WO2010074038A1 - Light-emitting module and method for manufacturing same - Google Patents

Light-emitting module and method for manufacturing same Download PDF

Info

Publication number
WO2010074038A1
WO2010074038A1 PCT/JP2009/071258 JP2009071258W WO2010074038A1 WO 2010074038 A1 WO2010074038 A1 WO 2010074038A1 JP 2009071258 W JP2009071258 W JP 2009071258W WO 2010074038 A1 WO2010074038 A1 WO 2010074038A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting element
light emitting
amorphous
light
intermediate layer
Prior art date
Application number
PCT/JP2009/071258
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 徳英
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010544058A priority Critical patent/JPWO2010074038A1/en
Publication of WO2010074038A1 publication Critical patent/WO2010074038A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Definitions

  • the present invention relates to a light emitting element module and a manufacturing method thereof.
  • light-emitting elements such as white LEDs (Light Emitting Diodes) have been developed as next-generation energy-saving high-efficiency illumination light sources. These light emitting elements are sealed with a light-transmitting sealing resin such as a silicone resin in order to protect the elements and the wiring portions.
  • a light-transmitting sealing resin such as a silicone resin
  • silicone has high gas permeability, and water vapor is a cause of deterioration of LED elements and phosphors.
  • Ag with high light reflectivity is used as the electrode material, but the sulfur compound floating in the air permeates the silicone sealing part and blackens the Ag electrode, resulting in a decrease in reflectivity. Thus, there is a problem that the light extraction efficiency is lowered.
  • Patent Documents 1 and 2 propose translucent sealing of an LED with a film formed by a coating liquid composed of an amorphous fluorine-containing polymer and a fluorine-containing solvent.
  • Patent Document 2 discloses translucent sealing of an LED using a curable composition containing a curable amorphous fluorine-containing polymer.
  • Patent Document 1 it is difficult to obtain a thickness necessary for LED sealing.
  • amorphous fluoropolymers such as Patent Documents 1 and 2 are generally not particularly excellent in adhesiveness with the light emitting element module member, and may be peeled off from the light emitting element module member in some cases. There is a risk that. Therefore, using various silane coupling agents generally used to improve adhesion to inorganic materials such as metals and ceramics and plastics, adhesion between amorphous fluoropolymers and light emitting device module members It was considered to improve.
  • a protective film using a curable amorphous fluorine-containing polymer it is excellent in initial adhesiveness and heat resistance to a light-emitting element and an electric wiring passing through the light-emitting element, and can be used continuously at high temperatures. It is an object of the present invention to provide a light emitting element module having a stable protective film and capable of reducing deterioration of the light emitting element and electric wiring, and a manufacturing method thereof.
  • a light emitting element module including a light emitting element and an electric wiring for energizing the light emitting element, the light emitting element and the electric wiring being covered with a protective film, wherein the protective film is in contact with the light emitting element A layer and a coating layer formed on the intermediate layer, the intermediate layer containing an amorphous aromatic resin (A) having an aromatic ring in the main chain, and the coating layer having an aromatic ring
  • a light-emitting element module comprising an amorphous fluorine-containing resin (B) obtained by curing a non-curable amorphous fluorine-containing polymer (b).
  • the amorphous aromatic resin (A) is a polyethersulfone resin.
  • the amorphous aromatic resin (A) has a thermal expansion coefficient of 20 to 100 ppm / ° C.
  • a method for producing a light emitting device module comprising a light emitting device and an electric wiring for energizing the light emitting device, wherein the light emitting device and the electric wiring are covered with a protective film, wherein the crosslinkable functional group (x)
  • An aromatic fluorine-containing resin having an aromatic ring in the main chain after applying a coating solution prepared by dissolving the prepolymer (a) having a solvent in a solvent to the light emitting element and the electric wiring, and then curing the prepolymer (a) An intermediate layer forming step of forming an intermediate layer containing (A1), and a curable amorphous fluorine-containing polymer (b) having no aromatic ring applied on the intermediate layer, the curable amorphous A coating layer forming step of curing the fluorinated polymer (b) with heat or light to form a coating layer containing the amorphous fluorine-containing resin (B); Manufacturing method of light emitting element module having [10] A method for manufacturing a light emit
  • a coating layer forming step of forming a coating layer Manufacturing method of light emitting element module having [11] The method for producing a light-emitting element module according to [9] or [10], wherein the curable amorphous fluoropolymer (b) includes a polymerizable compound (b1) having a polymerizable double bond. .
  • the light-emitting element module of the present invention is excellent in initial adhesion and heat resistance to a light-emitting element and an electric wiring passing through the light-emitting element as a protective film using a curable amorphous fluoropolymer, and continuously at a high temperature. Even in use, it has a stable protective film. Therefore, deterioration of the light emitting element and the electric wiring can be reduced by the protective film even in continuous use at a high temperature.
  • a protective film using a curable amorphous fluorine-containing polymer it is excellent in initial adhesiveness and heat resistance to a light emitting element and an electric wiring passing through the light emitting element, and has a high temperature.
  • a light-emitting element module having a stable protective film even in continuous use and capable of reducing deterioration of the light-emitting element and electric wiring can be obtained.
  • the light-emitting element module of the present invention is a light-emitting element module that includes a light-emitting element and electric wiring for energizing the light-emitting element, and the light-emitting element and the electric wiring are covered with a protective film.
  • the protective film has an intermediate layer in contact with the light emitting element, and a coating layer formed on the intermediate layer, the intermediate layer containing an amorphous aromatic resin (A),
  • the coating layer includes an amorphous fluorine-containing resin (B).
  • the light emitting element module of this invention is comprised by the module member 10 and the protective film 20, as shown in FIG. [Module members]
  • the module member 10 includes a substrate 11, electrodes 12 a and 12 b provided on the substrate 11, an optical element 13 provided on the electrodes 12 a and 12 b, and a bonding wire that connects the electrodes 12 a and 12 b and the optical element 13. 14 and a reflector 15 that reflects the light emitted from the optical element 13.
  • a recess 16 is formed by the substrate 11 and the reflector 15 provided at the end of the substrate 11.
  • a desired circuit is formed by the electrodes 12 a and 12 b on the substrate 11, and the light emitting element 13 is installed on the electrode 12 a.
  • the light emitting element 13 is connected to and connected to the electrodes 12a and 12b by the bonding wire 14, and the light emitting element 13 can be energized by connecting the electrodes 12a and 12b to an external power source (not shown). ing.
  • the electrodes 12 a and 12 b and the bonding wire 14 constitute an electrical wiring for energizing the light emitting element 13.
  • a substrate usually used for an optical element module can be used.
  • a resin or ceramic substrate, or a metal substrate provided with an insulating layer between the electrodes 12 a and 12 b can be used.
  • the shape and thickness of the substrate 11 are not particularly limited and can be appropriately selected depending on the application.
  • electrodes 12a and 12b electrodes usually used in an optical element module can be used, and examples thereof include an Ag electrode, an Au electrode, and an Al electrode.
  • the optical element 13 a known light emitting element can be used, and examples thereof include a blue LED, an ultraviolet LED, and a laser diode (LD).
  • the reflector 15 only needs to reflect visible light having a wavelength of 400 to 700 nm emitted from the optical element 13 with high efficiency, and examples thereof include those made of resin and ceramic.
  • the electrodes 12 a and 12 b and the light emitting element 13 are covered with the light-transmitting protective film 20 including the intermediate layer 21 and the covering layer 22 in the recess 16.
  • the bonding wire 14 is buried in the protective film 20.
  • the protective film 20 includes an intermediate layer 21 formed on the light emitting element 13 and the electrodes 12 a and 12 b and a coating layer 22 formed on the intermediate layer 21.
  • the protective film 20 plays a role of protecting the optical element 13 and the electrodes 12a and 12b.
  • the bonding wire only needs to cover at least a part of the connection portion with the electrode by the intermediate layer, and the entire bonding wire is not necessarily covered by the intermediate layer.
  • the intermediate layer 21 plays a role of improving the initial adhesiveness between the light emitting element 13 and the electrodes 12 a and 12 b and the protective film 20 and the heat resistance of the protective film 20.
  • the amorphous aromatic resin (A) used for forming the intermediate layer 21 is an amorphous resin having an aromatic ring in the main chain.
  • the amorphous aromatic resin (A) is a resin that does not undergo a curing reaction by itself after the intermediate layer 21 is formed. That is, when a non-curable resin is used to form the intermediate layer 21, it means the resin itself, and when a curable polymer is used, it means that the curing reaction is terminated.
  • the intermediate layer 21 having a high Tg and a low coefficient of thermal expansion is obtained, and the heat generation of the light emitting element 13 reaches a high temperature of 150 ° C. or higher.
  • the intermediate layer 21 is not deformed or thermally decomposed, the adhesiveness is hardly lowered, and the reliability of the light emitting element module is ensured.
  • the amorphous aromatic resin (A) for example, polyimide resin, polyamide resin, polyamideimide resin, polysulfone resin, polyethersulfone resin, polyetherketone resin, polyarylene resin, polyarylene ether resin, aromatic series-containing A fluororesin etc. are mentioned. Of these, polyethersulfone resins, polyarylene resins, polyarylene ether resins, and aromatic fluorine-containing resins are preferable. In terms of transparency, polyethersulfone resin is more preferable. In view of light resistance and transparency, an aromatic fluorine-containing resin is more preferable. In addition, the amorphous aromatic resin (A) preferably has a heteroatom in a portion to which an aromatic ring is bonded because the adhesion between the intermediate layer 21 and the coating layer 22 is improved.
  • the aromatic fluorine-containing resin is an amorphous fluorine-containing resin having an aromatic ring in the main chain.
  • the aromatic fluorine-containing resin include fluorine-containing polyarylenes and fluorine-containing polyarylene ethers described in JP-T-5-502257, JP-A-10-247646, WO 03/8483, and the like.
  • aromatic fluorine-containing resins described in JP-A-2005-105115 Of these, an aromatic fluorine-containing resin (A1) obtained by curing a prepolymer (a) having a crosslinkable functional group (x) described in JP-A-2005-105115 is preferable.
  • aromatic fluorine-containing resin (A1) examples include a compound (a1-1) having a crosslinkable functional group (x) and a phenolic hydroxyl group (hereinafter referred to as “compound (a1-1)”) and / or.
  • Compound (a1-2) having a crosslinkable functional group (x) and a fluorine atom-substituted aromatic ring (hereinafter referred to as “compound (a1-2)”), a fluorine-containing aromatic compound (a2) described later, and phenol A resin (cured) obtained by curing a prepolymer (a) obtained by subjecting a compound (a3) having 3 or more functional hydroxyl groups (hereinafter referred to as “compound (a3)”) to a condensation reaction in the presence of a deHF agent.
  • the aromatic fluororesin (A1) thus obtained has a crosslinkable functional group (x) and an ether bond.
  • the crosslinkable functional group (x) in the compound (a1-1) and the compound (a1-2) does not substantially react during the production of the prepolymer (a) (during the condensation reaction) and gives external energy.
  • Reactive functional groups that react with each other to cause cross-linking or chain extension between prepolymers.
  • the external energy heat, light, an electron beam, or a combination thereof is preferable from the viewpoint of excellent applicability in the mounting process of the optical element 13.
  • crosslinkable functional group (x) examples include vinyl group, allyl group, methacryloyl (oxy) group, acryloyl (oxy) group, vinyloxy group, trifluorovinyl group, trifluorovinyloxy group, ethynyl group, 1- Examples include oxocyclopenta-2,5-dien-3-yl group, cyano group, alkoxysilyl group, diarylhydroxymethyl group, hydroxyfluorenyl group and the like.
  • a vinyl group, a methacryloyl (oxy) group, an acryloyl (oxy) group, a trifluorovinyloxy group, and an ethynyl group are preferable because of excellent reactivity when external energy is applied and high crosslink density can be obtained. From the point which is excellent in the heat resistance of the protective film 20 obtained, an ethynyl group and a vinyl group are more preferable.
  • the crosslinkable functional group (x) When heat is used as external energy for curing the prepolymer, the crosslinkable functional group (x) preferably has a reaction temperature of 40 to 500 ° C., more preferably 60 to 400 ° C., and 70 to 350 ° C. It is particularly preferred that When the reaction temperature of the crosslinkable functional group (x) is 40 ° C. or higher, it is easy to ensure storage stability. Moreover, if the reaction temperature of a crosslinkable functional group (x) is 500 degrees C or less, it will be easy to suppress that thermal decomposition of prepolymer itself generate
  • the content of the crosslinkable functional group (x) in the aromatic fluorine-containing resin (A1) is such that the amount of the crosslinkable functional group (x) per 1 g of the aromatic fluorine-containing resin (A1) is 0.1 to 4 mmol. It is preferable that it is 0.2 to 3 mmol.
  • the content of the crosslinkable functional group (x) is 0.1 mmol or more, it is easy to obtain the protective film 20 having excellent heat resistance and low gas permeability.
  • the said content of a crosslinkable functional group (x) is 4 mmol or less, it will be easy to reduce the brittleness of the intermediate
  • a compound having one phenolic hydroxyl group and a compound having two phenolic hydroxyl groups are preferable.
  • the compound having one phenolic hydroxyl group include phenols having a reactive double bond (crosslinkable functional group (x)) such as 4-hydroxystyrene; 3-ethynylphenol, 4-phenylethynylphenol, 4 And ethynylphenols such as-(4-fluorophenyl) ethynylphenol.
  • Examples of the compound having two phenolic hydroxyl groups include 2,2′-bis (phenylethynyl) -5,5′-dihydroxybiphenyl and 2,2′-bis (phenylethynyl) -4,4′-dihydroxybiphenyl.
  • Bis (phenylethynyl) dihydroxybiphenyls such as 4,4′-dihydroxytolane, 3,3′-dihydroxytolane, and the like.
  • These compounds (a1-1) may be used alone or in combination of two or more.
  • a compound having a crosslinkable functional group (x) and a perfluoroaromatic ring such as perfluorophenyl or perfluorobiphenyl is preferable.
  • Fluorine-containing aryls having a reactive double bond Fluorine-containing aryls having a cyano group such as pentafluorobenzonitrile; Fluorine-containing arylacetylene having a reactive triple bond such as pentafluorophenylacetylene and nonafluorobiphenylacetylene Fluorine-containing diaries such as phenylethynylpentafluorobenzene, phenylethynylnonafluorobiphenyl, decafluorotolane, etc. Acetylenes, and the like.
  • the cross-linking reaction proceeds at a relatively low temperature, and the resulting aromatic fluorine-containing resin (A1) (cured product) is more excellent in heat resistance, so that a double bond (crosslinkable functional group (x)) is obtained.
  • fluorine-containing arylacetylenes having a triple bond are preferred.
  • These compounds (a1-2) may be used alone or in combination of two or more.
  • the fluorine-containing aromatic compound (a2) is a compound represented by the following formula (1).
  • n represents an integer of 0 to 3
  • a and b each independently represents an integer of 0 to 3
  • Rf 1 and Rf 2 each independently represents a fluorine-containing alkyl group having 8 or less carbon atoms
  • F in the ring represents that all the hydrogen atoms of the aromatic ring are substituted with fluorine atoms.
  • the carbon number of Rf 1 and Rf 2 in the fluorinated aromatic compound (a2) is 8 or less, and preferably 3 or less.
  • Rf 1 and Rf 2 are preferably perfluoroalkyl groups from the viewpoint of heat resistance.
  • Specific examples of the perfluoroalkyl group include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • a and b are each independently preferably 0 to 2, particularly preferably 0.
  • n is an integer of 0 to 3, and preferably an integer of 1 to 3.
  • N 3, perfluoro (1,3,5-triphenylbenzene) and perfluoro (1,2,4-triphenylbenzene) are preferable.
  • perfluorotoluene, perfluoro (1,3,5-triphenylbenzene), perfluoro (1,2,4-triphenylbenzene), and perfluorobiphenyl are more preferable.
  • a particularly preferred fluorine-containing aromatic compound (a2) is perfluorobiphenyl because it has excellent heat resistance and low gas permeability, and a highly flexible intermediate layer 21 can be easily obtained.
  • fluorine-containing aromatic compounds (a2) may be used alone or in combination of two or more.
  • the compound (a3) is a compound having 3 or more phenolic hydroxyl groups.
  • the number of phenolic hydroxyl groups in the compound (a3) is 3 or more, practically 3-6, and particularly preferably 3-4.
  • polyfunctional phenols are preferable.
  • trihydroxybenzene, trihydroxybiphenyl, trihydroxynaphthalene, 1,1,1-tris (4-hydroxyphenyl) ethane, tris (4-hydroxyphenyl) benzene, tetrahydroxybenzene, tetrahydroxybiphenyl, tetrahydroxybinaphthyl Examples include tetrahydroxy spiroindanes.
  • the compound (a3) a compound having three phenolic hydroxyl groups is more preferable because the flexibility of the intermediate layer 21 is higher.
  • trihydroxybenzene, 1,1,1-tris (4-hydroxy Phenyl) ethane is particularly preferred.
  • the number average molecular weight of the prepolymer (a) is preferably 1 ⁇ 10 3 to 5 ⁇ 10 5 .
  • the number average molecular weight of the prepolymer (a) is 1 ⁇ 10 3 or more, the heat resistance, mechanical properties, and solvent resistance of the intermediate layer 21 formed of the aromatic fluorine-containing resin (A1) become better. .
  • the number average molecular weight of the prepolymer (a) is 5 ⁇ 10 5 or less, the coating properties of the prepolymer (a) will be better.
  • the prepolymer (a) before curing of the aromatic fluorine-containing resin (A1) can be produced by the method described in JP-A-2005-105115. For example, the following methods (i) to (iii) Is mentioned.
  • IIi A method in which a fluorine-containing aromatic compound (a2), a compound (a3), and a compound (a1-2) are subjected to a condensation reaction in the presence of a deHF agent.
  • (Iii) A method in which a fluorine-containing aromatic compound (a2), a compound (a3), a compound (a1-1), and a compound (a1-2) are subjected to a condensation reaction in the presence of a deHF agent.
  • the condensation reaction may be performed in one step or in multiple steps. Moreover, after reacting a specific compound preferentially among reaction raw materials, you may make it react with another compound continuously.
  • the condensation reaction is performed in multiple stages, the intermediate product obtained in the middle may be once separated from the reaction system and purified, and then used for the subsequent condensation reaction.
  • the reaction raw materials may be charged all at once, may be charged continuously, or may be charged intermittently.
  • a basic compound is preferable, and an alkali metal carbonate, hydrogen carbonate or hydroxide is particularly preferable.
  • an alkali metal carbonate, hydrogen carbonate or hydroxide is particularly preferable.
  • sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like can be mentioned.
  • the aromatic fluorine-containing resin (A1) has a branched molecular structure and is a cured product that is crosslinked at a high density, and therefore has a high Tg. Therefore, the intermediate layer 21 having lower gas permeability can be formed. Further, the intermediate layer 21 formed using the aromatic fluorine-containing resin (A1) has stronger adhesiveness, is excellent in heat resistance and mechanical characteristics, and is protected from the optical element 13 due to temperature change. The effect which prevents 20 peeling is excellent.
  • the polyethersulfone resin is a polymer having a repeating unit represented by the following formula (2).
  • Ar and Ar ′ are each independently a paraphenylene group or a 4,4′-biphenylene group.
  • the molecular weight of the polyethersulfone resin is not particularly limited, but is preferably 0.3 to 1.0 dL / g within the range represented by the intrinsic viscosity.
  • the amorphous aromatic resin (A) in the present invention preferably has a glass transition temperature (Tg) of 150 ° C. or higher, more preferably 200 ° C. or higher. If Tg is 150 ° C. or higher, the temperature around the light emitting element 13 such as the protective film 20 is heated to 150 ° C. or higher due to the heat generated by the LED element (light emitting element 13), such as in the case of a white LED for illumination. However, since the intermediate layer 21 is difficult to flow, the dimensional change of the intermediate layer 21 is small, and thermal deformation hardly occurs. Therefore, it is easy to suppress peeling of the protective film 20 when the temperature is lowered.
  • Tg glass transition temperature
  • a preferable Tg amorphous aromatic resin (A) can be obtained, for example, by appropriately selecting from commercially available products.
  • amorphous aromatic resins (A) having a Tg of 150 ° C. or higher examples include aromatic fluorine-containing resins, polyimide resins, polyamide resins, polyamideimide resins, polysulfone resins, polyethersulfone resins, and polyethers. Examples thereof include ketone resins, polyarylene resins, polyarylene ether resins, and the like.
  • the aromatic fluorine-containing resin (A1) When the aromatic fluorine-containing resin (A1) is used as the amorphous aromatic resin (A), its Tg is measured according to JIS K7121: 1987 using a differential scanning calorimeter (DSC), and the midpoint glass transition It can obtain
  • the thermal expansion coefficient of the amorphous aromatic resin (A) is preferably 20 to 100 ppm / ° C., and more preferably 50 to 100 ppm / ° C.
  • the lower the coefficient of thermal expansion of the resin the smaller the degree of expansion and contraction due to temperature even if the temperature changes. For this reason, it is considered that the lower the thermal expansion coefficient, the easier it is to maintain the adhesiveness with the optical element 13, the electrodes 12a and 12b, the ceramics of the substrate 11, and the like, and the peeling is less likely to occur. Therefore, the thermal expansion coefficient of the amorphous aromatic resin (A) is preferably 100 ppm / ° C. or less.
  • the thermal expansion coefficient of the amorphous aromatic resin (A) is 100 ppm / ° C. or less, the light emitting element 13 of the light emitting element module 1, electrical wiring (electrodes 12 a and 12 b, wire bonding 14), substrate 11 (ceramics), etc. Excellent adhesion.
  • the thermal expansion coefficient of the amorphous fluorine-containing resin (B) is large (100 to 200 ppm / ° C.)
  • the thermal expansion coefficient of the amorphous aromatic resin (A) is too small, the intermediate layer 21 is changed due to temperature change. There is a risk of peeling at the interface between the coating layer 22 and the coating layer 22.
  • the thermal expansion coefficient of the amorphous aromatic resin (A) is preferably 20 ppm / ° C. or higher. If the thermal expansion coefficient of the amorphous aromatic resin (A) is 20 ppm / ° C. or more, the difference from the thermal expansion coefficient of the amorphous fluorine-containing resin (B) used for the coating layer 22 can be reduced. Therefore, in the protective film 20, peeling hardly occurs at the interface between the intermediate layer 21 and the coating layer 22.
  • amorphous aromatic resins (A) having a thermal expansion coefficient of 20 to 100 ppm / ° C. include, for example, polyamide imide resins (Toyobo Viromax HR-15ET, etc.), polyether sulfone resins (Sumitomo Chemical Co., Ltd.) Sumika Excel 5003P, etc.), polyimide resin (Semicofine SP-483, etc. manufactured by Toray Industries), and polysulfone resin (Udel P3500, manufactured by Solvay Advanced Polymer).
  • the intermediate layer 21 can be formed of the amorphous aromatic resin (A) described above.
  • the intermediate layer 21 in the present invention is preferably formed of only the amorphous aromatic resin (A).
  • the amorphous aromatic resin (A) can be used for the intermediate layer 21 as long as the heat resistance, gas permeability, and adhesion to the light emitting element and the coating layer are not excessively deteriorated.
  • other resins may be contained.
  • Examples of other substances that can be contained in the intermediate layer 21 include cured products of thermosetting resins such as epoxy resins, alkyd resins, phenol resins, diallyl phthalate resins, and dehydration condensates derived from alkoxysilanes. .
  • the content of the other polymer in the intermediate layer 21 (100% by mass) is preferably 30% by mass or less, and preferably 10% by mass or less. Is more preferable. That is, the intermediate layer preferably contains more than 70% by mass of amorphous aromatic resin (A) having an aromatic ring in the main chain, more preferably more than 90% by mass.
  • the thickness of the intermediate layer 21 is preferably 0.1 to 100 ⁇ m, and more preferably 1 to 10 ⁇ m. If the thickness of the intermediate layer 21 is less than 0.1 ⁇ m, it may be difficult to maintain gas permeability low. When the thickness of the intermediate layer 21 exceeds 100 ⁇ m, depending on the type of the amorphous aromatic resin (A), light of a short wavelength is absorbed, which may cause a decrease in light extraction efficiency from the light emitting element 13. is there. Further, when the thickness is within this range, it is easy to maintain the gas permeability low while enhancing the adhesion between the light emitting element 13 and the protective film 20.
  • the light transmittance of visible light with a wavelength of 400 to 700 nm of the intermediate layer 21 is preferably 90% or more, and more preferably 95% or more under the condition that the thickness is 5 to 10 ⁇ m. If the light transmittance is 90% or more, adverse effects on the light extraction efficiency from the light emitting element 13 can be suppressed, and thus the light emitting element module 1 having high light emission luminance can be easily obtained.
  • the gas permeability of the intermediate layer 21 at a temperature of 0 to 200 ° C. is preferably low from the viewpoint of easily suppressing discoloration of an Ag electrode or the like, and is 1/10 to 1/1000 with respect to the gas permeability of polydimethylsiloxane.
