に導電性部材を形成することでサブマウントとすることができる。このような導電性部材は、発光素子に設けられた電極と、パッケージのリード電極とを導通させるために、サブマウントの上面から下面まで、連続するように設けられている。導電性部材は、サブマウントの側面に露出するように設けてもよく、図5のように貫通孔を設ける場合、貫通孔内部に設けてもよい。貫通孔を介して設ける場合、図6のように発光素子が配置される側にだけ設けてもよいが、貫通孔の内壁全てを覆うことでより放熱効果を得ることができる。サブマウント上面の導電性部材は、発光素子の正および負の電極間が0.1mmである場合、これら電極と接合できるように約0.05から0.08mm程度の間隔を設けることも可能であるため、フェイスダウンでの実装も可能となる。
【0031】
上述した貫通孔は、あらかじめ導電性部材を形成するための銅薄膜が表面に形成されたガラスエポキシ樹脂からなる平板をドリルやレーザ、打ち抜き加工によってなどを用いて形成することができる。貫通孔を設けることで、より放熱性を高め、貫通孔内壁と導電性接合部材とが接して固着することでリード電極との接合をより強固なものとすることができる。
【0032】
このような貫通孔は、発光素子を載置するサブマウントの上面と下面とに開口部を有するように形成されている。サブマウントが発光素子と電気的に接続されるのであれば、発光素子の載置部近傍に貫通孔を設けることもできるが、貫通孔が発光素子と離間して形成されていると、安定性良く発光素子をサブマウント上に載置することができるため好ましい。
【0033】
また、貫通孔の個数や大きさは限定されない。貫通孔を1つのみ設けることもできるが、複数の貫通孔を設けると、導電性材料によって覆われる部分が多くなり、放熱経路が拡大されるため、放熱性が向上する。またリード電極と接合されるために設けられる接合部材と、貫通孔の内壁との接触面積が増加するため、密着性が良くなる。貫通孔の位置は、偶数個設けられる場合などは、サブマウントの中心部、あるいはサブマウントの中心部に載置される発光素子の中心軸に対して対称に設けられると、安定性や放熱性において好ましい。図5では貫通孔は上面から下面に向かって同じ形状でほぼ直下方向に形成されているが、上面から下面まで傾斜して形成されてもよい。また、貫通孔が円柱形状からなると、応力が部分的に集中しにくいため不具合の起因とならず、均一に放熱させることができるため好ましい。しかし、このような形状に限らず、楕円や四角形、三角形など選択することができ、開口部の形状や貫通孔の側面の角度等は特に限定されない。また、図9のように下面に近づくにつれて小さくなるように形成させると、導電性接合部材が、硬化した際に貫通孔内部に引っかかるようになるため、より安定し、剥がれ難くなる。
【0034】
サブマウントの大きさ等は、発光素子やパッケージに合わせて、適宜決定することができる。リード電極間を渡って設置することができ、発光素子の載置且つ導通が可能であれば、サブマウントの幅は発光素子より狭いものであってもかまわない。発光素子と同等かそれ以上で、またサブマウントが略矩形から成る場合、短辺の長さが発光素子の対角線よりも長いものであると、扱いやすく、また安定性良くリード電極上に配することができる。サブマウントの面積は、2倍以上或いは、パッケージの凹部底面の面積に対して5〜100%、であると放熱性が良好となる。図10のようにサブマウントをパッケージの凹部を覆うように全面に配することもできる。サブマウントがリード電極間において露出されるパッケージの一部分或いは全部分を覆い、サブマウント表面の導電性部材が、反射率の高いものとすることで、パッケージによる光の吸収を抑えて反射させることができるため、効率よく外部へ光を取り出すことが可能である。また、リード電極の間のパッケージ露出部が、サブマウントによって5〜100%好ましくは50%以上覆われることで前述したように反射率を高めることができる。
【0035】
サブマウントの厚さは、パッケージ内に納まり、発光装置の指向性に影響を与えない範囲であれば特に限定されないが、0.2〜0.3mmであると、放熱性が良好なものとなり、パッケージの深さに対して中間部に発光素子が位置するため、発光素子に対するパッケージを封止する樹脂の熱応力の影響が小さくなり好ましい。
【0036】
(パッケージ)
本発明のパッケージは、凹部形状を有し、凹部の底面に正負一対のリード電極が露出されてなるものである。このようなパッケージが樹脂からなるものであると、リード電極を形成金型により挟み込み、閉じられた前記金型内にゲートから溶融させた樹脂を注入し、硬化させるインサート成形によって比較的容易に形成することができる。
【0037】
リード電極は、鉄入り銅等の高熱伝導体を用いて構成することができる。また、発光素子からの光の反射率の向上や、リード基材の酸化防止等のために、リード電極の表面に銀、アルミニウム、銅や金等の金属メッキを施すこともできる。また、リード電極の表面の反射率を向上させるため平滑にすることが好ましい。また、リード電極の面積は大きくすることが好ましく、このようにすることで、放熱性を高めることができ、サブマウントを介して配置される発光素子の温度上昇を効果的に抑制することができる。これによって、発光素子に比較的多くの電力を投入することが可能となり光出力を向上させることができる。
【0038】
リード電極は、長尺金属板をプレスを用いた打ち抜き加工により各パッケージ成形体の正負のリード電極となる部分を形成する。プレス加工後の長尺金属板の各パッケージ成形体に対応する部分において、正のリード電極は、成形後のパッケージ凹部の底面でその一端面が負のリード電極の一端面と対向するように負のリード電極とは分離されている。
【0039】
上記のリード電極がインサート成形されるパッケージに用いられる材料は、液晶ポリマー、ポリフタルアミド、ポリブチレンテレフタレート等が用いられる、好ましくは、ポリフタルアミドであり、このような樹脂からなるパッケージは、発光素子からの熱や光に対して劣化しにくく、リードフレームを曲げる際などの応力にも耐えるものとなる。
【0040】
また、パッケージ凹部の内部は、発光素子を載置したサブマウントをリード電極と接合後、モールド樹脂によって封止することもできる。
【0041】
(導電性接合部材)
本発明の発光装置の実施の形態に関わる導電性接合部材は、発光素子とサブマウント上面の導電性部材とを接合する第1の接合部材と、サブマウントの下面の導電性部材とパッケージと一体成形されたリード電極とを接合する第2の接合部材とがある。
【0042】
第1の接合部材は、アルミニウムや金、はんだ等によるバンプによって形成される。このようなバンプを発光素子の電極上に置き、サブマウントの発光素子載置面の配線パターンと対向させて置き、約50〜150℃の温度下において、0.5〜2Wの超音波を与えながら発光素子に荷重をかけ、発光素子およびサブマウントの間の導電性接合部材の合金化によって接合される。
【0043】
第2の接着部材は、銀や金、銅の導電性ペーストによって接合される。このような導電性ペーストをサブマウント載置部の2箇所に適量を塗布した後、サブマウントを実装し、150℃で1時間熱硬化を行うことで接合が可能となる。
【0044】
また、サブマウントとリード電極との間の、第2の接着部材が設けられている部分以外に絶縁性接着材などからなる固定部を設けることも可能である。この際、リード電極間に露出したパッケージ部に絶縁性材料による固定部を設けると、両リード電極上に置かれた導電性接着材が流れ出したりすることによる短絡などを防ぐことができる。
【0045】
(封止部材)
本発明の実施の形態においては、発光素子をサブマウント上に載置した後、図7に示すように封止部材によって発光素子を少なくとも一部を被覆しておくこともできる。このような封止部材は、発光素子を保護すると共に、サブマウントと発光素子とを固着させるための接着剤としての機能も有している。第1の接合部材のみでも発光素子とサブマウントを接着させることは出来るが、より強力な接着性が必要な場合は、封止部材を発光素子とその周辺を覆うように設けることで、接着性を向上させることができる。本発明では貫通孔を設け、内部にまで連続するように形成させると、サブマウントと接触する面積が大きくなり、しかも、立体的に接することが出来るので、強固な接着力が得られるため好ましい。
【0046】
封止部材として用いる材料は、発光素子からの光を反射させる光反射部材を含むものや、その逆に光を透過させることができる透光性部材を用いることができ、熱又は光などで硬化可能な樹脂を用いることができる。光反射部材を含む封止部材を用いる場合は、発光素子の上面には設けないようにすればよく、素子の側面から貫通孔に連続するように設ける。光反射部材を含む封止部材を発光素子の側面に設けることで、発光素子の上面からのみ光を放出させることができる。封止部材として用いられる樹脂は、発光素子から放出される光の波長によっては劣化し易い場合があるので、側面だけでも光反射部材含む封止部材を用いることで、劣化を抑制することができる。樹脂が劣化して黄変してしまうと、光を吸収してしまうので、発光効率が低下するが、劣化を抑制することでそのような問題も回避することができる。
【0047】
また、図8のように、光反射部材を含む封止部材を用いる場合は、発光素子の側面だけではなく底面にも設けることで、サブマウント側へ光が放出されるのを防ぐこともできる。サブマウントと発光素子の間には、第1の導電性部材が設けられているが、隙間が有る場合にはその隙間を埋めるように光反射部材を設けるのが好ましい。発光素子の底面とサブマウントとの距離は短いので、光が発光素子の底部から放出されると、反射を繰り返して樹脂が劣化し易くなるので、光反射部材を含む封止部材を用いることでそのような劣化を防ぐことができる。この場合、発光素子の側面から連続するように光反射部材を含む封止部材を設け、更に貫通孔まで連続するように設けることで、サブマウントとの接着性を有すると共に光の取り出し効率も向上させることができる。また、発光素子の底部から貫通孔まで連続するように設けても光の取り出し効率を向上させることができる。
【0048】
光反射部材としては、酸化ケイ素、チタン酸バリウム、酸化チタン、酸化アルミニウムからなる群から選択される少なくとも1つを用いるのが好ましい。これらの部材からなる粒子を光反射部材として封止部材に混入させて用いることができる。
【0049】
また、透光性部材を用いる場合は、発光素子の上面から貫通孔まで連続して設けることが出来るので、より強固な接着力が得られる。そして、上記のような光反射部材と透光性部材の両方を有する封止部材を用い、例えば、図11、12のように発光素子の側面にのみ光反射部材を設けて、透光性部材を発光素子の上面から貫通孔に達するように形成させてもよい。このように、貫通孔に充填されるのは、透光性部材でも光反射部材を含むものであってもよく、発光素子の少なくとも側面から連続して設けられていれば接着力を向上させる効果は得られる。
【0050】
図7に示すように透光性部材を用いる場合は、光を拡散させる光拡散材を混入させてもよい。これにより、光の分散性が向上し、均一な発光装置とすることができる。また、発光素子からの光によって励起されてその波長よりも長波長の光が発光可能な蛍光物質を混入させてもよい。これにより、発光素子からの光と蛍光物質からの光との混色光を発することができるので、様々な発光波長を有する発光装置とすることができる。蛍光物質は、発光素子が載置されたサブマウントをパッケージ凹部内に配した後、凹部を封止する樹脂に含有させることもできるが、このようにすることで、蛍光物質の使用量を減らし、また均一に混入させることができるため、輝度ムラ等を防ぐこともできる。
