WO2012002245A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2012002245A1
WO2012002245A1 PCT/JP2011/064377 JP2011064377W WO2012002245A1 WO 2012002245 A1 WO2012002245 A1 WO 2012002245A1 JP 2011064377 W JP2011064377 W JP 2011064377W WO 2012002245 A1 WO2012002245 A1 WO 2012002245A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
layer
light emitting
intermediate layer
Prior art date
Application number
PCT/JP2011/064377
Other languages
French (fr)
Japanese (ja)
Inventor
隼 古川
硯里 善幸
朱里 佐藤
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012522582A priority Critical patent/JP5835217B2/en
Publication of WO2012002245A1 publication Critical patent/WO2012002245A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/145Heterocyclic containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom

Definitions

  • the present invention relates to an organic electroluminescence device, and more particularly to an organic electroluminescence device that improves half-luminance life and suppresses a voltage increase in continuous driving.
  • ELD electroluminescence display
  • inorganic electroluminescent elements and organic electroluminescent elements (hereinafter also referred to as organic EL elements).
  • organic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. It is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type completely solid element, it has attracted attention from the viewpoint of space saving and portability.
  • Non-Patent Document 1 As the development of organic EL elements for practical application, since Princeton University has reported organic EL elements that use phosphorescence emission from excited triplets (see, for example, Non-Patent Document 1), phosphorescence at room temperature. Research on materials exhibiting the above has become active (see, for example, Non-Patent Document 2 and Patent Document 1).
  • the recently discovered organic EL device using phosphorescence emission can in principle achieve light emission efficiency about 4 times that of the previous device using fluorescence emission.
  • Research and development of light-emitting element layer configurations and electrodes are performed all over the world.
  • Non-Patent Document 3 many compounds have been studied focusing on heavy metal complexes such as iridium complexes (see, for example, Non-Patent Document 3).
  • the organic EL device using phosphorescence emission is greatly different from the organic EL device using fluorescence emission, and the method for controlling the position of the emission center, particularly the emission layer. How to recombine inside the element and stabilize the light emission is an important technical issue for grasping the efficiency and life of the device.
  • a method of suppressing diffusion by treating the lower layer with an organic acid to produce a hardly soluble layer, or by devising that the surface is crosslinked / polymerized for example, refer to Patent Documents 2 and 3.
  • the impurities are introduced by the acid treatment, or the hardly soluble layer or the crosslinked layer works as an injection barrier or a trap component, sufficient performance has not been achieved.
  • there have been contrivances such as reducing the injection barrier at the interface by providing an interface region containing a charge transfer complex at the interface (see, for example, Patent Document 4), but further measures for improving performance are required. .
  • An object of the present invention is to provide an organic electroluminescence device having improved half-luminance life and voltage rise with time of driving, and more specifically, by using an intermediate layer having a critical surface tension of 10 mN / m to 30 mN / m, An organic electroluminescence device having improved voltage rise with time is provided.
  • an organic electroluminescence device having an anode and a cathode on a substrate, and a plurality of organic functional layers sandwiched between both electrodes, the plurality of organic functional layers include at least a hole injection layer, a hole transport layer, and An organic electroluminescence device comprising a light emitting layer and an intermediate layer containing at least one fluorinated polymer between any two organic functional layers of the plurality of organic functional layers.
  • R 1 and R 2 are an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group , Alkylthio group, cycloalkylthio group, arylthio group, alkoxycarbonyl group, aryloxycarbonyl group, sulfamoyl group, acyl group, acyloxy group, amide group, carbamoyl group, ureido group, sulfinyl group, alkylsulfonyl group, arylsulfonyl group or hetero At least one selected from arylsulfonyl group, amino group, halogen atom, fluorinated hydrocarbon group, cyano group, nitro group, hydroxy group, thiol group, silyl group, phosphon
  • X is at least one cyclic selected from cyclic ether, cyclic thioether, cyclic azaether, crown ether, thiacrown ether, and azacrown ether, which contains at least one of oxygen, nitrogen, and sulfur. Represents a partial structure, and n2 represents an integer of 10 to 10,000.
  • n2 represents an integer of 10 to 10,000.
  • the organic EL device according to the present invention by providing an intermediate layer containing at least one fluorinated polymer between the organic functional layers, it was possible to provide a device having an improved half-luminance lifetime.
  • the intermediate layer according to the present invention is characterized by containing the fluorinated polymer (also referred to as a fluorine-substituted polymer) according to the present invention.
  • the intermediate layer according to the present invention is a fluorinated polymer.
  • the intermediate layer according to the present invention may further contain a material known as a conventionally known organic EL element material.
  • the intermediate layer according to the present invention preferably has a critical surface tension in the range of 10 mN / m to 30 mN / m.
  • the present invention can also be used as a material for obtaining the intermediate layer exhibiting the critical surface tension as described above.
  • a fluorinated polymer can be preferably used.
  • many of the fluorinated polymers according to the present invention can be formed by a wet process if a fluorine-substituted organic solvent is selected, and the productivity is higher than that by a dry process such as a vapor deposition method. preferable.
  • a fluorinated polymer as represented by the general formula (a) or (b) because the crystallinity is suppressed and a transparent amorphous film is easily formed.
  • the calculation of the critical surface tension and the measurement of the contact angle used for the calculation can be performed by the method described in, for example, Plastic Encyclopedia 1059 (Asakura Shoten (published March 1992)).
  • the layer satisfying the above conditions improves the half-luminance lifetime and the voltage rise over time is not clear, but when the organic material at the interface becomes an anion radical, a cation radical or an excited state, a reaction between the materials can occur
  • the provision of the intermediate layer may have an effect of mitigating reactions and deterioration between organic materials, but details are not clear.
  • a water-dispersed hole injection material such as polyethylenedioxythiophene-polysulfonic acid (hereinafter also referred to as PEDOT-PSS) generally used in coating is used.
  • PEDOT-PSS polyethylenedioxythiophene-polysulfonic acid
  • the thickness of the intermediate layer is not particularly limited, but is preferably adjusted to a range of 1 nm to 20 nm, more preferably from the viewpoint of the uniformity of the film to be formed and the prevention of unnecessary application of high voltage during light emission. The adjustment is made within the range of 1 nm to 10 nm.
  • the fluorinated polymer has substituents R 1 and R 2 and a cyclic substituent X, respectively, and R 1 , R It is preferable that any one of 2 contains at least one oxygen, nitrogen, sulfur, or at least one oxygen, nitrogen, sulfur in the cyclic substituent X.
  • substituents may be introduced into the substituents R 1 and R 2 as long as the above characteristics are satisfied.
  • substituents R 1 and R 2 include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, Tetradecyl group, pentadecyl group etc.), cycloalkyl group (eg cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group, 1-propenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, isopropenyl group etc.), alkynyl group (eg ethynyl group, propargyl group etc.), aromatic hydrocarbon group (aromatic hydrocarbon group (
  • the fluorinated polymer has a cyclic substituent X, and the cyclic substituent X contains at least one of oxygen, nitrogen, and sulfur.
  • the cyclic substituent X may be any substituent as long as the above conditions are satisfied.
  • Specific examples of the cyclic substituent X include cyclic ether, cyclic thioether, cyclic azaether, crown ether, thiacrown ether, azacrown ether and the like.
  • any number of hydrogen atoms in the above substituents may be substituted with fluorine atoms.
  • n represents a range of 10 to 10,000, but from the viewpoint of solubility in a solvent during film formation, a range of 10 to 1,000 is preferable.
  • Examples of the polymer material represented by the general formula (a) or (b) according to the present invention include, for example, US Pat. No. 3,418,302, US Pat. No. 3,978,030, Polymers described in JP-A-63-238111, JP-A-63-238115, JP-A-1-131214, JP-A-1-131215 and the like are preferably used.
  • Anode / hole injection layer / hole transport layer / intermediate layer / light emitting layer / electron transport layer / cathode (ii) Anode / hole injection layer / intermediate layer / hole transport layer / light emitting layer / electron transport layer / Cathode (iii) Anode / hole injection layer / intermediate layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode (iv) Anode / hole injection layer / intermediate layer / hole transport layer / Emission layer / electron transport layer / electron injection layer / cathode (v) anode / hole injection layer / hole transport layer / emission layer / electron transport layer / intermediate layer / electron injection layer / cathode Among these, anode, cathode, The layers excluding the intermediate layer are collectively referred to as an organic functional layer.
  • the light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer. May be an interface between the light emitting layer and the adjacent layer, but is preferably within the layer of the light emitting layer because of deactivation of excitons between layers.
  • the film thickness of the light emitting layer is not particularly limited, but it is 2 nm from the viewpoint of the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the driving current. It is preferable to adjust to a range of ⁇ 200 nm, and more preferably to a range of 5 nm to 100 nm.
  • a host compound also referred to as a light emitting host
  • a light emitting dopant contained in the light emitting layer will be described.
  • the host compound in the present invention is a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is a compound having a phosphorescence quantum efficiency of less than 0.01.
  • known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emission). Host).
  • the host compound a compound that has a hole transporting ability and an electron transporting ability, prevents an increase in emission wavelength, and has a high Tg (glass transition temperature) is preferable.
  • Specific examples of the host compound also include compounds described in the following documents.
  • a fluorescent dopant or a phosphorescent dopant can be used. From the viewpoint of obtaining an organic EL element with higher luminous efficiency, light emission used in the light-emitting layer or light-emitting unit of the organic EL element.
  • a dopant it is preferable to contain a phosphorescent dopant simultaneously with the host compound.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element.
  • the phosphorescent dopant according to the present invention is preferably a complex compound containing a transition metal element of group 8 to 10 in the periodic table of elements (also simply referred to as transition metal), more preferably an iridium compound or osmium.
  • a transition metal element of group 8 to 10 in the periodic table of elements also simply referred to as transition metal
  • iridium compound or osmium Compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • polystyrene sulfonic acid PSS
  • the film thickness of the hole injection layer is not particularly limited, but is preferably adjusted in the range of 2 nm to 200 nm, more preferably in the range of 5 nm to 100 nm, from the viewpoint of the uniformity of the film to be formed.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. .
  • the buffer layer is preferably a very thin film, and although it depends on the material, the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the compounds mentioned as the host compound can be preferably used.
