New! View global litigation for patent families

JP2001168398A - Light emitting diode and its manufacturing method - Google Patents

Light emitting diode and its manufacturing method

Info

Publication number
JP2001168398A
JP2001168398A JP35362999A JP35362999A JP2001168398A JP 2001168398 A JP2001168398 A JP 2001168398A JP 35362999 A JP35362999 A JP 35362999A JP 35362999 A JP35362999 A JP 35362999A JP 2001168398 A JP2001168398 A JP 2001168398A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
light
chip
diode
site
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35362999A
Other languages
Japanese (ja)
Inventor
Masafumi Kuramoto
Michihide Miki
Keijiro Sudo
Masashi Tomaru
倫英 三木
圭二郎 数藤
昌司 東丸
雅史 蔵本
Original Assignee
Nichia Chem Ind Ltd
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting diode having excellent heat resistance by reducing a thermal stress applied to an LED chip in the diode using the LED chip usable for a writing light source, a light source for a back light or the like of various type indicators, displays or optical printers and a method for manufacturing it.
SOLUTION: The light emitting diode comprises conductive wires for respectively electrically connecting at least one of a pair of lead electrodes to the electrodes of an LED chip, and a translucent sealing resin covering the chip and the wires. In this diode, the resin has a first site containing an inorganic filler covering the LED chip and operating as a buffer layer, and a higher translucent second site than that of the first site on the first site.
COPYRIGHT: (C)2001,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は各種インジケータ、 The present invention relates to various indicators BACKGROUND OF THE INVENTION,
ディスプレイ、光プリンターの書き込み光源やバックライト用光源などに利用可能なLEDチップを用いた発光ダイオードに係わり、特にLEDチップにかかる熱応力を低減させ、耐熱性に優れた発光ダイオード及びその製造方法に関する。 Display, relates to a light emitting diode using the available LED chips such as writing light source or a backlight source of light printer, in particular to reduce the thermal stress applied to the LED chip, a light emitting diode and a manufacturing method thereof excellent in heat resistance .

【0002】 [0002]

【従来技術】今日、表面実装型や砲弾型などの種々の発光装置が様々な分野に利用されている。 BACKGROUND ART Today, a variety of light emitting devices such as surface-mounted or bullet type have been utilized in various fields. 発光装置の一例である発光ダイオードは、支持体となる基板上にLED Emitting diode is an example of a light emitting device, LED on a substrate made of a support
チップを樹脂によってダイボンディングされている。 It is die-bonded chip by resin. また、LEDチップの各電極とワイヤーなどを用いて電気的に接続させると共に所望に応じてLEDチップを保護する透光性封止樹脂で被覆してある。 Also, are coated with a translucent sealing resin for protecting the LED chip depending on the desired together are electrically connected by using a respective electrodes and wires of the LED chip.

【0003】LEDチップのダイボンディング・ワイヤーボンディング後に基板の凹部内部に注入される封止樹脂には、一般に絶縁性且つ透光性を有し室温で液状の樹脂が使用される。 [0003] sealing resin is injected after the die bonding wire bonding LED chips within the recess of the substrate, generally insulating and liquid resin at room temperature has translucency is used. 具体例として、エポキシ樹脂やアクリレート樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂等の熱硬化性樹脂、又はアクリル樹脂、ポリカーボネート樹脂、ポリノルボルネン樹脂等の熱可塑性樹脂が使用される。 As a specific example, epoxy resin or acrylate resin, urethane resin, silicone resin, thermosetting resin such as polyimide resin, or an acrylic resin, a polycarbonate resin, a thermoplastic resin such as polynorbornene resins. 熱硬化性樹脂を用いた場合、樹脂硬化のため加熱により透光性樹脂を形成させることができる。 If a thermosetting resin is used, it is possible to form a translucent resin by heating for curing the resin.
また、熱可塑性樹脂を用いた場合、溶剤を揮発させることにより透光性樹脂を形成させることができる。 In the case of using the thermoplastic resin, it is possible to form a translucent resin by evaporating the solvent.

【0004】熱硬化性樹脂の特徴としては、成形時に熱硬化反応を伴い圧縮成形のような簡単な方法で成形可能であり堅くて頑丈な樹脂が得られる。 [0004] As a feature of the thermosetting resin is moldable and hard and tough resins are obtained in a simple manner, such as compression molding with a thermosetting reaction at the time of molding. 耐熱性については、全般的に熱可塑性樹脂よりも優れている。 For heat resistance, it is superior overall thermoplastic resin. 熱可塑性樹脂の特徴としては、化学構造的には線状高分子を成している。 The characteristics of the thermoplastic resin, the chemical structure forms a linear polymer. また、押出成形、射出成形によって効率よく加工することができ、成形不良品については再製利用も可能である。 The extrusion molding, injection molding by can be processed efficiently, it is also possible reproduction available for molding defective. 更に、熱硬化性樹脂よりも透明樹脂を成形しやすく、透光性に優れている。 Furthermore, easily molded transparent resin than a thermosetting resin, has excellent translucency.

【0005】次に、LEDチップは、GaAs、Ga [0005] Next, LED chips, GaAs, Ga
P、GaAlAs、GaN、InGaN、InGaAl P, GaAlAs, GaN, InGaN, InGaAl
Nなどの半導体発光層からなる。 Made of a semiconductor light-emitting layer such as N. これらの半導体発光層からなるLED基板は、透光性封止樹脂を使用するため半導体の中でもIC基板などに比べ特に熱に弱く熱応力の発生が大きな問題とされていた。 LED substrate consisting of the semiconductor light-emitting layer, the occurrence of particularly weak thermal stress to the heat than are IC substrate Among semiconductor for use translucent sealing resin has been a big problem. そのため、発熱放出の役割を持つリード電極などを形成することにより改善を行ってきた。 Therefore, we have made improved by forming such as a lead electrode having a role of heating emission.

【0006】 [0006]

【発明が解決しようとする課題】しかしながら、本発明などに用いるLEDチップにおいて量産性よく耐熱性の高い発光ダイオードを形成させる場合は上記方法では十分ではない場合があった。 [0007] However, the case of forming a mass with good high heat resistance light emitting diodes in the LED chip to be used in such the present invention there may not be sufficient in the above method. そのため、実装時のリフロー熱により、LEDチップ・基板・リード電極と透光性封止樹脂との熱膨張係数差による剥離に伴いワイヤーオープンが発生したり、ヒートサイクル性能が他の表面実装部品に比べ劣ることが問題とされており、耐熱性を向上させることを本発明の目的とした。 Therefore, by reflow heat at the time of mounting, or wire open occurs due to reduction in thermal expansion coefficient difference between the LED chip substrate lead electrode and the transparent sealing resin, heat cycle performance to other surface mount components and the inferior is a problem, and an object of the present invention to improve the heat resistance.

【0007】 [0007]

【課題を解決する手段】本発明は、発光ダイオードの信頼性が熱伝導経路である基板上のLEDチップ・基板・ Means for Solving the Problems The present invention is, LED chip substrate on the substrate reliability of the light emitting diodes is heat conduction path,
リード電極と透光性樹脂の界面に発生する熱応力にあることに着目し、透光性封止樹脂の構成成分を変化させたものである。 Noting that in the thermal stress generated at the interface between the lead electrode and the transparent resin, is obtained by changing the components of the translucent sealing resin.