【0051】
封止部材は、発光素子の少なくとも側面から貫通孔まで連続していればよく、更に下面まで連続している場合でも、貫通孔の一部の側面を介して連続するように形成されていればよい。また、第2の接合部材を貫通孔内部にまで設けることができるように、第2の接合部材のためのスペースを設けて封止することもできる。このような封止部材は、ポッティングによって設けることもできるし、発光素子の上面をマスク等で保護してから印刷塗布などの方法で設けることもできる。
【0052】
(蛍光物質)
本発明に利用可能な蛍光物質は、発光素子から発せられる発光波長によって励起され、その光よりも長波長の可視光を発光可能な蛍光物質ならば無機蛍光体でも有機蛍光体でもよく、また、発光色は紫色〜赤色までの全ての可視光のものが適用できる。具体的には、無機蛍光体としてはケイ酸塩系蛍光体、リン酸塩系蛍光体、アルミン酸系蛍光体、希土類系蛍光体、酸希土類系蛍光体、硫化亜鉛系蛍光体などが挙げられる。具体的には緑色系発光蛍光体では、YSiO:Ce,Tb、MgAl1119:Ce,Tb、BaMgAl1627:Mn、(Zn,Cd)S:Ag、ZnS:Au,Cu,Al、ZnS:Cu,Al、SrAl:Eu、青色系発光蛍光体では(SrCaBa)(POCl:Eu、(BaCa)(POCl:Eu、BaMgAl1627:Eu、Sr(POCl:Eu、Sr:Eu、ZnS:Ag、Al、ZnS:Ag,Al(pigmented)、ZnS:AgCl、ZnS:AgCl(pigmented)、赤色系発光蛍光体ではYS:Eu、YS:Eu(pigmented)、Y:Eu、3.5MgO・0.5MgF・GeO:Mn、Y(PV)O:Eu、5MgO・3LiO・Sb:Mn、MgTiO:Mn等が挙げられる。比較的発光効率が高いものとしては、緑色系発光蛍光体ではSrAl:Eu、青色系発光蛍光体ではSr(POCl:Eu、赤色系発光蛍光体ではYS:Euが挙げられる。
【0053】
【実施例】
(実施例1)
サブマウントとして、ガラスエポキシからなる平板を用いる。この平板の上面および下面に導電性部材として銅薄膜を接着或いは積層などの方法で形成させる。次いで、平板にネガフィルムを貼り付けて露光し、ケミカルエッチング等によって除去することで図13(a)の斜線部のような銅薄膜パターンを形成する。この銅薄膜形成板にドリル、エッチングやレーザなどを用いて図13(b)のようにX方向およびY方向に複数の貫通孔が並ぶように形成させる。次に、これら貫通孔を介して図13(c)に示す断面図のように、銅薄膜が貫通孔を介して上面から下面まで連続するように形成する。これにより、X方向に並ぶ貫通孔同士は連続するよう設けられているが、上面および下面で互いに離れてガラスエポキシ樹脂が露出するような銅薄膜が形成される。すなわち、X方向に並んだ4つの貫通孔の銅薄膜は連続しており、Y方向に並んだ2つの貫通孔の銅薄膜は、接することなく形成されている。
【0054】
次いで、図13(d)のように、Y方向に並んだ貫通孔の間で、且つ離れて形成された銅薄膜の両方と接するように発光素子が銅薄膜上に配される。この時、100℃に加熱されたヒーター上にガラスエポキシの平板を置き、バンプボンダーによって、1Wの超音波と60gfの荷重とを加えながら、ガラスエポキシ平板の発光素子の載置部に金バンプを形成する。その後、ガラスエポキシ平板上に発光素子をマウンターによって熱、荷重および超音波を印可しながら合金化する。
【0055】
次いで、光反射部材としてTiOを含む樹脂を図13(f)のように貫通孔上にポッティングする。この時、TiO含有樹脂が発光素子の上面を覆わないように、樹脂の量を制御しておく必要がある。TiO含有樹脂を硬化させた後、図13(f)の破線部で平板を切断することで、図13(g)のような、発光素子が載置された個々のサブマウントとすることができる。このようにして形成されたサブマウントは、短辺が0.6mm、長辺が1.4mm、厚さが0.3mmの形状を有し、サブマウント上面の銅薄膜の間隔は0.08mmである。また載置されている発光素子の電極間は0.1mmである。
【0056】
次に、リード電極がインサート成形された樹脂パッケージ内に載置する。樹脂パッケージは、0.15mm厚の銅合金属からなる金属板をプレスを用いた打ち抜き加工によってリード電極となる部分を形成し、このように形成された正負一対のリード電極部を金型内にインサートして閉じ、金型内に樹脂を流し込み、硬化させて形成する。樹脂パッケージは凹部形状を有しており、正負一対のリード電極と、0.15mmのリード間には、パッケージの一部が露出されている。このようなパッケージ内の正負のリード電極を渡るように、前述の発光素子が載置されたサブマウント下面の銅薄膜と各リード電極とを、銀ペーストによって接合した後、パッケージ凹部内をエポキシ樹脂によって封止することで、本発明の発光装置とすることができる。
【0057】
(実施例2)
実施例1において、銅薄膜からなる導電性部材が形成されたガラスエポキシ樹脂の平板上に金バンプによって発光素子が載置されたものを、切断することによって発光素子が載置された個々のサブマウントとして分割した。次に、導電性接合部材として銀ペーストを用いて、サブマウントと樹脂パッケージのリード電極との接合を行った。導電性接合部材は、貫通孔内部に入り込んだ後に硬化するため、サブマウントとリード電極との接合は強固なものとすることができる。次に、パッケージの凹部内をエポキシ樹脂により封止する。エポキシ樹脂には重量比に対して5%のYAGが含有されている。このような構成とすることで本発明の発光装置とすることができる。
【0058】
【発明の効果】
本発明は、リード電極間に対し、載置するのに十分な長さを有するサブマウントを用いることによって、発光素子をフェイスダウン実装により安定性良く電気的に接続することができるため、信頼性に富んだ表面実装型発光装置とすることができる。
【図面の簡単な説明】
【図1】本発明の発光装置を示す模式的斜視図
【図2】本発明の発光装置を示す模式的平面図
【図3】本発明の他の発光装置を示す模式的平面図
【図4】図3のA−Aを示す模式的断面図
【図5】本発明の他の発光装置を示す模式的断面図
【図6】本発明の他の発光装置を示す模式的断面図
【図7】本発明の他の発光装置を示す模式的断面図
【図8】本発明の他の発光装置を示す模式的断面図
【図9】本発明の他の発光装置を示す模式的断面図
【図10】本発明の他の発光装置を示す模式的平面図
【図11】本発明の他の発光装置を示す模式的断面図
【図12】本発明の他の発光装置を示す模式的断面図
【図13】本発明の発光装置の形成工程を示す工程図。
(a)導電性部材が形成された平板の模式図
(b)貫通孔が形成された平板の模式図
(c)図13(b)の断面図
(d)発光素子が配された平板の模式図
(e)図13(d)の断面図
(f)光反射部材が形成された基板の模式図
(g)図13(f)の断面図
【図14】本発明と比較のために示す発光装置を示す模式的平面図
【図15】図14のA−Aを示す模式的断面図
【符号の説明】
1.発光素子
2.サブマウント
3.導電性部材
4.リード電極
5.第1の接合部材
6.第2の接合部材
7.パッケージ
8.ワイヤ
9.貫通孔
10.透光性部材
11.光反射部材を含む封止部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light-emitting diode that emits red light from ultraviolet light that is optimal for a light source of a display, optical communication, OA equipment, or portable equipment, and has a particularly excellent heat-dissipating path and reduces mechanical stress from the outside. The present invention relates to a light-emitting device having excellent durability.
[0002]
[Prior art]
Today, light emitting diodes capable of emitting ultraviolet light, light emitting diodes and laser diodes capable of emitting white light, in addition to light emitting diodes capable of emitting RGB (red, green, blue) light with high luminance have been developed as light emitting devices. These semiconductor light emitting devices have excellent characteristics such as high luminance, low power consumption and long life. For this reason, it has begun to be used not only for various displays outdoors and indoors, for traffic lights such as traffic and railroads, for various indicators and signs, and for backlights of liquid crystal devices, but also as lighting itself.
[0003]
As such a light emitting device, a surface mount type light emitting device shown in FIGS. 14 and 15 is used. 14 and 15 is called a frame insert type, in which a pair of positive and negative lead electrodes to which a light emitting element is electrically connected are injected by a resin so as to be sandwiched from above and below by a resin. Is integrated with the resin package. The end of the lead electrode protrudes to the outside, and is connected to a wiring pattern or the like by bending the end later. The resin package has an opening, and the lead electrode is exposed so that the light emitting element is mounted on the lead electrode. The opening has a tapered shape, and the light from the light emitting element can be efficiently reflected by the inner wall being inclined. Further, the light emitting element has a pair of positive and negative electrodes formed on opposing surfaces. One electrode of the light emitting element is connected to the lead electrode of the resin package, and the other electrode is connected to the other electrode by a conductive wire. Are connected to the lead electrodes of