  • the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
  • the structure of the hole transport layer described later can be used as an electron blocking layer as necessary.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably in the range of 3 nm to 100 nm, and more preferably in the range of 5 nm to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, an electron blocking layer is also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives,
  • stilbene derivatives silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
  • NPD 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light emitting element with high luminous efficiency can be obtained.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is preferably in the range of 5 nm to 5 ⁇ m, and more preferably in the range of 5 nm to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • JP-A-4-297076 JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the film thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • n-type electron transport layer doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport layer having such a high n property because an element with lower power consumption can be produced.
  • anode As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • ITO indium tin oxide
  • ZnO ZnO
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness is preferably in the range of 10 nm to 1000 nm, more preferably in the range of 10 nm to 200 nm, although it depends on the material.
  • cathode As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used.
  • Electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • either one of the anode or the cathode of the organic EL element is transparent or semi-transparent from the viewpoint of transmitting the emitted light and improving the emission luminance.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • substrate As a substrate (hereinafter also referred to as a support substrate) that can be used in the organic EL element of the present invention, there is no particular limitation on the type of glass, plastic and the like, and it may be transparent or opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyether ketone imide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (manufactured by J
  • An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and a barrier film having a water vapor permeability of 0.01 g / (m 2 ⁇ 24 h) or less is preferable.
  • the oxygen permeability is 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less (1 atm is 1.01325 ⁇ 10 5 Pa)
  • the water vapor permeability is 10 ⁇ 5 cm 3 / (m 2 ⁇ 24 h.
  • -It is preferable that it is a high barrier film below atm).
  • the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • external extraction quantum efficiency (%) (number of photons emitted to the outside of the organic EL element) / (number of electrons passed through the organic EL element) ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less, and conforms to JIS K 7129-1992. was measured by the method, the water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is preferably those of 1 ⁇ 10 -3 g / (m 2 / 24h) or less .
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat
  • hot melt type polyamides, polyesters and polyolefins can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • an inorganic or organic layer as a sealing film by covering the electrode and the organic layer on the outer side of the electrode facing the substrate with the organic layer interposed therebetween, and in contact with the substrate.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • Etc. metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, etc.), and anhydrous salts are preferably used in sulfates, metal halides and perch
  • the organic functional layer sandwiched between the anode and the cathode may be formed using either a dry process or a wet process, but from the viewpoint of productivity, a film is formed by a wet process. It is preferable. It is also preferable to form the entire organic laminate by a wet process.
  • the wet process referred to in the present invention is to form a layer by supplying a layer forming material in the form of a solution when forming a layer.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm. .
  • organic compound thin films such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a hole blocking layer, which are organic EL element materials, are formed thereon.
  • Examples of methods for forming these layers include vapor deposition methods, wet processes (spin coating method, die coating method, casting method, ink jet method, spray method, printing method) and the like as described above.
  • a homogeneous film can be easily obtained and pinholes are not easily generated.
  • a composition by a coating method such as a spin coating method, a die coating method, an ink jet method, a spray method, or a printing method is used.
  • a membrane is preferred.
  • examples of the liquid medium for dissolving or dispersing the material include ketones such as methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-pentanone, ethyl acetate, butyl acetate, and the like.
  • ketones such as methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-pentanone, ethyl acetate, butyl acetate, and the like.
  • the organic solvent or water can be used.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm, and a cathode is provided.
  • a desired organic EL element can be obtained.
  • a DC voltage When a DC voltage is applied to the multicolor display device obtained in this way, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the substrate with the organic layer interposed therebetween or on the sealing film.
  • the sealing is performed by the sealing film, the mechanical strength is not necessarily high. Therefore, it is preferable to provide such a protective film and a protective plate.
  • a material that can be used for this the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said.
  • a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an organic EL element (Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (Japanese Patent Laid-Open No.
  • a method of introducing a flat layer having a structure Japanese Patent Laid-Open No. 2001-202827, a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside world) No. 283751) That.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less, more preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Bragg diffraction such as first-order diffraction and second-order diffraction.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention can be processed to provide, for example, a microlens array-like structure on the light extraction side of the substrate, or combined with a so-called condensing sheet, for example, in a specific direction, for example, the device light emitting surface.
  • luminance in a specific direction can be raised by condensing in a front direction.
  • microlens array square pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a sheet for example, Sumitomo 3M brightness enhancement film (BEF) can be used.
  • BEF Sumitomo 3M brightness enhancement film
  • the shape of the prism sheet for example, a triangle stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m may be formed on the substrate, the vertex angle may be rounded, and the pitch may be changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
  • the light emitting layer of the organic EL device of the present invention preferably contains at least one of a light emitting host compound and a light emitting dopant as a guest material.
  • Example 1 Production of Organic EL Element 101 >> After patterning a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate made of ITO (Indium Tin Oxide) 100 nm as an anode, the transparent support substrate provided with the ITO transparent electrode was superposed with normal propyl alcohol. Sonic cleaning, drying with dry nitrogen gas, and UV ozone cleaning were performed for 5 minutes.
  • ITO Indium Tin Oxide
  • This transparent support substrate was attached to a vacuum deposition apparatus, the vacuum layer was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and the compound HI-1 was deposited by vapor deposition to form a 20 nm thick hole injection layer (HIL). .
  • a film was formed by vapor deposition of the compound HT-1, and a hole transport layer (HTL) having a thickness of 20 nm was obtained. Further, Compound H-27 and Compound D-1 were co-evaporated so that Compound D-1 had a film thickness ratio of 16% to form a light emitting layer (EML) having a thickness of 40 nm.
  • EML light emitting layer
  • a film was formed by vapor deposition of the compound ET-1, and an electron transport layer (ETL) having a thickness of 20 nm was obtained. Thereafter, LiF was deposited as an electron injection layer with a thickness of 1 nm, and aluminum was deposited with a thickness of 110 nm to form a cathode.
  • ET-1 electron transport layer
  • ETL electron transport layer
  • FIG. 1 shows a schematic diagram of an organic EL element, and the organic EL element 101 is covered with a glass cover 102.
  • the sealing operation with the glass cover was performed in a glove box (in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere.
  • FIG. 2 shows a cross-sectional view of the organic EL element.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Organic EL Elements 103 and 104 In the production of the organic EL element 102, a film obtained by dissolving PE in 40 mg and 20 mg in 10 ml of chlorobenzene was spin-coated at 5000 rpm for 60 seconds, and heated at 150 ° C. for 30 minutes under nitrogen to form a film thickness. Organic EL elements 103 and 104 were produced in the same manner except that an intermediate layer of 20 nm and 10 nm was formed.
  • Organic EL Elements 107 and 108 In the production of the organic EL element 106, using a solution in which 40 mg and 20 mg of PVDF were dissolved in 10 ml of 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, respectively. Organic EL elements 107 and 108 were produced in the same manner except that spin coating was performed at 5000 rpm for 60 seconds and heating was performed at 150 ° C. for 30 minutes under nitrogen to form an intermediate layer having a thickness of 20 nm and 10 nm.
  • the manufactured organic EL element was continuously driven by applying a current that would give a front luminance of 1000 cd / m 2 .
  • the time required for the front luminance to reach the initial half value (500 cd / m 2 ) is obtained as a half life, and the half lives of the organic EL elements 102 to 110 are 100 as measured values of the organic EL element 101 (comparative example). It was expressed as a relative value.
  • Vt Voltage increase at half brightness
  • A Voltage increase when half luminance reached less than 0.5 V
  • B Voltage increase when half luminance reached 0.5 V or more and less than 1.0 V
  • C Voltage increase when half luminance reached 1.0 V or more and less than 2.0 V
  • D Half The voltage rise when the luminance reaches 2.0 V or more
  • a spectral radiance meter CS-1000 manufactured by Konica Minolta Sensing was used for measuring the luminance.
  • ranks A and B are practical levels.
  • the organic EL element of the present invention has a half life by forming an intermediate layer containing a fluorinated polymer between the hole injection layer and the hole transport layer. It is apparent that the voltage increase when the half luminance is reached is suppressed.
  • Example 2 Production of Organic EL Element 115 >> In the production of the organic EL element 114 of Example 1, an intermediate layer was not provided between the hole injection layer (HIL) and the hole transport layer (HTL), but a hole transport layer (HTL) was formed. Later, the substrate was moved to a glove box under a nitrogen atmosphere, and spin-coated under a condition of 5000 rpm for 60 seconds using a solution in which I-1 (20 mg) was dissolved in 10 ml of chlorobenzene in the glove box, 150 An organic EL element 115 was produced in the same manner except that an intermediate layer having a film thickness of 10 nm was formed by heating under nitrogen at 30 ° C. for 30 minutes, and then a light emitting layer (EML) was formed.
  • HIL hole injection layer
  • HTL hole transport layer
  • the intermediate layer is not provided between the hole transport layer (HTL) and the light emitting layer (EML), and after the light emitting layer is formed, the substrate is moved to a glove box in a nitrogen atmosphere.
  • spin-coating was performed on the light-emitting layer (EML) using a solution obtained by dissolving I-1 (20 mg) in 10 ml of chlorobenzene at 5000 rpm for 60 seconds.
  • An organic EL element 118 was produced in the same manner except that the film was heated under nitrogen for 10 minutes to provide an intermediate layer having a thickness of 10 nm, and then an electron transport layer (ETL) was formed.
  • the organic EL device in which an intermediate layer is provided between the hole transport layer and the light emitting layer and the organic EL device in which an intermediate layer is provided between the light emitting layer and the electron transport layer are the same as in Example 1. It can be seen that the half-life is increased and the voltage rise when the half-luminance is reached is suppressed.
  • the half life (%) is further extended in the structure having a plurality of intermediate layers, such as the organic EL elements 117 to 120 of the present invention.
  • Example 3 Production of Organic EL Element 201 >> As a positive electrode, patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) obtained by forming a 100 nm film of ITO (indium tin oxide) on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate, and then this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • the substrate was moved to a glove box under a nitrogen atmosphere, and spin coating (film thickness: about 20 nm) was performed at 1500 rpm for 30 seconds using a solution in which compound HT-2 (50 mg) was dissolved in 10 ml of monochlorobenzene. And dried under nitrogen at 160 ° C. for 30 minutes to form a hole transport layer (HTL).