【0008】本発明は、更に詳細に説明した下記構成(1)〜(7)によって、上記本発明の目的を達成することができる。 The present invention, by the following configuration described in more detail (1) to (7), it is possible to achieve the object of the present invention. (1)透光性封止樹脂はLEDチップ及びワイヤーを被覆する無機フィラーが含有され緩衝層として働く第一の部位と、該第一の部位上に第一の部位よりも透光性の高い第二の部位とを有することを特徴とする発光ダイオード。 (1) translucent sealing resin and the first portion acting as the inorganic filler is contained buffer layer covering the LED chip and the wire, a high light-transmitting property than the first sites on the site of the first light emitting diode and having a second part. (2)前記緩衝層は線膨張係数が2×10 -5 (1/℃) (2) the buffer layer linear expansion coefficient of 2 × 10 -5 (1 / ℃ )
以上6×10 -5 (1/℃)以下でると共に、緩衝部の厚みはLEDチップ上に20μm以上400μm以下である(1)に記載の発光ダイオード。 Above with 6 × leaving 10 -5 (1 / ° C.) or less, the light emitting diode according to the thickness of the buffer portion is 20μm or more 400μm or less on the LED chip (1). (3)前記緩衝部には無機フィラーはシリカ、窒化ホウ素、燐酸カルシウム、希土類化合物から選択される少なくとも一種が含有されている(1)に記載の発光ダイオード。 (3) the buffer section in the inorganic filler is silica, boron nitride, calcium phosphate, light-emitting diode according to at least one selected from the rare earth compound is contained (1). (4)前記LEDチップはリード電極を有する表面に凹部を持った基板上に配置されると共に前記透光性封止樹脂は前記凹部内に配置される(1)に記載の発光ダイオード。 (4) the LED chip emitting diode according to the translucent sealing resin is disposed in the recess (1) while being arranged on a substrate having a concave portion on a surface having a lead electrode. (5)前記透光性封止樹脂は、エポキシ樹脂、アクリレート樹脂、ウレタン樹脂、ポリイミド樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリノルボルネン樹脂から選択される少なくとも一種である(1)に記載の発光ダイオード。 (5) the translucent sealing resin, epoxy resin, acrylate resin, urethane resin, polyimide resin, light-emitting diode according to at least one selected from acrylic resins, polycarbonate resins, polynorbornene resin (1). (6)前記緩衝部には無機フィラーの密度勾配があり、 (6) in the buffer portion has a density gradient of an inorganic filler,
リード電極に近づくにつれ連続的に線膨張係数がリード電極の線膨張係数に近づく(1)に記載の発光ダイオード (7)リード電極とLEDチップ及び導電性ワイヤーによってワイヤボンドする工程と、前記LEDチップ及び導電性ワイヤー上に無機フィラーを混合撹拌させた該無機フィラーよりも比重の小さい熱硬化性或いは可塑性樹脂中の無機フィラーをLEDチップ側に沈降させる工程とを有する発光ダイオードの形成方法。 A step of continuously linear expansion coefficient of wire bonding by a light emitting diode (7) lead electrode and the LED chip and the conductive wires according to approach the coefficient of thermal expansion of the lead electrode (1) as it approaches the lead electrode, the LED chips method of forming a light emitting diode and a step to precipitate and conductive inorganic filler small thermosetting specific gravity than inorganic filler is mixed and stirred inorganic filler or in thermoplastic resin on the wire to the LED chip side.

【0009】 [0009]

【発明の実施の形態】本発明者は種々の実験の結果、凹部を持った基板上にLEDチップが配置される発光ダイオードにおいて無機フィラーを含有する透光性封止樹脂注入時に、無機フィラーをLEDチップ側に沈降させ緩衝層を成形することによって、耐熱性が急激に良くなることを見出し本発明を成すに至った。 DETAILED DESCRIPTION OF THE INVENTION The present inventors as a result of various experiments, when translucent sealing resin injection containing an inorganic filler in the light-emitting diode LED chips on a substrate having a recess is arranged, an inorganic filler by precipitated on the LED chip side forming the buffer layer, thereby forming the basis of the present invention found that the heat resistance is rapidly improved.

【0010】即ち、一実施の形態における発光ダイオードでは、透光性封止樹脂の熱膨張率がLEDチップ・基板・リード電極に比べ大きいため熱衝撃による膨張・収縮挙動が発生し所望の信頼性が得られないことから、L [0010] That is, in one light-emitting diode in the embodiment, the thermal expansion coefficient of the translucent sealing resin LED chip substrate lead electrode expansion and shrinkage behavior due to thermal shock larger than in occurs desired reliability from the fact that can not be obtained, L
EDチップ・基板・リード電極と透光性樹脂との界面に発生する熱応力を、緩衝部を有する透光性封止樹脂を成形することにより抑制し、耐熱性を向上させたものである。 The thermal stress generated at the interface between the ED chip substrate lead electrode and the transparent resin, is suppressed by molding a translucent sealing resin having a buffering portion, it is obtained to improve the heat resistance.

【0011】以下、本発明の発光ダイオードの一例として表面実装型LEDを簡単に説明する。 [0011] Hereinafter, brief description of surface-mounted LED as an example of a light-emitting diode of the present invention. 図1に本発明の模式的断面図を示す。 It shows a schematic cross-sectional view of the present invention in FIG. インサート成形可能な耐熱性樹脂を基板106に用い、LEDチップ103を被覆した発光ダイオード100を構成する。 Using an insert moldable heat resistant resin substrate 106, forming the light emitting diode 100 which covers the LED chip 103. 支持体である基板10 As a support substrate 10
6にはLEDチップ103と外部とを電気的に接続させるための内部電極105bがはめ込まれている。 Internal electrodes 105b for electrically connecting the LED chip 103 and the outside is fitted to 6. 外部電極105aは、光反射性を高めるために銀でメッキされている。 External electrodes 105a are plated with silver to enhance the light reflectivity. 該LEDチップ103はダイボンディングにより固着係止されている。 The LED chip 103 is sealed fixed engagement by die bonding. その後、LEDチップ103上に設けられた電極と基板の電極とを金線104によりワイヤーボンディングさせ、基板凹部内に透光性樹脂を注入し発光ダイオード100を形成させることができる。 Thereafter, the electrode and the substrate electrode provided on the LED chip 103 by gold wire 104 is wire bonding, it is possible to form a light-emitting diode 100 by injecting translucent resin in the substrate recess.