[0004]
[Patent Document 1]
JP-A-11-87780
[0005]
[Problems to be solved by the invention]
However, when using a light emitting element such as a gallium nitride-based compound semiconductor for which it is difficult to form electrodes on both sides and mounting it on a frame insert type resin package, the electrodes are placed on the same surface as in the face-up mounting mode. It must be formed and electrically connected by two wires. As described above, when two wires are formed, not only is the wire shaded, light extraction efficiency is deteriorated, but also a failure due to a broken wire or the like is caused to lower the yield. Therefore, it is preferable to mount the light emitting element by face down. However, in the case of the frame insert type, when a copper alloy having a thickness of 0.15 mm is used, the distance between the positive and negative lead electrodes is limited to about 0.15 mm, and the light emission between the positive and negative electrodes is 0.1 mm or less. It is difficult to set the element face down with a stable mounting distance. In addition, the lead electrodes do not always have good adhesion to the resin package, and are affected by heat, weight, and ultrasonic waves applied when the light emitting element and the lead electrodes are joined, and both of the lead electrodes facing each other are not affected. Can not be sufficiently alloyed because each of them vibrates slightly. Therefore, an object of the present invention is to provide a surface-mounted light-emitting device which has high stability and extremely high reliability using a flip-chip type light-emitting element.
[0006]
[Means for Solving the Problems]
A semiconductor light emitting device according to claim 1 of the present invention has a concave portion, a package formed by insert molding so that a pair of positive and negative lead electrodes are exposed on the bottom surface of the concave portion, and a package mounted face down on the lead electrode. A light emitting device, comprising: a submount between which the lead electrode and the light emitting element can be mounted, the submount having a conductive member on at least a surface thereof, The member is electrically connected to the light emitting element and the lead electrode by a conductive bonding member. With such a configuration, the light-emitting element and the lead electrode can be electrically connected with good stability by face-down mounting, so that a highly reliable surface-mounted light-emitting device can be obtained.
[0007]
Further, in the semiconductor light emitting device according to claim 2 of the present invention, the submount has a rectangular shape extending in the direction between the lead electrodes. With such a configuration, the submount is arranged from above the positive electrode to above the negative electrode, and the light emitting element can be electrically connected to the lead electrode.
[0008]
Further, in the semiconductor light emitting device according to claim 3 of the present invention, the length of the short side of the submount is longer than the diagonal line of the light emitting element. With such a configuration, the adhesion between the conductive member formed on the submount surface and the light emitting element by the conductive bonding member can be enhanced, and the device can be used with good stability.
[0009]
Further, in the semiconductor light emitting device according to claim 4 of the present invention, the submount has at least twice the area of the light emitting element. With such a configuration, heat dissipation is improved, and handling becomes easy when mounting on a lead electrode.
[0010]
Further, in the semiconductor light emitting device according to claim 5 of the present invention, the submount has a through hole penetrating in the thickness direction, and the through hole is continuous with the conductive members on the upper surface and the lower surface of the submount on the inner wall. An upper surface and a lower surface of the submount are electrically connected to each other through the through hole. With such a configuration, a heat radiation path can be further provided at a position close to the light emitting element, and heat radiation efficiency can be increased.
[0011]
In the semiconductor light emitting device according to claim 6 of the present invention, a plurality of through holes are formed. With such a configuration, the above-described heat radiation efficiency can be further enhanced.