  • spin coating film thickness: about 20 nm
  • spin coating (film thickness of about 40 nm) was performed at 1500 rpm for 30 seconds using a solution in which compound H-27 (73 mg) and compound D-1 (14 mg) were dissolved in 10 ml of isopropyl acetate. It dried under nitrogen for 30 minutes and was set as the light emitting layer (EML).
  • EML light emitting layer
  • the substrate is attached to a vacuum deposition apparatus, the vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, LiF is deposited as an electron injection layer at 2 nm, then aluminum 110 nm is deposited to form a cathode, and the organic EL element 201 is formed. Produced.
  • Organic EL Elements 203 and 204 were produced in the same manner except that an intermediate layer of 20 nm and 10 nm was formed.
  • Organic EL Element 206 In the production of the organic EL element 202, 60 mg of polyvinylidene fluoride (PVDF) was dissolved in 10 ml of 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether instead of PE. The organic EL element 206 was fabricated in the same manner except that the solution was spin-coated at 5000 rpm for 60 seconds and heated under nitrogen at 150 ° C. for 30 minutes to form a 30 nm thick intermediate layer. did.
  • PVDF polyvinylidene fluoride
  • an organic EL device in which a plurality of organic functional layers (for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc.) are produced by a wet process is also an intermediate containing a fluorinated polymer. It is clear that the organic EL element of the present invention provided with a layer has a longer half-life (%) than that of a comparative organic EL element that is not so, and suppresses an increase in voltage when the half-luminance is reached. is there.
  • Example 4 Production of Organic EL Element 215 >>
  • the substrate was placed under a nitrogen atmosphere.
  • An organic EL element 215 was produced in the same manner as described above except that the coating was heated at 150 ° C. for 30 minutes under nitrogen to provide an intermediate layer having a thickness of 10 nm, and then the light emitting layer (EML) was formed.
  • the positive hole transport layer HTL
  • an example in which the effect is more remarkable is that an intermediate layer is provided between the hole injection layer and the light emitting layer. It has also been clarified that an effect can be obtained even in a configuration having a plurality of intermediate layers.

Abstract

Disclosed is an organic electroluminescent element having improved luminance half-life and voltage increase during drive time. The disclosed organic electroluminescent element comprises a substrate, an anode and a cathode which are on the substrate, and a plurality of organic functional layers which are sandwiched between the electrodes. The organic functional layers comprise at least a hole injection layer and a light emitting layer, and there is at least one intermediary layer containing fluorinated polymers, which is between two arbitrary organic functional layers amongst the plurality of organic functional layers.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関し、更に詳しくは、半減輝度寿命の改善及び連続駆動での電圧上昇を抑制した有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence device, and more particularly to an organic electroluminescence device that improves half-luminance life and suppresses a voltage increase in continuous driving.
 従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。 Conventionally, as a light-emitting electronic display device, there is an electroluminescence display (ELD). Examples of the constituent elements of ELD include inorganic electroluminescent elements and organic electroluminescent elements (hereinafter also referred to as organic EL elements). Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
 一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V~数十V程度の電圧で発光が可能であり、更に、自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性の観点から注目されている。 On the other hand, an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. It is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Therefore, it has a wide viewing angle, high visibility, and since it is a thin-film type completely solid element, it has attracted attention from the viewpoint of space saving and portability.
 実用化に向けた有機EL素子の開発としては、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされて以来(例えば、非特許文献1参照)、室温でリン光を示す材料の研究が活発になってきて(例えば、非特許文献2、特許文献1参照)いる。 As the development of organic EL elements for practical application, since Princeton University has reported organic EL elements that use phosphorescence emission from excited triplets (see, for example, Non-Patent Document 1), phosphorescence at room temperature. Research on materials exhibiting the above has become active (see, for example, Non-Patent Document 2 and Patent Document 1).
 更に、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を始めとし、発光素子の層構成や電極の研究開発が世界中で行われている。 Furthermore, the recently discovered organic EL device using phosphorescence emission can in principle achieve light emission efficiency about 4 times that of the previous device using fluorescence emission. Research and development of light-emitting element layer configurations and electrodes are performed all over the world.
 例えば、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討されて(例えば、非特許文献3参照)いる。 For example, many compounds have been studied focusing on heavy metal complexes such as iridium complexes (see, for example, Non-Patent Document 3).
 このように大変にポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用する有機ELデバイスとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命をとらえる上で重要な技術的な課題となっている。 Although this is a very high potential method, the organic EL device using phosphorescence emission is greatly different from the organic EL device using fluorescence emission, and the method for controlling the position of the emission center, particularly the emission layer. How to recombine inside the element and stabilize the light emission is an important technical issue for grasping the efficiency and life of the device.
 近年、発光層に隣接する形で、(発光層の陽極側に位置する)正孔輸送層と、(発光層の陰極側に位置する)電子輸送層を備えた多層積層型の素子がよく知られている。 In recent years, multilayer stacked devices having a hole transport layer (located on the anode side of the light emitting layer) and an electron transport layer (located on the cathode side of the light emitting layer) adjacent to the light emitting layer are well known. It has been.
 特に青色リン光発光を利用するにあたっては、青色リン光発光材料自身が高T1(最低励起三重項状態)であるため、周辺材料の開発と精密な発光中心の制御が強く求められている。 Especially when using blue phosphorescence, since the blue phosphorescent material itself has a high T1 (minimum excited triplet state), development of peripheral materials and precise control of the emission center are strongly demanded.
 しかしながら、多層化することで機能分離を行い性能向上が望める反面、異種材料での多層積層になることで界面が複数発生することから、電気化学的にも注入障壁が生じる可能性が増す上に、材料同士の相互作用や励起状態の材料が反応、分解を起こす可能性があると考えている。また、経時で層間の材料が拡散することで、キャリアトラップとなる等の懸念も考えられる。その結果、輝度寿命の低下や経時での電圧上昇が起こるのではないかと推測をしている。 However, it is possible to improve the performance by separating the functions by making the layers multi-layered, but on the other hand, since multiple interfaces are generated by making the multi-layered stack of different materials, the possibility of causing an injection barrier also increases electrochemically. We believe that there is a possibility that the interaction between materials and the material in the excited state may react and decompose. In addition, there is a concern that the material between layers diffuses over time, resulting in a carrier trap. As a result, it is speculated that the luminance lifetime may decrease or the voltage may increase with time.
 上記の様な問題点を解決する手段としては、例えば、下層を有機酸で処理し、難溶層を作製する、あるいは表面を架橋・重合すると言った工夫をすることで拡散を抑制する工夫がなされている(例えば、特許文献2、3参照)。しかしながら、酸処理をすることで不純物が導入されることになる、あるいは難溶層や架橋層が注入障壁やトラップ成分として働くからか、充分な性能が出るに至っていない。また、界面に電荷移動錯体を含む界面領域を設けることで界面での注入障壁を軽減する等の工夫がなされている(例えば、特許文献4参照)が、更なる性能改善策が求められている。 As a means for solving the above-mentioned problems, for example, a method of suppressing diffusion by treating the lower layer with an organic acid to produce a hardly soluble layer, or by devising that the surface is crosslinked / polymerized. (For example, refer to Patent Documents 2 and 3). However, since the impurities are introduced by the acid treatment, or the hardly soluble layer or the crosslinked layer works as an injection barrier or a trap component, sufficient performance has not been achieved. In addition, there have been contrivances such as reducing the injection barrier at the interface by providing an interface region containing a charge transfer complex at the interface (see, for example, Patent Document 4), but further measures for improving performance are required. .
米国特許第6,097,147号明細書US Pat. No. 6,097,147 特開2010-80459号公報JP 2010-80459 A 特開2009-152015号公報JP 2009-152015 A 特開2008-251626号公報JP 2008-251626 A
 本発明の目的は、半減輝度寿命および駆動経時での電圧上昇を改善した有機エレクトロルミネッセンス素子、詳しくは臨界表面張力が10mN/m~30mN/mの中間層を用いることで、半減輝度寿命および駆動経時の電圧上昇を改善した有機エレクトロルミネッセンス素子を提供することである。 An object of the present invention is to provide an organic electroluminescence device having improved half-luminance life and voltage rise with time of driving, and more specifically, by using an intermediate layer having a critical surface tension of 10 mN / m to 30 mN / m, An organic electroluminescence device having improved voltage rise with time is provided.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.基板上に、陽極、及び陰極と、両電極に挟まれた複数の有機機能層とを有する有機エレクトロルミネッセンス素子において、該複数の有機機能層は、少なくとも正孔注入層と、正孔輸送層および発光層を有し、かつ、該複数の有機機能層の任意の2つの有機機能層の間に少なくとも1層のフッ化ポリマーを含有する中間層を有することを特徴とする有機エレクトロルミネッセンス素子。 1. In an organic electroluminescence device having an anode and a cathode on a substrate, and a plurality of organic functional layers sandwiched between both electrodes, the plurality of organic functional layers include at least a hole injection layer, a hole transport layer, and An organic electroluminescence device comprising a light emitting layer and an intermediate layer containing at least one fluorinated polymer between any two organic functional layers of the plurality of organic functional layers.
 2.前記中間層の膜厚が1nm~10nmであることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic electroluminescence device according to 1 above, wherein the intermediate layer has a thickness of 1 nm to 10 nm.
 3.前記中間層が下記一般式(a)で示される高分子材料を含有することを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子。 3. 3. The organic electroluminescence device as described in 1 or 2 above, wherein the intermediate layer contains a polymer material represented by the following general formula (a).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (式中、RおよびRは、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基またはヘテロアリールスルホニル基、アミノ基、ハロゲン原子、フッ化炭化水素基、シアノ基、ニトロ基、ヒドロキシ基、チオール基、シリル基、ホスホノ基から選ばれる少なくとも1種であって、少なくとも一方は、酸素、窒素、硫基のいずれかを1つ以上含む置換基を表す。n1は10~10000の整数を表す。)
 4.前記中間層が下記一般式(b)で示される高分子材料を含有することを特徴とする前記1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
Wherein R 1 and R 2 are an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group , Alkylthio group, cycloalkylthio group, arylthio group, alkoxycarbonyl group, aryloxycarbonyl group, sulfamoyl group, acyl group, acyloxy group, amide group, carbamoyl group, ureido group, sulfinyl group, alkylsulfonyl group, arylsulfonyl group or hetero At least one selected from arylsulfonyl group, amino group, halogen atom, fluorinated hydrocarbon group, cyano group, nitro group, hydroxy group, thiol group, silyl group, phosphono group, at least one of oxygen, nitrogen , A device containing one or more sulfur groups .n1 represents a group represents an integer from 10 to 10,000.)