  • the ratio is preferably 1/100 to 1/1000.
  • the gas permeability of the intermediate layer 21 can be adjusted by the film thickness of the amorphous aromatic resin (A).
  • the amorphous fluorine-containing resin (B) is a resin (cured product) obtained by curing an amorphous and curable curable amorphous fluorine-containing polymer (b) having no aromatic ring. . Since the amorphous fluorine-containing resin (B) forming the coating layer 22 does not have an aromatic ring, the aromatic ring is cleaved by the light from the optical element 13 to deteriorate the coating layer 22, thereby protecting the protective film. It is possible to prevent the performance from deteriorating.
  • the curable amorphous fluorine-containing polymer (b) a known polymer used for protecting optical elements can be used as long as it is an amorphous and curable fluorine-containing polymer.
  • a fluorinated polymer having a curable reactive group such as a carboxy group, a cyano group or a double bond at the terminal, or a curable perfluoropolyalkylene ether described in JP-A-8-67819.
  • the curable amorphous fluorine-containing polymer (b) may be used alone or in combination of two or more.
  • the curable amorphous fluorine-containing polymer (b) can be easily cured by light or heat to form the coating layer 22, so that a polymerizable double bond (carbon) such as the curable perfluoropolymer is used.
  • a polymerizable compound (b1) having a —carbon double bond) is preferred.
  • Specific examples of the polymerizable compound (b1) include, for example, a tetrafluoroethylene (TFE) / perfluoro (1,4-butanediol divinyl ether) copolymer and a TFE / perfluoro (1,2-ethylene glycol divinyl ether) copolymer.
  • the amorphous aromatic resin (A) forming the intermediate layer 12 has a hetero atom in the bonded portion of the aromatic ring of the main chain, the terminal or side in the amorphous fluorine-containing resin (B)
  • a functional group such as a carboxylic acid group, an ester group, an amide group, a hydroxyl group, a cyano group, or a thiol group
  • the adhesion between the intermediate layer and the coating layer can be improved. This is because the amorphous aromatic resin (A) has polarity due to the influence of heteroatoms and interacts with the functional group of the amorphous fluorine-containing resin (B).
  • a method for introducing the functional group into the amorphous fluorine-containing resin (B) for example, in the case of an amide group, —COOH or —COF existing as a terminal group of the amorphous fluorine-containing resin (B) is 1
  • a method of converting to an alkylamide by reacting with a secondary amine or secondary amine can be mentioned.
  • a cyano group there may be mentioned a method in which —COOH or —COF existing as a terminal group is reacted with ammonia to form —CONH 2 and then converted into a cyano group by a dehydration reaction.
  • an amino group can be obtained by reducing the cyano group.
  • -COOH or -COF can be converted to a hydroxyl group by methylation and then reduction.
  • the Tg of the amorphous fluorine-containing resin (B) is preferably ⁇ 50 ° C. to 100 ° C., and more preferably ⁇ 20 ° C. to 50 ° C.
  • Tg is ⁇ 50 ° C. or higher, the effect of stickiness on the surface of the coating layer 22 is small. Further, since it is easy to keep gas permeability low, it becomes easy to suppress discoloration of Ag electrodes used for electric wiring.
  • the Tg of the amorphous aromatic resin (A) is 100 ° C. or lower, the flexibility is maintained, so that peeling occurs due to the generation of stress at the interface between the intermediate layer 21 and the coating layer 22 due to temperature change. It becomes easy to suppress.
  • the Tg of the amorphous fluorine-containing resin (B) can be adjusted by the amount of the curable reactive group (polymerizable double bond) in the curable amorphous fluorine-containing polymer (b).
  • the thermal expansion coefficient of the amorphous fluorine-containing resin (B) can be adjusted by selecting the resin.
  • the coating layer 22 can be formed of the amorphous fluorine-containing resin (B) described above.
  • the coating layer 22 in the present invention is preferably formed only from the amorphous fluorine-containing resin (B).
  • the coating layer 22 may contain other resins in addition to the amorphous fluorine-containing resin (B) as long as the gas permeability of the coating layer 22 is not excessively deteriorated.
  • Examples of other substances that can be contained in the coating layer 22 include perfluoropolyether that has the effect of increasing the flexibility by lowering the Tg. Moreover, the inorganic type or organic type fluorescent substance which show
  • the thickness of the coating layer 22 is preferably 100 ⁇ m or more.
  • the thickness of the covering layer 22 is 100 ⁇ m or more, it is easy to suppress deterioration of the light emitting element 13 and the electric wiring, and the light resistance is excellent.
  • the light transmittance of the coating layer 22 with respect to visible light having a wavelength of 400 to 700 nm is preferably 90% or more, and more preferably 95% or more under the condition that the thickness is 0.1 to 2 mm. If the light transmittance is 90% or more, adverse effects on the light extraction efficiency from the light emitting element 13 can be suppressed, and thus the light emitting element module 1 having high light emission luminance can be easily obtained.
  • the gas permeability at 25 ° C. of the covering layer 22 is preferably 10 ⁇ 15 to 10 ⁇ 13 mol ⁇ m / m 2 ⁇ s ⁇ Pa in the case of oxygen and water vapor, and is preferably 10 ⁇ 15 to 10 ⁇ 14 mol ⁇ m. More preferably, it is / m 2 ⁇ s ⁇ Pa. If the gas permeability is 10 ⁇ 13 mol ⁇ m / m 2 ⁇ s ⁇ Pa or less, water vapor and sulfur compounds in the air are blocked to prevent deterioration of the LED element (light emitting element 13) and the electrodes 12a and 12b. Is easy.
  • the curable amorphous fluoropolymer (b) can be easily obtained.
  • the gas permeability of the coating layer 22 can be adjusted by the Tg of the amorphous fluororesin (B), the crosslinking density, and the like.
  • the protective film using the amorphous fluorine-containing resin (B) is excellent in initial adhesiveness and gas permeability with the light emitting element. Moreover, since it is excellent also in heat resistance, even if it uses continuously at high temperature, peeling of a protective film can be suppressed and it can be used stably.
  • the amorphous fluorine-containing resin (B) is not usually excellent in adhesion to various substrates.
  • the optical element 13 and the protective film 20 are formed by forming the intermediate layer 21 from the amorphous aromatic resin (A) having a polarity intermediate between the module member 10 such as the optical element 13 and the covering layer 22. Improves the adhesion.
  • the amorphous aromatic resin (A) having a Tg of 150 ° C. or higher is used for forming the intermediate layer 21, it is possible to further suppress softening of the intermediate layer 21 when the optical element module is heated to a high temperature. It is easy to keep the gas permeability of the protective film 20 low, and the protective film 20 can be made thinner. Furthermore, by using the amorphous aromatic resin (A) having a smaller thermal expansion coefficient than the amorphous fluorine-containing resin (B) of the coating layer 22, the intermediate layer 21 is changed due to a temperature change caused by the use of the light emitting element module. It becomes easy to suppress expansion and contraction and to prevent the protective film 20 from peeling from the optical element 13.
  • the manufacturing method of the present invention is a method of manufacturing an optical element module that includes an optical element and an electric wiring for energizing the optical element, and the optical element and the electric wiring are covered with a protective film.
  • the manufacturing method (I) of the optical element module in which the protective film having the intermediate layer containing the aromatic fluorine-containing resin (A1) described above is formed and the amorphous aromatic resin (A) synthesized in advance are used.
  • a method (II) for producing an optical element module in which a protective film having an intermediate layer is formed will be described.
  • Manufacturing method (I) has the following processes.
  • Intermediate layer forming step After applying a coating solution prepared by dissolving a prepolymer (a) having a crosslinkable functional group (x) in a solvent to the light emitting element and the electric wiring, the prepolymer (a) is cured, The process of forming the intermediate
  • Coating layer forming step After coating the curable amorphous fluorinated polymer (b) having no aromatic ring on the intermediate layer, the curable amorphous fluorinated polymer (b) is subjected to heat or light. A step of forming a coating layer containing the amorphous fluorine-containing resin (B) by curing by the method.
  • the method of manufacturing the module member 10 is not particularly limited, and the module member 10 may be manufactured by mounting the electrodes 12a and 12b, the optical element 13, the bonding wire 14, and the reflector 15 on the substrate 11 by a known method. Moreover, you may use the commercially available module member in which they were mounted.
  • the prepolymer (a) is dissolved in a solvent to prepare a coating solution. Thereafter, the coating liquid is applied to the light emitting element 13 and the electrodes 12 a and 12 b in the recess 16 to form the intermediate layer 21.
  • the intermediate layer 21 By forming the intermediate layer 21 by applying the coating liquid, the intermediate layer 21 can be easily formed. Therefore, it is preferable to use a combination in which the prepolymer (a) is soluble in the solvent.
  • Examples of the solvent for the coating liquid include aromatic hydrocarbons, aprotic polar solvents, ketones, esters, ethers, and halogenated hydrocarbons.
  • aromatic hydrocarbons include benzene, toluene, xylene, ethylbenzene, cumene, mesitylene, tetralin, methylnaphthalene, o-chlorophenol, nitrobenzene, anisole and the like.
  • Examples of the aprotic polar solvents include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, ⁇ -butyrolactone, dimethyl sulfoxide, 1-methyl-2-pyrrolidone, sulfolane and the like.
  • Examples of ketones include cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methyl amyl ketone, and the like.
  • ethers include tetrahydrofuran, pyran, dioxane, dimethoxyethane, diethoxyethane, diphenyl ether, anisole, phenetole, diglyme, triglyme and the like.
  • esters examples include ethyl lactate, methyl benzoate, ethyl benzoate, butyl benzoate, benzyl benzoate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono Examples include propyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate.
  • halogenated hydrocarbons include carbon tetrachloride, chloroform, methylene chloride, dichloroethane, tetrachloroethylene, chlorobenzene, dichlorobenzene, and the like.
  • a method for applying the coating liquid known methods can be used, for example, spin coating, spray coating, dip coating, die coating, roll coating, flexo coating, gravure coating, bar coating, Examples include a curtain coating method, a screen coating method, an ink jet method, and a flow coating method.
  • the intermediate layer containing the aromatic fluorine-containing resin (A1) is cured by curing the prepolymer (a) by light, heat, electron beam, or the like, or a combination thereof. 21 is formed.
  • the curing temperature may be any temperature that allows the prepolymer (a) to be cured, and is preferably 100 to 200 ° C, more preferably 150 to 200 ° C. Is more preferable.
  • the curing temperature of the prepolymer (a) is 100 ° C. or higher, the formation efficiency of the intermediate layer 21 is improved.
  • the curing temperature of prepolymer (a) is 200 degrees C or less, it will be easy to suppress that the obtained intermediate
  • the coating liquid to be applied may contain a photo radical generator, photo acid generator, sensitizer, or the like suitable for light of a specific wavelength. preferable.
  • light having a wavelength of 150 to 400 nm can be used.
  • a metal halide lamp, 254, 313, and 365 nm can be a high pressure or low pressure mercury lamp.
  • a KrF excimer laser can be used for 248 nm, an ArF excimer laser for 193 nm, and an F 2 laser for 157 nm. Curing can be performed, for example, by irradiation for 1 minute to 10 hours in an irradiation intensity range of 0.1 to 500 mW / cm 2 .
  • the curable amorphous fluorine-containing polymer (b) is applied onto the intermediate layer 21, and then the curable amorphous fluorine-containing polymer (b) is cured by heat or light to be coated.
  • Layer 22 is formed.
  • the coating layer 22 can be easily formed.
  • the coating method of the curable amorphous fluoropolymer (b) in the coating layer forming step is not particularly limited, but the thickness of the coating layer 22 is preferably larger than the thickness of the intermediate layer 21, It is not a coating method using a coating solution dissolved in a solvent as in the intermediate layer forming step, but is heated at a temperature lower than the curing temperature to flow the curable amorphous fluoropolymer (b) and apply it. It is preferable to use the method to do.
  • the curing temperature when the curable amorphous fluoropolymer (b) is cured by heat may be any temperature that can cure the curable amorphous fluoropolymer (b) to be used. Depending on the temperature, it is preferably 100 to 200 ° C, more preferably 150 to 200 ° C. If the curing temperature is 100 ° C. or higher, the curing reaction can be performed in a shorter time to improve productivity. Moreover, if the curing temperature is 200 ° C. or less, the coating layer 22 having excellent dimensional stability is easily obtained.
  • the curing reaction may be performed in multiple stages so that the temperature increases stepwise. When the curing reaction is performed in multiple stages, the curing temperature may be set so that at least the maximum temperature is within the above range.
  • a curing agent such as a fluorine-containing organic peroxide may be used.
  • fluorine-containing organic oxide examples include (C 6 F 5 C (CO) O) 2 and ((CF 3 ) 3 O) 2 .
  • the curable amorphous fluorinated polymer (b) may be cured by light (ultraviolet rays) having a wavelength of 150 to 400 nm.
  • the curing reaction proceeds even at room temperature, and the coating layer 22 having a higher hardness than that obtained by thermosetting can be obtained.
  • the wavelength of the ultraviolet light is preferably 150 to 400 nm, more preferably 193 to 365 nm, and particularly preferably 248 to 365 nm.
  • a cured product when irradiating 254 nm short wavelength ultraviolet rays, it is not necessary to use a photoinitiator, and a cured product can be prepared by adjusting the irradiation time according to the ultraviolet irradiation intensity. Curing can be performed, for example, by irradiation for 1 minute to 10 hours in an irradiation intensity range of 0.1 to 500 mW / cm 2 .
  • a photoinitiator when used, it can be cured by irradiating ultraviolet rays of 300 to 400 nm.
  • the photoinitiator include various types of ketone-based compounds such as acetophenone-based, benzoin ether-based, benzyl ketal-based, benzophenone, and benzyl.
  • it is a fluorine-containing photoinitiator in which a part of hydrogen is substituted with fluorine or a fluoroalkyl group because of compatibility with the polymerizable compound (b1).
  • the amount of photoinitiator used is preferably 0.01 to 10% by mass, more preferably 0.1 to 1% by mass. If the usage-amount of a photoinitiator exists in the said range, it will become easy to obtain the transparent coating layer 22 with little coloring, without reducing a cure rate.
  • the optical element module 1 is obtained by forming the protective film 20 having the intermediate layer 21 and the covering layer 22 by the intermediate layer forming process and the covering layer forming process as described above.
  • Manufacturing method (II) has the following processes.
  • Intermediate layer forming step A step of forming an intermediate layer by applying a coating solution obtained by dissolving the amorphous aromatic resin (A) in a solvent to the light emitting element and the electric wiring.
  • Coating layer forming step After applying the curable amorphous fluoropolymer (b) on the intermediate layer, the curable amorphous fluoropolymer (b) is cured by heat or light to be amorphous.
  • the method of manufacturing the module member 10 is not particularly limited, and the module member 10 may be manufactured by mounting the electrodes 12a and 12b, the optical element 13, the bonding wire 14, and the reflector 15 on the substrate 11 by a known method. Moreover, you may use the commercially available module member in which they were mounted.
  • the amorphous aromatic resin (A) is dissolved in a solvent to prepare a coating solution. Thereafter, the coating liquid is applied to the light emitting element 13 in the recess 16 to form the intermediate layer 21.
  • the intermediate layer 21 By forming the intermediate layer 21 by applying the coating liquid and drying, the intermediate layer 21 can be easily formed.
  • the amorphous aromatic resin (A) and the solvent a combination in which the amorphous aromatic resin (A) is soluble in the solvent is preferably used.
  • Examples of the solvent are the same as those mentioned in the production method (I).
  • a polyethersulfone resin is used as the amorphous aromatic resin (A)
  • N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane are used as the solvent.
  • ⁇ -butyrolactone, o-chlorophenol, anisole, nitrobenzene, methylene chloride, dichloroethane and the like can be used.
  • a coating layer formation process can perform the same process as manufacturing method (I), and its preferable aspect is also the same.
  • middle layer containing both the amorphous aromatic resin (A) synthesize
  • the intermediate layer 21 can be formed by curing the aromatic fluorine-containing resin (A1).
  • the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description.
  • “parts” in this example means parts by mass.
  • “Measuring method] In this example, the thickness of the intermediate layer and the coating layer, the molecular weight of the prepolymer (a), the glass transition temperature (Tg) of the aromatic fluorine-containing resin (A1), and the coefficient of thermal expansion were measured by the following methods. went. (Thickness of intermediate layer and coating layer) The thickness of the intermediate layer and the coating layer on the silver-plated copper plate shown in the following examples was calculated by measuring a step with the substrate using a surface roughness meter.
  • Glass transition temperature (Tg) The glass transition temperature of the aromatic fluororesin (A1) was measured using a differential scanning calorimeter (DSC) according to JIS K7121: 1987. The midpoint glass transition temperature was defined as the glass transition temperature (Tg).
  • Tg Glass transition temperature
  • the Tg of the amorphous aromatic resin (A) other than the aromatic fluorine-containing resin (A1) is Tg described in the product.
  • the thermal expansion coefficient was measured by raising the temperature from 100 ° C. to 200 ° C. at a rate of 10 ° C./min using a TMA device (manufactured by Seiko Denshi, TMA120C).
  • the molecular weight of the aromatic fluorine-containing resin (A1) was measured as a number average molecular weight in terms of polystyrene by gel permeation chromatography (GPC method). Tetrahydrofuran was used as the carrier solvent.
  • the molecular weight of the curable amorphous fluorine-containing polymer (b) was measured as a number average molecular weight in terms of polymethyl methacrylate using Asahi Clin AK225 as a carrier solvent.
  • Example 1 (Intermediate layer forming process) Polyethersulfone (trade name: Sumika Excel PES5003P, manufactured by Sumitomo Chemical Co., Ltd., Tg: 226 ° C., coefficient of thermal expansion: 55 ppm / ° C.) (PES (polyether sulfone) concentration: 20 mass%) is dissolved in N, N-dimethylacetamide. Thus, a coating solution for forming the intermediate layer was prepared. The obtained coating solution is cast on a silver-plated copper plate, heated at 100 ° C. for 30 minutes in a nitrogen gas atmosphere, and further heated at 150 ° C. for 1 hour to form an intermediate layer (thickness of about 5 ⁇ m). Formed.
  • PES polyether sulfone
  • the intermediate layer thus obtained had a Tg of 226 ° C. and a thermal expansion coefficient of 55 ppm / ° C. (Coating layer forming process)
  • tetrafluoroethylene / perfluoro (1,4-butanediol divinyl ether) / perfluoro (propyl vinyl ether) copolymer (copolymerization composition: 70/12/18 (molar ratio), PMMA equivalent mass)
  • a high viscosity liquid polymerizable compound (b1-1) having an average molecular weight of 9600
  • Example 2 (Intermediate layer forming process) A 100 mL glass four-necked flask equipped with a Dimroth condenser, a thermocouple thermometer, and a mechanical stirrer was charged with pentafluorostyrene (1.0 g), 1,1,1-tris (4-hydroxyphenyl) ethane (2.4 g). ), Dimethylacetamide (hereinafter referred to as “DMAc”) (31.1 g). The flask was heated on an oil bath with stirring, and sodium carbonate (3.8 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 24 hours while stirring was continued.
  • DMAc Dimethylacetamide
  • the obtained prepolymer (a-1) was dissolved in cyclohexanone so that the concentration of the prepolymer (a-1) was 30% by mass to obtain a coating solution.
  • the coating solution was filtered through a PTFE (polytetrafluoroethylene) filter (Omnipore membrane filter manufactured by Millipore) having a pore size of 0.5 ⁇ m.
  • a coating film was prepared by spin coating on a copper plate obtained by silver-plating the obtained coating solution. The spin conditions were 1000 rpm and 30 seconds. Next, the silver-plated copper plate on which the coating film is formed is heated by a hot plate at 100 ° C. for 90 seconds, further subjected to heat treatment at 200 ° C. for 90 seconds, and then heated at 200 ° C.
  • the polymerizable compound (b1-1) is applied onto the intermediate layer, heated at 100 ° C. to develop a film, cooled to room temperature, and then irradiated with ultraviolet light having a wavelength of 254 nm by a low-pressure mercury lamp.
  • the coating was further heated at 150 ° C. for 30 minutes to form a coating layer having a thickness of 300 ⁇ m to form a protective film.
  • the silver-plated copper plate having this protective film was kept in an oven at 200 ° C. for 3 weeks, peeling of the coating layer, and silver plating and discoloration of the coating layer were hardly observed.
  • the liquid polymerizable compound (b1-1) is applied, heated at 100 ° C. to develop into a film, cooled to room temperature, and then irradiated with ultraviolet light having a wavelength of 254 nm at 6 mW / cm 2 for 30 minutes. After being cured, the film was further heated at 150 ° C. for 30 minutes to form a cured film having a thickness of 300 ⁇ m.
  • the silver-plated copper plate on which this cured film was formed was kept in an oven at 200 ° C. for 1 week, almost no discoloration of the silver plating or discoloration of the cured film was observed.
  • the protective films of Examples 1 and 2 having the intermediate layer and the coating layer of the present invention were in a state after 3 weeks of holding in the oven for 1 week of Comparative Example 1 having no intermediate layer. Even compared with the later state, the adhesion between the module member and the protective film was maintained, and the protective effect of the silver-plated portion covered with the protective film 20 was high. Further, the protective films of Examples 1 and 2 have sufficient adhesion between the module member 10 and the protective film 20 as compared with Comparative Example 2 using a silane coupling agent after 3 weeks of holding in the oven. The protective effect of the silver-plated portion covered with the protective film 20 was high. From these results, the protective film in the present invention is not only excellent in initial adhesiveness with the module member, but also has high heat resistance, so that the protective film does not peel off even in continuous use at high temperature, and the protective performance is stable. I found out.
  • a light-emitting element module was formed by forming a protective film on the LED element, which is a light-emitting element, and sealing it.
  • a recess is formed by an alumina substrate (substrate 11) and an alumina reflector (reflector 15) as illustrated in FIG. 1, and an Ag electrode (circuit) is formed on the substrate (
  • a surface mount type LED module (module member 10) having electrodes 12a and 12b), on which an LED element (light emitting element 13) having an emission wavelength of 460 nm is mounted, and the Ag electrode and the LED element are connected and connected by a bonding wire 14.
  • Example 1 The coating liquid used in Example 1 (diluted to a PES concentration of 10% by mass) is dropped into the recess 16 and heated at 100 ° C. for 30 minutes in a nitrogen gas atmosphere, and further heated at 150 ° C. for 1 hour.
  • an intermediate layer 21 having a thickness of 4 ⁇ m was formed on the surfaces of the LED element (light emitting element 13) and the Ag electrode (electrodes 12a and 12b).
  • the polymerizable compound (b1-1) was heated to 100 ° C. and poured into the recess 16, and cured by irradiating UV light having a wavelength of 254 nm at 6 mW / cm 2 for 30 minutes with a low-pressure mercury lamp, and further at 150 ° C. Then, the coating layer 22 having a thickness of 1 mm was formed to produce the protective film 20, and an LED module 1A (light-emitting element module 1) was obtained. The obtained LED module 1A was continuously energized at 3.4 V and 350 mA.
  • the resin surface temperature of the cured polymerizable compound (b1-1) of the coating layer 22 was measured with a radiation thermometer and found to be 80 ° C. From this result, it is considered that the temperature in the vicinity of the LED element exceeds 100 ° C.
  • the protective film 20 and the Ag electrode were visually observed, no change was observed. Thereafter, energization was continued for 3 months, but no change such as discoloration of the protective film 20 or Ag electrode or peeling of the protective film 20 was observed.
  • Example 4 (Intermediate layer forming process) Using the same surface-mounted LED module as in Example 3 (module member 10 mounted with an LED element (light emitting element 13) having an emission wavelength of 460 nm), the prepolymer (a-1) obtained in Synthesis Example 1 was formed in the recess 16 By adding dropwise a coating solution dissolved in cyclohexanone so that the concentration becomes 10% by mass, heating at 100 ° C. for 30 minutes in a nitrogen gas atmosphere, and further heating to 200 ° C. and then heating for 2 hours. An intermediate layer 21 having a thickness of 4 ⁇ m was formed on the surfaces of the LED element (light emitting element 13) and the Ag electrodes (electrodes 12a and 12b).
  • the polymerizable compound (b1-1) is heated to 100 ° C. and poured into the recess 16, and cured by irradiating UV light having a wavelength of 254 nm at 6 mW / cm 2 for 30 minutes with a low-pressure mercury lamp, and coating with a thickness of 1 mm.
  • the protective film 20 was produced by forming the layer 22, and the LED module 1B (light emitting element module 1) was obtained. The obtained LED module 1B was continuously energized at 3.4 V and 350 mA. During this time, the resin surface temperature of the cured polymerizable compound (b-1) of the coating layer 22 was measured with a radiation thermometer and found to be 80 ° C.
  • the light-emitting element module of the present invention is used for white LEDs used as an energy-saving high-efficiency illumination light source and other various light-emitting elements.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-327533 filed on Dec. 24, 2008 are cited here as disclosure of the specification of the present invention. Incorporated.
  • 1 light emitting element module 11 substrate, 12a, 12b electrode, 13 light emitting element, 14 bonding wire, 15 reflector, 20 protective film, 21 intermediate layer, 22 covering layer.