[0012]
Further, in the semiconductor light emitting device according to claim 7 of the present invention, the central axis of the light emitting element coincides with the central axis of the submount, and the through hole is located at a position symmetrical with respect to the central axis at the outer peripheral portion of the light emitting element. Is formed. Such a configuration is preferable because the stability of the mounting portion of the light emitting element is increased, and there is no deviation in the adhesion and the heat radiation path.
[0013]
Further, in the semiconductor light emitting device according to claim 8 of the present invention, the through hole has a cylindrical shape. Such a configuration is preferable because the conductive members formed on the upper surface and the lower surface of the submount on which the light emitting element is mounted can easily conduct, and the heat flow can be smoother.
[0014]
Further, in the semiconductor light emitting device according to claim 9 of the present invention, the bonding portion is in contact with at least a part of the inner wall of the through hole. With such a configuration, the bonding area between the submount and the conductive bonding member can be further increased, so that separation and displacement of the submount from the lead electrode can be suppressed.
[0015]
Further, in the semiconductor light emitting device according to claim 10 of the present invention, the submount is made of glass epoxy resin or BT resin. With such a configuration, the submount can be formed relatively easily.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
1 and 2 show a light emitting device according to an embodiment of the present invention.
A submount is arranged inside the package in which the lead electrodes are integrally formed so as to straddle both the positive and negative electrodes of the lead electrodes. Conductive members are formed on the upper and lower surfaces of the submount. The conductive member on the lower surface of the submount is in a state of being electrically connected to the lead electrode. The conductive members on the upper surface of the submount are formed so as to be separated from each other so that the light emitting elements are placed with their electrode forming surfaces facing each other and can be electrically connected.
[0018]
With such a structure, the light-emitting element can be mounted face down with good stability. The light from the light emitting element is emitted to the outside from the substrate side, so that the efficiency of taking out the light to the outside is improved, and since there is no need for a wire for conducting, there is no defect due to disconnection or the like. , The yield can be increased. Further, since the submount is formed with a conductive member made of a thin metal thin film on a relatively hard insulating substrate or the like, it is affected by micro-vibration that occurs when the electrode of the light emitting element and the conductive member are joined. It can be alloyed without. Therefore, peeling, displacement, and the like of the light-emitting element can be prevented, so that a highly reliable light-emitting device can be provided.
[0019]
Further, when a through hole is formed in the submount as shown in FIG. 3, it is possible to provide a conductive material also inside the through hole, heat radiation can be improved, and furthermore, it is arranged on the lead electrode. In this case, the conductive bonding member used in the process can be provided up to the inside of the through hole, so that the adhesion is improved.
[0020]
Further, after the submount on which the light emitting element is mounted is placed so as to extend between the two lead electrodes, a light transmitting resin such as an epoxy resin or a silicone resin is formed. Can also be sealed. In this case, the light emitting element and the submount can be protected, and the luminance of light can be increased by mixing a glass filler or the like.
[0021]
In addition, it is also possible to integrate the light emitting element and the submount in advance with a sealing resin before disposing them in the package recess as shown in FIG. By doing so, the adhesion between the light emitting element and the submount can be further improved and peeling can be prevented, so that it is easy to handle. By incorporating a fluorescent substance or a diffusing agent into the sealing resin, the light emitting property can be further improved. Can also be increased. Hereinafter, each configuration in the embodiment of the present invention will be described in detail.
[0022]
(Light emitting element)
In the present invention, the light-emitting element is not particularly limited, but has a pair of positive and negative electrodes on the same surface, and when a fluorescent substance is used, a light-emitting layer capable of emitting an emission wavelength capable of exciting the fluorescent substance is used. Is preferred. As such a semiconductor light emitting device, various semiconductors such as AlInGaP and GaN can be cited, but a nitride semiconductor (In) capable of emitting a short wavelength light capable of efficiently exciting a fluorescent substance can be used. X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) are preferred. Examples of the semiconductor structure include a homostructure having a MIS junction, a PIN junction, and a pn junction, a heterostructure, and a double heterostructure. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal thereof. Further, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed as a thin film in which a quantum effect occurs can be used.
[0023]
When a nitride semiconductor is used, a material such as sapphire, spinel, SiC, Si, or ZnO is preferably used for the semiconductor substrate. In order to form a nitride semiconductor with good crystallinity with good mass productivity, it is preferable to use a sapphire substrate. A buffer layer of GaN, AlN, GaAlN, or the like is formed on the sapphire substrate, and a nitride semiconductor having a pn junction is formed thereon.
[0024]
As an example of a light emitting device having a pn junction using a nitride semiconductor, a first contact layer formed of n-type gallium nitride, a first cladding layer formed of n-type aluminum-gallium nitride on a buffer layer, A double hetero structure in which an active layer formed of indium gallium nitride, a second cladding layer formed of p-type aluminum gallium nitride, and a second contact layer formed of p-type gallium nitride are sequentially stacked.
[0025]
A nitride semiconductor shows n-type conductivity without doping impurities. When a desired n-type nitride semiconductor is formed, for example, to improve luminous efficiency, it is preferable to appropriately introduce Si, Ge, Se, Te, C, or the like as an n-type dopant. On the other hand, in the case of forming a p-type nitride semiconductor, the p-type dopant such as Zn, Mg, Be, Ca, Sr, or Ba is doped. Since it is difficult to make a nitride semiconductor p-type only by doping it with a p-type dopant, it is preferable to lower the resistance by introducing a p-type dopant and then heating the furnace or irradiating plasma. After the electrodes are formed, a light emitting element made of a nitride semiconductor can be formed by cutting the semiconductor wafer into chips.
[0026]
In the light-emitting diode of the present invention, in order to emit white light, the emission wavelength of the light-emitting element is preferably 400 nm or more and 530 nm or less in consideration of the complementary color relationship with the emission wavelength from the fluorescent substance and the deterioration of the light-transmitting resin. , 420 nm or more and 490 nm or less. In order to improve the excitation and luminous efficiency of the light emitting element and the fluorescent substance, respectively, it is more preferably 450 nm or more and 475 nm or less.
[0027]
(Submount)
As shown in FIG. 2, the submount according to the embodiment of the present invention is configured such that a light emitting element is mounted on a conductive member formed on an upper surface, and a conductive member formed on a lower surface is a lead integrated with a package. Joined with electrodes. Since the conductive member is patterned by etching a thin film of copper or the like formed on the surface of the submount, the conductive member can be provided with a smaller interval than between the positive and negative lead electrodes in the package. With such a configuration, the light emitting element and the lead electrode can be electrically connected with good stability. As the material of the submount, any material can be used as long as it is easily processed and durable. As specific examples, glass epoxy resin described later, or various things such as copper, aluminum, various alloys, and ceramics can be used.
[0028]
When the submount is made of a conductive material such as a metal material, the heat generated in the light emitting element can be efficiently guided to the outside because the submount has a higher thermal conductivity than the insulating material. As a material used for the conductive member, a material having good heat conductivity is preferable in order to efficiently extract heat from the light emitting element to the outside, and Au, Cu, Al, an alloy thereof, or the like can be suitably used. In particular, copper and aluminum can be suitably used because of ease of processing. When a conductive material is used for the submount as described above, SiO 2 is used for electrical insulation. 2 And SiN X After forming an insulating film such as, for example, copper, gold, a thin film pattern such as silver, an alloy containing these metals, a laminated film containing these metals, such as a film formed by CVD, sputtering or plating can be suitably used. it can. Further, a metal or an alloy having a high reflectance can be appropriately used according to the emission wavelength.
[0029]
If the submount is made of a semiconductor material, it is possible to provide a protection element inside the submount, and it is possible to increase the electrostatic withstand voltage.