4). 4. The organic electroluminescence device according to any one of 1 to 3, wherein the intermediate layer contains a polymer material represented by the following general formula (b).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (式中、Xは少なくとも1つの酸素、窒素、硫黄のいずれかを1つ以上含む、環状エーテル、環状チオエーテル、環状アザエーテル、クラウンエーテル、チアクラウンエーテル、アザクラウンエーテルから選ばれる少なくとも1種の環状部分構造を表す。n2は10~10000の整数を表す。)
 5.前記中間層が、前記正孔注入層と前記発光層との間にあることを特徴とする前記1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
(Wherein X is at least one cyclic selected from cyclic ether, cyclic thioether, cyclic azaether, crown ether, thiacrown ether, and azacrown ether, which contains at least one of oxygen, nitrogen, and sulfur. Represents a partial structure, and n2 represents an integer of 10 to 10,000.)
5. 5. The organic electroluminescence device according to any one of 1 to 4, wherein the intermediate layer is located between the hole injection layer and the light emitting layer.
 6.前記中間層が、前記正孔注入層と前記正孔輸送層の間にあることを特徴とする前記1~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。 6. 6. The organic electroluminescence device according to any one of 1 to 5, wherein the intermediate layer is located between the hole injection layer and the hole transport layer.
 本発明により、発光寿命が改善した有機エレクトロルミネッセンス素子を提供することができた。 According to the present invention, it was possible to provide an organic electroluminescence device having an improved emission lifetime.
有機EL素子の概略図を示す。The schematic of an organic EL element is shown. 有機EL素子の断面図を示す。Sectional drawing of an organic EL element is shown.
 以下、本発明を実施するための最良の形態について詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail.
 本発明に係る有機EL素子においては、有機機能層間に少なくとも一層のフッ化ポリマーを含有する中間層を設けることにより、半減輝度寿命が改善された素子を提供することができた。 In the organic EL device according to the present invention, by providing an intermediate layer containing at least one fluorinated polymer between the organic functional layers, it was possible to provide a device having an improved half-luminance lifetime.
 以下本発明の有機EL素子の各構成要素について、順次説明する。 Hereinafter, each component of the organic EL element of the present invention will be sequentially described.
 《中間層》
 本発明に係る中間層について説明する。
《Middle layer》
The intermediate layer according to the present invention will be described.
 本発明に係る中間層とは、本発明に係るフッ化ポリマー(フッ素置換された高分子ともいう)を含有することが特徴である。 The intermediate layer according to the present invention is characterized by containing the fluorinated polymer (also referred to as a fluorine-substituted polymer) according to the present invention.
 本発明に記載の効果(半減輝度寿命と電圧上昇を改善される)を得る観点からは、本発明に係る中間層の90質量%以上がフッ化ポリマーであることが好ましい。 From the viewpoint of obtaining the effects described in the present invention (improved half-luminance lifetime and voltage increase), it is preferable that 90% by mass or more of the intermediate layer according to the present invention is a fluorinated polymer.
 また、本発明に係る中間層には、その他、従来公知の有機EL素子材料として公知の素材が更に含有されていても良い。 In addition, the intermediate layer according to the present invention may further contain a material known as a conventionally known organic EL element material.
 本発明に係る中間層は臨界表面張力が、10mN/m~30mN/mの範囲であることが好ましいが、前記のような臨界表面張力を示す中間層を得るための素材としても、本発明に係るフッ化ポリマーは好ましく用いることができる。 The intermediate layer according to the present invention preferably has a critical surface tension in the range of 10 mN / m to 30 mN / m. However, the present invention can also be used as a material for obtaining the intermediate layer exhibiting the critical surface tension as described above. Such a fluorinated polymer can be preferably used.
 また、本発明に係るフッ化ポリマーはフッ素置換された有機溶媒を選択すればウエットプロセスで製膜ができるものも多く、蒸着法のようなドライプロセスで製膜するよりも生産的性が高くより好ましい。 Further, many of the fluorinated polymers according to the present invention can be formed by a wet process if a fluorine-substituted organic solvent is selected, and the productivity is higher than that by a dry process such as a vapor deposition method. preferable.
 更に、前記一般式(a)または(b)で示すようなフッ化ポリマーを用いることで、結晶性を抑え、透明なアモルファス膜ができやすいため最も好ましい。 Furthermore, it is most preferable to use a fluorinated polymer as represented by the general formula (a) or (b) because the crystallinity is suppressed and a transparent amorphous film is easily formed.
 尚、臨界表面張力の算出と、算出の際に用いる接触角の測定は、例えばプラスチック事典 1059(朝倉書店(1992年3月刊行))に記載の方法で算出することができる。 The calculation of the critical surface tension and the measurement of the contact angle used for the calculation can be performed by the method described in, for example, Plastic Encyclopedia 1059 (Asakura Shoten (published March 1992)).
 上記条件を満たす層が半減輝度寿命と経時での電圧上昇を改善する理由は定かではないが、界面の有機材料がアニオンラジカル、カチオンラジカルあるいは励起状態になった時に材料間での反応が起こり得るが、該中間層を設けることで、有機材料間の反応や劣化を緩和する効果があるのではないかと推測しているが、詳細は明らかになっていない。 The reason why the layer satisfying the above conditions improves the half-luminance lifetime and the voltage rise over time is not clear, but when the organic material at the interface becomes an anion radical, a cation radical or an excited state, a reaction between the materials can occur However, it is speculated that the provision of the intermediate layer may have an effect of mitigating reactions and deterioration between organic materials, but details are not clear.
 また、臨界表面張力が非常に低い膜を設けるため、塗布で一般的に用いられるポリエチレンジオキシチオフェン-ポリスルホン酸(以下、PEDOT-PSSともいう)のような水分散系の正孔注入材料を用いた際、膜内に残留する水分の拡散にも効果があるのではないかと推測をしており、上記のような水分散系の正孔注入材料を用いた場合でも好適に用いることができる。 Also, in order to provide a film having a very low critical surface tension, a water-dispersed hole injection material such as polyethylenedioxythiophene-polysulfonic acid (hereinafter also referred to as PEDOT-PSS) generally used in coating is used. In this case, it is presumed that there is an effect on the diffusion of moisture remaining in the film, and even when the above water-dispersed hole injection material is used, it can be suitably used.
 中間層の膜厚は特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧の印加防止の観点から、1nm~20nmの範囲に調整することが好ましく、更に好ましくは、1nm~10nmの範囲に調整することである。 The thickness of the intermediate layer is not particularly limited, but is preferably adjusted to a range of 1 nm to 20 nm, more preferably from the viewpoint of the uniformity of the film to be formed and the prevention of unnecessary application of high voltage during light emission. The adjustment is made within the range of 1 nm to 10 nm.
 《一般式(a)および一般式(b)で表される化合物》
 本発明に係る一般式(a)および一般式(b)における、フッ化ポリマーにはそれぞれ、置換基R、Rおよび環状置換基Xを有していることを特徴とし、R、Rのいずれかに酸素、窒素、硫黄を少なくとも1つ以上含むか、環状置換基X内に酸素、窒素、硫黄を少なくとも1つ以上含むことが好ましい。
<< Compounds Represented by General Formula (a) and General Formula (b) >>
In the general formula (a) and the general formula (b) according to the present invention, the fluorinated polymer has substituents R 1 and R 2 and a cyclic substituent X, respectively, and R 1 , R It is preferable that any one of 2 contains at least one oxygen, nitrogen, sulfur, or at least one oxygen, nitrogen, sulfur in the cyclic substituent X.
 置換基R、Rは上記の特徴を満たしていればいずれの置換基が導入されていても良い。置換基R、Rの具体例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、1-プロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、チオール基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。 Any substituents may be introduced into the substituents R 1 and R 2 as long as the above characteristics are satisfied. Specific examples of the substituents R 1 and R 2 include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, Tetradecyl group, pentadecyl group etc.), cycloalkyl group (eg cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group, 1-propenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, isopropenyl group etc.), alkynyl group (eg ethynyl group, propargyl group etc.), aromatic hydrocarbon group (aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group etc., for example , Phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, Azure Group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group, etc.), aromatic heterocyclic group (for example, furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group) A group, an imidazolyl group, a pyrazolyl group, a thiazolyl group, a quinazolinyl group, a carbazolyl group, a carbolinyl group, a diazacarbazolyl group (in which one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) ), Phthalazinyl group, etc.), heterocyclic group (eg pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group etc.), alkoxy group (eg methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group) , Octyloxy group, de Siloxy group etc.), cycloalkoxy group (eg cyclopentyloxy group, cyclohexyloxy group etc.), aryloxy group (eg phenoxy group, naphthyloxy group etc.), alkylthio group (eg methylthio group, ethylthio group, propylthio group, Pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (eg, phenylthio group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyl Oxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (for example, phenyloxycarbonyl group) , Naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group) Group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2- Ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, aceto Ruoxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, Propylcarbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, amino Carbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexyla Nocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group) Group, pentylureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, Cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group Group), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenyl) Sulfonyl group, naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino) Group, naphthylamino group, 2-pyridylamino group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.), fluorohydrocarbon group (eg, fluoromethyl group, trifluoromethyl group, pentafluoroethyl) Group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxy group, thiol group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.), phosphono group, etc. Can be mentioned.
 これらの置換基は、上記の置換基によって更に置換されていてもよい。 These substituents may be further substituted with the above substituents.
 本発明に係る一般式(b)における、フッ化ポリマーは環状置換基Xを有しており、環状置換基X内に酸素、窒素、硫黄を少なくとも1つ以上含む。 In the general formula (b) according to the present invention, the fluorinated polymer has a cyclic substituent X, and the cyclic substituent X contains at least one of oxygen, nitrogen, and sulfur.