Abstract

Disclosed is a light-emitting module which has a protective film comprising a curable amorphous fluorinated polymer, having excellent adhesion to a light-emitting element, and also having excellent heat resistance and excellent gas permeatiblity, and which is stable even when used continuously at a high temperature.  Also disclosed is a method for manufacturing the light-emitting module. Specifically disclosed is a light-emitting module (1) comprising a light-emitting element (13) and an electrical wiring (electrodes (12a and 12b) and a bonding wire (14)) for applying a current to the light-emitting element (13), wherein both the light-emitting element (13) and the electrical wiring are covered by a protective film (20).  The protective film (20) comprises an intermediate layer (21) which contacts with the light-emitting element (13) and a coating layer (22) which is formed on the intermediate layer (21).  The intermediate layer (21) comprises an amorphous aromatic resin (A), and the coating layer (22) comprises an amorphous fluorinated resin (B).

Description

発光素子モジュールおよびその製造方法Light emitting element module and method for manufacturing the same
 本発明は、発光素子モジュールおよびその製造方法に関する。 The present invention relates to a light emitting element module and a manufacturing method thereof.
 近年、次世代の省エネルギー高効率照明光源として白色LED(Light Emitting Diode、発光ダイオード)等の発光素子の開発が進められている。これらの発光素子は、素子および配線部分を保護するめにシリコーン樹脂等の透光性封止樹脂により封止される。しかし、シリコーンはガス透過性が高く、水蒸気がLED素子や蛍光体の劣化の原因となっている。また、電極材料としては光反射率の高いAgが用いられているが、空気中に浮遊している硫黄化合物がシリコーン封止部を透過してAg電極を黒化することで、反射率が低下して光の取り出し効率が低下するという問題がある。 In recent years, light-emitting elements such as white LEDs (Light Emitting Diodes) have been developed as next-generation energy-saving high-efficiency illumination light sources. These light emitting elements are sealed with a light-transmitting sealing resin such as a silicone resin in order to protect the elements and the wiring portions. However, silicone has high gas permeability, and water vapor is a cause of deterioration of LED elements and phosphors. Also, Ag with high light reflectivity is used as the electrode material, but the sulfur compound floating in the air permeates the silicone sealing part and blackens the Ag electrode, resulting in a decrease in reflectivity. Thus, there is a problem that the light extraction efficiency is lowered.
 そこで、LEDの長寿命化が期待される透光性封止材料として、光や熱に対する劣化がシリコーンと比較して非常に少なく、かつ水蒸気や硫黄化合物の透過性が低い非晶質含フッ素重合体が検討されている(特許文献1および2)。特許文献1では、非晶質含フッ素重合体と含フッ素溶剤とからなるコーティング液により形成した被膜によるLEDの透光封止が提案されている。特許文献2では、硬化性の非晶質含フッ素重合体を含む硬化性組成物を利用したLEDの透光封止が示されている。 Therefore, as a translucent sealing material that is expected to extend the life of LEDs, amorphous fluorine-containing heavy metals that have much less deterioration with respect to light and heat than silicone and have low permeability to water vapor and sulfur compounds. Coalescence has been studied (Patent Documents 1 and 2). Patent Document 1 proposes translucent sealing of an LED with a film formed by a coating liquid composed of an amorphous fluorine-containing polymer and a fluorine-containing solvent. Patent Document 2 discloses translucent sealing of an LED using a curable composition containing a curable amorphous fluorine-containing polymer.
特開2003-8073号公報JP 2003-8073 A 国際公開第07/145181号パンフレットInternational Publication No. 07/145181 Pamphlet
 しかし、特許文献1の方法は、LEDの封止に必要な厚さを得ることが困難であった。また、特許文献1、2のような非晶質含フッ素重合体は、一般的に発光素子モジュール部材との接着性が特に優れた材料ではないため、場合によっては発光素子モジュール部材から剥離してしまうおそれがある。そこで、金属やセラミクス等の無機材料やプラスチックとの接着性の改良に一般的に用いられる各種のシランカップリング剤を利用して、非晶質含フッ素重合体と発光素子モジュール部材との接着性を向上させることを検討した。しかし、この方法では、シランカップリング剤を用いることで初期の接着性は向上するものの、耐熱性が充分に得られず、高温に曝されるLEDの封止材料としては長期的な信頼性に劣っていた。
 また、特許文献2の硬化性非晶質含フッ素重合体を用いた封止では、温度サイクル試験を行うと発光素子モジュールのボンディングワイヤが電極から剥離することがあった。
However, in the method of Patent Document 1, it is difficult to obtain a thickness necessary for LED sealing. In addition, amorphous fluoropolymers such as Patent Documents 1 and 2 are generally not particularly excellent in adhesiveness with the light emitting element module member, and may be peeled off from the light emitting element module member in some cases. There is a risk that. Therefore, using various silane coupling agents generally used to improve adhesion to inorganic materials such as metals and ceramics and plastics, adhesion between amorphous fluoropolymers and light emitting device module members It was considered to improve. However, in this method, although the initial adhesiveness is improved by using a silane coupling agent, the heat resistance is not sufficiently obtained, and the long-term reliability as a sealing material for LEDs exposed to high temperatures. It was inferior.
Further, in the sealing using the curable amorphous fluorine-containing polymer of Patent Document 2, when a temperature cycle test is performed, the bonding wire of the light emitting element module may be peeled off from the electrode.
 そこで本発明では、硬化性非晶質含フッ素重合体を用いた保護膜として、発光素子や該発光素子に通電する電気配線に対する初期接着性、および耐熱性に優れ、高温での連続使用においても安定な保護膜を有し、前記発光素子や電気配線の劣化を低減できる発光素子モジュール、およびその製造方法を提供することを目的とする。 Therefore, in the present invention, as a protective film using a curable amorphous fluorine-containing polymer, it is excellent in initial adhesiveness and heat resistance to a light-emitting element and an electric wiring passing through the light-emitting element, and can be used continuously at high temperatures. It is an object of the present invention to provide a light emitting element module having a stable protective film and capable of reducing deterioration of the light emitting element and electric wiring, and a manufacturing method thereof.
 前記課題を達成するために、本発明は以下の構成を採用した。
 [1]発光素子および該発光素子に通電するための電気配線を備え、前記発光素子および前記電気配線が保護膜で被覆された発光素子モジュールであって、前記保護膜が前記発光素子に接する中間層と、該中間層上に形成される被覆層とを有し、前記中間層が主鎖に芳香環を有する非晶質芳香族樹脂(A)を含み、前記被覆層が芳香環を有さない硬化性非晶質含フッ素重合体(b)を硬化させた非晶質含フッ素樹脂(B)を含むことを特徴とする発光素子モジュール。
 [2]前記非晶質芳香族樹脂(A)が芳香族系含フッ素樹脂である、[1]に記載の発光素子モジュール。
 [3]前記非晶質芳香族樹脂(A)がポリエーテルスルホン樹脂である、[1]に記載の発光素子モジュール。
 [4]前記非晶質芳香族樹脂(A)のガラス転移温度が150℃以上である、[1]~[3]のいずれかに記載の発光素子モジュール。
 [5]前記非晶質芳香族樹脂(A)の熱膨張係数が20~100ppm/℃である、[1]~[4]のいずれかに記載の発光素子モジュール。
 [6]前記非晶質含フッ素樹脂(B)のガラス転移温度が-50~100℃である、[1]~[5]のいずれかに記載の発光素子モジュール。
 [7]前記非晶質含フッ素樹脂(B)の熱膨張係数が100~200ppm/℃である、[1]~[6]のいずれかに記載の発光素子モジュール。
 [8]前記中間層中の前記非晶質芳香族樹脂(A)の含有量は70質量%超である、[1]~[7]のいずれかに記載の発光素子モジュール。
 [9]発光素子および該発光素子に通電するための電気配線を備え、前記発光素子および前記電気配線が保護膜で被覆された発光素子モジュールの製造方法であって、架橋性官能基(x)を有するプレポリマー(a)を溶剤に溶解したコーティング液を前記発光素子および前記電気配線に塗布した後、前記プレポリマー(a)を硬化させ、主鎖に芳香環を有する芳香族系含フッ素樹脂(A1)を含む中間層を形成する中間層形成工程と、前記中間層上に、芳香環を有さない硬化性非晶質含フッ素重合体(b)を塗布した後、該硬化性非晶質含フッ素重合体(b)を熱または光により硬化させて非晶質含フッ素樹脂(B)を含む被覆層を形成する被覆層形成工程と、
 を有する発光素子モジュールの製造方法。
 [10]発光素子および該発光素子に通電するための電気配線を備え、前記発光素子および前記電気配線が保護膜で被覆された発光素子モジュールの製造方法であって、主鎖に芳香環を有する非晶質芳香族樹脂(A)を溶剤に溶解したコーティング液を前記発光素子および前記電気配線に塗布して中間層を形成する中間層形成工程と、前記中間層上に、芳香環を有さない硬化性非晶質含フッ素重合体(b)を塗布した後、該硬化性非晶質含フッ素重合体(b)を熱または光により硬化させて非晶質含フッ素樹脂(B)を含む被覆層を形成する被覆層形成工程と、
 を有する発光素子モジュールの製造方法。
 [11]前記硬化性非晶質含フッ素重合体(b)が、重合性二重結合を有する重合性化合物(b1)を含む、[9]または[10]に記載の発光素子モジュールの製造方法。
In order to achieve the above object, the present invention employs the following configuration.
[1] A light emitting element module including a light emitting element and an electric wiring for energizing the light emitting element, the light emitting element and the electric wiring being covered with a protective film, wherein the protective film is in contact with the light emitting element A layer and a coating layer formed on the intermediate layer, the intermediate layer containing an amorphous aromatic resin (A) having an aromatic ring in the main chain, and the coating layer having an aromatic ring A light-emitting element module comprising an amorphous fluorine-containing resin (B) obtained by curing a non-curable amorphous fluorine-containing polymer (b).
[2] The light emitting element module according to [1], wherein the amorphous aromatic resin (A) is an aromatic fluorine-containing resin.
[3] The light emitting element module according to [1], wherein the amorphous aromatic resin (A) is a polyethersulfone resin.
[4] The light-emitting element module according to any one of [1] to [3], wherein the amorphous aromatic resin (A) has a glass transition temperature of 150 ° C. or higher.
[5] The light-emitting element module according to any one of [1] to [4], wherein the amorphous aromatic resin (A) has a thermal expansion coefficient of 20 to 100 ppm / ° C.
[6] The light-emitting element module according to any one of [1] to [5], wherein the amorphous fluorine-containing resin (B) has a glass transition temperature of −50 to 100 ° C.
[7] The light-emitting element module according to any one of [1] to [6], wherein the amorphous fluorine-containing resin (B) has a thermal expansion coefficient of 100 to 200 ppm / ° C.
[8] The light-emitting element module according to any one of [1] to [7], wherein the content of the amorphous aromatic resin (A) in the intermediate layer is more than 70% by mass.
[9] A method for producing a light emitting device module comprising a light emitting device and an electric wiring for energizing the light emitting device, wherein the light emitting device and the electric wiring are covered with a protective film, wherein the crosslinkable functional group (x) An aromatic fluorine-containing resin having an aromatic ring in the main chain after applying a coating solution prepared by dissolving the prepolymer (a) having a solvent in a solvent to the light emitting element and the electric wiring, and then curing the prepolymer (a) An intermediate layer forming step of forming an intermediate layer containing (A1), and a curable amorphous fluorine-containing polymer (b) having no aromatic ring applied on the intermediate layer, the curable amorphous A coating layer forming step of curing the fluorinated polymer (b) with heat or light to form a coating layer containing the amorphous fluorine-containing resin (B);
Manufacturing method of light emitting element module having
[10] A method for manufacturing a light emitting element module comprising a light emitting element and an electric wiring for energizing the light emitting element, wherein the light emitting element and the electric wiring are covered with a protective film, wherein the main chain has an aromatic ring An intermediate layer forming step of forming an intermediate layer by applying a coating solution in which an amorphous aromatic resin (A) is dissolved in a solvent to the light emitting element and the electric wiring, and an aromatic ring on the intermediate layer After applying the non-curable curable amorphous fluorinated polymer (b), the curable amorphous fluorinated polymer (b) is cured by heat or light to contain the amorphous fluorinated resin (B). A coating layer forming step of forming a coating layer;
Manufacturing method of light emitting element module having
[11] The method for producing a light-emitting element module according to [9] or [10], wherein the curable amorphous fluoropolymer (b) includes a polymerizable compound (b1) having a polymerizable double bond. .
 本発明の発光素子モジュールは、硬化性非晶質含フッ素重合体を用いた保護膜として、発光素子や該発光素子に通電する電気配線に対する初期接着性、および耐熱性に優れ、高温での連続使用においても安定な保護膜を有している。そのため、高温での連続使用であっても該保護膜により前記発光素子や電気配線の劣化を低減することができる。
 また、本発明の製造方法によれば、硬化性非晶質含フッ素重合体を用いた保護膜として、発光素子や該発光素子に通電する電気配線に対する初期接着性、および耐熱性に優れ、高温での連続使用においても安定な保護膜を有し、前記発光素子や電気配線の劣化を低減できる発光素子モジュールが得られる。
The light-emitting element module of the present invention is excellent in initial adhesion and heat resistance to a light-emitting element and an electric wiring passing through the light-emitting element as a protective film using a curable amorphous fluoropolymer, and continuously at a high temperature. Even in use, it has a stable protective film. Therefore, deterioration of the light emitting element and the electric wiring can be reduced by the protective film even in continuous use at a high temperature.
In addition, according to the production method of the present invention, as a protective film using a curable amorphous fluorine-containing polymer, it is excellent in initial adhesiveness and heat resistance to a light emitting element and an electric wiring passing through the light emitting element, and has a high temperature. Thus, a light-emitting element module having a stable protective film even in continuous use and capable of reducing deterioration of the light-emitting element and electric wiring can be obtained.
本発明の発光素子モジュールの実施形態の一例を示した断面図である。It is sectional drawing which showed an example of embodiment of the light emitting element module of this invention.
<発光素子モジュール>
 本発明の発光素子モジュールは、発光素子および該発光素子に通電するための電気配線を備え、前記発光素子および前記電気配線が保護膜で被覆された発光素子モジュールである。本発明では、前記保護膜が、前記発光素子に接する中間層と、該中間層上に形成される被覆層とを有し、前記中間層が非晶質芳香族樹脂(A)を含み、前記被覆層が非晶質含フッ素樹脂(B)を含むことを特徴とする。以下、本発明の光学素子モジュールの実施形態の一例を示す。
<Light emitting element module>
The light-emitting element module of the present invention is a light-emitting element module that includes a light-emitting element and electric wiring for energizing the light-emitting element, and the light-emitting element and the electric wiring are covered with a protective film. In the present invention, the protective film has an intermediate layer in contact with the light emitting element, and a coating layer formed on the intermediate layer, the intermediate layer containing an amorphous aromatic resin (A), The coating layer includes an amorphous fluorine-containing resin (B). Hereinafter, an example of an embodiment of an optical element module of the present invention is shown.
 本発明の発光素子モジュールは、図1に示すように、モジュール部材10と保護膜20とで構成されている。
[モジュール部材]
 モジュール部材10は、基板11と、基板11上に設けられた電極12a、12bと、電極12a、12b上に設けられた光学素子13と、電極12a、12bと光学素子13とを接続するボンディングワイヤ14と、光学素子13から出た光を反射するリフレクタ15とからなる。モジュール部材10では、基板11および該基板11の端部に設けられたリフレクタ15により凹部16が形成されている。また、凹部16には、基板11上に電極12a、12bにより所望の回路が形成されており、電極12a上に発光素子13が設置されている。発光素子13は、ボンディングワイヤ14により電極12a、12bと接続、導通されており、電極12a、12bが外部電源(図示せず)と接続されていることにより、発光素子13に通電できるようになっている。すなわち、本実施形態では、電極12a、12bおよびボンディングワイヤ14により、発光素子13に通電するための電気配線が構成されている。
The light emitting element module of this invention is comprised by the module member 10 and the protective film 20, as shown in FIG.
[Module members]
The module member 10 includes a substrate 11, electrodes 12 a and 12 b provided on the substrate 11, an optical element 13 provided on the electrodes 12 a and 12 b, and a bonding wire that connects the electrodes 12 a and 12 b and the optical element 13. 14 and a reflector 15 that reflects the light emitted from the optical element 13. In the module member 10, a recess 16 is formed by the substrate 11 and the reflector 15 provided at the end of the substrate 11. In the recess 16, a desired circuit is formed by the electrodes 12 a and 12 b on the substrate 11, and the light emitting element 13 is installed on the electrode 12 a. The light emitting element 13 is connected to and connected to the electrodes 12a and 12b by the bonding wire 14, and the light emitting element 13 can be energized by connecting the electrodes 12a and 12b to an external power source (not shown). ing. In other words, in the present embodiment, the electrodes 12 a and 12 b and the bonding wire 14 constitute an electrical wiring for energizing the light emitting element 13.
 基板11は、光学素子モジュールに通常用いられる基板を用いることができ、例えば、樹脂製やセラミック製の基板、または電極12a、12bとの間に絶縁層を設けた金属基板等を用いることができる。基板11の形状、厚さは特に限定されず、用途に応じて適宜選択することができる。
 電極12a、12bとしては、光学素子モジュールに通常用いられる電極を用いることができ、例えば、Ag電極、Au電極、Al電極が挙げられる。
 光学素子13としては、公知の発光素子を用いることができ、例えば、青色LED、紫外LED、レーザーダイオード(LD)等が挙げられる。
 リフレクタ15は、光学素子13から出た波長400~700nmの可視光を高効率で反射するものであればよく、樹脂製、セラミック製のものが挙げられる。
As the substrate 11, a substrate usually used for an optical element module can be used. For example, a resin or ceramic substrate, or a metal substrate provided with an insulating layer between the electrodes 12 a and 12 b can be used. . The shape and thickness of the substrate 11 are not particularly limited and can be appropriately selected depending on the application.
As the electrodes 12a and 12b, electrodes usually used in an optical element module can be used, and examples thereof include an Ag electrode, an Au electrode, and an Al electrode.
As the optical element 13, a known light emitting element can be used, and examples thereof include a blue LED, an ultraviolet LED, and a laser diode (LD).
The reflector 15 only needs to reflect visible light having a wavelength of 400 to 700 nm emitted from the optical element 13 with high efficiency, and examples thereof include those made of resin and ceramic.
[保護膜]
 発光素子モジュールでは、凹部16において、電極12a、12b、発光素子13が、中間層21と被覆層22からなる透光性の保護膜20で被覆されている。また、ボンディングワイヤ14は保護膜20に埋没している。
 保護膜20は、発光素子13および電極12a、12b上に形成される中間層21と、中間層21上に形成される被覆層22とからなる。保護膜20は、光学素子13、電極12a、12bを保護する役割を果たす。なお、ボンディングワイヤは、その電極との接続部の少なくとも一部が中間層によって覆われていればよいものであり、ボンデイングワイヤの全体が中間層に覆われる必要は必ずしもない。
[Protective film]
In the light emitting element module, the electrodes 12 a and 12 b and the light emitting element 13 are covered with the light-transmitting protective film 20 including the intermediate layer 21 and the covering layer 22 in the recess 16. The bonding wire 14 is buried in the protective film 20.
The protective film 20 includes an intermediate layer 21 formed on the light emitting element 13 and the electrodes 12 a and 12 b and a coating layer 22 formed on the intermediate layer 21. The protective film 20 plays a role of protecting the optical element 13 and the electrodes 12a and 12b. The bonding wire only needs to cover at least a part of the connection portion with the electrode by the intermediate layer, and the entire bonding wire is not necessarily covered by the intermediate layer.
(中間層)
 中間層21は、発光素子13や電極12a、12bと保護膜20との初期の接着性、および保護膜20の耐熱性を向上させる役割を果たす。中間層21の形成に用いる非晶質芳香族樹脂(A)は、主鎖に芳香環を有する非晶質の樹脂である。非晶質芳香族樹脂(A)は、中間層21形成後にはそれ自身では硬化反応が進行しない樹脂である。すなわち、中間層21の形成に非硬化性の樹脂を用いる場合はその樹脂自体を意味し、硬化性の重合体を用いる場合にはその硬化反応が終結したものを意味する。
 非晶質芳香族樹脂(A)が主鎖に芳香環を有することにより、Tgが高くかつ熱膨張率が低い中間層21が得られ、発光素子13の発熱により150℃以上の高温に達しても中間層21に変形や熱分解が生じないため、接着性の低下が起こりにくく、発光素子モジュールの信頼性が担保される。
(Middle layer)
The intermediate layer 21 plays a role of improving the initial adhesiveness between the light emitting element 13 and the electrodes 12 a and 12 b and the protective film 20 and the heat resistance of the protective film 20. The amorphous aromatic resin (A) used for forming the intermediate layer 21 is an amorphous resin having an aromatic ring in the main chain. The amorphous aromatic resin (A) is a resin that does not undergo a curing reaction by itself after the intermediate layer 21 is formed. That is, when a non-curable resin is used to form the intermediate layer 21, it means the resin itself, and when a curable polymer is used, it means that the curing reaction is terminated.
When the amorphous aromatic resin (A) has an aromatic ring in the main chain, the intermediate layer 21 having a high Tg and a low coefficient of thermal expansion is obtained, and the heat generation of the light emitting element 13 reaches a high temperature of 150 ° C. or higher. However, since the intermediate layer 21 is not deformed or thermally decomposed, the adhesiveness is hardly lowered, and the reliability of the light emitting element module is ensured.
 非晶質芳香族樹脂(A)としては、例えば、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリアリーレンエーテル樹脂、芳香族系含フッ素樹脂等が挙げられる。なかでも、ポリエーテルスルホン樹脂、ポリアリーレン樹脂、ポリアリーレンエーテル樹脂、芳香族系含フッ素樹脂が好ましい。透明性の点では、ポリエーテルスルホン樹脂がより好ましい。また、耐光性、透明性の点では、芳香族系含フッ素樹脂がより好ましい。
 また、非晶質芳香族樹脂(A)は、中間層21と被覆層22との接着性が向上することから、芳香環を結合する部分にヘテロ原子を有していることが好ましい。
As the amorphous aromatic resin (A), for example, polyimide resin, polyamide resin, polyamideimide resin, polysulfone resin, polyethersulfone resin, polyetherketone resin, polyarylene resin, polyarylene ether resin, aromatic series-containing A fluororesin etc. are mentioned. Of these, polyethersulfone resins, polyarylene resins, polyarylene ether resins, and aromatic fluorine-containing resins are preferable. In terms of transparency, polyethersulfone resin is more preferable. In view of light resistance and transparency, an aromatic fluorine-containing resin is more preferable.
In addition, the amorphous aromatic resin (A) preferably has a heteroatom in a portion to which an aromatic ring is bonded because the adhesion between the intermediate layer 21 and the coating layer 22 is improved.
 芳香族系含フッ素樹脂は、非晶質で、主鎖に芳香環を有する含フッ素樹脂である。芳香族系含フッ素樹脂としては、例えば、特表平5-502257号公報、特開平10-247646号公報、国際公開第03/8483号パンフレット等に記載の含フッ素ポリアリーレン、含フッ素ポリアリーレンエーテル、特開2005-105115号公報に記載の芳香族系含フッ素樹脂が挙げられる。なかでも、特開2005-105115号公報に記載の、架橋性官能基(x)を有するプレポリマー(a)を硬化させた芳香族系含フッ素樹脂(A1)が好ましい。 The aromatic fluorine-containing resin is an amorphous fluorine-containing resin having an aromatic ring in the main chain. Examples of the aromatic fluorine-containing resin include fluorine-containing polyarylenes and fluorine-containing polyarylene ethers described in JP-T-5-502257, JP-A-10-247646, WO 03/8483, and the like. And aromatic fluorine-containing resins described in JP-A-2005-105115. Of these, an aromatic fluorine-containing resin (A1) obtained by curing a prepolymer (a) having a crosslinkable functional group (x) described in JP-A-2005-105115 is preferable.
 芳香族系含フッ素樹脂(A1)としては、例えば、架橋性官能基(x)とフェノール性水酸基を有する化合物(a1-1)(以下、「化合物(a1-1)」という。)および/または架橋性官能基(x)とフッ素原子置換芳香環を有する化合物(a1-2)(以下、「化合物(a1-2)」という。)と、後述する含フッ素芳香族化合物(a2)と、フェノール性水酸基を3個以上有する化合物(a3)(以下、「化合物(a3)」という。)とを、脱HF剤存在下に縮合反応させて得られるプレポリマー(a)を硬化させた樹脂(硬化物)が挙げられる。このようにして得られる芳香族系含フッ素樹脂(A1)は、架橋性官能基(x)およびエーテル結合を有している。 Examples of the aromatic fluorine-containing resin (A1) include a compound (a1-1) having a crosslinkable functional group (x) and a phenolic hydroxyl group (hereinafter referred to as “compound (a1-1)”) and / or. Compound (a1-2) having a crosslinkable functional group (x) and a fluorine atom-substituted aromatic ring (hereinafter referred to as “compound (a1-2)”), a fluorine-containing aromatic compound (a2) described later, and phenol A resin (cured) obtained by curing a prepolymer (a) obtained by subjecting a compound (a3) having 3 or more functional hydroxyl groups (hereinafter referred to as “compound (a3)”) to a condensation reaction in the presence of a deHF agent. Product). The aromatic fluororesin (A1) thus obtained has a crosslinkable functional group (x) and an ether bond.
 化合物(a1-1)および化合物(a1-2)における架橋性官能基(x)は、プレポリマー(a)の製造時(縮合反応時)には実質上反応を起こさず、外部エネルギーを与えることにより反応し、プレポリマー間の架橋または鎖延長を引き起こす反応性官能基である。前記外部エネルギーとしては、光学素子13の実装工程での適用性に優れる点から、熱、光、電子線、またはこれらの併用が好ましい。 The crosslinkable functional group (x) in the compound (a1-1) and the compound (a1-2) does not substantially react during the production of the prepolymer (a) (during the condensation reaction) and gives external energy. Reactive functional groups that react with each other to cause cross-linking or chain extension between prepolymers. As the external energy, heat, light, an electron beam, or a combination thereof is preferable from the viewpoint of excellent applicability in the mounting process of the optical element 13.
 架橋性官能基(x)の具体例としては、ビニル基、アリル基、メタクリロイル(オキシ)基、アクリロイル(オキシ)基、ビニルオキシ基、トリフルオロビニル基、トリフルオロビニルオキシ基、エチニル基、1-オキソシクロペンタ-2,5-ジエン-3-イル基、シアノ基、アルコキシシリル基、ジアリールヒドロキシメチル基、ヒドロキシフルオレニル基等が挙げられる。なかでも、外部エネルギーを与えた際の反応性に優れ、高い架橋密度が得られる点から、ビニル基、メタクリロイル(オキシ)基、アクリロイル(オキシ)基、トリフルオロビニルオキシ基、エチニル基が好ましく、得られる保護膜20の耐熱性に優れる点から、エチニル基、ビニル基がより好ましい。 Specific examples of the crosslinkable functional group (x) include vinyl group, allyl group, methacryloyl (oxy) group, acryloyl (oxy) group, vinyloxy group, trifluorovinyl group, trifluorovinyloxy group, ethynyl group, 1- Examples include oxocyclopenta-2,5-dien-3-yl group, cyano group, alkoxysilyl group, diarylhydroxymethyl group, hydroxyfluorenyl group and the like. Among them, a vinyl group, a methacryloyl (oxy) group, an acryloyl (oxy) group, a trifluorovinyloxy group, and an ethynyl group are preferable because of excellent reactivity when external energy is applied and high crosslink density can be obtained. From the point which is excellent in the heat resistance of the protective film 20 obtained, an ethynyl group and a vinyl group are more preferable.
 プレポリマーを硬化させる外部エネルギーとして熱を用いる場合、架橋性官能基(x)は、反応温度が40~500℃であることが好ましく、60~400℃であることがより好ましく、70~350℃であることが特に好ましい。架橋性官能基(x)の反応温度が40℃以上であれば、保存安定性を確保しやすい。また、架橋性官能基(x)の反応温度が500℃以下であれば、架橋反応時にプレポリマー自体の熱分解が発生することを抑制しやすい。 When heat is used as external energy for curing the prepolymer, the crosslinkable functional group (x) preferably has a reaction temperature of 40 to 500 ° C., more preferably 60 to 400 ° C., and 70 to 350 ° C. It is particularly preferred that When the reaction temperature of the crosslinkable functional group (x) is 40 ° C. or higher, it is easy to ensure storage stability. Moreover, if the reaction temperature of a crosslinkable functional group (x) is 500 degrees C or less, it will be easy to suppress that thermal decomposition of prepolymer itself generate | occur | produces during a crosslinking reaction.