[0030]
Further, it is preferable to use an insulating material because it is easy to handle. For example, a submount can be formed by forming a conductive member on the above-described glass epoxy resin flat plate. Such a conductive member is provided so as to be continuous from the upper surface to the lower surface of the submount in order to conduct an electrode provided on the light emitting element and a lead electrode of the package. The conductive member may be provided so as to be exposed on the side surface of the submount. In the case where a through hole is provided as shown in FIG. 5, the conductive member may be provided inside the through hole. In the case where the light emitting element is provided through the through hole, the light emitting element may be provided only on the side where the light emitting element is arranged as shown in FIG. 6, but by covering the entire inner wall of the through hole, a more effective heat radiation effect can be obtained. When the distance between the positive and negative electrodes of the light emitting element is 0.1 mm, the conductive member on the upper surface of the submount can be provided with an interval of about 0.05 to 0.08 mm so that the electrodes can be joined to these electrodes. Because of this, face-down implementation is also possible.
[0031]
The above-mentioned through-hole can be formed using a flat plate made of a glass epoxy resin having a surface on which a copper thin film for forming a conductive member is formed in advance by a drill, a laser, a punching process, or the like. By providing the through-hole, the heat dissipation is further enhanced, and the inner wall of the through-hole is in contact with and fixed to the conductive bonding member, so that the bonding with the lead electrode can be further strengthened.
[0032]
Such a through hole is formed so as to have openings on the upper surface and the lower surface of the submount on which the light emitting element is mounted. If the submount is electrically connected to the light emitting element, a through hole can be provided near the mounting portion of the light emitting element. However, if the through hole is formed separately from the light emitting element, stability is improved. This is preferable because the light emitting element can be mounted on the submount well.
[0033]
Further, the number and size of the through holes are not limited. Although only one through-hole can be provided, providing a plurality of through-holes increases the portion covered with the conductive material and expands a heat-dissipating path, thereby improving heat-dissipating properties. Further, the contact area between the joining member provided for joining with the lead electrode and the inner wall of the through hole increases, so that the adhesion is improved. If the number of through holes is even, for example, the through holes are provided symmetrically with respect to the center of the submount or the center axis of the light emitting element mounted on the center of the submount, the stability and heat dissipation are improved. Is preferred. In FIG. 5, the through-hole has the same shape from the upper surface to the lower surface and is formed substantially directly below, but may be formed to be inclined from the upper surface to the lower surface. In addition, it is preferable that the through-hole has a cylindrical shape, since stress is hardly partially concentrated, so that a problem does not occur and heat can be uniformly radiated. However, the shape is not limited to such a shape, and an ellipse, a square, a triangle, and the like can be selected. The shape of the opening, the angle of the side surface of the through hole, and the like are not particularly limited. Further, if the conductive bonding member is formed so as to become smaller as approaching the lower surface as shown in FIG. 9, the conductive bonding member becomes caught inside the through-hole when cured, so that it is more stable and hard to peel off.
[0034]
The size and the like of the submount can be appropriately determined according to the light emitting element and the package. The submount may be narrower than the light emitting element as long as it can be installed across the lead electrodes and the light emitting element can be placed and conducted. If the submount is substantially rectangular and the length is shorter than the diagonal line of the light emitting element, it should be easy to handle and be placed on the lead electrode with good stability. Can be. If the area of the submount is twice or more, or 5 to 100% of the area of the bottom surface of the concave portion of the package, the heat dissipation becomes good. As shown in FIG. 10, the submount can be arranged on the entire surface so as to cover the concave portion of the package. The submount covers part or all of the package exposed between the lead electrodes, and the conductive member on the surface of the submount has high reflectivity, so that light can be suppressed and reflected by the package. Therefore, light can be efficiently extracted to the outside. Further, as described above, the reflectivity can be increased by covering the exposed portion of the package between the lead electrodes with the submount by 5 to 100%, preferably 50% or more.
[0035]
The thickness of the submount is not particularly limited as long as it fits in the package and does not affect the directivity of the light emitting device, but when it is 0.2 to 0.3 mm, the heat radiation becomes good, Since the light emitting element is located at an intermediate portion with respect to the depth of the package, the influence of the thermal stress of the resin sealing the package on the light emitting element is preferably reduced.
[0036]
(package)
The package of the present invention has a concave shape, and a pair of positive and negative lead electrodes is exposed on the bottom surface of the concave portion. When such a package is made of a resin, the lead electrode is sandwiched by a forming mold, and the molten resin is injected from a gate into the closed mold, and is relatively easily formed by insert molding to be cured. can do.
[0037]
The lead electrode can be configured using a high thermal conductor such as iron-containing copper. Further, the surface of the lead electrode may be plated with a metal such as silver, aluminum, copper, or gold to improve the reflectance of light from the light emitting element and prevent oxidation of the lead base material. Further, it is preferable to make the surface smooth in order to improve the reflectance of the surface of the lead electrode. In addition, it is preferable that the area of the lead electrode is large. In this manner, heat dissipation can be increased, and a temperature rise of the light emitting element disposed via the submount can be effectively suppressed. . As a result, a relatively large amount of power can be applied to the light emitting element, and the light output can be improved.
[0038]
The lead electrode is formed by punching a long metal plate using a press to form a portion serving as a positive or negative lead electrode of each package molded body. In the portion corresponding to each package molded body of the long metal plate after the press working, the positive lead electrode is negative so that one end surface thereof faces the one end surface of the negative lead electrode on the bottom surface of the molded package concave portion. Are separated from the lead electrodes.
[0039]
The material used for the package in which the lead electrode is insert-molded is a liquid crystal polymer, polyphthalamide, polybutylene terephthalate, or the like, preferably polyphthalamide, and a package made of such a resin emits light. It is hardly deteriorated by heat or light from the element, and withstands stress such as bending of the lead frame.
[0040]
Further, the inside of the package concave portion can be sealed with a mold resin after joining the submount on which the light emitting element is mounted with the lead electrode.
[0041]
(Conductive bonding member)
The conductive bonding member according to the embodiment of the light emitting device of the present invention includes a first bonding member for bonding the light emitting element and the conductive member on the upper surface of the submount, and a conductive member and a package on the lower surface of the submount. And a second joining member for joining the formed lead electrode.
[0042]
The first joining member is formed by a bump made of aluminum, gold, solder, or the like. Such a bump is placed on the electrode of the light emitting element, placed so as to face the wiring pattern on the light emitting element mounting surface of the submount, and applied with an ultrasonic wave of 0.5 to 2 W at a temperature of about 50 to 150 ° C. While applying a load to the light emitting element, the light emitting element and the submount are joined by alloying of a conductive joining member.
[0043]
The second adhesive member is joined by a conductive paste of silver, gold, or copper. After applying an appropriate amount of such a conductive paste to two portions of the submount mounting portion, the submount is mounted, and thermosetting is performed at 150 ° C. for 1 hour to enable bonding.
[0044]
Further, it is also possible to provide a fixing portion made of an insulating adhesive or the like between the submount and the lead electrode, in addition to the portion where the second adhesive member is provided. At this time, if a fixing portion made of an insulating material is provided in the package portion exposed between the lead electrodes, it is possible to prevent a short circuit or the like due to the conductive adhesive placed on both the lead electrodes flowing out.
[0045]
(Sealing member)
In the embodiment of the present invention, after the light emitting element is mounted on the submount, at least a part of the light emitting element can be covered with a sealing member as shown in FIG. Such a sealing member not only protects the light emitting element, but also has a function as an adhesive for fixing the submount and the light emitting element. The light emitting element and the submount can be adhered to each other with only the first bonding member. However, if stronger adhesion is required, the sealing member is provided so as to cover the light emitting element and the periphery thereof. Can be improved. In the present invention, it is preferable to provide a through-hole and to form the through-hole so as to be continuous to the inside, since the contact area with the submount is increased and the contact can be made three-dimensionally.
[0046]
As a material used as the sealing member, a material including a light reflecting member that reflects light from the light-emitting element or a light-transmitting member that can transmit light can be used, which is cured by heat or light. Possible resins can be used. When a sealing member including a light reflecting member is used, the sealing member may not be provided on the upper surface of the light emitting element, and may be provided so as to be continuous from the side surface of the element to the through hole. By providing the sealing member including the light reflecting member on the side surface of the light emitting element, light can be emitted only from the top surface of the light emitting element. Since the resin used as the sealing member may easily deteriorate depending on the wavelength of light emitted from the light-emitting element, the deterioration can be suppressed by using the sealing member including the light reflecting member only on the side surface. . When the resin is deteriorated and yellowed, light is absorbed, so that the luminous efficiency is reduced. However, such a problem can be avoided by suppressing the deterioration.