 環状置換基Xは上記の条件を満たしていればいずれの置換基でも良い。環状置換基Xの具体例としては、環状エーテル、環状チオエーテル、環状アザエーテル、あるいはクラウンエーテル、チアクラウンエーテル、アザクラウンエーテル等が挙げられる。 The cyclic substituent X may be any substituent as long as the above conditions are satisfied. Specific examples of the cyclic substituent X include cyclic ether, cyclic thioether, cyclic azaether, crown ether, thiacrown ether, azacrown ether and the like.
 また、上記置換基の水素をフッ素に任意の数置換したものでも良い。 Further, any number of hydrogen atoms in the above substituents may be substituted with fluorine atoms.
 以下に、一般式(a)および一般式(b)で表される化合物の具体例を記載するが、本発明はこれらに限定されない。 Specific examples of the compounds represented by the general formula (a) and the general formula (b) will be described below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記具体例のnは10~10000の範囲を表すが、製膜時の溶媒への溶解性の観点からは、10~1000の範囲であることが好ましい。 In the above specific examples, n represents a range of 10 to 10,000, but from the viewpoint of solubility in a solvent during film formation, a range of 10 to 1,000 is preferable.
 本発明に係る一般式(a)または(b)で表される高分子材料としては、例えば、米国特許第3,418,302号明細書、米国特許第3,978,030号明細書、特開昭63-238111号公報、特開昭63-238115号公報、特開平1-131214号公報、特開平1-131215号公報等に記載されているポリマーが好適に用いられる。 Examples of the polymer material represented by the general formula (a) or (b) according to the present invention include, for example, US Pat. No. 3,418,302, US Pat. No. 3,978,030, Polymers described in JP-A-63-238111, JP-A-63-238115, JP-A-1-131214, JP-A-1-131215 and the like are preferably used.
 《有機EL素子の層構成》
 次に、本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されるものではない。
<< Layer structure of organic EL element >>
Next, although the preferable specific example of the layer structure of the organic EL element of this invention is shown below, this invention is not limited to these.
 (i)陽極/正孔注入層/正孔輸送層/中間層/発光層/電子輸送層/陰極
 (ii)陽極/正孔注入層/中間層/正孔輸送層/発光層/電子輸送層/陰極
 (iii)陽極/正孔注入層/中間層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔注入層/中間層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (v)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/中間層/電子注入層/陰極
 この内、陽極、陰極、及び中間層を除いた各層を総称して有機機能層と言う。
(I) Anode / hole injection layer / hole transport layer / intermediate layer / light emitting layer / electron transport layer / cathode (ii) Anode / hole injection layer / intermediate layer / hole transport layer / light emitting layer / electron transport layer / Cathode (iii) Anode / hole injection layer / intermediate layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode (iv) Anode / hole injection layer / intermediate layer / hole transport layer / Emission layer / electron transport layer / electron injection layer / cathode (v) anode / hole injection layer / hole transport layer / emission layer / electron transport layer / intermediate layer / electron injection layer / cathode Among these, anode, cathode, The layers excluding the intermediate layer are collectively referred to as an organic functional layer.
 以下に各層について説明する。 The following explains each layer.
 《発光層》
 発光層とは、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよいが、層間での励起子の失活等が考えられることから発光層の層内であることが好ましい。
<Light emitting layer>
The light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer. May be an interface between the light emitting layer and the adjacent layer, but is preferably within the layer of the light emitting layer because of deactivation of excitons between layers.
 発光層の膜厚は特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ駆動電流に対する発光色の安定性向上の観点から、2nm~200nmの範囲に調整することが好ましく、更に好ましくは5nm~100nmの範囲に調整される。 The film thickness of the light emitting layer is not particularly limited, but it is 2 nm from the viewpoint of the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the driving current. It is preferable to adjust to a range of ˜200 nm, and more preferably to a range of 5 nm to 100 nm.
 以下に発光層に含まれるホスト化合物(発光ホストとも言う)と発光ドーパントについて説明する。 Hereinafter, a host compound (also referred to as a light emitting host) and a light emitting dopant contained in the light emitting layer will be described.
 《ホスト化合物》
 本発明に用いられるホスト化合物について説明する。
《Host compound》
The host compound used in the present invention will be described.
 ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が0.1未満の化合物であり、更に、リン光量子効率は0.01未満であることが好ましい。 Here, the host compound in the present invention is a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is a compound having a phosphorescence quantum efficiency of less than 0.01.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。 As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
 また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 In addition, by using a plurality of light emitting dopants described later, it becomes possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 以下に、本発明に用いられるホスト化合物の具体例を示すが、本発明はこれらに限定されない。 Specific examples of the host compound used in the present invention are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性発光ホスト)でも良い。 The light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emission). Host).
 ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ、高Tg(ガラス転移温度)である化合物が好ましい。ホスト化合物の具体例としては、以下の文献に記載されている化合物も挙げられる。 As the host compound, a compound that has a hole transporting ability and an electron transporting ability, prevents an increase in emission wavelength, and has a high Tg (glass transition temperature) is preferable. Specific examples of the host compound also include compounds described in the following documents.
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。 JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060, 2002 -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
 《発光ドーパント》
 本発明に係る発光ドーパントについて説明する。
《Light emitting dopant》
The light emitting dopant according to the present invention will be described.
 本発明に係る発光ドーパントとしては、蛍光ドーパント、リン光ドーパントを用いることができるが、より発光効率の高い有機EL素子を得る観点からは、有機EL素子の発光層や発光ユニットに使用される発光ドーパントとして、上記のホスト化合物を含有すると同時にリン光ドーパントを含有することが好ましい。 As the light-emitting dopant according to the present invention, a fluorescent dopant or a phosphorescent dopant can be used. From the viewpoint of obtaining an organic EL element with higher luminous efficiency, light emission used in the light-emitting layer or light-emitting unit of the organic EL element. As a dopant, it is preferable to contain a phosphorescent dopant simultaneously with the host compound.
 リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。 The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element.
 本発明に係るリン光ドーパントとしては、好ましくは元素の周期表で8族~10族の遷移金属元素(単に、遷移金属ともいう)を含有する錯体系化合物が好ましく、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent dopant according to the present invention is preferably a complex compound containing a transition metal element of group 8 to 10 in the periodic table of elements (also simply referred to as transition metal), more preferably an iridium compound or osmium. Compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
 以下に、リン光ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704~1711に記載の方法等を参照することにより合成できる。 Specific examples of compounds used as phosphorescent dopants are shown below, but the present invention is not limited to these. These compounds are described, for example, in Inorg. Chem. It can be synthesized by referring to the method described in Vol. 40, 1704-1711.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 また、高分子バッファー層には導電性向上のためにポリスチレンスルホン酸(PSS)のような酸をドープすることが一般的に良く用いられる。 In addition, it is generally often used to dope the polymer buffer layer with an acid such as polystyrene sulfonic acid (PSS) in order to improve conductivity.
 正孔注入層の膜厚は特に制限はないが、形成する膜の均質性の観点から、2nm~200nmの範囲に調整することが好ましく、更に好ましくは5nm~100nmの範囲に調整される。 The film thickness of the hole injection layer is not particularly limited, but is preferably adjusted in the range of 2 nm to 200 nm, more preferably in the range of 5 nm to 100 nm, from the viewpoint of the uniformity of the film to be formed.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。 The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. .
 上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。 The buffer layer (injection layer) is preferably a very thin film, and although it depends on the material, the film thickness is preferably in the range of 0.1 nm to 5 μm.
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。 The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
 正孔阻止層には、前述のホスト化合物として挙げた化合物を好ましく用いることができる。 For the hole blocking layer, the compounds mentioned as the host compound can be preferably used.
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。 In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode.
 更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。 Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
 また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、3nm~100nmの範囲であることが好ましく、更に好ましくは、5nm~30nmの範囲である。 Moreover, the structure of the hole transport layer described later can be used as an electron blocking layer as necessary. The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably in the range of 3 nm to 100 nm, and more preferably in the range of 5 nm to 30 nm.
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, an electron blocking layer is also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。 The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
 例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著 文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂、p型正孔輸送材料を用いることもできる。本発明においては、高発光効率の発光素子が得られることからこれらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light emitting element with high luminous efficiency can be obtained.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
 正孔輸送層の膜厚については特に制限はないが、5nm~5μmの範囲であることが好ましく、更に好ましくは、5nm~200nmの範囲である。 The thickness of the hole transport layer is not particularly limited, but is preferably in the range of 5 nm to 5 μm, and more preferably in the range of 5 nm to 200 nm.
 また、正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 Further, the hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。 It is also possible to use a hole transport layer having a high p property doped with impurities.
 その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載の正孔輸送層が挙げられる。 Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. As long as it has a function of transferring electrons to the light-emitting layer, any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。 Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
 また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The film thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をゲスト材料としてドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an n-type electron transport layer doped with impurities as a guest material. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be produced.
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
 このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。 Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。 Alternatively, when a material that can be applied such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can be used.
 この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。 When light emission is taken out from the anode, it is desirable that the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less.
 更に、膜厚は材料にもよるが、10nm~1000nmの範囲が好ましく、更に好ましくは10nm~200nmの範囲である。 Furthermore, the film thickness is preferably in the range of 10 nm to 1000 nm, more preferably in the range of 10 nm to 200 nm, although it depends on the material.
 《陰極》
 陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。
"cathode"
As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used.
 このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。 Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。 Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。 The sheet resistance as a cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm.
 尚、発光した光を透過させて、発光輝度を向上させる観点から、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であることが好ましい。 In addition, it is preferable that either one of the anode or the cathode of the organic EL element is transparent or semi-transparent from the viewpoint of transmitting the emitted light and improving the emission luminance.
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
 《基板》
 本発明の有機EL素子に用いることのできる基板(以下、支持基板とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
"substrate"
As a substrate (hereinafter also referred to as a support substrate) that can be used in the organic EL element of the present invention, there is no particular limitation on the type of glass, plastic and the like, and it may be transparent or opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(JSR製)あるいはアペル(三井化学製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyether ketone imide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (manufactured by JSR) or APEL (manufactured by Mitsui Chemicals).