 芳香族系含フッ素樹脂(A1)における架橋性官能基(x)の含有量は、芳香族系含フッ素樹脂(A1)1gあたりの架橋性官能基(x)の量が0.1~4mmolであることが好ましく、0.2~3mmolであることがより好ましい。架橋性官能基(x)の前記含有量が0.1mmol以上であれば、優れた耐熱性と低いガス透過性を備えた保護膜20が得られやすい。また、架橋性官能基(x)の前記含有量が4mmol以下であれば、中間層21の脆性を低減しやすい。 The content of the crosslinkable functional group (x) in the aromatic fluorine-containing resin (A1) is such that the amount of the crosslinkable functional group (x) per 1 g of the aromatic fluorine-containing resin (A1) is 0.1 to 4 mmol. It is preferable that it is 0.2 to 3 mmol. When the content of the crosslinkable functional group (x) is 0.1 mmol or more, it is easy to obtain the protective film 20 having excellent heat resistance and low gas permeability. Moreover, if the said content of a crosslinkable functional group (x) is 4 mmol or less, it will be easy to reduce the brittleness of the intermediate | middle layer 21. FIG.
 化合物(a1-1)としては、フェノール性水酸基を1個有する化合物、フェノール性水酸基を2個有する化合物が好ましい。
 フェノール性水酸基を1個有する化合物としては、例えば、4-ヒドロキシスチレン等の反応性二重結合(架橋性官能基(x))を有するフェノール類;3-エチニルフェノール、4-フェニルエチニルフェノール、4-(4-フルオロフェニル)エチニルフェノール等のエチニルフェノール類が挙げられる。
 フェノール性水酸基を2個有する化合物としては、例えば、2,2’-ビス(フェニルエチニル)-5,5’-ジヒドロキシビフェニル、2,2’-ビス(フェニルエチニル)-4,4’-ジヒドロキシビフェニル等のビス(フェニルエチニル)ジヒドロキシビフェニル類;4,4’-ジヒドロキシトラン、3,3’-ジヒドロキシトラン等のジヒドロキシジフェニルアセチレン類が挙げられる。
 これら化合物(a1-1)は、単独で用いても、2種以上を混合して用いてもよい。
As the compound (a1-1), a compound having one phenolic hydroxyl group and a compound having two phenolic hydroxyl groups are preferable.
Examples of the compound having one phenolic hydroxyl group include phenols having a reactive double bond (crosslinkable functional group (x)) such as 4-hydroxystyrene; 3-ethynylphenol, 4-phenylethynylphenol, 4 And ethynylphenols such as-(4-fluorophenyl) ethynylphenol.
Examples of the compound having two phenolic hydroxyl groups include 2,2′-bis (phenylethynyl) -5,5′-dihydroxybiphenyl and 2,2′-bis (phenylethynyl) -4,4′-dihydroxybiphenyl. Bis (phenylethynyl) dihydroxybiphenyls such as 4,4′-dihydroxytolane, 3,3′-dihydroxytolane, and the like.
These compounds (a1-1) may be used alone or in combination of two or more.
 化合物(a1-2)としては、架橋性官能基(x)と、ペルフルオロフェニル、ペルフルオロビフェニル等のペルフルオロ芳香環とを有する化合物が好ましい。例えば、ペンタフルオロスチレン、ペンタフルオロベンジルアクリレート、ペンタフルオロベンジルメタクリレート、ペンタフルオロフェニルアクリレート、ペンタフルオロフェニルメタクリレート、ペルフルオロスチレン、ペンタフルオロフェニルトリフルオロビニルエーテル、3-(ペンタフルオロフェニル)ペンタフルオロプロペン-1等の反応性の二重結合を有する含フッ素アリール類;ペンタフルオロベンゾニトリル等のシアノ基を有する含フッ素アリール類;ペンタフルオロフェニルアセチレン、ノナフルオロビフェニルアセチレン等の反応性の三重結合を有する含フッ素アリールアセチレン類;フェニルエチニルペンタフルオロベンゼン、フェニルエチニルノナフルオロビフェニル、デカフルオロトラン等の含フッ素ジアリールアセチレン類が挙げられる。なかでも、比較的低温で架橋反応が進行し、かつ得られる芳香族系含フッ素樹脂(A1)(硬化物)の耐熱性がより優れることから、二重結合(架橋性官能基(x))を有する含フッ素アリール類、三重結合(架橋性官能基(x))を有する含フッ素アリールアセチレン類が好ましい。
 これら化合物(a1-2)は、単独で用いても、2種以上を混合して用いてもよい。
 含フッ素芳香族化合物(a2)は、下記式(1)で表される化合物である。
As the compound (a1-2), a compound having a crosslinkable functional group (x) and a perfluoroaromatic ring such as perfluorophenyl or perfluorobiphenyl is preferable. For example, pentafluorostyrene, pentafluorobenzyl acrylate, pentafluorobenzyl methacrylate, pentafluorophenyl acrylate, pentafluorophenyl methacrylate, perfluorostyrene, pentafluorophenyl trifluorovinyl ether, 3- (pentafluorophenyl) pentafluoropropene-1, etc. Fluorine-containing aryls having a reactive double bond; Fluorine-containing aryls having a cyano group such as pentafluorobenzonitrile; Fluorine-containing arylacetylene having a reactive triple bond such as pentafluorophenylacetylene and nonafluorobiphenylacetylene Fluorine-containing diaries such as phenylethynylpentafluorobenzene, phenylethynylnonafluorobiphenyl, decafluorotolane, etc. Acetylenes, and the like. Among them, the cross-linking reaction proceeds at a relatively low temperature, and the resulting aromatic fluorine-containing resin (A1) (cured product) is more excellent in heat resistance, so that a double bond (crosslinkable functional group (x)) is obtained. And fluorine-containing arylacetylenes having a triple bond (crosslinkable functional group (x)) are preferred.
These compounds (a1-2) may be used alone or in combination of two or more.
The fluorine-containing aromatic compound (a2) is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
(式中、nは0~3の整数、a、bはそれぞれ独立に0~3の整数を表し、Rf及びRfは、それぞれ独立に炭素数8以下の含フッ素アルキル基を表し、芳香環内のFはその芳香環の水素原子が全てフッ素原子で置換されていることを表す。)
Figure JPOXMLDOC01-appb-C000001
(Wherein n represents an integer of 0 to 3, a and b each independently represents an integer of 0 to 3, Rf 1 and Rf 2 each independently represents a fluorine-containing alkyl group having 8 or less carbon atoms, F in the ring represents that all the hydrogen atoms of the aromatic ring are substituted with fluorine atoms.)
 含フッ素芳香族化合物(a2)におけるRfおよびRfの炭素数は、8以下であり、3以下であることが好ましい。また、RfおよびRfは、耐熱性の観点より、ペルフルオロアルキル基が好ましい。ペルフルオロアルキル基の具体例としては、例えば、ペルフルオロメチル基、ペルフルオロエチル基、ペルフルオロプロピル基、ペルフルオロブチル基、ペルフルオロヘキシル基、ペルフルオロオクチル基が挙げられる。
 含フッ素芳香族化合物(a2)におけるa、bは、それぞれ独立に0~2が好ましく、0が特に好ましい。
 含フッ素芳香族化合物(a2)におけるnは、0~3の整数であり、1~3の整数であることが好ましい。
The carbon number of Rf 1 and Rf 2 in the fluorinated aromatic compound (a2) is 8 or less, and preferably 3 or less. Rf 1 and Rf 2 are preferably perfluoroalkyl groups from the viewpoint of heat resistance. Specific examples of the perfluoroalkyl group include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
In the fluorine-containing aromatic compound (a2), a and b are each independently preferably 0 to 2, particularly preferably 0.
In the fluorinated aromatic compound (a2), n is an integer of 0 to 3, and preferably an integer of 1 to 3.
 含フッ素芳香族化合物(a2)としては、n=0の場合、ペルフルオロベンゼン、ペルフルオロトルエン、ペルフルオロキシレンが好ましく、n=1の場合、ペルフルオロビフェニルが好ましく、n=2の場合、ペルフルオロテルフェニルが好ましく、n=3の場合、ペルフルオロ(1,3,5-トリフェニルベンゼン)、ペルフルオロ(1,2,4-トリフェニルベンゼン)が好ましい。なかでも、ペルフルオロトルエン、ペルフルオロ(1,3,5-トリフェニルベンゼン)、ペルフルオロ(1,2,4-トリフェニルベンゼン)、ペルフルオロビフェニルがより好ましい。n=3の場合は、プレポリマー(a)に分岐構造が導入されるため中間層21の耐熱性をさらに向上させることができる。特に好ましい含フッ素芳香族化合物(a2)は、優れた耐熱性と低いガス透過性を有し、かつ可撓性の高い中間層21が得られやすい点から、ペルフルオロビフェニルである。
 これら含フッ素芳香族化合物(a2)は、単独で用いても、2種以上を混合して用いてもよい。
The fluorine-containing aromatic compound (a2) is preferably perfluorobenzene, perfluorotoluene or perfluoroxylene when n = 0, preferably perfluorobiphenyl when n = 1, and preferably perfluoroterphenyl when n = 2. , N = 3, perfluoro (1,3,5-triphenylbenzene) and perfluoro (1,2,4-triphenylbenzene) are preferable. Of these, perfluorotoluene, perfluoro (1,3,5-triphenylbenzene), perfluoro (1,2,4-triphenylbenzene), and perfluorobiphenyl are more preferable. In the case of n = 3, since the branched structure is introduced into the prepolymer (a), the heat resistance of the intermediate layer 21 can be further improved. A particularly preferred fluorine-containing aromatic compound (a2) is perfluorobiphenyl because it has excellent heat resistance and low gas permeability, and a highly flexible intermediate layer 21 can be easily obtained.
These fluorine-containing aromatic compounds (a2) may be used alone or in combination of two or more.
 化合物(a3)は、フェノール性水酸基を3個以上有する化合物である。化合物(a3)におけるフェノール性水酸基の数は3個以上であり、実用的に3~6個が好ましく、3~4個が特に好ましい。
 化合物(a3)としては、多官能フェノール類が好ましい。例えば、トリヒドロキシベンゼン、トリヒドロキシビフェニル、トリヒドロキシナフタレン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、トリス(4-ヒドロキシフェニル)ベンゼン、テトラヒドロキシベンゼン、テトラヒドロキシビフェニル、テトラヒドロキシビナフチル、テトラヒドロキシスピロインダン類が挙げられる。
 化合物(a3)としては、中間層21の可撓性がより高くなる点から、フェノール性水酸基を3個有する化合物がより好ましく、なかでもトリヒドロキシベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタンが特に好ましい。
The compound (a3) is a compound having 3 or more phenolic hydroxyl groups. The number of phenolic hydroxyl groups in the compound (a3) is 3 or more, practically 3-6, and particularly preferably 3-4.
As the compound (a3), polyfunctional phenols are preferable. For example, trihydroxybenzene, trihydroxybiphenyl, trihydroxynaphthalene, 1,1,1-tris (4-hydroxyphenyl) ethane, tris (4-hydroxyphenyl) benzene, tetrahydroxybenzene, tetrahydroxybiphenyl, tetrahydroxybinaphthyl, Examples include tetrahydroxy spiroindanes.
As the compound (a3), a compound having three phenolic hydroxyl groups is more preferable because the flexibility of the intermediate layer 21 is higher. Among them, trihydroxybenzene, 1,1,1-tris (4-hydroxy Phenyl) ethane is particularly preferred.
 プレポリマー(a)の数平均分子量は1×10~5×10であることが好ましい。プレポリマー(a)の数平均分子量が1×10以上であれば、芳香族系含フッ素樹脂(A1)により形成される中間層21の耐熱性、機械特性、耐溶剤性がより良好になる。また、プレポリマー(a)の数平均分子量が5×10以下であれば、プレポリマー(a)の塗布特性がより良好になる。 The number average molecular weight of the prepolymer (a) is preferably 1 × 10 3 to 5 × 10 5 . When the number average molecular weight of the prepolymer (a) is 1 × 10 3 or more, the heat resistance, mechanical properties, and solvent resistance of the intermediate layer 21 formed of the aromatic fluorine-containing resin (A1) become better. . Moreover, if the number average molecular weight of the prepolymer (a) is 5 × 10 5 or less, the coating properties of the prepolymer (a) will be better.
 芳香族系含フッ素樹脂(A1)の硬化前のプレポリマー(a)は、特開2005-105115号公報に記載の方法で製造することができ、例えば、下記(i)~(iii)の方法が挙げられる。
(i)含フッ素芳香族化合物(a2)と、化合物(a3)と、化合物(a1-1)と、を脱HF剤存在下に縮合反応させる方法。
(ii)含フッ素芳香族化合物(a2)と、化合物(a3)と、化合物(a1-2)と、を脱HF剤存在下に縮合反応させる方法。
(iii)含フッ素芳香族化合物(a2)と、化合物(a3)と、化合物(a1-1)と、化合物(a1-2)と、を脱HF剤存在下に縮合反応させる方法。
 前記(i)~(iii)の方法のいずれにおいても、縮合反応は一段階で行ってもよく、多段階で行ってもよい。また、反応原料のうち特定の化合物を優先的に反応させた後に、引き続き他の化合物を反応させてもよい。また、縮合反応を多段階に分けて行う場合は、途中で得られる中間生成物を反応系から一旦分離し、精製した後に、後続の縮合反応に用いてもよい。反応原料は一括で投入してもよく、連続的に投入してもよく、間歇的に投入してもよい。
The prepolymer (a) before curing of the aromatic fluorine-containing resin (A1) can be produced by the method described in JP-A-2005-105115. For example, the following methods (i) to (iii) Is mentioned.
(I) A method in which a fluorine-containing aromatic compound (a2), a compound (a3), and a compound (a1-1) are subjected to a condensation reaction in the presence of a deHF agent.
(Ii) A method in which a fluorine-containing aromatic compound (a2), a compound (a3), and a compound (a1-2) are subjected to a condensation reaction in the presence of a deHF agent.
(Iii) A method in which a fluorine-containing aromatic compound (a2), a compound (a3), a compound (a1-1), and a compound (a1-2) are subjected to a condensation reaction in the presence of a deHF agent.
In any of the methods (i) to (iii), the condensation reaction may be performed in one step or in multiple steps. Moreover, after reacting a specific compound preferentially among reaction raw materials, you may make it react with another compound continuously. When the condensation reaction is performed in multiple stages, the intermediate product obtained in the middle may be once separated from the reaction system and purified, and then used for the subsequent condensation reaction. The reaction raw materials may be charged all at once, may be charged continuously, or may be charged intermittently.
 脱HF剤としては、塩基性化合物が好ましく、特にアルカリ金属の炭酸塩、炭酸水素塩または水酸化物が好ましい。例えば、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。 As the de-HF agent, a basic compound is preferable, and an alkali metal carbonate, hydrogen carbonate or hydroxide is particularly preferable. For example, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like can be mentioned.
 芳香族系含フッ素樹脂(A1)は、分岐型の分子構造を有し、高密度に架橋された硬化物であるため、Tgが高い。そのため、より低いガス透過性を有する中間層21を形成することができる。また、芳香族系含フッ素樹脂(A1)を用いて形成した中間層21は、より強固な接着性を有しており、耐熱性および機械的特性に優れ、温度変化による光学素子13から保護膜20が剥離することを防ぐ効果に優れている。
 ポリエーテルスルホン樹脂は、下記式(2)で表される繰り返し単位を有する高分子である。
The aromatic fluorine-containing resin (A1) has a branched molecular structure and is a cured product that is crosslinked at a high density, and therefore has a high Tg. Therefore, the intermediate layer 21 having lower gas permeability can be formed. Further, the intermediate layer 21 formed using the aromatic fluorine-containing resin (A1) has stronger adhesiveness, is excellent in heat resistance and mechanical characteristics, and is protected from the optical element 13 due to temperature change. The effect which prevents 20 peeling is excellent.
The polyethersulfone resin is a polymer having a repeating unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
 (式中、ArおよびAr’は、それぞれ独立にパラフェニレン基または4,4’-ビフェニレン基である。)
 ポリエーテルスルホン樹脂の分子量は特に限定されるものではないが、固有粘度で表される範囲で0.3~1.0dL/gであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(In the formula, Ar and Ar ′ are each independently a paraphenylene group or a 4,4′-biphenylene group.)
The molecular weight of the polyethersulfone resin is not particularly limited, but is preferably 0.3 to 1.0 dL / g within the range represented by the intrinsic viscosity.
 本発明における非晶質芳香族樹脂(A)は、ガラス転移温度(Tg)が150℃以上であることが好ましく、200℃以上がより好ましい。Tgが150℃以上であれば、照明用白色LEDの場合等、LED素子(発光素子13)の発熱によって保護膜20等の発光素子13周辺の温度が150℃以上に加熱された場合であっても、中間層21が流動しにくいため、中間層21の寸法変化が小さく、熱変形が生じにくい。そのため、温度が低下したときに保護膜20が剥離することを抑制しやすい。また、光学素子13を高温で連続使用した場合であっても中間層21が軟化しにくく剥離しにくいことで、低いガス透過性を維持しやすいため、電気配線に用いられるAg電極等の変色を抑えることが容易である。
 好ましいTgの非晶質芳香族樹脂(A)は、例えば、市販品から適宜選択することにより入手することができる。
The amorphous aromatic resin (A) in the present invention preferably has a glass transition temperature (Tg) of 150 ° C. or higher, more preferably 200 ° C. or higher. If Tg is 150 ° C. or higher, the temperature around the light emitting element 13 such as the protective film 20 is heated to 150 ° C. or higher due to the heat generated by the LED element (light emitting element 13), such as in the case of a white LED for illumination. However, since the intermediate layer 21 is difficult to flow, the dimensional change of the intermediate layer 21 is small, and thermal deformation hardly occurs. Therefore, it is easy to suppress peeling of the protective film 20 when the temperature is lowered. Further, even when the optical element 13 is continuously used at a high temperature, the intermediate layer 21 is difficult to be softened and peeled off, so that low gas permeability is easily maintained. It is easy to suppress.
A preferable Tg amorphous aromatic resin (A) can be obtained, for example, by appropriately selecting from commercially available products.
 Tgが150℃以上の市販品の非晶質芳香族樹脂(A)としては、例えば、芳香族系含フッ素樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリアリーレンエーテル樹脂等が挙げられる。 Examples of commercially available amorphous aromatic resins (A) having a Tg of 150 ° C. or higher include aromatic fluorine-containing resins, polyimide resins, polyamide resins, polyamideimide resins, polysulfone resins, polyethersulfone resins, and polyethers. Examples thereof include ketone resins, polyarylene resins, polyarylene ether resins, and the like.
 非晶質芳香族樹脂(A)として芳香族系含フッ素樹脂(A1)を用いる場合、そのTgは、示差走査熱量計(DSC)を用いてJIS K7121:1987に従って測定を行い、中間点ガラス転移温度をガラス転移温度とすることで求めることができる。
 この場合、芳香族系含フッ素樹脂(A1)のTgは、架橋性官能基(x)の含有量により調整することができる。
When the aromatic fluorine-containing resin (A1) is used as the amorphous aromatic resin (A), its Tg is measured according to JIS K7121: 1987 using a differential scanning calorimeter (DSC), and the midpoint glass transition It can obtain | require by making temperature into glass transition temperature.
In this case, the Tg of the aromatic fluorine-containing resin (A1) can be adjusted by the content of the crosslinkable functional group (x).
 非晶質芳香族樹脂(A)の熱膨張係数は、20~100ppm/℃であることが好ましく、50~100ppm/℃であることがより好ましい。樹脂は熱膨張係数が低い方が、温度が変化しても温度による膨張、収縮の度合いが小さい。そのため、熱膨張係数が低いほど光学素子13や電極12a、12b、基板11のセラミクス等との接着性を維持しやすく、剥離が生じにくくなると考えられる。従って、非晶質芳香族樹脂(A)の熱膨張係数は、100ppm/℃以下が好ましい。非晶質芳香族樹脂(A)の熱膨張係数が100ppm/℃以下であれば、発光素子モジュール1の発光素子13、電気配線(電極12a、12b、ワイヤボンディング14)や基板11(セラミクス)等との接着性により優れる。
 一方、非晶質含フッ素樹脂(B)の熱膨張係数は大きい(100~200ppm/℃)ので、非晶質芳香族樹脂(A)の熱膨張係数が小さすぎると、温度変化により中間層21と被覆層22の界面で剥離が生じるおそれがある。そこで、非晶質芳香族樹脂(A)の熱膨張係数は20ppm/℃以上が好ましい。非晶質芳香族樹脂(A)の熱膨張係数が20ppm/℃以上であれば、被覆層22に用いられる非晶質含フッ素樹脂(B)の熱膨張係数との差を小さくすることができるため、保護膜20において中間層21と被覆層22の界面で剥離が生じにくくなる。
The thermal expansion coefficient of the amorphous aromatic resin (A) is preferably 20 to 100 ppm / ° C., and more preferably 50 to 100 ppm / ° C. The lower the coefficient of thermal expansion of the resin, the smaller the degree of expansion and contraction due to temperature even if the temperature changes. For this reason, it is considered that the lower the thermal expansion coefficient, the easier it is to maintain the adhesiveness with the optical element 13, the electrodes 12a and 12b, the ceramics of the substrate 11, and the like, and the peeling is less likely to occur. Therefore, the thermal expansion coefficient of the amorphous aromatic resin (A) is preferably 100 ppm / ° C. or less. If the thermal expansion coefficient of the amorphous aromatic resin (A) is 100 ppm / ° C. or less, the light emitting element 13 of the light emitting element module 1, electrical wiring ( electrodes 12 a and 12 b, wire bonding 14), substrate 11 (ceramics), etc. Excellent adhesion.
On the other hand, since the thermal expansion coefficient of the amorphous fluorine-containing resin (B) is large (100 to 200 ppm / ° C.), if the thermal expansion coefficient of the amorphous aromatic resin (A) is too small, the intermediate layer 21 is changed due to temperature change. There is a risk of peeling at the interface between the coating layer 22 and the coating layer 22. Therefore, the thermal expansion coefficient of the amorphous aromatic resin (A) is preferably 20 ppm / ° C. or higher. If the thermal expansion coefficient of the amorphous aromatic resin (A) is 20 ppm / ° C. or more, the difference from the thermal expansion coefficient of the amorphous fluorine-containing resin (B) used for the coating layer 22 can be reduced. Therefore, in the protective film 20, peeling hardly occurs at the interface between the intermediate layer 21 and the coating layer 22.
 熱膨張係数が20~100ppm/℃の市販品の非晶質芳香族樹脂(A)としては、例えば、ポリアミドイミド樹脂(東洋紡社製バイロマックスHR-15ET等)、ポリエーテルスルホン樹脂(住友化学社製スミカエクセル5003P等)、ポリイミド樹脂(東レ社製セミコファインSP-483等)、ポリスルホン樹脂(ソルベイアドバンストポリマー社製ユーデルP3500等)が挙げられる。 Commercially available amorphous aromatic resins (A) having a thermal expansion coefficient of 20 to 100 ppm / ° C. include, for example, polyamide imide resins (Toyobo Viromax HR-15ET, etc.), polyether sulfone resins (Sumitomo Chemical Co., Ltd.) Sumika Excel 5003P, etc.), polyimide resin (Semicofine SP-483, etc. manufactured by Toray Industries), and polysulfone resin (Udel P3500, manufactured by Solvay Advanced Polymer).
 中間層21は、以上説明した非晶質芳香族樹脂(A)により形成することができる。本発明における中間層21は、非晶質芳香族樹脂(A)のみで形成されていることが好ましい。ただし、中間層21には、該中間層21の耐熱性、ガス透過性、および発光素子や被覆層との接着性を悪化させすぎない範囲内であれば、非晶質芳香族樹脂(A)に加えて他の樹脂が含有されていてもよい。 The intermediate layer 21 can be formed of the amorphous aromatic resin (A) described above. The intermediate layer 21 in the present invention is preferably formed of only the amorphous aromatic resin (A). However, the amorphous aromatic resin (A) can be used for the intermediate layer 21 as long as the heat resistance, gas permeability, and adhesion to the light emitting element and the coating layer are not excessively deteriorated. In addition to the above, other resins may be contained.
 中間層21に含有できる他の物質としては、例えば、エポキシ樹脂、アルキッド樹脂、フェノール樹脂、ジアリルフタレート樹脂等の熱硬化型樹脂の硬化物、あるいはアルコキシシランより誘導される脱水縮合物等が挙げられる。
 中間層21に他の樹脂が含まれている場合には、中間層21(100質量%)における他の重合体の含有量は30質量%以下であることが好ましく、10質量%以下であることがより好ましい。即ち、中間層としては、主鎖に芳香環を有する非晶質芳香族樹脂(A)を70質量%超含むことが好ましく、より好ましくは90質量%超含むことが好ましい。
Examples of other substances that can be contained in the intermediate layer 21 include cured products of thermosetting resins such as epoxy resins, alkyd resins, phenol resins, diallyl phthalate resins, and dehydration condensates derived from alkoxysilanes. .
When the intermediate layer 21 contains another resin, the content of the other polymer in the intermediate layer 21 (100% by mass) is preferably 30% by mass or less, and preferably 10% by mass or less. Is more preferable. That is, the intermediate layer preferably contains more than 70% by mass of amorphous aromatic resin (A) having an aromatic ring in the main chain, more preferably more than 90% by mass.
 中間層21の厚さは、0.1~100μmであることが好ましく、1~10μmであることがより好ましい。中間層21の厚さが0.1μm未満であると、ガス透過性を低く維持しにくくなることがある。中間層21の厚さが100μmを超えると、非晶質芳香族樹脂(A)の種類によっては短波長の光を吸収するため発光素子13からの光の取り出し効率が低下する原因となることがある。また、厚さがこの範囲内であると、発光素子13と保護膜20の接着性を高めつつガス透過性を低く維持することが容易である。 The thickness of the intermediate layer 21 is preferably 0.1 to 100 μm, and more preferably 1 to 10 μm. If the thickness of the intermediate layer 21 is less than 0.1 μm, it may be difficult to maintain gas permeability low. When the thickness of the intermediate layer 21 exceeds 100 μm, depending on the type of the amorphous aromatic resin (A), light of a short wavelength is absorbed, which may cause a decrease in light extraction efficiency from the light emitting element 13. is there. Further, when the thickness is within this range, it is easy to maintain the gas permeability low while enhancing the adhesion between the light emitting element 13 and the protective film 20.
 中間層21の波長400~700nmの可視光に対する光透過性は、厚さが5~10μmの条件で、90%以上であることが好ましく、95%以上であることがより好ましい。前記光透過性が90%以上であれば、発光素子13からの光の取り出し効率に悪影響を与えることを抑制できるため、発光輝度の高い発光素子モジュール1が得られやすい。 The light transmittance of visible light with a wavelength of 400 to 700 nm of the intermediate layer 21 is preferably 90% or more, and more preferably 95% or more under the condition that the thickness is 5 to 10 μm. If the light transmittance is 90% or more, adverse effects on the light extraction efficiency from the light emitting element 13 can be suppressed, and thus the light emitting element module 1 having high light emission luminance can be easily obtained.
 温度0~200℃における中間層21のガス透過性は、Ag電極等の変色を抑制しやすい点から低いことが好ましく、ポリジメチルシロキサンのガス透過性に対して1/10~1/1000であることが好ましく、1/100~1/1000であることがより好ましい。前記ガス透過性がポリジメチルシロキサンのガス透過性に対して1/1000以下であれば、水蒸気や大気中の硫黄化合物を遮断してLED素子(発光素子)や電極の劣化を防ぎやすい。
 中間層21の前記ガス透過性は、非晶質芳香族樹脂(A)の膜厚等により調整することができる。
The gas permeability of the intermediate layer 21 at a temperature of 0 to 200 ° C. is preferably low from the viewpoint of easily suppressing discoloration of an Ag electrode or the like, and is 1/10 to 1/1000 with respect to the gas permeability of polydimethylsiloxane. The ratio is preferably 1/100 to 1/1000. When the gas permeability is 1/1000 or less than that of polydimethylsiloxane, it is easy to prevent deterioration of the LED element (light emitting element) and the electrode by blocking water vapor and sulfur compounds in the atmosphere.
The gas permeability of the intermediate layer 21 can be adjusted by the film thickness of the amorphous aromatic resin (A).
(被覆層)
 非晶質含フッ素樹脂(B)は、芳香環を有さない、非晶質で硬化性の硬化性非晶質含フッ素重合体(b)を硬化させて得られる樹脂(硬化物)である。被覆層22を形成する非晶質含フッ素樹脂(B)が芳香環を有さないことにより、光学素子13からの光によって該芳香環が開裂して被覆層22が劣化し、保護膜の保護性能が低下することを防止できる。
(Coating layer)
The amorphous fluorine-containing resin (B) is a resin (cured product) obtained by curing an amorphous and curable curable amorphous fluorine-containing polymer (b) having no aromatic ring. . Since the amorphous fluorine-containing resin (B) forming the coating layer 22 does not have an aromatic ring, the aromatic ring is cleaved by the light from the optical element 13 to deteriorate the coating layer 22, thereby protecting the protective film. It is possible to prevent the performance from deteriorating.
 硬化性非晶質含フッ素重合体(b)は、非晶質で硬化性を有する含フッ素重合体であれば光学素子の保護に用いられる公知の重合体を用いることができ、例えば、国際公開第07/145181号パンフレットに記載のペルフルオロジエン単位に基づく二重結合を側鎖に有する硬化性のペルフルオロポリマーや、特開2007-217701号公報に記載のトリフルオロビニル基含有単量体に基づく単位を有し、かつ末端にカルボキシ基、シアノ基、二重結合等の硬化性の反応基を有する含フッ素重合体、あるいは特開平8-67819に記載の硬化性パーフルオロポリアルキレンエーテル等が挙げられる。硬化性非晶質含フッ素重合体(b)は、1種のみを使用しても、2種以上を併用してもよい。 As the curable amorphous fluorine-containing polymer (b), a known polymer used for protecting optical elements can be used as long as it is an amorphous and curable fluorine-containing polymer. A curable perfluoropolymer having a double bond in the side chain based on a perfluorodiene unit described in the 07/145181 pamphlet, or a unit based on a trifluorovinyl group-containing monomer described in JP2007-217701A And a fluorinated polymer having a curable reactive group such as a carboxy group, a cyano group or a double bond at the terminal, or a curable perfluoropolyalkylene ether described in JP-A-8-67819. . The curable amorphous fluorine-containing polymer (b) may be used alone or in combination of two or more.
 硬化性非晶質含フッ素重合体(b)は、光または熱により容易に硬化させて被覆層22を形成することができる点から、前記硬化性のペルフルオロポリマー等の重合性二重結合(炭素-炭素二重結合)を有する重合性化合物(b1)であることが好ましい。
 重合性化合物(b1)の具体例としては、例えば、テトラフルオロエチレン(TFE)/ペルフルオロ(1,4-ブタンジオールジビニルエーテル)共重合体、TFE/ペルフルオロ(1,2-エチレングリコールジビニルエーテル)共重合体、TFE/ペルフルオロ(1,4-ブタンジオールジビニルエーテル)/ペルフルオロプロピルビニルエーテル共重合体、TFE/ペルフルオロ(1,4-ブタンジオールジビニルエーテル)/ペルフルオロメチルビニルエーテル共重合体、TFE/ペルフルオロ(1,4-ブタンジオールジビニルエーテル)/ヘキサフルオロプロピレン共重合体、クロロトリフルオロエチレン(CTFE)/ペルフルオロ(1,4-ブタンジオールジビニルエーテル)共重合体、CTFE/ペルフルオロ(1,4-ブタンジオールジビニルエーテル)/ペルフルオロプロピルビニルエーテル共重合体、CTFE/ペルフルオロ(1,4-ブタンジオールジビニルエーテル)/ペルフルオロメチルビニルエーテル共重合体、TFE/ペルフルオロ(1,4-ブタンジオールジビニルエーテル)/ペルフルオロブテニルビニルエーテル共重合体等が挙げられる。
 重合性化合物(b1)は、例えば、国際公開第07/145181号パンフレットに記載の方法により製造することができる。
The curable amorphous fluorine-containing polymer (b) can be easily cured by light or heat to form the coating layer 22, so that a polymerizable double bond (carbon) such as the curable perfluoropolymer is used. A polymerizable compound (b1) having a —carbon double bond) is preferred.