【0012】本発明に用いたLEDチップはダブルへテロ構造を形成しているため、発光部からの光放出は多い。 [0012] Since the LED chips used in the present invention to form a double-hetero structure, the more light emitting from the light emitting portion. また、窒化物半導体を利用したLEDチップは結晶成長が難しいことから、窒化物半導体の物性から一般にサファイア基板上に形成される。 Further, LED chips using a nitride semiconductor is formed from it is difficult crystal growth, generally the sapphire substrate from the physical properties of the nitride semiconductor. このため、サファイア基板上に形成された半導体積層面側に正極及び負極の電極を形成する。 Therefore, to form a positive electrode and the negative electrode on the semiconductor multilayer surface formed on a sapphire substrate. また、発光層上のほぼ前面を覆う全面電極を形成する。 Also, to form the entire electrode substantially covering the front surface of the light-emitting layer. このようなオーミック接触を取れる電極材料は限られており、この金属電極層を介して光が取り出される。 Such ohmic and contacts the take electrode material is limited, the light is taken out through the metal electrode layer. なお、本発明に用いる表面実装型発光ダイオードは、基板に側壁を有するタイプと基板上の側壁を取り除いた指向特性の異なるタイプの発光ダイオードが使用可能となる。 The surface-mount type light emitting diode used in the present invention, different types of light-emitting diodes directivity characteristic removing the types and sidewalls on a substrate having a side wall on the substrate is available. 以下、本発明の一実施形態を更に詳細に示す。 Hereinafter, it is shown in more detail an embodiment of the present invention.

【0013】本発明に用いる発光ダイオードの構成は、 [0013] Configuration of light-emitting diodes used in the present invention,
先ず支持体である基板106が、インサート成形可能な耐熱性樹脂から成り、導通部としてリード電極105を設ける。 Substrate 106 is a first support, made of insert moldable heat resistant resin, providing a lead electrode 105 as conductive portion. 該リード電極には、外部電極105aと内部電極105bがある。 The said lead electrodes, there is an external electrode 105a and the internal electrode 105b. 該リード電極105は光取り出し効率を損なわないためにAgメッキされた銅電極を使用してある。 The lead electrode 105 are using copper electrodes Ag plated in order not to impair the light extraction efficiency. 次に基板106の凹部内に発光素子としてAl Then Al as a light-emitting element in the recess of the substrate 106
GaInPからなるLEDチップ103をダイボンド機器を用いてAgペースト導電性接着剤でマウントする。 The LED chip 103 made of GaInP mount with Ag paste conductive adhesive using a die bonding device.

【0014】次にマウントされたLEDチップ103の発光面側の電極と基板106のリード電極105とをワイヤボンディング機器を用いてワイヤボンドさせる。 [0014] causes then the lead electrode 105 of the light emitting surface side of the electrode and the substrate 106 mounted LED chip 103 wire-bonded using a wire bonding device. 使用したワイヤーは金ワイヤー104である。 Wire used was a gold wire 104.

【0015】次に本発明における透光性封止樹脂には熱硬化性或いは熱可塑性樹脂を用いており、次に沈降性無機フィラーが含有された該透光性封止樹脂をLEDチップを配置した基板106の凹部内に注入する。 [0015] translucent sealing resin in the present invention is then provided with a thermosetting or thermoplastic resin, then precipitated inorganic filler is contained the light-transmitting sealing resin arranged LED chips injected into the inside recess of the substrate 106. 沈降性無機フィラーは、濡れ性、粒径と比重、粘度の性質上沈降して凹部底面を覆う。 Precipitated inorganic filler, wettability, particle size and specific gravity, to cover the bottom surface of the recess to settle the nature of viscosity. 沈降性無機フィラーは、透光性封止樹脂との濡れ性が悪いほど沈降しやすくなる。 Precipitated inorganic filler, wetting of the translucent sealing resin tends to settle as bad. また粒径又は比重は大きいほど、透光性樹脂の粘度が低いほど、沈降性は大きくなる。 The particle size or higher density is large, the lower the viscosity of the translucent resin, precipitated increases. 更に透光性封止樹脂との屈折率差の小さいものほど透過率が良好となる傾向にある。 Smaller ones as transmittance refractive index difference between the translucent sealing resin tends to become good.
透光性封止樹脂であるエポキシ樹脂の屈折率(n D Refractive index of the epoxy resin is a translucent sealing resin (n D =
1.50)に対しシリカの屈折率(n D =1.46)、 1.50) to the silica refractive index of (n D = 1.46),
アルミナの屈折率(n D =1.56)と近似を示すため、透光性を損なうことなく緩衝層を成形することができる。 To indicate the refractive index of the alumina and (n D = 1.56) approximation, it is possible to form the buffer layer without impairing the translucency. また、他の透光性樹脂と沈降性無機フィラーとの屈折率差も近似を示す。 Also shows the approximate difference in refractive index between the precipitated inorganic fillers and other translucent resin. これによって、光取りだし効率を大きく損なうことなく、耐熱性の高い発光ダイオードを得ることができる。 Thus, without impairing the greater light extraction efficiency, it is possible to obtain a highly heat-resistant light-emitting diode. 以下、本発明の構成部材について詳述する。 It will be described in detail below components of the present invention.

【0016】(緩衝層101)本発明の緩衝層101 [0016] (buffer layer 101) buffer layer of the present invention 101
は、沈降性無機フィラーを含有した透光性樹脂を基板凹部内に注入することにより少なくともLEDチップ10 At least the LED chip 10 by injecting a light-transmitting resin containing the precipitated inorganic filler in the substrate recess
3を覆う状態にする。 To state that 3 the cover. また、沈降性無機フィラーは、絶縁性で比重が大きく低膨張、高熱伝導であるシリカ、窒化ホウ素、燐酸カルシウム、希土類化合物から選択される少なくとも一種が含有されるものである。 Further, it precipitated inorganic filler has a specific gravity greater low expansion in insulation, in which silica is high thermal conductivity, boron nitride, calcium phosphate, at least one species selected from the rare earth compound is contained. 本発明における緩衝層101とはLEDチップ103における熱伝導経路である基板106、リード電極105と透光性封止樹脂の界面に発生する熱応力を低減させるものである。 The buffer layer 101 in the present invention the substrate 106 is a heat conduction path in the LED chip 103 so as to reduce the thermal stress generated at the interface of the lead electrode 105 and the transparent sealing resin. また基板106、リード電極105間に絶縁性熱伝導層である緩衝層101が設けられることによりチップ実装側からのみ放熱されていた構造から、素子中の基板、リード電極からの放熱が得られるため素子熱抵抗の低減効果も持つ。 The substrate 106, since the structure which has been radiated only from the chip mounting side by the buffer layer 101 is an insulating thermally conductive layer between the lead electrode 105 is provided, the substrate in the device, the heat radiation from the lead electrode obtained the effect of reducing the device thermal resistance with.

【0017】本発明における緩衝層101は、LEDチップ103からの光に対して透光性が高く、透光性封止樹脂材及び基板106との密着性及び耐熱性が高いことが好ましい。 The buffer layer 101 in the present invention, light-transmitting property is higher than the light from the LED chip 103, preferably has high adhesion and heat resistance of the translucent sealing resin and the substrate 106. 該緩衝層101は、あらかじめLEDチップ103が配置された基板106の凹部に流し込み硬化させることで比較的簡単に形成できる。 The buffer layer 101 may be formed relatively easily by curing poured in the recess of the substrate 106 disposed in advance LED chip 103.