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、水蒸気透過度が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には酸素透過度10-3cm/(m・24h・atm)以下(1atmは、1.01325×10Paである)、水蒸気透過度10-5cm/(m・24h・atm)以下の高バリア性フィルムであることが好ましい。 An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and a barrier film having a water vapor permeability of 0.01 g / (m 2 · 24 h) or less is preferable. Furthermore, the oxygen permeability is 10 −3 cm 3 / (m 2 · 24 h · atm) or less (1 atm is 1.01325 × 10 5 Pa), and the water vapor permeability is 10 −5 cm 3 / (m 2 · 24 h. -It is preferable that it is a high barrier film below atm).
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
 本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、より好ましくは5%以上である。 The external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
 ここに、外部取り出し量子効率(%)=(有機EL素子外部に発光した光子数)/(有機EL素子に流した電子数)×100である。 Here, external extraction quantum efficiency (%) = (number of photons emitted to the outside of the organic EL element) / (number of electrons passed through the organic EL element) × 100.
 カラーフィルター等の色相改良フィルター等を併用しても、また、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。 A hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.
 《封止》
 本発明の有機EL素子の封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means of the organic EL element of this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。 The sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3cm/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m/24h)以下のものであることが好ましい。 In the present invention, a polymer film and a metal film can be preferably used because the organic EL element can be thinned. Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 cm 3 / (m 2 · 24 h · atm) or less, and conforms to JIS K 7129-1992. was measured by the method, the water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is preferably those of 1 × 10 -3 g / (m 2 / 24h) or less .
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。 Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned.
 また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Also, hot melt type polyamides, polyesters and polyolefins can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また、有機層を挟み基板と対向する側の電極の外側に該電極と有機層を被覆し、基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。 It is also possible to suitably form an inorganic or organic layer as a sealing film by covering the electrode and the organic layer on the outer side of the electrode facing the substrate with the organic layer interposed therebetween, and in contact with the substrate. In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
 これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、また、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, etc.), and anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.
 《有機EL素子の作製方法》
 本発明の有機EL素子の作製方法は、陽極と陰極に挟まれた有機機能層をドライプロセスやウエットプロセスいずれを用いて製膜しても良いが、生産性の観点からウエットプロセスで成膜することが好ましい。有機積層体全てをウエットプロセスで形成することもまた好ましい。本発明でいうウエットプロセスとは、層を形成する際に層形成材料を溶液の形態で供給し、層形成を行うものである。
<< Method for producing organic EL element >>
In the organic EL device manufacturing method of the present invention, the organic functional layer sandwiched between the anode and the cathode may be formed using either a dry process or a wet process, but from the viewpoint of productivity, a film is formed by a wet process. It is preferable. It is also preferable to form the entire organic laminate by a wet process. The wet process referred to in the present invention is to form a layer by supplying a layer forming material in the form of a solution when forming a layer.
 本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。 As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
 まず、適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm~200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。 First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably 10 nm to 200 nm. .
 次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層等の有機化合物薄膜(有機層)を形成させる。 Next, organic compound thin films (organic layers) such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a hole blocking layer, which are organic EL element materials, are formed thereon.
 これら各層の形成方法としては、前記の如く蒸着法、ウエットプロセス(スピンコート法、ダイコート法、キャスト法、インクジェット法、スプレー法、印刷法)等が挙げられる。 Examples of methods for forming these layers include vapor deposition methods, wet processes (spin coating method, die coating method, casting method, ink jet method, spray method, printing method) and the like as described above.
 更にまた、均質な膜が容易に得られ、且つ、ピンホールが生成しにくい等の観点から、本発明においてはスピンコート法、ダイコート法、インクジェット法、スプレー法、印刷法等の塗布法による成膜が好ましい。 Furthermore, in the present invention, a homogeneous film can be easily obtained and pinholes are not easily generated. In the present invention, a composition by a coating method such as a spin coating method, a die coating method, an ink jet method, a spray method, or a printing method is used. A membrane is preferred.
 本発明の有機EL素子をウエットプロセスで作製する際に、材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ペンタノン等のケトン類、酢酸エチル、酢酸ブチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、アニソール等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒や、または、水を用いることができる。 When the organic EL device of the present invention is produced by a wet process, examples of the liquid medium for dissolving or dispersing the material include ketones such as methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-pentanone, ethyl acetate, butyl acetate, and the like. Fatty acid esters, halogenated hydrocarbons such as dichlorobenzene, aromatic hydrocarbons such as toluene, xylene, mesitylene, cyclohexylbenzene, anisole, aliphatic hydrocarbons such as cyclohexane, decalin, dodecane, DMF, DMSO, etc. The organic solvent or water can be used.
 これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50nm~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。 After forming these layers, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 nm to 200 nm, and a cathode is provided. Thus, a desired organic EL element can be obtained.
 また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。 It is also possible to reverse the production order to produce a cathode, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, and an anode in this order.
 このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 When a DC voltage is applied to the multicolor display device obtained in this way, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 《保護膜、保護板》
 有機層を挟み基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the substrate with the organic layer interposed therebetween or on the sealing film.
 特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。 Particularly, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high. Therefore, it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光の内15%から20%程度の光しか取り出せないことが一般的に言われている。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said.
 これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。 This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、有機EL素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。 As a method of improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on a side surface of an organic EL element (Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (Japanese Patent Laid-Open No. 62-172691), and lowering the refractive index between the substrate and the light emitter than the substrate. A method of introducing a flat layer having a structure (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside world) No. 283751) That.
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた有機EL素子を得ることができる。 In the present invention, by combining these means, it is possible to obtain an organic EL device having higher luminance or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。 When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the efficiency of taking out the light from the transparent electrode to the outside increases as the refractive index of the medium decreases.
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は、一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましく、更に好ましくは1.35以下である。 Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less, more preferably 1.35 or less.
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。 Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光の内、層間での全反射等により外に出ることができない光をいずれかの層間、もしくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Introduce a diffraction grating into any layer or medium (inside a transparent substrate or transparent electrode) for light that cannot be emitted outside due to total internal reflection between layers. I want to take it out.
 導入する回折格子は、二次元的な周期的屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がそれほど上がらない。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
 回折格子を導入する位置としては、前述の通りいずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。 As described above, the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
 回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。 The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
 《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
《Condensing sheet》
The organic EL device of the present invention can be processed to provide, for example, a microlens array-like structure on the light extraction side of the substrate, or combined with a so-called condensing sheet, for example, in a specific direction, for example, the device light emitting surface. On the other hand, the brightness | luminance in a specific direction can be raised by condensing in a front direction.
 マイクロレンズアレイの例としては、基板の光取り出し側に、例えば一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。 As an example of the microlens array, square pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
 一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。 One side is preferably 10 μm to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基板に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。 As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, Sumitomo 3M brightness enhancement film (BEF) can be used. As the shape of the prism sheet, for example, a triangle stripe having a vertex angle of 90 degrees and a pitch of 50 μm may be formed on the substrate, the vertex angle may be rounded, and the pitch may be changed randomly. Other shapes may be used.
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。 Further, in order to control the light emission angle from the light emitting element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
 また、本発明の有機EL素子が白色素子の場合、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。本発明の有機EL素子の発光層には、発光ホスト化合物とゲスト材料としての発光ドーパントの少なくとも一種を含有することが好ましい。 When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE 1931 color system at 1000 cd / m 2 is X = 0 when the 2 ° viewing angle front luminance is measured by the above method. .33 ± 0.07, Y = 0.33 ± 0.1. The light emitting layer of the organic EL device of the present invention preferably contains at least one of a light emitting host compound and a light emitting dopant as a guest material.
 以下、実施例により本発明を説明するが本発明はこれらに限定されない。 Hereinafter, although an example explains the present invention, the present invention is not limited to these.
 また、以下に実施例で使用する化合物の構造を示す。 The structures of the compounds used in the examples are shown below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 実施例1
 《有機EL素子101の作製》
 陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板にパターニングを行った後、このITO透明電極を設けた透明支持基板をノルマルプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 1
<< Production of Organic EL Element 101 >>
After patterning a 100 mm × 100 mm × 1.1 mm glass substrate made of ITO (Indium Tin Oxide) 100 nm as an anode, the transparent support substrate provided with the ITO transparent electrode was superposed with normal propyl alcohol. Sonic cleaning, drying with dry nitrogen gas, and UV ozone cleaning were performed for 5 minutes.
 この透明支持基板を真空蒸着装置に取付け、真空層を4×10-4Paまで減圧し、化合物HI-1を蒸着にて製膜を行い、厚さ20nmの正孔注入層(HIL)とした。 This transparent support substrate was attached to a vacuum deposition apparatus, the vacuum layer was depressurized to 4 × 10 −4 Pa, and the compound HI-1 was deposited by vapor deposition to form a 20 nm thick hole injection layer (HIL). .
 次に、化合物HT-1を蒸着にて製膜を行い、厚さ20nmの正孔輸送層(HTL)とした。更に、化合物D-1が膜厚比で16%になるように化合物H-27と化合物D-1を共蒸着し、厚さ40nmの発光層(EML)を形成した。 Next, a film was formed by vapor deposition of the compound HT-1, and a hole transport layer (HTL) having a thickness of 20 nm was obtained. Further, Compound H-27 and Compound D-1 were co-evaporated so that Compound D-1 had a film thickness ratio of 16% to form a light emitting layer (EML) having a thickness of 40 nm.
 また、化合物ET-1を蒸着で成膜を行い、厚さ20nmの電子輸送層(ETL)とした。その後に電子注入層としてLiFを1nmで成膜し、アルミニウム110nmを蒸着して陰極を形成した。 Further, a film was formed by vapor deposition of the compound ET-1, and an electron transport layer (ETL) having a thickness of 20 nm was obtained. Thereafter, LiF was deposited as an electron injection layer with a thickness of 1 nm, and aluminum was deposited with a thickness of 110 nm to form a cathode.
 次いで、上記素子の非発光面をガラスケースで覆い、図1、図2に示す構成からなる有機EL素子101を作製した。 Next, the non-light-emitting surface of the element was covered with a glass case, and an organic EL element 101 having the configuration shown in FIGS. 1 and 2 was produced.