Specific examples of the polymerizable compound (b1) include, for example, a tetrafluoroethylene (TFE) / perfluoro (1,4-butanediol divinyl ether) copolymer and a TFE / perfluoro (1,2-ethylene glycol divinyl ether) copolymer. Polymer, TFE / perfluoro (1,4-butanediol divinyl ether) / perfluoropropyl vinyl ether copolymer, TFE / perfluoro (1,4-butanediol divinyl ether) / perfluoromethyl vinyl ether copolymer, TFE / perfluoro (1 , 4-butanediol divinyl ether) / hexafluoropropylene copolymer, chlorotrifluoroethylene (CTFE) / perfluoro (1,4-butanediol divinyl ether) copolymer, CTFE / perfluoro (1,4 Butanediol divinyl ether) / perfluoropropyl vinyl ether copolymer, CTFE / perfluoro (1,4-butanediol divinyl ether) / perfluoromethyl vinyl ether copolymer, TFE / perfluoro (1,4-butanediol divinyl ether) / perfluorobutyl Examples thereof include tenenyl vinyl ether copolymers.
The polymerizable compound (b1) can be produced, for example, by the method described in International Publication No. 07/145181.
 また、中間層12を形成する非晶質芳香族樹脂(A)が、主鎖の芳香環の結合部分にヘテロ原子を有している場合、非晶質含フッ素樹脂(B)における末端や側鎖にカルボン酸基、エステル基、アミド基、水酸基、シアノ基、チオール基等の官能基を導入しておくことにより、中間層と被覆層の接着性を向上させることができる。これは、へテロ原子の影響で非晶質芳香族樹脂(A)が極性を有しており、非晶質含フッ素樹脂(B)の前記官能基と相互作用するためである。
 非晶質含フッ素樹脂(B)への前記官能基の導入方法としては、例えば、アミド基の場合、非晶質含フッ素樹脂(B)の末端基として存在する-COOHや-COFを、1級アミン、2級アミンと反応させてアルキルアミドに変換する方法が挙げられる。また、シアノ基の場合は、末端基として存在する-COOHや-COFをアンモニアと反応させて-CONHとした後、脱水反応によりにシアノ基とする方法が挙げられる。また、該シアノ基を還元することによりアミノ基とすることができる。また、-COOHまたは-COFをメチルエステル化した後に還元することにより水酸基とすることができる。
Further, when the amorphous aromatic resin (A) forming the intermediate layer 12 has a hetero atom in the bonded portion of the aromatic ring of the main chain, the terminal or side in the amorphous fluorine-containing resin (B) By introducing a functional group such as a carboxylic acid group, an ester group, an amide group, a hydroxyl group, a cyano group, or a thiol group into the chain, the adhesion between the intermediate layer and the coating layer can be improved. This is because the amorphous aromatic resin (A) has polarity due to the influence of heteroatoms and interacts with the functional group of the amorphous fluorine-containing resin (B).
As a method for introducing the functional group into the amorphous fluorine-containing resin (B), for example, in the case of an amide group, —COOH or —COF existing as a terminal group of the amorphous fluorine-containing resin (B) is 1 A method of converting to an alkylamide by reacting with a secondary amine or secondary amine can be mentioned. In the case of a cyano group, there may be mentioned a method in which —COOH or —COF existing as a terminal group is reacted with ammonia to form —CONH 2 and then converted into a cyano group by a dehydration reaction. Further, an amino group can be obtained by reducing the cyano group. Alternatively, -COOH or -COF can be converted to a hydroxyl group by methylation and then reduction.
 非晶質含フッ素樹脂(B)のTgは、-50℃~100℃であることが好ましく、-20℃~50℃であることがより好ましい。Tgが-50℃以上であれば、被覆層22表面のべとつきの影響が少ない。またガス透過性を低く保ちやすいために電気配線に用いられるAg電極等の変色を抑えることが容易になる。また、非晶質芳香族樹脂(A)のTgが100℃以下であれば、柔軟性が保たれるため、温度変化による中間層21と被覆層22の界面での応力発生により剥離が生じることを抑制しやすくなる。
 非晶質含フッ素樹脂(B)のTgは、硬化性非晶質含フッ素重合体(b)中の硬化性反応基(重合性二重結合)の量により調整することができる。
The Tg of the amorphous fluorine-containing resin (B) is preferably −50 ° C. to 100 ° C., and more preferably −20 ° C. to 50 ° C. When Tg is −50 ° C. or higher, the effect of stickiness on the surface of the coating layer 22 is small. Further, since it is easy to keep gas permeability low, it becomes easy to suppress discoloration of Ag electrodes used for electric wiring. Moreover, if the Tg of the amorphous aromatic resin (A) is 100 ° C. or lower, the flexibility is maintained, so that peeling occurs due to the generation of stress at the interface between the intermediate layer 21 and the coating layer 22 due to temperature change. It becomes easy to suppress.
The Tg of the amorphous fluorine-containing resin (B) can be adjusted by the amount of the curable reactive group (polymerizable double bond) in the curable amorphous fluorine-containing polymer (b).
 非晶質含フッ素樹脂(B)の熱膨張係数は、低いほど好ましい。具体的には、100~200ppm/℃であることが好ましく、100~180ppm/℃であることがより好ましく、100~150ppm/℃であることが特に好ましい。非晶質含フッ素樹脂(B)の熱膨張係数がこの範囲内にあると、中間層21の熱膨張係数との差が小さくなるので好ましい。非晶質含フッ素樹脂(B)の熱膨張係数が200ppm/℃を超えると、中間層21の熱膨張係数との差が大きくなり、中間層21との接着性が充分に得られない場合がある。
 非晶質含フッ素樹脂(B)の熱膨張係数は、樹脂の選択により調整することができる。
The lower the thermal expansion coefficient of the amorphous fluorine-containing resin (B), the better. Specifically, it is preferably 100 to 200 ppm / ° C., more preferably 100 to 180 ppm / ° C., and particularly preferably 100 to 150 ppm / ° C. If the thermal expansion coefficient of the amorphous fluorine-containing resin (B) is within this range, the difference from the thermal expansion coefficient of the intermediate layer 21 is preferably small. When the thermal expansion coefficient of the amorphous fluorine-containing resin (B) exceeds 200 ppm / ° C., the difference from the thermal expansion coefficient of the intermediate layer 21 increases, and sufficient adhesion to the intermediate layer 21 may not be obtained. is there.
The thermal expansion coefficient of the amorphous fluorine-containing resin (B) can be adjusted by selecting the resin.
 被覆層22は、以上説明した非晶質含フッ素樹脂(B)により形成することができる。本発明における被覆層22は、非晶質含フッ素樹脂(B)のみで形成されていることが好ましい。ただし、被覆層22には、該被覆層22のガス透過性を悪化させすぎない範囲内であれば、非晶質含フッ素樹脂(B)に加えて他の樹脂が含有されていてもよい。 The coating layer 22 can be formed of the amorphous fluorine-containing resin (B) described above. The coating layer 22 in the present invention is preferably formed only from the amorphous fluorine-containing resin (B). However, the coating layer 22 may contain other resins in addition to the amorphous fluorine-containing resin (B) as long as the gas permeability of the coating layer 22 is not excessively deteriorated.
 被覆層22に含有できる他の物質としては、例えば、Tgを下げて柔軟性を高める効果を奏するパーフルオロポリエーテル等が挙げられる。また、光の波長を変換する効果を奏する無機系または有機系蛍光体が挙げられる。また、光を散乱させるためには、無機粒子(シリカ、アルミナ)等を含有させてもよい。 Examples of other substances that can be contained in the coating layer 22 include perfluoropolyether that has the effect of increasing the flexibility by lowering the Tg. Moreover, the inorganic type or organic type fluorescent substance which show | plays the effect which converts the wavelength of light is mentioned. In order to scatter light, inorganic particles (silica, alumina) or the like may be included.
 被覆層22の厚さは、100μm以上であることが好ましい。被覆層22の厚さが100μm以上であれば、発光素子13や電気配線等の劣化を抑えやすく、耐光性に優れる。 The thickness of the coating layer 22 is preferably 100 μm or more. When the thickness of the covering layer 22 is 100 μm or more, it is easy to suppress deterioration of the light emitting element 13 and the electric wiring, and the light resistance is excellent.
 被覆層22の波長400~700nmの可視光に対する光透過性は、厚さが0.1~2mmの条件で、90%以上であることが好ましく、95%以上であることがより好ましい。前記光透過性が90%以上であれば、発光素子13からの光の取り出し効率に悪影響を与えることを抑制できるため、発光輝度の高い発光素子モジュール1が得られやすい。 The light transmittance of the coating layer 22 with respect to visible light having a wavelength of 400 to 700 nm is preferably 90% or more, and more preferably 95% or more under the condition that the thickness is 0.1 to 2 mm. If the light transmittance is 90% or more, adverse effects on the light extraction efficiency from the light emitting element 13 can be suppressed, and thus the light emitting element module 1 having high light emission luminance can be easily obtained.
 被覆層22の25℃におけるガス透過性は、酸素および水蒸気の場合10-15~10-13mol・m/m・s・Paであることが好ましく、10-15~10-14mol・m/m・s・Paであることがより好ましい。前記ガス透過性が10-13mol・m/m・s・Pa以下であれば、水蒸気や大気中の硫黄化合物を遮断してLED素子(発光素子13)や電極12a、12bの劣化を防ぐことが容易である。また、前記ガス透過性が10-15mol・m/m・s・Pa以上であれば、硬化性非晶質含フッ素重合体(b)の入手が容易になる。
 被覆層22の前記ガス透過性は、非晶質含フッ素樹脂(B)のTg、架橋密度等により調整することができる。
The gas permeability at 25 ° C. of the covering layer 22 is preferably 10 −15 to 10 −13 mol · m / m 2 · s · Pa in the case of oxygen and water vapor, and is preferably 10 −15 to 10 −14 mol · m. More preferably, it is / m 2 · s · Pa. If the gas permeability is 10 −13 mol · m / m 2 · s · Pa or less, water vapor and sulfur compounds in the air are blocked to prevent deterioration of the LED element (light emitting element 13) and the electrodes 12a and 12b. Is easy. Further, when the gas permeability is 10 −15 mol · m / m 2 · s · Pa or more, the curable amorphous fluoropolymer (b) can be easily obtained.
The gas permeability of the coating layer 22 can be adjusted by the Tg of the amorphous fluororesin (B), the crosslinking density, and the like.
 以上説明した本発明の光学素子モジュールは、非晶質含フッ素樹脂(B)を用いた保護膜が、発光素子との初期の接着性、ガス透過性に優れている。また、耐熱性にも優れているため、高温で連続使用しても保護膜の剥離を抑制することができ、安定して使用できる。
 非晶質含フッ素樹脂(B)は、通常、各種の基材に対する接着性が特に優れているわけではない。しかし、本発明では、光学素子13等のモジュール部材10と被覆層22の中間の極性を有する非晶質芳香族樹脂(A)により中間層21を形成することにより、光学素子13と保護膜20の接着性が向上する。
 また、中間層21の形成にTgが150℃以上の非晶質芳香族樹脂(A)を用いることにより、光学素子モジュールを高温にした際の中間層21の軟化をより抑えることができるため、保護膜20のガス透過性を低く維持することが容易であり、保護膜20をより薄くすることができる。
 さらに、被覆層22の非晶質含フッ素樹脂(B)に比べて熱膨張係数が小さい非晶質芳香族樹脂(A)を用いることで、発光素子モジュールの使用による温度変化によって中間層21が膨張、収縮することを抑え、保護膜20が光学素子13から剥離することを防止することが容易になる。
In the optical element module of the present invention described above, the protective film using the amorphous fluorine-containing resin (B) is excellent in initial adhesiveness and gas permeability with the light emitting element. Moreover, since it is excellent also in heat resistance, even if it uses continuously at high temperature, peeling of a protective film can be suppressed and it can be used stably.
The amorphous fluorine-containing resin (B) is not usually excellent in adhesion to various substrates. However, in the present invention, the optical element 13 and the protective film 20 are formed by forming the intermediate layer 21 from the amorphous aromatic resin (A) having a polarity intermediate between the module member 10 such as the optical element 13 and the covering layer 22. Improves the adhesion.
In addition, since the amorphous aromatic resin (A) having a Tg of 150 ° C. or higher is used for forming the intermediate layer 21, it is possible to further suppress softening of the intermediate layer 21 when the optical element module is heated to a high temperature. It is easy to keep the gas permeability of the protective film 20 low, and the protective film 20 can be made thinner.
Furthermore, by using the amorphous aromatic resin (A) having a smaller thermal expansion coefficient than the amorphous fluorine-containing resin (B) of the coating layer 22, the intermediate layer 21 is changed due to a temperature change caused by the use of the light emitting element module. It becomes easy to suppress expansion and contraction and to prevent the protective film 20 from peeling from the optical element 13.
<光学素子モジュールの製造方法>
 本発明の製造方法は、光学素子と、該光学素子に通電する電気配線を備え、前記光学素子および前記電気配線が保護膜で被覆された光学素子モジュールの製造方法である。
 以下、前述した芳香族系含フッ素樹脂(A1)を含む中間層を有する保護膜が形成された光学素子モジュールの製造方法(I)と、予め合成した非晶質芳香族樹脂(A)を用いた中間層を有する保護膜が形成された光学素子モジュールの製造方法(II)について説明する。
<Optical element module manufacturing method>
The manufacturing method of the present invention is a method of manufacturing an optical element module that includes an optical element and an electric wiring for energizing the optical element, and the optical element and the electric wiring are covered with a protective film.
Hereinafter, the manufacturing method (I) of the optical element module in which the protective film having the intermediate layer containing the aromatic fluorine-containing resin (A1) described above is formed and the amorphous aromatic resin (A) synthesized in advance are used. A method (II) for producing an optical element module in which a protective film having an intermediate layer is formed will be described.
[製造方法(I)]
 製造方法(I)は、以下の工程を有する。
 中間層形成工程:架橋性官能基(x)を有するプレポリマー(a)を溶剤に溶解したコーティング液を前記発光素子および前記電気配線に塗布した後、前記プレポリマー(a)を硬化させ、主鎖に芳香環を有する芳香族系含フッ素樹脂(A1)を含む中間層を形成する工程。
 被覆層形成工程:中間層上に、芳香環を有さない硬化性非晶質含フッ素重合体(b)を塗布した後、該硬化性非晶質含フッ素重合体(b)を熱または光により硬化させて非晶質含フッ素樹脂(B)を含む被覆層を形成する工程。
[Production Method (I)]
Manufacturing method (I) has the following processes.
Intermediate layer forming step: After applying a coating solution prepared by dissolving a prepolymer (a) having a crosslinkable functional group (x) in a solvent to the light emitting element and the electric wiring, the prepolymer (a) is cured, The process of forming the intermediate | middle layer containing the aromatic fluorine-containing resin (A1) which has an aromatic ring in a chain | strand.
Coating layer forming step: After coating the curable amorphous fluorinated polymer (b) having no aromatic ring on the intermediate layer, the curable amorphous fluorinated polymer (b) is subjected to heat or light. A step of forming a coating layer containing the amorphous fluorine-containing resin (B) by curing by the method.
 以下、本発明の製造方法の実施形態の一例として、図1に例示した光学素子モジュール1を製造する方法について説明する。
 モジュール部材10を作製する方法は特に限定されず、公知の方法により、基板11上に電極12a、12b、光学素子13、ボンディングワイヤ14、リフレクタ15を実装して作製すればよい。また、それらが実装された市販のモジュール部材を用いてもよい。
Hereinafter, as an example of the embodiment of the manufacturing method of the present invention, a method of manufacturing the optical element module 1 illustrated in FIG. 1 will be described.
The method of manufacturing the module member 10 is not particularly limited, and the module member 10 may be manufactured by mounting the electrodes 12a and 12b, the optical element 13, the bonding wire 14, and the reflector 15 on the substrate 11 by a known method. Moreover, you may use the commercially available module member in which they were mounted.
(中間層形成工程)
 中間層形成工程では、プレポリマー(a)を溶剤に溶解してコーティング液を調整する。その後、該コーティング液を凹部16における発光素子13、電極12a、12bに塗布して中間層21を形成する。該コーティング液の塗布により中間層21を形成することにより、中間層21を容易に形成することができる。そのため、プレポリマー(a)と溶剤は、プレポリマー(a)が溶剤に可溶な組み合わせを用いることが好ましい。
(Intermediate layer forming process)
In the intermediate layer forming step, the prepolymer (a) is dissolved in a solvent to prepare a coating solution. Thereafter, the coating liquid is applied to the light emitting element 13 and the electrodes 12 a and 12 b in the recess 16 to form the intermediate layer 21. By forming the intermediate layer 21 by applying the coating liquid, the intermediate layer 21 can be easily formed. Therefore, it is preferable to use a combination in which the prepolymer (a) is soluble in the solvent.
 コーティング液の溶剤としては、例えば、芳香族炭化水素類、非プロトン性極性溶媒類、ケトン類、エステル類、エーテル類、ハロゲン化炭化水素類が挙げられる。
 芳香族炭化水素類としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、キュメン、メシチレン、テトラリン、メチルナフタレン、o-クロロフェノール、ニトロベンゼン、アニソール等が挙げられる。
 非プロトン性極性溶媒類としては、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルスルホキシド、1-メチル-2-ピロリドン、スルホラン等が挙げられる。
 ケトン類としては、例えば、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルアミルケトン等が挙げられる。
 エーテル類としては、例えば、テトラヒドロフラン、ピラン、ジオキサン、ジメトキシエタン、ジエトキシエタン、ジフェニルエーテル、アニソール、フェネトール、ジグライム、トリグライム等が挙げられる。
 エステル類としては、例えば、乳酸エチル、安息香酸メチル、安息香酸エチル、安息香酸ブチル、安息香酸ベンジル、メチルセルソルブアセテート、エチルセルソルブアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等が挙げられる。
 ハロゲン化炭化水素類としては、例えば、四塩化炭素、クロロホルム、塩化メチレン、ジクロロエタン、テトラクロロエチレン、クロロベンゼン、ジクロロベンゼン等が挙げられる。
Examples of the solvent for the coating liquid include aromatic hydrocarbons, aprotic polar solvents, ketones, esters, ethers, and halogenated hydrocarbons.
Examples of aromatic hydrocarbons include benzene, toluene, xylene, ethylbenzene, cumene, mesitylene, tetralin, methylnaphthalene, o-chlorophenol, nitrobenzene, anisole and the like.
Examples of the aprotic polar solvents include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ-butyrolactone, dimethyl sulfoxide, 1-methyl-2-pyrrolidone, sulfolane and the like. .
Examples of ketones include cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methyl amyl ketone, and the like.
Examples of ethers include tetrahydrofuran, pyran, dioxane, dimethoxyethane, diethoxyethane, diphenyl ether, anisole, phenetole, diglyme, triglyme and the like.
Examples of the esters include ethyl lactate, methyl benzoate, ethyl benzoate, butyl benzoate, benzyl benzoate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono Examples include propyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate.
Examples of halogenated hydrocarbons include carbon tetrachloride, chloroform, methylene chloride, dichloroethane, tetrachloroethylene, chlorobenzene, dichlorobenzene, and the like.
 コーティング液の塗布方法としては、公知の方法を用いることができ、例えば、スピンコート法、スプレーコート法、ディップコート法、ダイコート法、ロールコート法、フレキソコート法、グラビアコート法、バーコート法、カーテンコート法、スクリーンコート法、インクジェット法、フローコート法等が挙げられる。 As a method for applying the coating liquid, known methods can be used, for example, spin coating, spray coating, dip coating, die coating, roll coating, flexo coating, gravure coating, bar coating, Examples include a curtain coating method, a screen coating method, an ink jet method, and a flow coating method.
 コーティング液を塗布して塗布膜を形成した後、光、熱、電子線等や、それらの併用によりプレポリマー(a)を硬化させることにより、芳香族系含フッ素樹脂(A1)を含む中間層21が形成される。 After forming the coating film by applying the coating liquid, the intermediate layer containing the aromatic fluorine-containing resin (A1) is cured by curing the prepolymer (a) by light, heat, electron beam, or the like, or a combination thereof. 21 is formed.
 加熱によりプレポリマー(a)を硬化させる場合、硬化温度は、プレポリマー(a)を硬化させることができる温度であればよく、100~200℃であることが好ましく、150~200℃であることがより好ましい。プレポリマー(a)の硬化温度が100℃以上であれば、中間層21の形成効率が向上する。また、プレポリマー(a)の硬化温度が200℃以下であれば、得られる中間層21が変質することを抑制しやすい。 When the prepolymer (a) is cured by heating, the curing temperature may be any temperature that allows the prepolymer (a) to be cured, and is preferably 100 to 200 ° C, more preferably 150 to 200 ° C. Is more preferable. When the curing temperature of the prepolymer (a) is 100 ° C. or higher, the formation efficiency of the intermediate layer 21 is improved. Moreover, if the curing temperature of prepolymer (a) is 200 degrees C or less, it will be easy to suppress that the obtained intermediate | middle layer 21 changes in quality.
 また、光によりプレポリマー(a)を硬化させる場合は、塗布するコーティング液に、特定波長光に対して好適な光ラジカル発生剤、光酸発生剤、増感剤等を含有させておくことが好ましい。
 プレポリマー(a)の硬化には、波長150~400nmの光(紫外線)を用いることができる。波長250~400nmにおいてはメタルハライドランプ、254、313、365nmには高圧または低圧水銀ランプを用いることができる。また、248nmにはKrFエキシマーレーザー、193nmにはArFエキシマーレーザー、157nmにはFレーザーを用いることができる。
 硬化は、例えば、照射強度が0.1~500mW/cmの範囲で1分~10時間照射することにより行うことができる。
When the prepolymer (a) is cured by light, the coating liquid to be applied may contain a photo radical generator, photo acid generator, sensitizer, or the like suitable for light of a specific wavelength. preferable.
For curing the prepolymer (a), light (ultraviolet rays) having a wavelength of 150 to 400 nm can be used. At a wavelength of 250 to 400 nm, a metal halide lamp, 254, 313, and 365 nm can be a high pressure or low pressure mercury lamp. A KrF excimer laser can be used for 248 nm, an ArF excimer laser for 193 nm, and an F 2 laser for 157 nm.
Curing can be performed, for example, by irradiation for 1 minute to 10 hours in an irradiation intensity range of 0.1 to 500 mW / cm 2 .
(被覆層形成工程)
 被覆層形成工程では、硬化性非晶質含フッ素重合体(b)を中間層21上に塗布し、その後に熱または光により硬化性非晶質含フッ素重合体(b)を硬化させて被覆層22を形成する。硬化性非晶質含フッ素重合体(b)として、前述の重合性化合物(b1)を用いることにより、被覆層22を容易に形成することができる。
 被覆層形成工程における硬化性非晶質含フッ素重合体(b)の塗布方法は、特に限定されないが、被覆層22の厚さは中間層21の厚さに比べて大きくすることが好ましいため、中間層形成工程のような溶剤で溶解したコーティング液を用いた塗布方法ではなく、硬化温度よりも低い温度で加熱して硬化性非晶質含フッ素重合体(b)を流動させ、これを塗布する方法を用いることが好ましい。
(Coating layer forming process)
In the coating layer forming step, the curable amorphous fluorine-containing polymer (b) is applied onto the intermediate layer 21, and then the curable amorphous fluorine-containing polymer (b) is cured by heat or light to be coated. Layer 22 is formed. By using the aforementioned polymerizable compound (b1) as the curable amorphous fluorine-containing polymer (b), the coating layer 22 can be easily formed.
The coating method of the curable amorphous fluoropolymer (b) in the coating layer forming step is not particularly limited, but the thickness of the coating layer 22 is preferably larger than the thickness of the intermediate layer 21, It is not a coating method using a coating solution dissolved in a solvent as in the intermediate layer forming step, but is heated at a temperature lower than the curing temperature to flow the curable amorphous fluoropolymer (b) and apply it. It is preferable to use the method to do.
 硬化性非晶質含フッ素重合体(b)を熱により硬化させる場合の硬化温度は、用いる硬化性非晶質含フッ素重合体(b)を硬化させることができる温度であればよく、その種類によっても異なるが、100~200℃であることが好ましく、150~200℃であることがより好ましい。硬化温度が100℃以上であれば、より短時間で硬化反応を行って生産性を向上させることができる。また、硬化温度が200℃以下であれば、寸法安定性に優れた被覆層22が得られやすくなる。
 硬化反応は、段階的に温度が高くなるように多段階で行ってもよい。硬化反応を多段階で行う場合は、硬化温度は少なくともその最高温度が前記範囲内となるようにすればよい。
The curing temperature when the curable amorphous fluoropolymer (b) is cured by heat may be any temperature that can cure the curable amorphous fluoropolymer (b) to be used. Depending on the temperature, it is preferably 100 to 200 ° C, more preferably 150 to 200 ° C. If the curing temperature is 100 ° C. or higher, the curing reaction can be performed in a shorter time to improve productivity. Moreover, if the curing temperature is 200 ° C. or less, the coating layer 22 having excellent dimensional stability is easily obtained.
The curing reaction may be performed in multiple stages so that the temperature increases stepwise. When the curing reaction is performed in multiple stages, the curing temperature may be set so that at least the maximum temperature is within the above range.
 硬化性非晶質含フッ素重合体(b)として前述の重合性化合物(b1)を用いる場合は、硬化剤を用いずに、加熱によって硬化させることが好ましい。硬化剤を用いない場合の架橋反応の機構は明らかでないが、重合性化合物(b1)中に溶解している酸素がラジカル源となること、重合性化合物(b1)中の構造の一部が熱分解してラジカルを発生すること、重合性化合物(b1)中の側鎖-CF=CF基(重合性二重結合)同士の熱カップリング反応等が要因であると考えられる。
 また、硬化性非晶質含フッ素重合体(b)の硬化反応においては、含フッ素有機過酸化物等の硬化剤を用いてもよい。含フッ素有機化酸化物としては、たとえば、(CC(CO)O)、((CFO)等が挙げられる。
When using the above-mentioned polymerizable compound (b1) as the curable amorphous fluorine-containing polymer (b), it is preferable to cure by heating without using a curing agent. Although the mechanism of the cross-linking reaction without using the curing agent is not clear, oxygen dissolved in the polymerizable compound (b1) becomes a radical source, and a part of the structure in the polymerizable compound (b1) is heated. It is considered that the generation of radicals by decomposition and the thermal coupling reaction between side chain —CF═CF 2 groups (polymerizable double bonds) in the polymerizable compound (b1) are considered as factors.
In the curing reaction of the curable amorphous fluorine-containing polymer (b), a curing agent such as a fluorine-containing organic peroxide may be used. Examples of the fluorine-containing organic oxide include (C 6 F 5 C (CO) O) 2 and ((CF 3 ) 3 O) 2 .
 また、波長150~400nmの光(紫外線)により硬化性非晶質含フッ素重合体(b)を硬化させてもよい。この場合は室温でも硬化反応が進行し、熱硬化させたものよりも硬度の高い被覆層22が得られる。
 紫外線の波長は、150~400nmが好ましく、193~365nmがより好ましく、248~365nmが特に好ましい。
Further, the curable amorphous fluorinated polymer (b) may be cured by light (ultraviolet rays) having a wavelength of 150 to 400 nm. In this case, the curing reaction proceeds even at room temperature, and the coating layer 22 having a higher hardness than that obtained by thermosetting can be obtained.
The wavelength of the ultraviolet light is preferably 150 to 400 nm, more preferably 193 to 365 nm, and particularly preferably 248 to 365 nm.
 特に、254nmの短波長紫外線を照射する場合は光開始剤を用いなくてもよく、紫外線照射強度に応じて照射時間を調節することにより、硬化物を作成できる。硬化は、例えば、照射強度が0.1~500mW/cmの範囲で1分~10時間照射することにより行うことができる。 In particular, when irradiating 254 nm short wavelength ultraviolet rays, it is not necessary to use a photoinitiator, and a cured product can be prepared by adjusting the irradiation time according to the ultraviolet irradiation intensity. Curing can be performed, for example, by irradiation for 1 minute to 10 hours in an irradiation intensity range of 0.1 to 500 mW / cm 2 .
 なお、254nmの短波長紫外線を用いた場合に、光開始剤を用いなくても硬化する機構については明らかではない。しかし、19F-NMRによる構造解析によれば、硬化物中に、重合性化合物(b1)中の側鎖の-CF=CF基同士の熱カップリングで生じるシクロブタン環が存在しないことが確認できた。このことから、重合性化合物(b1)中の-CF=CF基の重合が進行していることが示唆される。開始源としては、-CF=CF基が光により活性化して、重合性化合物(b1)の末端に存在するHを引き抜くことによりラジカルが発生すること等が考えられる。 Note that the mechanism of curing without using a photoinitiator when using short wavelength ultraviolet light of 254 nm is not clear. However, according to the structural analysis by 19 F-NMR, it was confirmed that there was no cyclobutane ring produced by thermal coupling of the side chains —CF═CF 2 groups in the polymerizable compound (b1) in the cured product. did it. This suggests that the polymerization of —CF═CF 2 groups in the polymerizable compound (b1) is in progress. As the initiation source, it can be considered that radicals are generated by the activation of the —CF═CF 2 group by light and extraction of H present at the terminal of the polymerizable compound (b1).
 また、光開始剤を用いれば300~400nmの紫外線を照射することにより硬化させることができる。
 光開始剤としては、アセトフェノン系、ベンゾインエーテル系、ベンジルケタール系、ベンゾフェノン、ベンジル等のケトン系の各種の化合物が挙げられる。好ましくは、重合性化合物(b1)との相溶性から、水素の一部がフッ素またはフルオロアルキル基に置換された含フッ素系光開始剤である。
Further, when a photoinitiator is used, it can be cured by irradiating ultraviolet rays of 300 to 400 nm.