【0018】(透光性封止樹脂層102)透光性封止材は、基板凹部内に設けるものであり、LEDチップ10 [0018] (translucent sealing resin layer 102) translucent sealing material, which is provided in the substrate recess, LED chip 10
3からの光を効率よく外部に透過させると共に外力、塵芥などからLEDチップ103や金ワイヤ104などを保護するものである。 External force causes transmitting light from 3 outside efficiently, is to protect the LED chip 103 and gold wires 104 from dust. このような透光性封止材としてはエポキシ樹脂、アクリレート樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂等の熱硬化性樹脂、あるいアクリル樹脂、ポリカーボネット樹脂、ポリノルボルネン樹脂等の熱可塑性樹脂が用いられる。 Such translucent sealing material The epoxy resin, acrylate resin, urethane resin, silicone resin, thermosetting resin such as polyimide resin, there have acrylic resin, polycarbonate net resin, a thermoplastic resin such as polynorbornene resins used.

【0019】(LEDチップ103)LEDチップ10 [0019] (LED chip 103) LED chip 10
3はMOCVD法や液相成長法などにより、GaP、G 3 by MOCVD or the like or a liquid phase growth method, GaP, G
aAlAs、GaAlInP、InN、GaN、Al aAlAs, GaAlInP, InN, GaN, Al
N、InGaN、InGaAlNなどの半導体発光層を基板上に積層させることにより形成することができる。 N, InGaN, the semiconductor light-emitting layer such as InGaAlN can be formed by laminating on the substrate.
LEDチップの構造としてはMIS接合、PIN接合やPN接合などを有するホモ構造、ヘテロ構造、ダブルへテロ構造のものが挙げられる。 LED MIS junction as the structure of the chip, homo structure having such a PIN junction or a PN junction, a heterostructure, include the double heterostructure. 特に活性層を介してダブルへテロ構造のものは、活性層で発生した光が活性層内を導波管の如く伝搬し活性層の端面から放出されやすい。 Particularly those of the double hetero structure through the active layer, easy to light generated in the active layer is emitted from the end face of the propagation active layer as the waveguide in the active layer.

【0020】窒化物半導体(In X Ga Y Al 1-XY N、 The nitride semiconductor (In X Ga Y Al 1- XY N,
0≦X、0≦Y、0≦X+Y≦1)は、結晶成長が難しく絶縁性のサファイア基板上に形成される。 0 ≦ X, 0 ≦ Y, 0 ≦ X + Y ≦ 1), the crystal growth is formed on the harder insulating sapphire substrate. サファイア基板上に形成された窒化物半導体に電力を供給するためには正極及び負極を同一面側に形成せざるを得ず、オーミック接触かつ、効率的に電流を注入させるためには透光性の電極として金薄膜などが用いられる。 To power the nitride semiconductor formed on a sapphire substrate is not forced to form a positive electrode and a negative electrode on the same side, ohmic contact and, in order to inject efficiently current translucent such as electrode gold thin film is used. このような電極は薄膜にして透光性を持たせているものの金属からなるが故にLEDチップの活性層で生成した光は部分的に反射される。 Such electrodes light generated in the active layer of consists metal because LED chips which are to have a light-transmitting property in the thin film is partially reflective.

【0021】このようなLEDチップ103は基板上にダイボンド機器を用いてマウントすることができる。 [0021] Such LED chip 103 may be mounted using die bonding device on the substrate. また、LEDチップ103上に設けられた電極と、金線ワイヤ104を利用して電気的に接続させることができる。 Further, an electrode provided on the LED chip 103 may be electrically connected by using a gold wire 104.

【0022】(基板106)基板106は、LEDチップ103を配置させ外部からの電流をLEDチップ10 [0022] (substrate 106) substrate 106, LED chips 10 a current from the outside to place the LED chip 103
3に供給するリード電極105が設けられたものである。 3 to supply the lead electrode 105 in which is provided. そのため基板106は、耐熱性や絶縁性を有するものが好適に用いられる。 Therefore the substrate 106, is preferably used having a heat resistance and insulation properties. このような基板106の具体的材料としては、ガラスエポキシ、ビスマレイミドトリアジン(以下BTレジンとも呼ぶ)、セラミックス、液晶ポリマーやポリブチレンテレフタレート樹脂(PBT樹脂)が好適に挙げられる。 Specific materials for such substrates 106, glass epoxy, (hereinafter also referred to as BT resin) bismaleimide triazine, ceramics, liquid crystal polymers and polybutylene terephthalate resin (PBT resin) are preferably exemplified. 本発明に係る発光ダイオード100は、LEDチップ103からの光を効率よく取り出すために基板側壁部106aを持った発光ダイオードと、透光性封止樹脂注入後に基板側壁部106bを取り除いたことにより光の指向特性の異なる発光ダイオードとがある。 A light emitting diode 100 according to the present invention, the light emitting diode having a substrate side wall portion 106a in order to take out light efficiently from the LED chip 103, by the removal of the substrate side wall 106b after the translucent sealing resin injection there is a different emission diode having directional characteristics of the. またLEDチップからの光を効率よく反射させるために基板を構成する樹脂に酸化チタンなどの白色顔料などを混合させることができる。 Also it is possible to mix such as white pigment such as a resin titanium oxide which constitutes the substrate in order to light from the LED chip efficiently reflect.

【0023】樹脂により基板106をモールド成形させる場合は、内部に配置されるLEDチップ103に電力を供給するリード電極105をインサート成形などで比較的簡単に形成することができる。 [0023] When the substrate 106 is molded by resin, it can lead electrodes 105 for supplying power to the LED chip 103 disposed within relatively easily formed by insert molding or the like. リード電極105は銅及び銅合金等の電気良導体により形成することができる。 Lead electrode 105 may be formed by an electric conductor such as copper and copper alloys. 本発明に係る発光ダイオードのリード電極105には発熱を効率よく放出させるものが好ましく銅電極を使用している。 The light emitting diode of lead electrode 105 according to the present invention that efficiently be released with a fever is using preferably copper electrodes. LEDチップ103からの光の反射性を向上させるために、リード電極105の表面に銀、アルミニウム、金等の平滑な金属メッキを施すこともできる。 In order to improve the light reflective from the LED chip 103 may be silver on the surface of the lead electrode 105, aluminum, a smooth metal plating such as gold applied.

【0024】ガラスエポキシ及びBTレジンにより基板を構成させる場合は、銅張りガラスエポキシ及び銅箔を圧着したBTレジンに所望のパターンを作るためにケミカルエッチングを行う。 The case of forming the substrate of a glass epoxy and BT resin performs chemical etching to produce a desired pattern BT resin which crimp the copper-clad glass epoxy and the copper foil. これにドリル加工、パンチングプレス加工により側壁部となる穴を作ったガラスエポキシ及びBTレジンを接着剤で張り合わせ形成する。 This drilling, glass epoxy and BT resin made hole the sidewall portion to form laminated with an adhesive by punching press working. セラミックにより基板を構成させる場合は、セラミック焼成前の原料となるグリーンシート上に所望のパターンで高融点金属を含有した導電性ペーストを印刷する。 Case of forming the substrate by ceramic, printing a conductive paste containing a high melting point metal in the desired pattern on the green sheet to be a raw material before ceramic firing. グリーンシートを複数重ね合わせ基板形状にさせた後に焼成してセラミック基板を形成する。 Firing the green sheet after being multiple superimposed substrate shape to form a ceramic substrate. 導電性ペーストは焼成時に樹脂成分が飛び外部との電気的接続が可能な電極層として残る。 Conductive paste remains as an electrode layer capable of electrical connection with the outside jump resin component during firing. 以下、本発明の具体的実施例について詳述するが、これのみに限定されるものではない。 Hereinafter be described in detail specific embodiments of the present invention, not intended to be limited only thereto.