[0047]
In the case where a sealing member including a light reflecting member is used as shown in FIG. 8, light can be prevented from being emitted to the submount side by providing the sealing member not only on the side surface but also on the bottom surface. . Although the first conductive member is provided between the submount and the light emitting element, if there is a gap, it is preferable to provide a light reflecting member so as to fill the gap. Since the distance between the bottom surface of the light-emitting element and the submount is short, when light is emitted from the bottom of the light-emitting element, reflection is repeated and the resin is likely to be deteriorated. Such deterioration can be prevented. In this case, the sealing member including the light reflecting member is provided so as to be continuous from the side surface of the light emitting element, and further provided so as to be continuous to the through hole, so that it has adhesiveness to the submount and improves light extraction efficiency. Can be done. Further, even when the light emitting element is provided so as to be continuous from the bottom to the through hole, the light extraction efficiency can be improved.
[0048]
As the light reflecting member, it is preferable to use at least one selected from the group consisting of silicon oxide, barium titanate, titanium oxide, and aluminum oxide. Particles composed of these members can be used as a light reflecting member mixed in a sealing member.
[0049]
In the case where a translucent member is used, it can be provided continuously from the upper surface of the light emitting element to the through hole, so that a stronger adhesive force can be obtained. Then, using the sealing member having both the light reflecting member and the light transmitting member as described above, for example, as shown in FIGS. May be formed so as to reach the through hole from the upper surface of the light emitting element. As described above, the through-hole may be filled with a light-transmitting member or a light-reflecting member, and if provided continuously from at least the side surface of the light-emitting element, the effect of improving the adhesive strength is obtained. Is obtained.
[0050]
When a light-transmitting member is used as shown in FIG. 7, a light diffusing material that diffuses light may be mixed. Thereby, light dispersibility is improved and a uniform light emitting device can be obtained. Further, a fluorescent substance which can be excited by light from the light emitting element and emit light having a wavelength longer than that wavelength may be mixed. Thus, mixed light of light from the light emitting element and light from the fluorescent substance can be emitted, so that a light emitting device having various emission wavelengths can be obtained. After disposing the submount on which the light emitting element is mounted in the package concave part, the fluorescent substance can be contained in the resin that seals the concave part.However, this reduces the amount of the fluorescent substance used. In addition, since they can be uniformly mixed, luminance unevenness and the like can be prevented.
[0051]
The sealing member may be continuous from at least the side surface of the light-emitting element to the through hole, and even if it is continuous to the lower surface, as long as it is formed so as to be continuous through a part of the side surface of the through hole. Good. In addition, it is also possible to provide a space for the second joining member and seal it so that the second joining member can be provided even inside the through hole. Such a sealing member can be provided by potting, or can be provided by a method such as printing and coating after protecting the upper surface of the light emitting element with a mask or the like.
[0052]
(Fluorescent substance)
The fluorescent substance that can be used in the present invention may be an inorganic fluorescent substance or an organic fluorescent substance as long as the fluorescent substance can be excited by an emission wavelength emitted from the light-emitting element and emit visible light having a longer wavelength than that light. Emission colors of all visible light from purple to red can be applied. Specifically, examples of the inorganic phosphor include a silicate-based phosphor, a phosphate-based phosphor, an aluminate-based phosphor, a rare-earth-based phosphor, an rare-earth-based phosphor, and a zinc sulfide-based phosphor. . Specifically, in the case of a green light-emitting phosphor, Y 2 SiO 5 : Ce, Tb, MgAl 11 O 19 : Ce, Tb, BaMg 2 Al 16 O 27 : Mn, (Zn, Cd) S: Ag, ZnS: Au, Cu, Al, ZnS: Cu, Al, SrAl 2 O 4 : Eu, (SrCaBa) for blue light-emitting phosphor 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu, BaMg 2 Al 16 O 27 : Eu, Sr 5 (PO 4 ) 3 Cl: Eu, Sr 2 P 2 O 7 : Eu, ZnS: Ag, Al, ZnS: Ag, Al (pigmented), ZnS: AgCl, ZnS: AgCl (pigmented), and Y for the red light emitting phosphor 2 O 2 S: Eu, Y 2 O 2 S: Eu (pigmented), Y 2 O 3 : Eu, 3.5MgO.0.5MgF 2 ・ GeO 2 : Mn, Y (PV) O 4 : Eu, 5MgO.3Li 2 O ・ Sb 2 O 5 : Mn, Mg 2 TiO 4 : Mn and the like. As a material having relatively high luminous efficiency, SrAl 2 O 4 : Eu, Sr for blue light emitting phosphor 5 (PO 4 ) 3 Cl: Eu, Y for the red light emitting phosphor 2 O 2 S: Eu.
[0053]
【Example】
(Example 1)
A flat plate made of glass epoxy is used as the submount. A copper thin film as a conductive member is formed on the upper and lower surfaces of the flat plate by bonding or lamination. Next, a negative film is attached to a flat plate, exposed, and removed by chemical etching or the like to form a copper thin film pattern as shown by the hatched portion in FIG. Using a drill, etching, laser, or the like, this copper thin film forming plate is formed so that a plurality of through holes are arranged in the X direction and the Y direction as shown in FIG. Next, as shown in the cross-sectional view of FIG. 13C, the copper thin film is formed so as to be continuous from the upper surface to the lower surface via the through hole, through the through hole. As a result, the through-holes arranged in the X direction are provided so as to be continuous, but a copper thin film is formed such that the glass epoxy resin is exposed apart from each other on the upper surface and the lower surface. That is, the copper thin films of the four through holes arranged in the X direction are continuous, and the copper thin films of the two through holes arranged in the Y direction are formed without contact.
[0054]
Next, as shown in FIG. 13D, the light emitting element is arranged on the copper thin film so as to be in contact with both of the copper thin films formed between the through holes arranged in the Y direction and apart from each other. At this time, a glass epoxy flat plate was placed on a heater heated to 100 ° C., and a gold bump was applied to the mounting portion of the light emitting element of the glass epoxy flat plate while applying a 1 W ultrasonic wave and a load of 60 gf using a bump bonder. Form. Thereafter, the light emitting element is alloyed on the glass epoxy flat plate while applying heat, load and ultrasonic waves by a mounter.
[0055]
Next, as a light reflecting member, TiO 2 Is potted on the through hole as shown in FIG. At this time, TiO 2 It is necessary to control the amount of the resin so that the contained resin does not cover the upper surface of the light emitting element. TiO 2 After the resin is cured, the flat plate is cut along the broken line in FIG. 13 (f) to obtain individual submounts on which the light emitting elements are mounted as shown in FIG. 13 (g). The submount thus formed has a shape with a short side of 0.6 mm, a long side of 1.4 mm, and a thickness of 0.3 mm, and the distance between the copper thin films on the upper surface of the submount is 0.08 mm. is there. The distance between the electrodes of the mounted light emitting element is 0.1 mm.
[0056]
Next, the lead electrodes are placed in a resin package in which insert molding is performed. In the resin package, a portion to be a lead electrode is formed by punching a metal plate made of a copper alloy metal having a thickness of 0.15 mm using a press, and the pair of positive and negative lead electrode portions thus formed is placed in a mold. It is inserted and closed, and a resin is poured into a mold and cured to form. The resin package has a concave shape, and a part of the package is exposed between a pair of positive and negative lead electrodes and a lead of 0.15 mm. The copper thin film on the lower surface of the submount on which the above-described light emitting element is mounted and each lead electrode are joined with a silver paste so as to cross the positive and negative lead electrodes in such a package. The light-emitting device of the present invention can be obtained by sealing.