 図1は有機EL素子の概略図を示し、有機EL素子101は、ガラスカバー102で覆われている。尚、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。図2は有機EL素子の断面図を示し、図2において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。尚、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 FIG. 1 shows a schematic diagram of an organic EL element, and the organic EL element 101 is covered with a glass cover 102. The sealing operation with the glass cover was performed in a glove box (in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere. FIG. 2 shows a cross-sectional view of the organic EL element. In FIG. 2, 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 《有機EL素子102の作製》
 有機EL素子101の作製において、正孔注入層を製膜した後に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中でポリエチレン(PE)60mgをクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚30nmの中間層を形成した以外は同様にして、有機EL素子102を作製した。
<< Production of Organic EL Element 102 >>
In the production of the organic EL element 101, after forming the hole injection layer, the substrate was moved to a glove box under a nitrogen atmosphere, and a solution in which 60 mg of polyethylene (PE) was dissolved in 10 ml of chlorobenzene in the glove box was used. Then, an organic EL device 102 was produced in the same manner except that spin coating was performed at 5000 rpm for 60 seconds, and heating was performed at 150 ° C. for 30 minutes under nitrogen to form a 30 nm thick intermediate layer.
 《有機EL素子103および104の作製》
 有機EL素子102の作製において、PEをそれぞれ40mg、20mgをクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚20nm、10nmの中間層を形成した以外は同様にして、有機EL素子103および104を作製した。
<< Production of Organic EL Elements 103 and 104 >>
In the production of the organic EL element 102, a film obtained by dissolving PE in 40 mg and 20 mg in 10 ml of chlorobenzene was spin-coated at 5000 rpm for 60 seconds, and heated at 150 ° C. for 30 minutes under nitrogen to form a film thickness. Organic EL elements 103 and 104 were produced in the same manner except that an intermediate layer of 20 nm and 10 nm was formed.
 《有機EL素子105の作製》
 有機EL素子101の作製において、正孔注入層を製膜する前に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中でI-1(20mg)を2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を形成した以外は同様にして、有機EL素子105を作製した。
<< Production of Organic EL Element 105 >>
In the production of the organic EL device 101, before forming the hole injection layer, the substrate is moved to a glove box under a nitrogen atmosphere, and I-1 (20 mg) is transferred to 2, 2, 3, 3 in the glove box. , 3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether was spin-coated under a condition of 5000 rpm for 60 seconds and heated at 150 ° C. for 30 minutes under nitrogen. Then, an organic EL element 105 was produced in the same manner except that an intermediate layer having a thickness of 10 nm was formed.
 《有機EL素子106の作製》
 有機EL素子101の作製において、正孔注入層を製膜した後に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中でポリフッ化ビニリデン(PVDF)60mgを2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚30nmの中間層を形成した以外は同様にして、有機EL素子106を作製した。
<< Production of Organic EL Element 106 >>
In the production of the organic EL element 101, after forming the hole injection layer, the substrate was moved to a glove box under a nitrogen atmosphere, and 60 mg of polyvinylidene fluoride (PVDF) was added in 2, 2, 3, 3 in the glove box. , 3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether was spin-coated under a condition of 5000 rpm for 60 seconds and heated at 150 ° C. for 30 minutes under nitrogen. Then, an organic EL element 106 was produced in the same manner except that an intermediate layer having a thickness of 30 nm was formed.
 《有機EL素子107および108の作製》
 有機EL素子106の作製において、PVDFをそれぞれ40mg、20mgを2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚20nm、10nmの中間層を形成した以外は同様にして、有機EL素子107および108を作製した。
<< Production of Organic EL Elements 107 and 108 >>
In the production of the organic EL element 106, using a solution in which 40 mg and 20 mg of PVDF were dissolved in 10 ml of 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, respectively. Organic EL elements 107 and 108 were produced in the same manner except that spin coating was performed at 5000 rpm for 60 seconds and heating was performed at 150 ° C. for 30 minutes under nitrogen to form an intermediate layer having a thickness of 20 nm and 10 nm.
 《有機EL素子109の作製》
 有機EL素子101の作製において、正孔注入層を製膜した後に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中でI-2(60mg)を2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚30nmの中間層を形成した以外は同様にして、有機EL素子109を作製した。
<< Production of Organic EL Element 109 >>
In the production of the organic EL element 101, after forming the hole injection layer, the substrate was moved to a glove box under a nitrogen atmosphere, and I-2 (60 mg) was transferred to 2, 2, 3, 3, in the glove box. Using a solution dissolved in 10 ml of 3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, spin-coated at 5000 rpm for 60 seconds, and heated at 150 ° C. for 30 minutes under nitrogen. An organic EL element 109 was produced in the same manner except that an intermediate layer having a thickness of 30 nm was formed.
 《有機EL素子110および111の作製》
 有機EL素子109の作製において、I-2をそれぞれ40mg、20mgを2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚20nm、10nmの中間層を形成した以外は同様にして、有機EL素子110および111を作製した。
<< Production of Organic EL Elements 110 and 111 >>
In the production of the organic EL element 109, a solution in which 40 mg and 20 mg of I-2 were dissolved in 10 ml of 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, respectively. The organic EL elements 110 and 111 were prepared in the same manner except that an intermediate layer having a film thickness of 20 nm and 10 nm was formed by spin coating at 5000 rpm for 60 seconds and heating at 150 ° C. for 30 minutes under nitrogen. did.
 《有機EL素子112の作製》
 有機EL素子101の作製において、正孔注入層を製膜した後に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中でI-1(60mg)を2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚30nmの中間層を形成した以外は同様にして、有機EL素子112を作製した。
<< Production of Organic EL Element 112 >>
In the production of the organic EL element 101, after forming the hole injection layer, the substrate was moved to a glove box under a nitrogen atmosphere, and I-1 (60 mg) was transferred to 2, 2, 3, 3, in the glove box. Using a solution dissolved in 10 ml of 3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, spin-coated at 5000 rpm for 60 seconds, and heated at 150 ° C. for 30 minutes under nitrogen. An organic EL element 112 was produced in the same manner except that an intermediate layer having a thickness of 30 nm was formed.
 《有機EL素子113および114の作製》
 有機EL素子112の作製において、I-1をそれぞれ40mg、20mgを2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚20nm、10nmの中間層を形成した以外は同様にして、有機EL素子113および114を作製した。
<< Production of Organic EL Elements 113 and 114 >>
In the production of the organic EL element 112, a solution in which 40 mg and 20 mg of I-1 were dissolved in 10 ml of 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, respectively. The organic EL devices 113 and 114 were prepared in the same manner except that an intermediate layer having a thickness of 20 nm and 10 nm was formed by spin coating at 5000 rpm for 60 seconds and heating at 150 ° C. for 30 minutes under nitrogen. did.
 《有機EL素子101~114の評価》
 作製した有機EL素子101~114について、下記のようにして、半減寿命及び半減輝度到達時電圧上昇の評価を行った。
<< Evaluation of organic EL elements 101 to 114 >>
The produced organic EL elements 101 to 114 were evaluated for the half life and voltage increase when the half luminance was reached as follows.
 (半減寿命)
 作製した有機EL素子に対し、正面輝度1000cd/mとなるような電流を与え、連続駆動した。正面輝度が初期の半減値(500cd/m)になるまでに掛かる時間を半減寿命として求め、有機EL素子102~110の半減寿命は、有機EL素子101(比較例)の測定値を100とした相対値で表した。
(Half life)
The manufactured organic EL element was continuously driven by applying a current that would give a front luminance of 1000 cd / m 2 . The time required for the front luminance to reach the initial half value (500 cd / m 2 ) is obtained as a half life, and the half lives of the organic EL elements 102 to 110 are 100 as measured values of the organic EL element 101 (comparative example). It was expressed as a relative value.
 (半減輝度到達時電圧上昇(Vt))
 作製した有機EL素子に対し、正面輝度2000cd/mとなるような電流を与え、正面輝度が初期の半減値(1000cd/m)になるまで連続駆動し、駆動終了時から駆動直後の電圧の差を半減輝度到達時電圧上昇として求め、結果をA~Dに分類した。
(Voltage increase at half brightness (Vt))
A current that gives a front luminance of 2000 cd / m 2 is applied to the manufactured organic EL element, and the device is continuously driven until the front luminance reaches the initial half value (1000 cd / m 2 ). Was obtained as a voltage increase at the time of reaching half luminance, and the results were classified into A to D.
 A:半減輝度到達時電圧上昇が0.5V未満
 B:半減輝度到達時電圧上昇が0.5V以上1.0V未満
 C:半減輝度到達時電圧上昇が1.0V以上2.0V未満
 D:半減輝度到達時電圧上昇が2.0V以上
 なお、輝度の測定には分光放射輝度計CS-1000(コニカミノルタセンシング製)を用いた。また、本発明においては、ランクA、Bが実用可能レベルである。
A: Voltage increase when half luminance reached less than 0.5 V B: Voltage increase when half luminance reached 0.5 V or more and less than 1.0 V C: Voltage increase when half luminance reached 1.0 V or more and less than 2.0 V D: Half The voltage rise when the luminance reaches 2.0 V or more Note that a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing) was used for measuring the luminance. In the present invention, ranks A and B are practical levels.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1の記載から、比較の有機EL素子に比べて、本発明の有機EL素子は、正孔注入層と正孔輸送層間にフッ化ポリマーを含有する中間層を形成することで、半減寿命が長くなり、且つ、半減輝度到達時の電圧上昇が抑制されていることが明らである。 From the description in Table 1, compared with the comparative organic EL element, the organic EL element of the present invention has a half life by forming an intermediate layer containing a fluorinated polymer between the hole injection layer and the hole transport layer. It is apparent that the voltage increase when the half luminance is reached is suppressed.
 また、製膜を10nmにすることで更に高い効果を示していること、一般式(b)で表される化合物である材料I-1または一般式(a)で表される材料I-2を用いることで、更に本発明の効果が顕著に表れていることが併せて明らかである。 Further, it is shown that the effect is further increased by forming the film to 10 nm, and the material I-1 which is a compound represented by the general formula (b) or the material I-2 represented by the general formula (a) It is also clear that the effects of the present invention are remarkably exhibited by using.