【0025】 [0025]

【実施例1】チップタイプLEDとして、青色(470 As Example 1 chip type LED, blue (470
nm)が発光可能な窒化物半導体を発光層に持ったLE LE that nm) has had capable of emitting nitride semiconductor light-emitting layer
Dチップをダイボンディングにより基板に配置させた。 The D chip was placed on the substrate by die bonding.
LEDチップはサファイア基板上に窒化ガリウムからなるバッファ層、GaNからなるn型コンタクト兼クラッド層、GaAlNからなるp型クラッド層、GaNからなるp型コンタクト層が積層されたものである。 LED chip buffer layer made of gallium nitride on a sapphire substrate, n-type contact and cladding layer formed of GaN, in which p-type cladding layer made of GaAlN, p-type contact layer made of GaN are stacked. n型コンタクト層及びp型クラッド層との間には単一量子井戸構造となるInGaN層が形成されている。 Between the n-type contact layer and p-type cladding layer InGaN layer as a single quantum well structure is formed. サファイア基板上に形成された半導体層側から正極及び負極の電極を形成させるために窒化物半導体の一部をエッチングさせてn型コンタクト層を露出させてある。 It is by etching to expose the n-type contact layer part of the nitride semiconductor to form a positive electrode and the negative electrode from the semiconductor layer side formed on the sapphire substrate. p型コンタクト層上には金薄膜をオーミック電極として形成させてある。 The p-type contact layer are allowed to form a thin gold film as an ohmic electrode.

【0026】基板は予め形成させたリード電極を金型内に配置させエポキシ樹脂を注入硬化させることにより成形させた。 The substrate was molded by injection to cure the epoxy resin was a lead electrode was preformed placed in the mold. 成形された基板は開口部の底面にリード電極の一部が露出しており平滑面としてある。 Molded substrate is a smooth surface portion is exposed for the lead electrodes on the bottom of the opening. なお、平滑な基板底面とは、鏡面の如く一定方向から入射したLED Note that the smooth substrate bottom surface, incident from a certain direction as mirror LED
チップからの光の大部分を特定方向に反射可能な平面を言う。 It refers capable of reflecting plane in a specific direction most of the light from the chip. このような平面上に配置されたLEDチップから放出される縦方向の光は、効率よく前面に放出することができる。 Longitudinal direction of the light emitted from such an LED chip disposed on a plane, it is possible to efficiently release the front. そのため、リード電極の表面、基板底面及び側面はLEDチップからの光を効率よく反射することが可能となる。 Therefore, the surface of the lead electrode, substrate bottom surface and side it is possible to efficiently reflect light from the LED chips.

【0027】基板の開口部内に透光性エポキシ樹脂を用いて上述のLEDチップをダイボンディング機器を用いてマウントさせた。 [0027] and the above-mentioned LED chip using a light-transmitting epoxy resin in the opening of the substrate is mounted with a die bonding device. LEDチップの各電極と基板開口部内のリード電極とを金線を用いてワイヤボンディングさせ電気的に導通を取ってある。 The lead electrodes in each electrode and the substrate opening of the LED chips are taking electrical conduction to the wire bonding using a gold wire.

【0028】緩衝層になる部材の線膨張係数はリード電極の線膨張係数に近づくほど好ましい。 The linear expansion coefficient of the become the buffer layer member is preferably closer to the coefficient of thermal expansion of the lead electrode. 実施例1における線膨張係数の測定は、TMA(熱機械的分析装置)により行った。 Measurement of linear expansion coefficient in Example 1 was performed by TMA (thermomechanical analyzer). 透光性樹脂であるエポキシ樹脂の線膨張係数は6×10 -5 (1/℃)以上2×10 -4 (1/℃)以下、リード電極の線膨張係数は1.3×10 -5 (1/ Linear expansion coefficient of the epoxy resin is a light-transmissive resin is 6 × 10 -5 (1 / ℃ ) or 2 × 10 -4 (1 / ℃ ) or less, the linear expansion coefficient of 1.3 × 10 -5 lead electrodes (1 /
℃)以上2.0×10 -5 (1/℃)以下であるため緩衝層になる部材の線膨張係数は2×10 -5以上6×10 -5 ° C.) over 2.0 × 10 -5 (1 / ℃ ) or less is because the linear expansion coefficient of the member to be the buffer layer is 2 × 10 -5 or more 6 × 10 -5
以下とするのが好ましい。 Preferably not more than. さらに好ましくは緩衝層になる部材の線膨張係数は2×10 -5 (1/℃)以上5×1 More preferably the linear expansion coefficient of the member to be the buffer layer is 2 × 10 -5 (1 / ℃ ) or 5 × 1
-5以下とする。 0 to -5.

【0029】緩衝層として液状エポキシ樹脂100重量部中に対しシリカ5.4重量部を含有させた混合樹脂を攪拌させながら基板開口部内に注入させた。 [0029] A mixture resin containing silica 5.4 parts by weight per liquid epoxy resin 100 parts by weight of the medium is injected into the substrate opening while stirring as a buffer layer. 注入後、8 After the injection, 8
5℃3時間+140℃4時間で硬化させることによりL 5 ° C. L by curing for 3 hours at + 140 ° C. 4 hours
EDチップを被覆する無機フィラーが含有された緩衝層となる第一の部位と、該第一の部位上に第一の部位よりも透光性の高い第二の部位とを成形させた。 A first portion comprising a buffer layer in which the inorganic filler is contained for covering the ED chip was molded and a second portion having high light-transmitting property than the first sites on the site of the first. こうしてチップタイプLEDを50個形成して耐熱特性を調べた。 Thus examined heat resistance of the chip type LED and 50 formed.

【0030】図4には、比較のために無機フィラーを含有せず、緩衝層を成形しない以外は本発明のチップタイプLEDと同様にして50個のチップタイプLEDを形成させた。 [0030] FIG. 4 does not contain an inorganic filler for comparison, except that no molding the buffer layer to form a chip type LED 50 pieces in the same manner as the chip type LED of the present invention.