[0057]
(Example 2)
In the first embodiment, the light emitting element mounted on the glass epoxy resin flat plate on which the conductive member made of the copper thin film is formed by the gold bump is cut, and the individual light emitting element mounted thereon is cut. Split as mount. Next, using a silver paste as a conductive bonding member, the submount was bonded to a lead electrode of a resin package. Since the conductive bonding member hardens after entering the inside of the through hole, the bonding between the submount and the lead electrode can be made strong. Next, the inside of the concave portion of the package is sealed with epoxy resin. The epoxy resin contains 5% by weight of YAG. With such a structure, the light-emitting device of the present invention can be obtained.
[0058]
【The invention's effect】
According to the present invention, by using a submount having a sufficient length for mounting between the lead electrodes, the light emitting element can be electrically connected with good stability by face-down mounting, so that the reliability is improved. And a surface-mounted light-emitting device with a rich surface.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a light emitting device of the present invention.
FIG. 2 is a schematic plan view showing a light emitting device of the present invention.
FIG. 3 is a schematic plan view showing another light emitting device of the present invention.
FIG. 4 is a schematic sectional view showing AA in FIG. 3;
FIG. 5 is a schematic sectional view showing another light emitting device of the present invention.
FIG. 6 is a schematic sectional view showing another light emitting device of the present invention.
FIG. 7 is a schematic sectional view showing another light emitting device of the present invention.
FIG. 8 is a schematic sectional view showing another light emitting device of the present invention.
FIG. 9 is a schematic sectional view showing another light emitting device of the present invention.
FIG. 10 is a schematic plan view showing another light emitting device of the present invention.
FIG. 11 is a schematic sectional view showing another light emitting device of the present invention.
FIG. 12 is a schematic sectional view showing another light emitting device of the present invention.
FIG. 13 is a process chart showing a step of forming a light emitting device of the present invention.
(A) Schematic diagram of a flat plate on which a conductive member is formed
(B) Schematic diagram of a flat plate with a through hole formed
(C) Sectional view of FIG.
(D) Schematic view of a flat plate on which light emitting elements are arranged
(E) Sectional view of FIG.
(F) Schematic view of substrate on which light reflecting member is formed
(G) Sectional view of FIG.
FIG. 14 is a schematic plan view showing a light emitting device shown for comparison with the present invention.
FIG. 15 is a schematic sectional view showing AA in FIG. 14;
[Explanation of symbols]
1. Light emitting element
2. Submount
3. Conductive member
4. Lead electrode
5. First joining member
6. Second joining member
7. package
8. Wire
9. Through hole
10. Translucent member
11. Sealing member including light reflecting member

Claims (10)

凹部を有し、その凹部の底面に正負一対のリード電極が露出するようインサート成形されてなるパッケージと、前記リード電極上にフェイスダウン実装されてなる発光素子とを有する発光装置であって、
前記リード電極と前記発光素子との間に、該発光素子を実装可能なサブマウントを有し、該サブマウントは少なくとも表面に導電性部材を有し、該導電性部材は、前記発光素子および前記リード電極と導電性接合部材によって電気的に接続されてなることを特徴とする発光装置。
A light emitting device having a concave portion, a package formed by insert molding such that a pair of positive and negative lead electrodes are exposed on the bottom surface of the concave portion, and a light emitting element mounted face down on the lead electrode,
Between the lead electrode and the light emitting element, has a submount capable of mounting the light emitting element, the submount has a conductive member at least on the surface, the conductive member, the light emitting element and the A light emitting device, which is electrically connected to a lead electrode by a conductive bonding member.
前記サブマウントは、前記リード電極間方向へ延長された矩形形状からなる請求項1に記載の半導体発光装置。2. The semiconductor light emitting device according to claim 1, wherein the submount has a rectangular shape extending in a direction between the lead electrodes. 前記サブマウントは、短辺の長さが発光素子の対角線より長い請求項2に記載の半導体発光装置。The semiconductor light emitting device according to claim 2, wherein a length of a short side of the submount is longer than a diagonal line of the light emitting element. 前記サブマウントは、前記発光素子の少なくとも2倍以上の面積を有する請求項1乃至3に記載の半導体発光装置。The semiconductor light emitting device according to claim 1, wherein the submount has an area at least twice as large as the light emitting element. 前記サブマウントは、厚さ方向に貫通する貫通孔を有し、該貫通孔は内壁に該サブマウント上面および下面の導電性部材と連続する導電性部材を有し、該貫通孔を介して該サブマウントの上面と下面は導通されている請求項1乃至4に記載の半導体発光装置。The submount has a through hole penetrating in the thickness direction, the through hole has a conductive member on the inner wall that is continuous with a conductive member on the upper surface and the lower surface of the submount, and the submount is formed through the through hole. 5. The semiconductor light emitting device according to claim 1, wherein an upper surface and a lower surface of the submount are electrically connected. 前記貫通孔は複数形成されている請求項5に記載の半導体発光装置。The semiconductor light emitting device according to claim 5, wherein a plurality of the through holes are formed. 前記発光素子の中心軸は前記サブマウントの中心軸と一致し、前記貫通孔は、前記発光素子の外周部において、前記中心軸に対して対称な位置に形成されている請求項6に記載の半導体発光装置。7. The light emitting device according to claim 6, wherein a central axis of the light emitting element coincides with a central axis of the submount, and the through hole is formed at a position symmetrical with respect to the central axis at an outer peripheral portion of the light emitting element. Semiconductor light emitting device. 前記貫通孔は、円柱形状からなることを特徴とする請求項5乃至7に記載の半導体発光装置。8. The semiconductor light emitting device according to claim 5, wherein said through hole has a cylindrical shape. 前記接着部は、前記貫通孔の内壁の少なくとも一部と接触している請求項5乃至8に記載の半導体発光装置。9. The semiconductor light emitting device according to claim 5, wherein the adhesive portion contacts at least a part of an inner wall of the through hole. 10. 前記サブマウントは、ガラスエポキシ或いはBTレジンからなる請求項1乃至9に記載の半導体発光装置。10. The semiconductor light emitting device according to claim 1, wherein the submount is made of glass epoxy or BT resin.