Examples of the photoinitiator include various types of ketone-based compounds such as acetophenone-based, benzoin ether-based, benzyl ketal-based, benzophenone, and benzyl. Preferably, it is a fluorine-containing photoinitiator in which a part of hydrogen is substituted with fluorine or a fluoroalkyl group because of compatibility with the polymerizable compound (b1).
 光開始剤の使用量は、0.01~10質量%が好ましく、0.1~1質量%がより好ましい。光開始剤の使用量が前記範囲にあれば、硬化速度を低下させずに着色の少ない透明な被覆層22を得ることが容易になる。
 以上のような中間層形成工程、被覆層形成工程により、中間層21と被覆層22を有する保護膜20を形成することで、光学素子モジュール1が得られる。
The amount of photoinitiator used is preferably 0.01 to 10% by mass, more preferably 0.1 to 1% by mass. If the usage-amount of a photoinitiator exists in the said range, it will become easy to obtain the transparent coating layer 22 with little coloring, without reducing a cure rate.
The optical element module 1 is obtained by forming the protective film 20 having the intermediate layer 21 and the covering layer 22 by the intermediate layer forming process and the covering layer forming process as described above.
[製造方法(II)]
 製造方法(II)は、以下の工程を有する。
 中間層形成工程:非晶質芳香族樹脂(A)を溶剤に溶解したコーティング液を発光素子および電気配線に塗布して中間層を形成する工程。
 被覆層形成工程:中間層上に硬化性非晶質含フッ素重合体(b)を塗布した後、該硬化性非晶質含フッ素重合体(b)を熱または光により硬化させて非晶質含フッ素樹脂(B)を含む被覆層を形成する工程。
[Production Method (II)]
Manufacturing method (II) has the following processes.
Intermediate layer forming step: A step of forming an intermediate layer by applying a coating solution obtained by dissolving the amorphous aromatic resin (A) in a solvent to the light emitting element and the electric wiring.
Coating layer forming step: After applying the curable amorphous fluoropolymer (b) on the intermediate layer, the curable amorphous fluoropolymer (b) is cured by heat or light to be amorphous. The process of forming the coating layer containing a fluorine-containing resin (B).
 以下、本発明の製造方法の実施形態の一例として、図1に例示した光学素子モジュール1を製造する方法について説明する。
 モジュール部材10を作製する方法は特に限定されず、公知の方法により、基板11上に電極12a、12b、光学素子13、ボンディングワイヤ14、リフレクタ15を実装して作製すればよい。また、それらが実装された市販のモジュール部材を用いてもよい。
Hereinafter, as an example of the embodiment of the manufacturing method of the present invention, a method of manufacturing the optical element module 1 illustrated in FIG. 1 will be described.
The method of manufacturing the module member 10 is not particularly limited, and the module member 10 may be manufactured by mounting the electrodes 12a and 12b, the optical element 13, the bonding wire 14, and the reflector 15 on the substrate 11 by a known method. Moreover, you may use the commercially available module member in which they were mounted.
(中間層形成工程)
 中間層形成工程では、非晶質芳香族樹脂(A)を溶剤に溶解してコーティング液を調製する。その後、該コーティング液を、凹部16における発光素子13に塗布して中間層21を形成する。該コーティング液の塗布し、乾燥することにより中間層21を形成することにより、中間層21を容易に形成することができる。非晶質芳香族樹脂(A)および溶剤は、非晶質芳香族樹脂(A)が溶剤に可溶な組み合わせを用いることが好ましい。
(Intermediate layer forming process)
In the intermediate layer forming step, the amorphous aromatic resin (A) is dissolved in a solvent to prepare a coating solution. Thereafter, the coating liquid is applied to the light emitting element 13 in the recess 16 to form the intermediate layer 21. By forming the intermediate layer 21 by applying the coating liquid and drying, the intermediate layer 21 can be easily formed. As the amorphous aromatic resin (A) and the solvent, a combination in which the amorphous aromatic resin (A) is soluble in the solvent is preferably used.
 溶剤は製造方法(I)で挙げたものと同じものが挙げられる。
 例えば、非晶質芳香族樹脂(A)としてポリエーテルスルホン樹脂を用いる場合、溶剤としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、o-クロロフェノール、アニソール、ニトロベンゼン、塩化メチレン、ジクロロエタン等を用いることができる。
Examples of the solvent are the same as those mentioned in the production method (I).
For example, when a polyethersulfone resin is used as the amorphous aromatic resin (A), N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane are used as the solvent. Γ-butyrolactone, o-chlorophenol, anisole, nitrobenzene, methylene chloride, dichloroethane and the like can be used.
(被覆層形成工程)
 被覆層形成工程は、製造方法(I)と同じ工程を行うことができ、好ましい態様も同じである。
 なお、予め合成した非晶質芳香族樹脂(A)と、芳香族系含フッ素樹脂(A1)とを共に含む中間層を形成する場合には、プレポリマー(a)と、予め合成した非晶質芳香族樹脂(A)とを溶剤に溶解したコーティング液を調製し、該コーティング液を用いて前述の塗布方法で光学素子13および電極12a、12bに塗布した後、熱、光、電子線等で芳香族系含フッ素樹脂(A1)を硬化させることで中間層21を形成することができる。
(Coating layer forming process)
A coating layer formation process can perform the same process as manufacturing method (I), and its preferable aspect is also the same.
In addition, when forming the intermediate | middle layer containing both the amorphous aromatic resin (A) synthesize | combined previously and aromatic type fluorine-containing resin (A1), the prepolymer (a) and the amorphous | non-crystalline substance synthesize | combined previously. After preparing a coating solution in which the aromatic resin (A) is dissolved in a solvent and applying the coating solution to the optical element 13 and the electrodes 12a and 12b by the above-described application method, heat, light, electron beam, etc. The intermediate layer 21 can be formed by curing the aromatic fluorine-containing resin (A1).
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。なお、本実施例における「部」は質量部を意味する。
[測定方法]
 本実施例における中間層および被覆層の厚さ、プレポリマー(a)の分子量、芳香族系含フッ素樹脂(A1)のガラス転移温度(Tg)、熱膨張係数の測定は、以下に示す方法により行った。
(中間層および被覆層の厚さ)
 以下の実施例に示す銀メッキ銅板上の中間層および被覆層の厚さは、基板との段差を表面粗さ計を用いて測定することにより算出した。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited by the following description. In addition, “parts” in this example means parts by mass.
[Measuring method]
In this example, the thickness of the intermediate layer and the coating layer, the molecular weight of the prepolymer (a), the glass transition temperature (Tg) of the aromatic fluorine-containing resin (A1), and the coefficient of thermal expansion were measured by the following methods. went.
(Thickness of intermediate layer and coating layer)
The thickness of the intermediate layer and the coating layer on the silver-plated copper plate shown in the following examples was calculated by measuring a step with the substrate using a surface roughness meter.
(ガラス転移温度(Tg))
 芳香族系含フッ素樹脂(A1)のガラス転移温度は、示差走査熱量計(DSC)を用い、JIS K7121:1987に準拠して測定した。なお、中間点ガラス転移温度をガラス転移温度(Tg)とした。
 なお、芳香族系含フッ素樹脂(A1)以外の非晶質芳香族樹脂(A)のTgは、商品に記載のTgである。
(Glass transition temperature (Tg))
The glass transition temperature of the aromatic fluororesin (A1) was measured using a differential scanning calorimeter (DSC) according to JIS K7121: 1987. The midpoint glass transition temperature was defined as the glass transition temperature (Tg).
The Tg of the amorphous aromatic resin (A) other than the aromatic fluorine-containing resin (A1) is Tg described in the product.
(熱膨張係数)
 熱膨張係数は、TMA装置(セイコー電子社製、TMA120C)を用い、100℃から200℃まで10℃/分で昇温することで測定した。
(Coefficient of thermal expansion)
The thermal expansion coefficient was measured by raising the temperature from 100 ° C. to 200 ° C. at a rate of 10 ° C./min using a TMA device (manufactured by Seiko Denshi, TMA120C).
(分子量測定)
 芳香族系含フッ素樹脂(A1)の分子量は、ゲルパーミエーションクロマトグラフィー法(GPC法)によりポリスチレン換算の数平均分子量として測定した。キャリア溶媒はテトラヒドロフランを使用した。硬化性非晶質含フッ素重合体(b)の分子量も同様に、ポリメチルメタクリレート換算の数平均分子量として、キャリア溶媒としてアサヒクリンAK225を用いて測定した。
(Molecular weight measurement)
The molecular weight of the aromatic fluorine-containing resin (A1) was measured as a number average molecular weight in terms of polystyrene by gel permeation chromatography (GPC method). Tetrahydrofuran was used as the carrier solvent. Similarly, the molecular weight of the curable amorphous fluorine-containing polymer (b) was measured as a number average molecular weight in terms of polymethyl methacrylate using Asahi Clin AK225 as a carrier solvent.
[実施例1]
(中間層形成工程)
 N,N-ジメチルアセトアミドにポリエーテルスルホン(商品名:スミカエクセルPES5003P、住友化学製、Tg:226℃、熱膨張係数:55ppm/℃)(PES(ポリエーテルスルホン)濃度:20質量%)を溶解して中間層形成のためのコーティング液を調製した。
 得られたコーティング液を銀メッキした銅板上に流延して、窒素ガス雰囲気中にて100℃で30分間加熱し、さらに150℃で1時間加熱することにより中間層(厚さ約5μm)を形成した。このようにして得られた中間層のTgは226℃、熱膨張係数は55ppm/℃であった。
(被覆層形成工程)
 次いで、該中間層上に、テトラフルオロエチレン/ペルフルオロ(1,4-ブタンジオールジビニルエーテル)/ペルフルオロ(プロピルビニルエーテル)共重合体(共重合組成:70/12/18(モル比)、PMMA換算質量平均分子量9600)からなる、高粘度液状の重合性化合物(b1-1)を塗布した後、100℃に加熱して皮膜状に展開させ、室温まで冷却してから低圧水銀ランプにより波長254nmの紫外線を0.6mW/cmで1時間照射して硬化させ、厚さ500μmの被覆層を形成して保護膜とした。
 この保護膜を有する銀メッキ銅板を200℃のオーブン中に3週間保持した。しかし、被覆層の剥離、および銀メッキや被覆層の変色はほとんど見られなかった。
[Example 1]
(Intermediate layer forming process)
Polyethersulfone (trade name: Sumika Excel PES5003P, manufactured by Sumitomo Chemical Co., Ltd., Tg: 226 ° C., coefficient of thermal expansion: 55 ppm / ° C.) (PES (polyether sulfone) concentration: 20 mass%) is dissolved in N, N-dimethylacetamide. Thus, a coating solution for forming the intermediate layer was prepared.
The obtained coating solution is cast on a silver-plated copper plate, heated at 100 ° C. for 30 minutes in a nitrogen gas atmosphere, and further heated at 150 ° C. for 1 hour to form an intermediate layer (thickness of about 5 μm). Formed. The intermediate layer thus obtained had a Tg of 226 ° C. and a thermal expansion coefficient of 55 ppm / ° C.
(Coating layer forming process)
Next, on the intermediate layer, tetrafluoroethylene / perfluoro (1,4-butanediol divinyl ether) / perfluoro (propyl vinyl ether) copolymer (copolymerization composition: 70/12/18 (molar ratio), PMMA equivalent mass) After coating a high viscosity liquid polymerizable compound (b1-1) having an average molecular weight of 9600), it is heated to 100 ° C. to develop into a film, cooled to room temperature, and then cooled to room temperature and then irradiated with ultraviolet light having a wavelength of 254 nm by a low pressure mercury lamp. Was cured by irradiation for 1 hour at 0.6 mW / cm 2 , and a coating layer having a thickness of 500 μm was formed as a protective film.
The silver-plated copper plate having this protective film was kept in an oven at 200 ° C. for 3 weeks. However, almost no peeling of the coating layer, silver plating or discoloration of the coating layer was observed.
[実施例2]
(中間層形成工程)
 ジムロートコンデンサ、熱電対温度計、およびメカニカルスターラを備えた100mLガラス製4つ口フラスコに、ペンタフルオロスチレン(1.0g)、1,1,1-トリス(4-ヒドロキシフェニル)エタン(2.4g)、ジメチルアセトアミド(以下、「DMAc」という。)(31.1g)を仕込んだ。撹拌しながらフラスコをオイルバス上で加温し、液温が60℃となった時点で炭酸ナトリウム(3.8g)を素早く添加した。撹拌を継続しながら60℃で24時間加熱した。次いで、ペルフルオロ-1,3,5-トリフェニルベンゼン(5.0g)をDMAc(45.0g)に溶かした溶液を添加し、さらに60℃で24時間加熱した。その後、反応液を室温に冷却し、激しく撹拌した0.5N塩酸水約200mLに徐々に滴下し、再沈殿を行った。沈殿物をろ過後、該沈殿物を純水で2回洗浄した。その後、60℃で12時間真空乾燥を行って白色粉末状のプレポリマー(a-1)(6.9g)を得た。
 得られたプレポリマー(a-1)は、架橋性官能基(x)であるビニル基を有し、分子量は5,300であった。
[Example 2]
(Intermediate layer forming process)
A 100 mL glass four-necked flask equipped with a Dimroth condenser, a thermocouple thermometer, and a mechanical stirrer was charged with pentafluorostyrene (1.0 g), 1,1,1-tris (4-hydroxyphenyl) ethane (2.4 g). ), Dimethylacetamide (hereinafter referred to as “DMAc”) (31.1 g). The flask was heated on an oil bath with stirring, and sodium carbonate (3.8 g) was quickly added when the liquid temperature reached 60 ° C. The mixture was heated at 60 ° C. for 24 hours while stirring was continued. Next, a solution of perfluoro-1,3,5-triphenylbenzene (5.0 g) in DMAc (45.0 g) was added, and the mixture was further heated at 60 ° C. for 24 hours. Thereafter, the reaction solution was cooled to room temperature and gradually added dropwise to about 200 mL of 0.5N aqueous hydrochloric acid which was vigorously stirred to perform reprecipitation. After the precipitate was filtered, the precipitate was washed twice with pure water. Thereafter, vacuum drying was performed at 60 ° C. for 12 hours to obtain a white powdery prepolymer (a-1) (6.9 g).
The obtained prepolymer (a-1) had a vinyl group which is a crosslinkable functional group (x) and had a molecular weight of 5,300.
 得られたプレポリマー(a-1)を、プレポリマー(a-1)濃度が30質量%となるようにシクロヘキサノンに溶解してコーティング液とした。該コーティング液を孔径0.5μmのPTFE(ポリテトラフルオロエチレン)製フィルター(ミリポア社製オムニポアーメンブランフィルター)でろ過した。得られたコーティング液を銀メッキした銅板上にスピンコート法により塗布膜を作成した。スピン条件は1000rpm、30秒であった。次いで、塗布膜を形成した銀メッキ銅板をホットプレートにより100℃で90秒間加熱し、さらに200℃で90秒間の加熱処理を行った後、窒素ガス雰囲気下にて200℃で2時間加熱して硬化させ、厚さ3μmの中間層を形成した。
 得られた中間層の硬化物は、少なくとも350℃以下ではTgが観測されなかったため、高密度の架橋体が形成されていると考えられる。また、熱膨張係数は70ppm/℃であった。
(被覆層形成工程)
 次いで、該中間層上に、前記重合性化合物(b1-1)を塗布し、100℃で加熱して皮膜状に展開させた後、室温まで冷却してから低圧水銀ランプにより波長254nmの紫外線を6mW/cmで30分間照射して硬化させた後、さらに150℃で30分間加熱して厚さ300μmの被覆層を形成して保護膜とした。
 この保護膜を有する銀メッキ銅板を200℃のオーブン中に3週間保持したところ、被覆層の剥離、および銀メッキや被覆層の変色はほとんど見られなかった。
The obtained prepolymer (a-1) was dissolved in cyclohexanone so that the concentration of the prepolymer (a-1) was 30% by mass to obtain a coating solution. The coating solution was filtered through a PTFE (polytetrafluoroethylene) filter (Omnipore membrane filter manufactured by Millipore) having a pore size of 0.5 μm. A coating film was prepared by spin coating on a copper plate obtained by silver-plating the obtained coating solution. The spin conditions were 1000 rpm and 30 seconds. Next, the silver-plated copper plate on which the coating film is formed is heated by a hot plate at 100 ° C. for 90 seconds, further subjected to heat treatment at 200 ° C. for 90 seconds, and then heated at 200 ° C. for 2 hours in a nitrogen gas atmosphere. Curing was performed to form an intermediate layer having a thickness of 3 μm.
In the obtained cured product of the intermediate layer, Tg was not observed at least at 350 ° C. or less, so it is considered that a high-density crosslinked body was formed. The thermal expansion coefficient was 70 ppm / ° C.
(Coating layer forming process)
Next, the polymerizable compound (b1-1) is applied onto the intermediate layer, heated at 100 ° C. to develop a film, cooled to room temperature, and then irradiated with ultraviolet light having a wavelength of 254 nm by a low-pressure mercury lamp. After curing by irradiation at 6 mW / cm 2 for 30 minutes, the coating was further heated at 150 ° C. for 30 minutes to form a coating layer having a thickness of 300 μm to form a protective film.
When the silver-plated copper plate having this protective film was kept in an oven at 200 ° C. for 3 weeks, peeling of the coating layer, and silver plating and discoloration of the coating layer were hardly observed.
[比較例1]
 液状の前記重合性化合物(b1-1)を銀メッキした銅板上に塗布し、100℃で加熱して皮膜状に展開させた後、室温まで冷却してから波長254nmの紫外線を6mW/cmで30分間照射して硬化させた後、さらに150℃で30分間加熱して厚さ300μmの硬化皮膜を形成した。
 この硬化皮膜を形成した銀メッキ銅板を200℃のオーブン中に1週間保持したところ、硬化皮膜の周縁部において皮膜直下の銀メッキがわずかに変色した。また、このメッキ銅板を室温まで冷却したところ、硬化皮膜の周縁部で剥離が起きていることが目視で観察された。
[Comparative Example 1]
The liquid polymerizable compound (b1-1) is applied on a silver-plated copper plate, heated at 100 ° C. to develop a film, cooled to room temperature, and then irradiated with ultraviolet light having a wavelength of 254 nm of 6 mW / cm 2. And cured for 30 minutes, and further heated at 150 ° C. for 30 minutes to form a cured film having a thickness of 300 μm.
When the silver-plated copper plate on which the cured film was formed was kept in an oven at 200 ° C. for 1 week, the silver plating just under the film was slightly discolored at the periphery of the cured film. Moreover, when this plated copper plate was cooled to room temperature, it was visually observed that peeling occurred at the peripheral edge of the cured film.
[比較例2]
 メチルシリケートMS51(多摩化学工業製)(10部)、メチルトリエトキシシラン(6部)、アミノプロピルメチルトリメトキシシラン(4部)をエタノール(80部)に溶解した後、1質量%の酢酸水溶液(10部)を添加し、室温で1時間放置することによりプライマー液を調製した。銀メッキした銅板を該プライマー液中に浸して引き上げた後、自然乾燥した。さらに100℃オーブン中で30分乾燥させて皮膜(厚さ約1μm)を形成した。皮膜にクラックは生じなかった。
 次いで、液状の前記重合性化合物(b1-1)を塗布し、100℃で加熱して皮膜状に展開させた後、室温まで冷却してから波長254nmの紫外線を6mW/cmで30分間照射して硬化させた後、さらに150℃で30分間加熱して厚さ300μmの硬化皮膜を形成した。
 この硬化皮膜を形成した銀メッキ銅板を200℃のオーブン中に1週間保持したところ、銀メッキの変色や硬化皮膜の変色はほとんど見られなかった。しかし、オーブン中に保持して3週間経過したところ、非晶質含フッ素重合体の硬化皮膜の周縁部において、皮膜直下の銀メッキがわずかに変色した。また、該銀メッキ銅板を室温まで冷却したところ、硬化皮膜の周縁部で剥離が起きていることが目視で観察された。
[Comparative Example 2]
Methyl silicate MS51 (manufactured by Tama Chemical Co., Ltd.) (10 parts), methyltriethoxysilane (6 parts) and aminopropylmethyltrimethoxysilane (4 parts) were dissolved in ethanol (80 parts), and then a 1% by mass acetic acid aqueous solution. (10 parts) was added and a primer solution was prepared by allowing to stand at room temperature for 1 hour. The silver-plated copper plate was dipped in the primer solution and pulled up, and then naturally dried. Furthermore, it was dried in an oven at 100 ° C. for 30 minutes to form a film (thickness: about 1 μm). There was no crack in the film.
Next, the liquid polymerizable compound (b1-1) is applied, heated at 100 ° C. to develop into a film, cooled to room temperature, and then irradiated with ultraviolet light having a wavelength of 254 nm at 6 mW / cm 2 for 30 minutes. After being cured, the film was further heated at 150 ° C. for 30 minutes to form a cured film having a thickness of 300 μm.
When the silver-plated copper plate on which this cured film was formed was kept in an oven at 200 ° C. for 1 week, almost no discoloration of the silver plating or discoloration of the cured film was observed. However, after 3 weeks of holding in the oven, the silver plating immediately below the coating slightly discolored at the periphery of the cured coating of the amorphous fluoropolymer. Moreover, when this silver plating copper plate was cooled to room temperature, it was observed visually that peeling had occurred in the peripheral part of the cured film.
 以上のように、本発明の中間層と被覆層を有する実施例1および2の保護膜は、オーブンでの保持の3週間経過後の状態が、中間層を有さない比較例1の1週間後の状態と比べてさえ、モジュール部材と保護膜の接着性が維持され、保護膜20で被覆した銀メッキ部分の保護効果が高かった。
 また、実施例1および2の保護膜は、オーブンでの保持の3週間経過後の状態において、シランカップリング剤を用いた比較例2と比べ、モジュール部材10と保護膜20の接着性が充分に維持され、保護膜20で被覆した銀メッキ部分の保護効果が高かった。
 これらの結果から、本発明における保護膜は、モジュール部材との初期接着性に優れるばかりでなく、耐熱性も高いため、高温での連続使用においても保護膜の剥離が生じず保護性能も安定であることがわかった。
As described above, the protective films of Examples 1 and 2 having the intermediate layer and the coating layer of the present invention were in a state after 3 weeks of holding in the oven for 1 week of Comparative Example 1 having no intermediate layer. Even compared with the later state, the adhesion between the module member and the protective film was maintained, and the protective effect of the silver-plated portion covered with the protective film 20 was high.
Further, the protective films of Examples 1 and 2 have sufficient adhesion between the module member 10 and the protective film 20 as compared with Comparative Example 2 using a silane coupling agent after 3 weeks of holding in the oven. The protective effect of the silver-plated portion covered with the protective film 20 was high.
From these results, the protective film in the present invention is not only excellent in initial adhesiveness with the module member, but also has high heat resistance, so that the protective film does not peel off even in continuous use at high temperature, and the protective performance is stable. I found out.
[実施例3]
 次に、発光素子であるLED素子上に保護膜を形成して封止して発光素子モジュールを作成し、連続通電して評価を行なった。
(中間層形成工程)
 モジュール部材として、図1に例示したような、アルミナ製の基板(基板11)とアルミナ製のリフレクタ(リフレクタ15)とにより凹部(凹部16)が形成され、基板上に回路を形成するAg電極(電極12a、12b)を有し、発光波長460nmのLED素子(発光素子13)が実装され、Ag電極とLED素子がボンディングワイヤ14により接続、導通された表面実装型LEDモジュール(モジュール部材10)を用いた。
 前記凹部16に、実施例1で用いたコーティング液(PES濃度10質量%に希釈)を滴下して、窒素ガス雰囲気中にて100℃で30分間加熱し、さらに150℃で1時間加熱することによりLED素子(発光素子13)およびAg電極(電極12a、12b)の表面に厚さ4μmの中間層21を形成した。
[Example 3]
Next, a light-emitting element module was formed by forming a protective film on the LED element, which is a light-emitting element, and sealing it.
(Intermediate layer forming process)
As the module member, a recess (recess 16) is formed by an alumina substrate (substrate 11) and an alumina reflector (reflector 15) as illustrated in FIG. 1, and an Ag electrode (circuit) is formed on the substrate ( A surface mount type LED module (module member 10) having electrodes 12a and 12b), on which an LED element (light emitting element 13) having an emission wavelength of 460 nm is mounted, and the Ag electrode and the LED element are connected and connected by a bonding wire 14. Using.
The coating liquid used in Example 1 (diluted to a PES concentration of 10% by mass) is dropped into the recess 16 and heated at 100 ° C. for 30 minutes in a nitrogen gas atmosphere, and further heated at 150 ° C. for 1 hour. Thus, an intermediate layer 21 having a thickness of 4 μm was formed on the surfaces of the LED element (light emitting element 13) and the Ag electrode ( electrodes 12a and 12b).
(被覆層形成工程)
 次いで、前記重合性化合物(b1-1)を100℃に加熱して凹部16に流し込み、低圧水銀ランプにより波長254nmの紫外線を6mW/cmで30分間照射して硬化させた後、さらに150℃で30分間加熱して、厚さ1mmの被覆層22を形成して保護膜20を作製し、LEDモジュール1A(発光素子モジュール1)を得た。
 得られたLEDモジュール1Aに、3.4V、350mAで連続通電した。この間に、被覆層22の硬化した重合性化合物(b1-1)の樹脂表面温度を放射式温度計にて測定したところ80℃であった。この結果から、LED素子近傍の温度は100℃を超えていると考えられる。1ヵ月後、保護膜20およびAg電極を目視で観察したところ、なんら変化は見られなかった。その後、3ヶ月連続通電したが、保護膜20やAg電極の変色や、保護膜20の剥離等の変化は見られなかった。
(Coating layer forming process)
Next, the polymerizable compound (b1-1) was heated to 100 ° C. and poured into the recess 16, and cured by irradiating UV light having a wavelength of 254 nm at 6 mW / cm 2 for 30 minutes with a low-pressure mercury lamp, and further at 150 ° C. Then, the coating layer 22 having a thickness of 1 mm was formed to produce the protective film 20, and an LED module 1A (light-emitting element module 1) was obtained.
The obtained LED module 1A was continuously energized at 3.4 V and 350 mA. During this time, the resin surface temperature of the cured polymerizable compound (b1-1) of the coating layer 22 was measured with a radiation thermometer and found to be 80 ° C. From this result, it is considered that the temperature in the vicinity of the LED element exceeds 100 ° C. One month later, when the protective film 20 and the Ag electrode were visually observed, no change was observed. Thereafter, energization was continued for 3 months, but no change such as discoloration of the protective film 20 or Ag electrode or peeling of the protective film 20 was observed.
[実施例4]
(中間層形成工程)
 実施例3と同じ表面実装型LEDモジュール(モジュール部材10、発光波長460nmのLED素子(発光素子13)を実装)を用い、凹部16に、合成例1で得られたプレポリマー(a-1)をその濃度が10質量%となるようにシクロヘキサノンに溶解したコーティング液を滴下して、窒素ガス雰囲気中にて100℃で30分加熱し、さらに200℃まで昇温した後に2時間加熱することによりLED素子(発光素子13)およびAg電極(電極12a、12b)の表面に厚さ4μmの中間層21を形成した。
[Example 4]
(Intermediate layer forming process)
Using the same surface-mounted LED module as in Example 3 (module member 10 mounted with an LED element (light emitting element 13) having an emission wavelength of 460 nm), the prepolymer (a-1) obtained in Synthesis Example 1 was formed in the recess 16 By adding dropwise a coating solution dissolved in cyclohexanone so that the concentration becomes 10% by mass, heating at 100 ° C. for 30 minutes in a nitrogen gas atmosphere, and further heating to 200 ° C. and then heating for 2 hours. An intermediate layer 21 having a thickness of 4 μm was formed on the surfaces of the LED element (light emitting element 13) and the Ag electrodes ( electrodes 12a and 12b).
(被覆層形成工程)
 次いで、前記重合性化合物(b1-1)を100℃に加熱して凹部16に流し込み、低圧水銀ランプにより波長254nmの紫外線を6mW/cmで30分間照射して硬化させ、厚さ1mmの被覆層22を形成して保護膜20を作製し、LEDモジュール1B(発光素子モジュール1)を得た。
 得られたLEDモジュール1Bに、3.4V、350mAで連続通電した。この間に、被覆層22の硬化した重合性化合物(b-1)の樹脂表面温度を放射式温度計にて測定したところ80℃であった。この結果から、LED素子近傍の温度は100℃を超えていると考えられる。1ヵ月後、保護膜20およびAg電極を目視で観察したところ、なんら変化は見られなかった。その後、3ヶ月連続通電したが、保護膜20やAg電極の変色や、保護膜20の剥離等の変化は見られなかった。
(Coating layer forming process)
Next, the polymerizable compound (b1-1) is heated to 100 ° C. and poured into the recess 16, and cured by irradiating UV light having a wavelength of 254 nm at 6 mW / cm 2 for 30 minutes with a low-pressure mercury lamp, and coating with a thickness of 1 mm. The protective film 20 was produced by forming the layer 22, and the LED module 1B (light emitting element module 1) was obtained.
The obtained LED module 1B was continuously energized at 3.4 V and 350 mA. During this time, the resin surface temperature of the cured polymerizable compound (b-1) of the coating layer 22 was measured with a radiation thermometer and found to be 80 ° C. From this result, it is considered that the temperature in the vicinity of the LED element exceeds 100 ° C. One month later, when the protective film 20 and the Ag electrode were visually observed, no change was observed. Thereafter, energization was continued for 3 months, but no change such as discoloration of the protective film 20 or Ag electrode or peeling of the protective film 20 was observed.
 本発明の発光素子モジュールは、省エネルギー高効率照明光源として使用される白色LED、その他の各種の発光素子に対し使用される。
 なお、2008年12月24日に出願された日本特許出願2008-327533号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The light-emitting element module of the present invention is used for white LEDs used as an energy-saving high-efficiency illumination light source and other various light-emitting elements.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-327533 filed on Dec. 24, 2008 are cited here as disclosure of the specification of the present invention. Incorporated.
 1 発光素子モジュール、 11 基板、 12a、12b 電極、 13 発光素子、 14 ボンディングワイヤ、 15 リフレクタ、 20 保護膜、 21 中間層、 22 被覆層。 1 light emitting element module, 11 substrate, 12a, 12b electrode, 13 light emitting element, 14 bonding wire, 15 reflector, 20 protective film, 21 intermediate layer, 22 covering layer.