【0031】形成された上記チップタイプLEDを各5 [0031] The formed the chip type LED each 5
0個を用い耐環境性を調べるため低温側−40℃、高温側100℃の液相熱衝撃試験を5000回実施したところ緩衝層を設けたチップタイプLEDは不灯不良が見られなかったのに対し、緩衝層を設けなかったチップタイプLEDには1500回より不灯不良が発生し、500 0 cold side -40 ℃ to examine the environmental resistance used, the chip type LED was not observed Fuakari defect in which a buffer layer was carried 5000 times the liquid phase thermal shock test of the high temperature side 100 ° C. contrast, the chip type LED which is not provided with the buffer layer Fuakari failure occurs than 1500 times, 500
0回実施時には30個の不灯発生が見られた。 At the time of 0 times out it was seen 30 of the non-lighting generation. 更に、図3に示す基板側壁部を取り除いたチップタイプLEDについても、図1に示す側壁部を有する発光ダイオードと同様の液相熱衝撃試験を実施したところ不灯不良は見られず耐熱特性が大幅に向上しうることが分かった。 Moreover, for the chip type LED removing the substrate side wall portion shown in FIG. 3, the non-lighting failure heat resistance not observed was subjected to a similar liquid phase thermal shock test and the light emitting diode having a side wall portion shown in FIG. 1 it has been found that can be greatly improved. また、請求項4及び請求項6に記載の他の透光性封止樹脂と沈降性無機フィラーを用いても同様の効果が得られた。 Also, similar effects using other translucent sealing resin and precipitated inorganic filler according to claim 4 and claim 6 is obtained.

【0032】 [0032]

【実施例2】液状エポキシ樹脂に添加する沈降性無機フィラーを5種の濃度で実施例1と同条件のもと液相熱衝撃試験を行い、緩衝層の膜厚差による耐熱性を調べた。 Example 2 performed the original liquid phase thermal shock test of Example 1 under the same conditions of precipitation inorganic filler added to the liquid epoxy resin at 5 different concentrations, was investigated heat resistance due to the film thickness difference of the buffer layer .
沈降性無機フィラーにはシリカを用い、5種の濃度は液状エポキシ樹脂100重量部に対して、それぞれ1重量部、3重量部、5.4重量部、8重量部、11重量部の割合で添加しボールミルで6時間分散させ、それぞれディスペンサーで基板凹部に注入した。 The silica used in the sedimentation inorganic filler, 5 different concentrations for 100 parts by weight of liquid epoxy resin, respectively 1 part by weight, 3 parts by weight, 5.4 parts by weight, 8 parts by weight, in a ratio of 11 parts by weight added and dispersed for 6 hours by a ball mill, it was injected into the substrate recess in the dispenser, respectively. 85℃で3時間+ 85 ℃ in 3 hours +
140℃で4時間の硬化を行い、外部電極成形後、チップタイプLEDとした。 Perform curing 4 hours at 140 ° C., after external electrodes molded to a chip type LED. この発光ダイオードの耐環境性を調べたところ、沈降性無機フィラーの添加量が多い3 Examination of the environmental resistance of the light emitting diode, is often added amount of precipitated inorganic filler 3
重量部から11重量部については、不灯発生は見られなかった。 The 11 parts by weight parts, non-lighting occurs was observed. しかし、添加量の最も少ない1重量部の発光ダイオードについては3500回目より不灯発生し、50 However, Fuakari generated from 3500 time for the least 1 part by weight of the light emitting diodes of the addition amount, 50
00回では24個の不良発生があった。 In the 00 times there has been a 24 failure. また、各発光ダイオードの側面を切断し、緩衝層の膜厚測定の結果、緩衝層の膜厚は添加量が1重量部、3重量部、5.4重量部、8重量部、11重量部に対して、それぞれ20μ Further, by cutting the side surfaces of the respective light emitting diodes, the result of the buffer layer thickness measurements, the film thickness amount of 1 part by weight of the buffer layer, 3 parts by weight, 5.4 parts by weight, 8 parts by weight, 11 parts by weight against, each 20μ
m、66μm、150μm、250μm、400μmであった。 m, 66μm, 150μm, 250μm, it was 400μm. 次にフォトダイオードによる光度測定を行ったところ上記の1重量部から8重量部の緩衝層に対する光度は180mcdを保つのに対し11重量部となる膜厚400μmでは光度が100mcdと著しく低下することがわかった。 Then luminosity for the buffer layer of 8 parts by weight from the 1 part by weight was subjected to photometric measurement by the photo diode is the film thickness 400μm in luminous intensity is 11 parts by weight with respect to keep 180mcd is remarkably decreased 100mcd all right. 以上から、本発明に係る発光ダイオードにおける緩衝層の膜厚は、耐熱性を有する20μm以上及び光取り出し効率を損なわない400μm以下とする。 From the above, the thickness of the buffer layer in the light-emitting diode according to the present invention is 400μm or less that does not impair the 20μm or more and the light extraction efficiency has heat resistance.

【0033】 [0033]

【発明の効果】本発明の構成により、LEDチップ・基板と透光性封止樹脂との界面に発生する熱応力を低減させる。 The configuration of the present invention, to reduce the thermal stress generated at the interface between the LED chip substrate and the translucent sealing resin. これにより実装時のリフロー熱による剥離に伴うワイヤーオープンを減少させるものである。 Thus those to reduce the wire open due to peeling due to the reflow heat at the time of mounting. またLED The LED
チップ・基板間に絶縁性熱伝導層である緩衝層が設けられることによりチップ実装側からのみ放熱されていた構造から、素子中の全てのLEDチップ・基板からの放熱が得られるため素子熱抵抗も低減できる。 From a structure has been radiated only from the chip mounting side by the buffer layer is provided an insulating thermally conductive layer between the chip substrate, heat dissipation element thermal resistance for obtained from all of the LED chip substrate in the device It can also be reduced.

【0034】本発明の構成により、LEDチップからの光取り出し効率を低下させることなく、発光層の端部より放出される発光輝度を保つことができる。 [0034] The configuration of the present invention, without reducing the light extraction efficiency from the LED chip, it is possible to maintain the light emission luminance emitted from the end portion of the light-emitting layer.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の一実施例によるチップタイプLED Chip type LED according to an embodiment of the present invention; FIG
の模式的断面図を示す。 It shows a schematic cross-sectional view.

【図2】 本発明の一実施例によるチップタイプLED Chip type LED according to an embodiment of the present invention; FIG
の模式的断面図を示す。 It shows a schematic cross-sectional view.

【図3】 本発明の一実施例によるチップタイプLED Chip type LED according to an embodiment of the present invention; FIG
の模式的断面図を示す。 It shows a schematic cross-sectional view.

【図4】 本発明と比較のために示すチップタイプLE Chip type LE shown for comparison with the present invention; FIG
Dの模式的断面図を示す。 It shows a schematic cross-sectional view of a D.