JP2002327634A 2002-11-11 2002-11-11 Light emitting device and manufacturing method thereof Expired - Lifetime JP4288931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327634A JP4288931B2 (en) 2002-11-11 2002-11-11 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327634A JP4288931B2 (en) 2002-11-11 2002-11-11 Light emitting device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008300963A Division JP4544361B2 (en) 2008-11-26 2008-11-26 Light emitting device

Publications (2)

Publication Number Publication Date
JP2004165308A true JP2004165308A (en) 2004-06-10
JP4288931B2 JP4288931B2 (en) 2009-07-01

Family

ID=32806160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327634A Expired - Lifetime JP4288931B2 (en) 2002-11-11 2002-11-11 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4288931B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018098A1 (en) * 2005-08-05 2007-02-15 Olympus Medical Systems Corp. Light emitting unit
JP2008288552A (en) * 2007-04-18 2008-11-27 Nichia Corp Light emitting device
JP2008292660A (en) * 2007-05-23 2008-12-04 Fujikura Ltd Optical fiber and optical communication module
JP2009071264A (en) * 2007-09-17 2009-04-02 Samsung Electro Mech Co Ltd Light emitting diode package and its manufacturing method
US7715957B2 (en) 2006-02-22 2010-05-11 Toyota Jidosha Kabushiki Kaisha Control device of vehicle
JP2011155178A (en) * 2010-01-28 2011-08-11 Panasonic Corp Package for semiconductor element and light emitting element using the same
JP2011176234A (en) * 2010-02-25 2011-09-08 Citizen Electronics Co Ltd Semiconductor light emitting device
WO2011134777A1 (en) * 2010-04-30 2011-11-03 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
JP2012074645A (en) * 2010-09-30 2012-04-12 Seiko Instruments Inc Package, package manufacturing method and piezoelectric vibrator
JP2013534733A (en) * 2010-07-15 2013-09-05 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor module
US8759124B2 (en) 2010-10-29 2014-06-24 Nichia Corporation Light emitting apparatus and production method thereof
US9236549B2 (en) 2006-12-19 2016-01-12 Seoul Semiconductor Co., Ltd. Heat conducting slug having multi-step structure and light emitting diode package using the same
KR20160076378A (en) * 2014-12-22 2016-06-30 주식회사 루멘스 Light emitting device package, Method for manufacturing light emitting device package and backlight unit
CN111201620A (en) * 2019-04-15 2020-05-26 厦门市三安光电科技有限公司 Light emitting device and method for manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148724A (en) * 1994-11-21 1996-06-07 Stanley Electric Co Ltd Chip-mount-type led
JPH11284234A (en) * 1998-03-30 1999-10-15 Nichia Chem Ind Ltd Light emitting device
JP2000156527A (en) * 1998-11-19 2000-06-06 Matsushita Electronics Industry Corp Semiconductor light emitting device
JP2000188358A (en) * 1998-12-22 2000-07-04 Rohm Co Ltd Semiconductor device
JP2001024228A (en) * 1999-07-06 2001-01-26 Nichia Chem Ind Ltd Light emitting device
JP2001168398A (en) * 1999-12-13 2001-06-22 Nichia Chem Ind Ltd Light emitting diode and its manufacturing method
JP2002009347A (en) * 2000-06-26 2002-01-11 Koha Co Ltd Led light source and its manufacturing method
JP2002203989A (en) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc Light emitting device and its manufacturing method
JP2004056075A (en) * 2002-05-31 2004-02-19 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148724A (en) * 1994-11-21 1996-06-07 Stanley Electric Co Ltd Chip-mount-type led
JPH11284234A (en) * 1998-03-30 1999-10-15 Nichia Chem Ind Ltd Light emitting device
JP2000156527A (en) * 1998-11-19 2000-06-06 Matsushita Electronics Industry Corp Semiconductor light emitting device
JP2000188358A (en) * 1998-12-22 2000-07-04 Rohm Co Ltd Semiconductor device
JP2001024228A (en) * 1999-07-06 2001-01-26 Nichia Chem Ind Ltd Light emitting device
JP2001168398A (en) * 1999-12-13 2001-06-22 Nichia Chem Ind Ltd Light emitting diode and its manufacturing method
JP2002009347A (en) * 2000-06-26 2002-01-11 Koha Co Ltd Led light source and its manufacturing method
JP2002203989A (en) * 2000-12-21 2002-07-19 Lumileds Lighting Us Llc Light emitting device and its manufacturing method
JP2004056075A (en) * 2002-05-31 2004-02-19 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007018098A1 (en) * 2005-08-05 2009-02-19 オリンパスメディカルシステムズ株式会社 Light emitting unit
US7968901B2 (en) 2005-08-05 2011-06-28 Olympus Medical Systems Corp. Light emitting unit
WO2007018098A1 (en) * 2005-08-05 2007-02-15 Olympus Medical Systems Corp. Light emitting unit
US7715957B2 (en) 2006-02-22 2010-05-11 Toyota Jidosha Kabushiki Kaisha Control device of vehicle
US9293677B2 (en) 2006-12-19 2016-03-22 Seoul Semiconductor Co., Ltd. Heat conducting slug having multi-step structure and light emitting diode package using the same
US9236549B2 (en) 2006-12-19 2016-01-12 Seoul Semiconductor Co., Ltd. Heat conducting slug having multi-step structure and light emitting diode package using the same
JP2008288552A (en) * 2007-04-18 2008-11-27 Nichia Corp Light emitting device
JP2008292660A (en) * 2007-05-23 2008-12-04 Fujikura Ltd Optical fiber and optical communication module
US8563338B2 (en) 2007-09-17 2013-10-22 Samsung Electronics Co., Ltd. Light emitting diode package having an LED chip mounted on a phosphor substrate
JP2009071264A (en) * 2007-09-17 2009-04-02 Samsung Electro Mech Co Ltd Light emitting diode package and its manufacturing method
US8143634B2 (en) 2007-09-17 2012-03-27 Samsung Led Co., Ltd. Light emitting diode package with a phosphor substrate
JP2011155178A (en) * 2010-01-28 2011-08-11 Panasonic Corp Package for semiconductor element and light emitting element using the same
JP2011176234A (en) * 2010-02-25 2011-09-08 Citizen Electronics Co Ltd Semiconductor light emitting device
CN102859729A (en) * 2010-04-30 2013-01-02 欧司朗光电半导体有限公司 Optoelectronic component and method for producing an optoelectronic component
US9293671B2 (en) 2010-04-30 2016-03-22 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
WO2011134777A1 (en) * 2010-04-30 2011-11-03 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
US8860062B2 (en) 2010-07-15 2014-10-14 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
JP2013534733A (en) * 2010-07-15 2013-09-05 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor module
JP2012074645A (en) * 2010-09-30 2012-04-12 Seiko Instruments Inc Package, package manufacturing method and piezoelectric vibrator
US9076948B2 (en) 2010-10-29 2015-07-07 Nichia Corporation Light emitting apparatus and production method thereof
US8759124B2 (en) 2010-10-29 2014-06-24 Nichia Corporation Light emitting apparatus and production method thereof
US9276181B2 (en) 2010-10-29 2016-03-01 Nichia Corporation Light emitting apparatus and production method thereof
US10741729B2 (en) 2010-10-29 2020-08-11 Nichia Corporation Light emitting apparatus and production method thereof
US11626543B2 (en) 2010-10-29 2023-04-11 Nichia Corporation Light emitting apparatus and production method thereof
US11876153B2 (en) 2010-10-29 2024-01-16 Nichia Corporation Light emitting apparatus and production method thereof
KR20160076378A (en) * 2014-12-22 2016-06-30 주식회사 루멘스 Light emitting device package, Method for manufacturing light emitting device package and backlight unit
KR101640384B1 (en) * 2014-12-22 2016-07-18 주식회사 루멘스 Light emitting device package, Method for manufacturing light emitting device package and backlight unit
CN111201620A (en) * 2019-04-15 2020-05-26 厦门市三安光电科技有限公司 Light emitting device and method for manufacturing the same
CN111201620B (en) * 2019-04-15 2023-12-12 泉州三安半导体科技有限公司 Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP4288931B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US7842526B2 (en) Light emitting device and method of producing same
CN102113139B (en) Light-emitting device
US8294160B2 (en) Light emitting device including a sealing portion, and method of making the same
JP5233170B2 (en) LIGHT EMITTING DEVICE, RESIN MOLDED BODY FORMING LIGHT EMITTING DEVICE, AND METHOD FOR PRODUCING THEM
KR100710102B1 (en) Light emitting apparatus
JP5262054B2 (en) Method for manufacturing light emitting device
JP4773755B2 (en) Chip-type semiconductor light emitting device
US9728685B2 (en) Light emitting device and lighting device including same
JP2004363537A (en) Semiconductor equipment, manufacturing method therefor and optical device using the same
JP2008166462A (en) Light-emitting device
JP4288931B2 (en) Light emitting device and manufacturing method thereof
JP2006269778A (en) Optical device
JP2013062416A (en) Semiconductor light-emitting device and manufacturing method of the same
CN109216527B (en) Light emitting device
JP4923711B2 (en) Light emitting device
JP5256591B2 (en) Light emitting device
JP5077282B2 (en) Light emitting element mounting package and light emitting device
JP4544361B2 (en) Light emitting device
JP2004186309A (en) Semiconductor light emitting device equipped with metal package
JP5233478B2 (en) Light emitting device
KR100866879B1 (en) LED package and method of manufacturing the same
JP2003037293A (en) Chip component type light-emitting element and manufacturing method therefor
JP7189413B2 (en) light emitting device
JP6326830B2 (en) Light emitting device and lighting device including the same
JP6252023B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4288931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term