Claims (11)

  1.  発光素子および該発光素子に通電するための電気配線を備え、前記発光素子および前記電気配線が保護膜で被覆された発光素子モジュールであって、
     前記保護膜が前記発光素子に接する中間層と、該中間層上に形成される被覆層とを有し、前記中間層が主鎖に芳香環を有する非晶質芳香族樹脂(A)を含み、前記被覆層が芳香環を有さない硬化性非晶質含フッ素重合体(b)を硬化させた非晶質含フッ素樹脂(B)を含むことを特徴とする発光素子モジュール。
    A light emitting device module comprising a light emitting device and an electrical wiring for energizing the light emitting device, wherein the light emitting device and the electrical wiring are covered with a protective film,
    The protective film includes an intermediate layer in contact with the light emitting element, and a coating layer formed on the intermediate layer, and the intermediate layer includes an amorphous aromatic resin (A) having an aromatic ring in the main chain. The light emitting device module, wherein the coating layer comprises an amorphous fluorine-containing resin (B) obtained by curing a curable amorphous fluorine-containing polymer (b) having no aromatic ring.
  2.  前記非晶質芳香族樹脂(A)が芳香族系含フッ素樹脂である、請求項1に記載の発光素子モジュール。 The light emitting element module according to claim 1, wherein the amorphous aromatic resin (A) is an aromatic fluorine-containing resin.
  3.  前記非晶質芳香族樹脂(A)がポリエーテルスルホン樹脂である、請求項1に記載の発光素子モジュール。 The light emitting element module according to claim 1, wherein the amorphous aromatic resin (A) is a polyethersulfone resin.
  4.  前記非晶質芳香族樹脂(A)のガラス転移温度が150℃以上である、請求項1~3のいずれかに記載の発光素子モジュール。 The light-emitting element module according to any one of claims 1 to 3, wherein the amorphous aromatic resin (A) has a glass transition temperature of 150 ° C or higher.
  5.  前記非晶質芳香族樹脂(A)の熱膨張係数が20~100ppm/℃である、請求項1~4のいずれかに記載の発光素子モジュール。 The light-emitting element module according to any one of claims 1 to 4, wherein the amorphous aromatic resin (A) has a thermal expansion coefficient of 20 to 100 ppm / ° C.
  6.  前記非晶質含フッ素樹脂(B)のガラス転移温度が-50~100℃である、請求項1~5のいずれかに記載の発光素子モジュール。 6. The light-emitting element module according to claim 1, wherein the amorphous fluorine-containing resin (B) has a glass transition temperature of −50 to 100 ° C.
  7.  前記非晶質含フッ素樹脂(B)の熱膨張係数が100~200ppm/℃である、請求項1~6のいずれかに記載の発光素子モジュール。 The light-emitting element module according to any one of claims 1 to 6, wherein the amorphous fluorine-containing resin (B) has a thermal expansion coefficient of 100 to 200 ppm / ° C.
  8.  前記中間層中の前記非晶質芳香族樹脂(A)の含有量は70質量%超である、請求項1~7のいずれかに記載の発光素子モジュール。 The light-emitting element module according to any one of claims 1 to 7, wherein the content of the amorphous aromatic resin (A) in the intermediate layer is more than 70 mass%.
  9.  発光素子および該発光素子に通電するための電気配線を備え、前記発光素子および前記電気配線が保護膜で被覆された発光素子モジュールの製造方法であって、
     架橋性官能基(x)を有するプレポリマー(a)を溶剤に溶解したコーティング液を前記発光素子および前記電気配線に塗布した後、前記プレポリマー(a)を硬化させ、主鎖に芳香環を有する芳香族系含フッ素樹脂(A1)を含む中間層を形成する中間層形成工程と、
     前記中間層上に、芳香環を有さない硬化性非晶質含フッ素重合体(b)を塗布した後、該硬化性非晶質含フッ素重合体(b)を熱または光により硬化させて非晶質含フッ素樹脂(B)を含む被覆層を形成する被覆層形成工程と、
     を有する発光素子モジュールの製造方法。
    A method of manufacturing a light emitting element module comprising a light emitting element and an electric wiring for energizing the light emitting element, wherein the light emitting element and the electric wiring are covered with a protective film,
    After coating the light emitting element and the electrical wiring with a coating solution in which a prepolymer (a) having a crosslinkable functional group (x) is dissolved in a solvent, the prepolymer (a) is cured, and an aromatic ring is formed on the main chain. An intermediate layer forming step of forming an intermediate layer containing the aromatic fluorine-containing resin (A1),
    A curable amorphous fluoropolymer (b) having no aromatic ring is applied on the intermediate layer, and then the curable amorphous fluoropolymer (b) is cured by heat or light. A coating layer forming step of forming a coating layer containing the amorphous fluorine-containing resin (B);
    Manufacturing method of light emitting element module having
  10.  発光素子および該発光素子に通電するための電気配線を備え、前記発光素子および前記電気配線が保護膜で被覆された発光素子モジュールの製造方法であって、
     主鎖に芳香環を有する非晶質芳香族樹脂(A)を溶剤に溶解したコーティング液を前記発光素子および前記電気配線に塗布して中間層を形成する中間層形成工程と、
     前記中間層上に、芳香環を有さない硬化性非晶質含フッ素重合体(b)を塗布した後、該硬化性非晶質含フッ素重合体(b)を熱または光により硬化させて非晶質含フッ素樹脂(B)を含む被覆層を形成する被覆層形成工程と、
     を有する発光素子モジュールの製造方法。
    A method of manufacturing a light emitting element module comprising a light emitting element and an electric wiring for energizing the light emitting element, wherein the light emitting element and the electric wiring are covered with a protective film,
    An intermediate layer forming step of forming an intermediate layer by applying a coating liquid obtained by dissolving an amorphous aromatic resin having an aromatic ring in the main chain (A) in a solvent to the light emitting element and the electric wiring;
    A curable amorphous fluoropolymer (b) having no aromatic ring is applied on the intermediate layer, and then the curable amorphous fluoropolymer (b) is cured by heat or light. A coating layer forming step of forming a coating layer containing the amorphous fluorine-containing resin (B);
    Manufacturing method of light emitting element module having
  11.  前記硬化性非晶質含フッ素重合体(b)が、重合性二重結合を有する重合性化合物(b1)を含む、請求項9または10に記載の発光素子モジュールの製造方法。 The method for producing a light-emitting element module according to claim 9 or 10, wherein the curable amorphous fluoropolymer (b) comprises a polymerizable compound (b1) having a polymerizable double bond.
PCT/JP2009/071258 2008-12-24 2009-12-21 Light-emitting module and method for manufacturing same WO2010074038A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010544058A JPWO2010074038A1 (en) 2008-12-24 2009-12-21 Light emitting element module and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008327533 2008-12-24
JP2008-327533 2008-12-24