【符号の説明】 DESCRIPTION OF SYMBOLS

100、200、300、400・・・発光ダイオード 101、201、301・・・緩衝層 102、202、302、402・・・透光性封止樹脂層 103、203、303、403・・・LEDチップ 104、204、304、404・・・金線ワイヤ 105、205、305、405・・・リード電極 105a、405a・・・外部電極 105b、405b・・・内部電極 106、206、306、406・・・基板 206a・・・基板側壁部 206b、306b・・・基板支持体部 207、307・・・絶縁性樹脂 100, 200, 300, 400 ... light-emitting diodes 101, 201, 301 ... buffer layer 102, 202, 302, and 402 ... translucent sealing resin layer 103,203,303,403 ... LED chips 104,204,304,404 ... gold wire 105, 205, 305, and 405 ... lead electrodes 105a, 405a ... external electrode 105b, 405 b ... internal electrode 106, 206, 306, 406, · substrate 206a ... substrate side wall 206 b, 306 b ... substrate support portion 207, 307 ... insulating resin

フロントページの続き (72)発明者 蔵本 雅史 徳島県阿南市上中町岡491番100 日亜化学 工業株式会社内 Fターム(参考) 5F041 AA25 AA33 AA40 AA43 CA05 CA34 CA36 CA37 CA40 CA46 DA02 DA07 DA20 DA44 DA46 DA58 Front page of the continuation (72) inventor Masashi Kuramoto Anan City, Tokushima Prefecture kaminaka Oka 491 No. 100 Nichia Chemical Industry Co., Ltd. in the F-term (reference) 5F041 AA25 AA33 AA40 AA43 CA05 CA34 CA36 CA37 CA40 CA46 DA02 DA07 DA20 DA44 DA46 DA58

Claims (8)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 一対のリード電極の少なくとも一方とL At least one and L according to claim 1 a pair of lead electrodes
    EDチップの電極とをそれぞれ電気的に接続させた導電性ワイヤーと、前記LEDチップ及び導電性ワイヤーを被覆する透光性封止樹脂とを有する発光ダイオードにおいて、 前記透光性封止樹脂はLEDチップを被覆する無機フィラーが含有され緩衝層として働く第一の部位と、該第一の部位上に第一の部位よりも透光性の高い第二の部位とを有することを特徴とする発光ダイオード。 In the light-emitting diode having a a conductive wire respectively is electrically connected ED tip electrode, and a translucent sealing resin covering the LED chip and the conductive wires, the translucent sealing resin LED emission and having a first portion which acts as an inorganic filler is contained buffer layer covering the chip and a second portion having high light-transmitting property than the first sites on the site of the first diode.
  2. 【請求項2】 前記緩衝層は線膨張係数が2×10 Wherein said buffer layer is a linear expansion coefficient of 2 × 10
    -5 (1/℃)以上6×10 -5 (1/℃)以下である請求項1に記載の発光ダイオード。 -5 (1 / ° C.) or higher 6 × 10 -5 (1 / ℃ ) or less light emitting diode according to claim 1.
  3. 【請求項3】 前記緩衝層の厚みはLEDチップ上に2 Wherein 2 said thickness of the buffer layer on the LED chip
    0μm以上400μm以下である請求項1に記載の発光ダイオード。 The light emitting diode according to claim 1 is 400μm or less than 0 .mu.m.
  4. 【請求項4】 前記緩衝部には無機フィラーはシリカ、 Wherein said Buffering of the inorganic filler is silica,
    窒化ホウ素、燐酸カルシウム、希土類化合物から選択される少なくとも一種が含有されている請求項1に記載の発光ダイオード。 Boron nitride, calcium phosphate, light-emitting diode according to claim 1, wherein at least one member selected from the rare earth compound is contained.
  5. 【請求項5】 前記LEDチップはリード電極を有する表面に凹部を持った基板上に配置されると共に前記透光性封止樹脂は前記凹部内に配置される請求項1に記載の発光ダイオード。 Wherein said LED chip light emitting diode of claim 1, wherein the translucent sealing resin while being disposed on the substrate having a concave portion on a surface having a lead electrode disposed in the recess.
  6. 【請求項6】 前記透光性封止樹脂は、エポキシ樹脂、 Wherein said translucent sealing resin, an epoxy resin,
    アクリレート樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂、アクリル樹脂、ポリカーボネート樹脂、 Acrylate resins, urethane resins, silicone resins, polyimide resins, acrylic resins, polycarbonate resins,
    ポリノルボルネン樹脂から選択される少なくとも一種である請求項1に記載の発光ダイオード。 The light emitting diode according to claim 1 is at least one selected from polynorbornene resin.
  7. 【請求項7】 前記緩衝部には無機フィラーの密度勾配があり、リード電極に近づくにつれ連続的に線膨張係数がリード電極の線膨張係数に近づく請求項1に記載の発光ダイオード。 7. the buffer portion has a density gradient of the inorganic filler, the light emitting diode according to claim 1 continuously linear expansion coefficient as it approaches the lead electrode approaches the coefficient of thermal expansion of the lead electrode.
  8. 【請求項8】 一対のリード電極の少なくとも一方とL At least one and L of 8. a pair of lead electrodes
    EDチップの電極とをそれぞれ電気的に接続させた導電性ワイヤーと、前記LEDチップ及び導電性ワイヤーを被覆する透光性封止樹脂とを有する発光ダイオードの形成方法であって、 リード電極とLEDチップの電極とを導電性ワイヤーによってワイヤボンドする工程と 前記LEDチップ及び導電性ワイヤー上に無機フィラーを混合撹拌させた該無機フィラーよりも比重の小さい熱硬化性或いは熱可塑性樹脂を配置させる工程と、 前記熱硬化性或いは可塑性樹脂中の無機フィラーをLE A method of forming a light emitting diode having a a conductive wire respectively is electrically connected ED tip electrode, and a translucent sealing resin covering the LED chip and the conductive wires, the lead electrode and the LED a step of arranging a small thermosetting specific gravity than the conductive inorganic filler mixture is stirred an inorganic filler to the the process of wire bonding LED chips and on a conductive wire by a wire or a thermoplastic resin and a tip electrode the inorganic filler of the thermosetting or in thermoplastic resin LE
    Dチップ側に沈降させる工程とを有する発光ダイオードの形成方法。 Method of forming a light emitting diode and a step of precipitating the D chip side.
JP35362999A 1999-12-13 1999-12-13 Light emitting diode and its manufacturing method Withdrawn JP2001168398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35362999A JP2001168398A (en) 1999-12-13 1999-12-13 Light emitting diode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35362999A JP2001168398A (en) 1999-12-13 1999-12-13 Light emitting diode and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001168398A true true JP2001168398A (en) 2001-06-22

Family

ID=18432148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35362999A Withdrawn JP2001168398A (en) 1999-12-13 1999-12-13 Light emitting diode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001168398A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002823A (en) * 2002-04-26 2004-01-08 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, manufacturing method for the opical material, and light-emitting diode using the same
JP2004292779A (en) * 2002-04-26 2004-10-21 Kanegafuchi Chem Ind Co Ltd Curing composition, cured product, method for producing the same, and light-emitting diode sealed with the cured product
JP2005142236A (en) * 2003-11-04 2005-06-02 Nichia Chem Ind Ltd Light emitting device
JP2006128701A (en) * 2004-10-29 2006-05-18 Ledengin Inc Universal connection pad and high-output led package having connection structure
JP2006203052A (en) * 2005-01-21 2006-08-03 Stanley Electric Co Ltd Surface-mounting semiconductor element
JP2006206918A (en) * 2002-04-26 2006-08-10 Kaneka Corp Composition for optical material, optical material and method for producing the same
JP2008502159A (en) * 2004-06-04 2008-01-24 クリー インコーポレイテッドCree Inc. Power light emitting die package and a method for manufacturing a reflective lens
JP2008042158A (en) * 2006-08-03 2008-02-21 Itswell Co Ltd Element for sml type light-emitting diode lamp and manufacturing method thereof
US7425727B2 (en) 2004-09-16 2008-09-16 Sharp Kabushiki Kaisha Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment
JP2008252135A (en) 2004-11-30 2008-10-16 Nichia Corp Resin forming body and surface mount type light-emitting device, and manufacturing method thereof
WO2010074038A1 (en) * 2008-12-24 2010-07-01 旭硝子株式会社 Light-emitting module and method for manufacturing same
US8063143B2 (en) 2004-07-29 2011-11-22 Dow Corning Toray Co., Ltd. Curable organopolysiloxane composition, method of curing thereof, semiconductor device, and adhesion promotor
US8246216B2 (en) 2008-10-14 2012-08-21 Ledengin, Inc. Total internal reflection lens with pedestals for LED emitter
US8324641B2 (en) 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
US8507300B2 (en) 2008-12-24 2013-08-13 Ledengin, Inc. Light-emitting diode with light-conversion layer
US8779561B2 (en) 2006-03-21 2014-07-15 Samsung Electronics Co., Ltd. LED backlight unit without printed circuit board and method of manufacturing the same
US8816369B2 (en) 2004-10-29 2014-08-26 Led Engin, Inc. LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
US9502624B2 (en) 2006-05-18 2016-11-22 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US9897284B2 (en) 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp
US9929326B2 (en) 2004-10-29 2018-03-27 Ledengin, Inc. LED package having mushroom-shaped lens with volume diffuser

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292779A (en) * 2002-04-26 2004-10-21 Kanegafuchi Chem Ind Co Ltd Curing composition, cured product, method for producing the same, and light-emitting diode sealed with the cured product
JP4611617B2 (en) * 2002-04-26 2011-01-12 日亜化学工業株式会社 Light emitting diode
JP2006206918A (en) * 2002-04-26 2006-08-10 Kaneka Corp Composition for optical material, optical material and method for producing the same
JP2004002823A (en) * 2002-04-26 2004-01-08 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, manufacturing method for the opical material, and light-emitting diode using the same
JP2005142236A (en) * 2003-11-04 2005-06-02 Nichia Chem Ind Ltd Light emitting device
US8932886B2 (en) 2004-06-04 2015-01-13 Cree, Inc. Power light emitting die package with reflecting lens and the method of making the same
JP2011176347A (en) * 2004-06-04 2011-09-08 Cree Inc Power light emitting die package with reflecting lens
US8446004B2 (en) 2004-06-04 2013-05-21 Cree, Inc. Power light emitting die package with reflecting lens and the method of making the same
JP2008502159A (en) * 2004-06-04 2008-01-24 クリー インコーポレイテッドCree Inc. Power light emitting die package and a method for manufacturing a reflective lens
US8063143B2 (en) 2004-07-29 2011-11-22 Dow Corning Toray Co., Ltd. Curable organopolysiloxane composition, method of curing thereof, semiconductor device, and adhesion promotor
US7425727B2 (en) 2004-09-16 2008-09-16 Sharp Kabushiki Kaisha Optical semiconductor device, method for fabricating the same, lead frame and electronic equipment
US8816369B2 (en) 2004-10-29 2014-08-26 Led Engin, Inc. LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
US9842973B2 (en) 2004-10-29 2017-12-12 Ledengin, Inc. Method of manufacturing ceramic LED packages with higher heat dissipation
JP2006128701A (en) * 2004-10-29 2006-05-18 Ledengin Inc Universal connection pad and high-output led package having connection structure
US9653663B2 (en) 2004-10-29 2017-05-16 Ledengin, Inc. Ceramic LED package
US9929326B2 (en) 2004-10-29 2018-03-27 Ledengin, Inc. LED package having mushroom-shaped lens with volume diffuser
JP2008252135A (en) 2004-11-30 2008-10-16 Nichia Corp Resin forming body and surface mount type light-emitting device, and manufacturing method thereof
JP4698234B2 (en) * 2005-01-21 2011-06-08 スタンレー電気株式会社 Surface mounting semiconductor device
JP2006203052A (en) * 2005-01-21 2006-08-03 Stanley Electric Co Ltd Surface-mounting semiconductor element
US8779561B2 (en) 2006-03-21 2014-07-15 Samsung Electronics Co., Ltd. LED backlight unit without printed circuit board and method of manufacturing the same
US9929318B2 (en) 2006-05-18 2018-03-27 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US9634204B2 (en) 2006-05-18 2017-04-25 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
US9502624B2 (en) 2006-05-18 2016-11-22 Nichia Corporation Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
JP2008042158A (en) * 2006-08-03 2008-02-21 Itswell Co Ltd Element for sml type light-emitting diode lamp and manufacturing method thereof
US8324641B2 (en) 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
US8430537B2 (en) 2008-10-14 2013-04-30 Ledengin, Inc. Total internal reflection lens for color mixing
US8246216B2 (en) 2008-10-14 2012-08-21 Ledengin, Inc. Total internal reflection lens with pedestals for LED emitter
WO2010074038A1 (en) * 2008-12-24 2010-07-01 旭硝子株式会社 Light-emitting module and method for manufacturing same
US8507300B2 (en) 2008-12-24 2013-08-13 Ledengin, Inc. Light-emitting diode with light-conversion layer
US9897284B2 (en) 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp

Similar Documents

Publication Publication Date Title
US20070241357A1 (en) LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
US7276739B2 (en) Low thermal resistance light emitting diode
US7253448B2 (en) Semiconductor radiation emitter package
US20090321778A1 (en) Flip-chip light emitting diode and method for fabricating the same
US20060060867A1 (en) Light emitting device
US20050199899A1 (en) Package array and package unit of flip chip LED
US20040217369A1 (en) Light emitting device
US20050073846A1 (en) Lightemitting device and method of manufacturing the same
US20100252851A1 (en) Led package with increased feature sizes
US20020163001A1 (en) Surface mount light emitting device package and fabrication method
US20110241028A1 (en) Light emitting device and light unit having the same
US7264378B2 (en) Power surface mount light emitting die package
US20120235199A1 (en) Power surface mount light emitting die package
US20090095967A1 (en) Light emitting device
US20110211348A1 (en) Light emitting device package and lighting system
US20070200128A1 (en) Light Emitting Device
US20110104834A1 (en) Light emitting device including a sealing portion, and method of making the same
US7417220B2 (en) Solid state device and light-emitting element
US20110309404A1 (en) Light emitting device and lighting system having the same
US20130121000A1 (en) Light emitting device and lighting apparatus having the same
JP2002203989A (en) Light emitting device and its manufacturing method
JP2008034473A (en) Surface light source
US20110303941A1 (en) Light emitting device and lighting system
JP2004055632A (en) Semiconductor light-emitting device
JP2000150969A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040224

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040416

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060615