Publications (1)

Publication Number Publication Date
WO2010074038A1 true WO2010074038A1 (en) 2010-07-01

Family

ID=42287647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071258 WO2010074038A1 (en) 2008-12-24 2009-12-21 Light-emitting module and method for manufacturing same

Country Status (3)

Country Link
JP (1) JPWO2010074038A1 (en)
TW (1) TW201036481A (en)
WO (1) WO2010074038A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002245A1 (en) * 2010-07-02 2012-01-05 コニカミノルタホールディングス株式会社 Organic electroluminescent element
JP2012028662A (en) * 2010-07-27 2012-02-09 Denki Kagaku Kogyo Kk Light emitting member and use thereof
WO2012057234A1 (en) * 2010-10-27 2012-05-03 旭硝子株式会社 Substrate for light-emitting element, and light emitting device
WO2013183705A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device production method and optical semiconductor device
WO2013183706A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device
JP2014130963A (en) * 2012-12-28 2014-07-10 Nichia Chem Ind Ltd Light emitting device
WO2014178288A1 (en) * 2013-04-30 2014-11-06 創光科学株式会社 Ultraviolet light-emitting device
WO2015037608A1 (en) * 2013-09-12 2015-03-19 創光科学株式会社 Ultraviolet light emitting device
JP2015076585A (en) * 2013-10-11 2015-04-20 住友電工プリントサーキット株式会社 Led module and led lighting fixture
JP2016111085A (en) * 2014-12-03 2016-06-20 株式会社トクヤマ Ultraviolet light-emitting element package
WO2018003228A1 (en) * 2016-07-01 2018-01-04 創光科学株式会社 Ultraviolet ray-emitting device and method for manufacturing same
KR20180015028A (en) * 2016-08-02 2018-02-12 엘지이노텍 주식회사 Light emitting device package
JP2019521505A (en) * 2016-05-03 2019-07-25 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. LIGHT-EMITTING DEVICES AND COMPONENTS WITH IMPROVED CHEMICAL PROPERTY AND RELATED METHODS
KR20190138103A (en) * 2018-06-04 2019-12-12 주식회사 루멘스 UV LED package
JP2020025089A (en) * 2018-07-27 2020-02-13 住友化学株式会社 Led device, manufacturing method thereof, and laminate
JP2021507087A (en) * 2017-12-18 2021-02-22 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated elastomer cured by chemical rays and its method
JP2021109975A (en) * 2020-01-08 2021-08-02 ダイキン工業株式会社 Encapsulation resin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165002B2 (en) * 2017-08-30 2021-11-02 Soko Kagau Co., Ltd. Light-emitting device
CN112086547A (en) * 2019-06-13 2020-12-15 光宝光电(常州)有限公司 Light emitting diode packaging structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758364A (en) * 1993-08-13 1995-03-03 Mitsui Toatsu Chem Inc Light emitting diode and its manufacture
JP2001168398A (en) * 1999-12-13 2001-06-22 Nichia Chem Ind Ltd Light emitting diode and its manufacturing method
JP2005232462A (en) * 2001-02-23 2005-09-02 Kaneka Corp Composition for optical material, optical material, method for producing the same and liquid crystal display device using the same
JP2006060005A (en) * 2004-08-19 2006-03-02 Shin Etsu Chem Co Ltd Light emitting device and its manufacturing method
JP2007080885A (en) * 2005-09-09 2007-03-29 New Japan Chem Co Ltd Optical semiconductor sealing agent, optical semiconductor and its manufacturing method
WO2007145181A1 (en) * 2006-06-12 2007-12-21 Asahi Glass Company, Limited Curable composition and fluorine-containing cured product
JP2008202036A (en) * 2007-01-22 2008-09-04 Sekisui Chem Co Ltd Thermosetting composition for optical semiconductor, sealant for optical semiconductor device, die bond material for optical semiconductor device, underfill material for optical semiconductor device, and optical semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576541B2 (en) * 1987-11-13 1997-01-29 旭硝子株式会社 Semiconductor device
JPH02154452A (en) * 1988-12-07 1990-06-13 Hitachi Ltd Semiconductor device
JPH0990333A (en) * 1995-09-26 1997-04-04 Fuji Photo Film Co Ltd Liquid crystal display device
JPH10324747A (en) * 1997-05-26 1998-12-08 Sumitomo Chem Co Ltd Aromatic polyether sulfone resin solution composition and production of film thereof
JP2001110826A (en) * 1999-10-12 2001-04-20 Jsr Corp Semiconductor device and its manufacturing method
JP2003165969A (en) * 2001-11-30 2003-06-10 Koyo Seiko Co Ltd Composition for sealing member and sealing member using the same
JP2007214252A (en) * 2006-02-08 2007-08-23 Fuji Xerox Co Ltd Semiconductor laser device
JP5181444B2 (en) * 2006-08-31 2013-04-10 旭硝子株式会社 Crosslinkable fluorine-containing aromatic prepolymer and cured product thereof
JP5003415B2 (en) * 2006-11-22 2012-08-15 旭硝子株式会社 Negative photosensitive composition, cured film using the same, and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758364A (en) * 1993-08-13 1995-03-03 Mitsui Toatsu Chem Inc Light emitting diode and its manufacture
JP2001168398A (en) * 1999-12-13 2001-06-22 Nichia Chem Ind Ltd Light emitting diode and its manufacturing method
JP2005232462A (en) * 2001-02-23 2005-09-02 Kaneka Corp Composition for optical material, optical material, method for producing the same and liquid crystal display device using the same
JP2006060005A (en) * 2004-08-19 2006-03-02 Shin Etsu Chem Co Ltd Light emitting device and its manufacturing method
JP2007080885A (en) * 2005-09-09 2007-03-29 New Japan Chem Co Ltd Optical semiconductor sealing agent, optical semiconductor and its manufacturing method
WO2007145181A1 (en) * 2006-06-12 2007-12-21 Asahi Glass Company, Limited Curable composition and fluorine-containing cured product
JP2008202036A (en) * 2007-01-22 2008-09-04 Sekisui Chem Co Ltd Thermosetting composition for optical semiconductor, sealant for optical semiconductor device, die bond material for optical semiconductor device, underfill material for optical semiconductor device, and optical semiconductor device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002245A1 (en) * 2010-07-02 2012-01-05 コニカミノルタホールディングス株式会社 Organic electroluminescent element
JP2012028662A (en) * 2010-07-27 2012-02-09 Denki Kagaku Kogyo Kk Light emitting member and use thereof
WO2012057234A1 (en) * 2010-10-27 2012-05-03 旭硝子株式会社 Substrate for light-emitting element, and light emitting device
JPWO2012057234A1 (en) * 2010-10-27 2014-05-12 旭硝子株式会社 Light emitting element substrate and light emitting device
JP5958342B2 (en) * 2010-10-27 2016-07-27 旭硝子株式会社 Light emitting element substrate and light emitting device
JPWO2013183706A1 (en) * 2012-06-06 2016-02-01 日立化成株式会社 Optical semiconductor device
WO2013183705A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device production method and optical semiconductor device
WO2013183706A1 (en) * 2012-06-06 2013-12-12 日立化成株式会社 Optical semiconductor device
US9634210B2 (en) 2012-06-06 2017-04-25 Hitachi Chemical Company, Ltd Optical semiconductor device production method and optical semiconductor device
US9525114B2 (en) 2012-06-06 2016-12-20 Hitachi Chemical Company, Ltd. Optical semiconductor device
JPWO2013183705A1 (en) * 2012-06-06 2016-02-01 日立化成株式会社 Optical semiconductor device manufacturing method and optical semiconductor device
JP2014130963A (en) * 2012-12-28 2014-07-10 Nichia Chem Ind Ltd Light emitting device
JP5702898B1 (en) * 2013-04-30 2015-04-15 創光科学株式会社 UV light emitting device
KR101539206B1 (en) * 2013-04-30 2015-07-23 소코 가가쿠 가부시키가이샤 Ultraviolet light-emitting device
CN104813492B (en) * 2013-04-30 2016-05-04 创光科学株式会社 Ultraviolet rays emitting apparatus
RU2589449C1 (en) * 2013-04-30 2016-07-10 Соко Кагаку Ко., Лтд. Ultraviolet radiation emitting device
US9450157B2 (en) 2013-04-30 2016-09-20 Soko Kagaku Co., Ltd. Ultraviolet light emitting device using metal non-bondable amorphous fluororesin molding compound
WO2014178288A1 (en) * 2013-04-30 2014-11-06 創光科学株式会社 Ultraviolet light-emitting device
CN104813492A (en) * 2013-04-30 2015-07-29 创光科学株式会社 Ultraviolet light-emitting device
US9972758B2 (en) 2013-09-12 2018-05-15 Soko Kagaku Co., Ltd. Ultraviolet light emitting device
WO2015037608A1 (en) * 2013-09-12 2015-03-19 創光科学株式会社 Ultraviolet light emitting device
JPWO2015037608A1 (en) * 2013-09-12 2017-03-02 創光科学株式会社 UV light emitting device
JP2015076585A (en) * 2013-10-11 2015-04-20 住友電工プリントサーキット株式会社 Led module and led lighting fixture
JP2016111085A (en) * 2014-12-03 2016-06-20 株式会社トクヤマ Ultraviolet light-emitting element package
JP2019521505A (en) * 2016-05-03 2019-07-25 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. LIGHT-EMITTING DEVICES AND COMPONENTS WITH IMPROVED CHEMICAL PROPERTY AND RELATED METHODS
WO2018003228A1 (en) * 2016-07-01 2018-01-04 創光科学株式会社 Ultraviolet ray-emitting device and method for manufacturing same
JPWO2018003228A1 (en) * 2016-07-01 2019-03-07 創光科学株式会社 Ultraviolet light emitting device and manufacturing method thereof
KR20180015028A (en) * 2016-08-02 2018-02-12 엘지이노텍 주식회사 Light emitting device package
KR102633844B1 (en) 2016-08-02 2024-02-07 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device package
JP2021507087A (en) * 2017-12-18 2021-02-22 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated elastomer cured by chemical rays and its method
JP7361042B2 (en) 2017-12-18 2023-10-13 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated elastomer cured by actinic radiation and method thereof
KR20190138103A (en) * 2018-06-04 2019-12-12 주식회사 루멘스 UV LED package
KR102590826B1 (en) * 2018-06-04 2023-10-19 주식회사 루멘스 UV LED package
JP2020025089A (en) * 2018-07-27 2020-02-13 住友化学株式会社 Led device, manufacturing method thereof, and laminate
JP2021109975A (en) * 2020-01-08 2021-08-02 ダイキン工業株式会社 Encapsulation resin
JP7048915B2 (en) 2020-01-08 2022-04-06 ダイキン工業株式会社 Encapsulating resin

Also Published As

Publication number Publication date
JPWO2010074038A1 (en) 2012-06-14
TW201036481A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
WO2010074038A1 (en) Light-emitting module and method for manufacturing same
KR101578963B1 (en) Near-infrared ray cut filter and apparatus using near-infrared ray cut filter
EP1897897B1 (en) Crosslinkable fluorine-containing aromatic prepolymer and use thereof
JP5273041B2 (en) Fluoropolymer thin film and method for producing the same
TWI663243B (en) Adhesive for ultraviolet light emitting device and ultraviolet light emitting device
JP6927283B2 (en) Fluorine-containing polymer, method for producing its cured product, and light emitting device
KR101779640B1 (en) Optical filter and imaging device comprising same
TW201213398A (en) Silicon-containing curable composition, cured product of the silicon-containing curable composition and lead frame substrate formed of the silicon-containing curable composition
TW201219425A (en) White reflective flexible printed circuit board
JP6642580B2 (en) Fluoropolymer, method for producing the same, and cured product of fluoropolymer
JP5187462B2 (en) NOVEL POLYMER, PROCESS FOR PRODUCING THE SAME, AND FILM
WO2014126210A1 (en) Display element, optical element, and laminated composite for illumination element
JP6954292B2 (en) Articles comprising a fluorinated polymer, a method for producing the same, and a cured product of the fluorinated polymer.
JP2010152004A (en) Optical member substrate
TWI742042B (en) Curable resin composition, its cured product and semiconductor device
JP5724554B2 (en) Light emitting device and resin composition for forming light emitting device
JP5109149B2 (en) Optical resin material composition and method for producing optical member
WO2021153336A1 (en) Fluororesin sheet and method for producing same
JPWO2015020002A1 (en) Fluorine-containing aromatic compound, production method thereof, curable material, cured product thereof, and optical member
WO2012005345A1 (en) Composite and display device that contains same
CN114946020A (en) Sealing resin
JP2011090206A (en) Reflecting mirror and lighting apparatus using the same
JP2010123889A (en) Substrate for printed wiring
JP2010090349A (en) Tubular film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010544058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834839

Country of ref document: EP

Kind code of ref document: A1