 実施例2
 《有機EL素子115の作製》
 実施例1の有機EL素子114の作製において、正孔注入層(HIL)と正孔輸送層(HTL)との間に中間層を設けるのではなく、正孔輸送層(HTL)を製膜した後に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中でI-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、発光層(EML)を形成した以外は同様にして、有機EL素子115を作製した。
Example 2
<< Production of Organic EL Element 115 >>
In the production of the organic EL element 114 of Example 1, an intermediate layer was not provided between the hole injection layer (HIL) and the hole transport layer (HTL), but a hole transport layer (HTL) was formed. Later, the substrate was moved to a glove box under a nitrogen atmosphere, and spin-coated under a condition of 5000 rpm for 60 seconds using a solution in which I-1 (20 mg) was dissolved in 10 ml of chlorobenzene in the glove box, 150 An organic EL element 115 was produced in the same manner except that an intermediate layer having a film thickness of 10 nm was formed by heating under nitrogen at 30 ° C. for 30 minutes, and then a light emitting layer (EML) was formed.
 《有機EL素子116の作製》
 実施例1の有機EL素子114の作製において、正孔注入層(HIL)と正孔輸送層(HTL)との間に中間層を設けるのではなく、発光層(EML)を製膜した後に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中でI-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、電子輸送層(ETL)を形成した以外は同様にして、有機EL素子116を作製した。
<< Production of Organic EL Element 116 >>
In the production of the organic EL element 114 of Example 1, instead of providing an intermediate layer between the hole injection layer (HIL) and the hole transport layer (HTL), after forming the light emitting layer (EML), The substrate was moved to a glove box under a nitrogen atmosphere, and spin-coated under a condition of 5000 rpm for 60 seconds using a solution in which I-1 (20 mg) was dissolved in 10 ml of chlorobenzene in a glove box at 150 ° C., Organic EL element 116 was produced in the same manner except that it was heated under nitrogen for 30 minutes to provide an intermediate layer having a thickness of 10 nm, and then an electron transport layer (ETL) was formed.
 《有機EL素子117の作製》
 実施例1の有機EL素子114の作製において、正孔注入層(HIL)、中間層、次いで、正孔輸送層(HTL)を製膜した後、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中で、該正孔輸送層(HTL)上に、I-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、発光層を形成した以外は同様にして、有機EL素子117を作製した。
<< Preparation of Organic EL Element 117 >>
In the production of the organic EL element 114 of Example 1, after forming a hole injection layer (HIL), an intermediate layer, and then a hole transport layer (HTL), the substrate was moved to a glove box under a nitrogen atmosphere. In a glove box, spin coating was performed on the hole transport layer (HTL) using a solution of I-1 (20 mg) dissolved in 10 ml of chlorobenzene at 5000 rpm for 60 seconds, An organic EL element 117 was produced in the same manner except that it was heated under nitrogen for 30 minutes to provide an intermediate layer having a thickness of 10 nm, and then a light emitting layer was formed.
 《有機EL素子118の作製》
 有機EL素子117の作製において、正孔輸送層(HTL)と発光層(EML)との間に中間層を設けずに、発光層を製膜した後に基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中で、該発光層(EML)上に、I-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、電子輸送層(ETL)を形成した以外は同様にして、有機EL素子118を作製した。
<< Preparation of Organic EL Element 118 >>
In the production of the organic EL element 117, the intermediate layer is not provided between the hole transport layer (HTL) and the light emitting layer (EML), and after the light emitting layer is formed, the substrate is moved to a glove box in a nitrogen atmosphere. In a glove box, spin-coating was performed on the light-emitting layer (EML) using a solution obtained by dissolving I-1 (20 mg) in 10 ml of chlorobenzene at 5000 rpm for 60 seconds. An organic EL element 118 was produced in the same manner except that the film was heated under nitrogen for 10 minutes to provide an intermediate layer having a thickness of 10 nm, and then an electron transport layer (ETL) was formed.
 《有機EL素子119の作製》
 有機EL素子115の作製において、正孔輸送層(HTL)、中間層、次いで、発光層(EML)を製膜した後、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中で、該発光層(EML)上に、I-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、電子輸送層(ETL)を形成した以外は同様にして、有機EL素子119を作製した。
<< Production of Organic EL Element 119 >>
In the production of the organic EL element 115, after forming the hole transport layer (HTL), the intermediate layer, and then the light emitting layer (EML), the substrate was moved to a glove box under a nitrogen atmosphere, and in the glove box, A film in which I-1 (20 mg) was dissolved in 10 ml of chlorobenzene was spin-coated on the light emitting layer (EML) at 5000 rpm for 60 seconds, and heated at 150 ° C. for 30 minutes under nitrogen. An organic EL element 119 was produced in the same manner except that an intermediate layer having a thickness of 10 nm was provided and then an electron transport layer (ETL) was formed.
 《有機EL素子120の作製》
 有機EL素子117の作製において、発光層(EML)を製膜した後、に基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中で、該発光層(EML)上に、I-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、電子輸送層(ETL)を形成した以外は同様にして、有機EL素子120を作製した。
<< Production of Organic EL Element 120 >>
In the production of the organic EL element 117, after forming a light emitting layer (EML), the substrate was moved to a glove box under a nitrogen atmosphere, and in the glove box, on the light emitting layer (EML), I-1 (20 mg) was dissolved in 10 ml of chlorobenzene, spin-coated at 5000 rpm for 60 seconds, heated at 150 ° C. for 30 minutes under nitrogen to provide an intermediate layer having a thickness of 10 nm, and then electron transport An organic EL element 120 was produced in the same manner except that the layer (ETL) was formed.
 《有機EL素子の評価》
 作製した有機EL素子について、実施例1と同様にして、半減寿命及び半減輝度到達時電圧上昇の評価を行った。
<< Evaluation of organic EL elements >>
About the produced organic EL element, it carried out similarly to Example 1, and evaluated the voltage rise at the time of half-life and half-luminance arrival.
 尚、半減寿命の値は、実施例1の有機EL素子101の測定値を100とした場合の相対値で示した。 In addition, the value of half-life was shown by the relative value when the measured value of the organic EL element 101 of Example 1 was set to 100.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表2から、正孔輸送層と発光層との間に中間層を設けた有機EL素子、発光層と電子輸送層との間に中間層を設けた有機EL素子でも、実施例1と同様に、半減寿命が長くなり、且つ、半減輝度到達時の電圧上昇が抑制されていることが判る。 From Table 2, the organic EL device in which an intermediate layer is provided between the hole transport layer and the light emitting layer and the organic EL device in which an intermediate layer is provided between the light emitting layer and the electron transport layer are the same as in Example 1. It can be seen that the half-life is increased and the voltage rise when the half-luminance is reached is suppressed.
 更に、本発明の有機EL素子117~120のように、中間層が複数層ある構成においては、更に、半減寿命(%)が長寿命化することが判る。 Furthermore, it can be seen that the half life (%) is further extended in the structure having a plurality of intermediate layers, such as the organic EL elements 117 to 120 of the present invention.
 実施例3
 《有機EL素子201の作製》
 陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 3
<< Production of Organic EL Element 201 >>
As a positive electrode, patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) obtained by forming a 100 nm film of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate, and then this ITO transparent electrode was provided. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔注入層(HIL)を設けた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After forming the film by spin coating, the film was dried at 200 ° C. for 1 hour to provide a hole injection layer (HIL) having a thickness of 30 nm.
 次いで、基板を窒素雰囲気下のグローブボックスへと移動し、化合物HT-2(50mg)をモノクロロベンゼン10mlに溶解させた溶液を用いて1500rpm、30秒の条件下でスピンコート(膜厚約20nm)し、160℃、30分間窒素下で乾燥し、正孔輸送層(HTL)とした。 Next, the substrate was moved to a glove box under a nitrogen atmosphere, and spin coating (film thickness: about 20 nm) was performed at 1500 rpm for 30 seconds using a solution in which compound HT-2 (50 mg) was dissolved in 10 ml of monochlorobenzene. And dried under nitrogen at 160 ° C. for 30 minutes to form a hole transport layer (HTL).
 さらに、化合物H-27(73mg)と化合物D-1(14mg)を酢酸イソプロピル10mlに溶解させた溶液を用いて1500rpm、30秒の条件化でスピンコート(膜厚約40nm)し、120℃、30分間窒素下で乾燥し、発光層(EML)とした。 Further, spin coating (film thickness of about 40 nm) was performed at 1500 rpm for 30 seconds using a solution in which compound H-27 (73 mg) and compound D-1 (14 mg) were dissolved in 10 ml of isopropyl acetate. It dried under nitrogen for 30 minutes and was set as the light emitting layer (EML).
 次いで、化合物ET-1(50mg)を2,2,3,3-テトラフルオロプロパノール10mlに溶解させた溶液を用いて1500rpm、30秒の条件化でスピンコート(膜厚約20nm)し、120℃、30分間窒素下で乾燥し、電子輸送層(ETL)とした。 Next, spin coating (film thickness: about 20 nm) was performed at 1500 rpm for 30 seconds using a solution in which compound ET-1 (50 mg) was dissolved in 10 ml of 2,2,3,3-tetrafluoropropanol. And dried for 30 minutes under nitrogen to obtain an electron transport layer (ETL).
 基板を真空蒸着装置に取付け、真空槽を4×10-4Paまで減圧し、電子注入層としてLiFを2nmで成膜し、その後アルミニウム110nmを蒸着して陰極を形成し、有機EL素子201を作製した。 The substrate is attached to a vacuum deposition apparatus, the vacuum chamber is depressurized to 4 × 10 −4 Pa, LiF is deposited as an electron injection layer at 2 nm, then aluminum 110 nm is deposited to form a cathode, and the organic EL element 201 is formed. Produced.
 《有機EL素子202の作製》
 有機EL素子201の作製において、正孔注入層(HIL)を製膜した後、該正孔注入層上に、ポリエチレン(PE)60mgをクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚30nmの中間層を設け、次いで、正孔輸送層(HTL)を形成した以外は同様にして、有機EL素子202を作製した。
<< Production of Organic EL Element 202 >>
In the production of the organic EL element 201, after forming a hole injection layer (HIL), a solution obtained by dissolving 60 mg of polyethylene (PE) in 10 ml of chlorobenzene was used on the hole injection layer at 5000 rpm for 60 seconds. The organic EL element 202 was formed in the same manner except that the film was spin-coated under the conditions of 150 ° C., heated at 150 ° C. for 30 minutes under nitrogen to provide an intermediate layer having a thickness of 30 nm, and then a hole transport layer (HTL) was formed. Produced.
 《有機EL素子203および204の作製》
 有機EL素子202の作製において、PEをそれぞれ40mg、20mgをクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚20nm、10nmの中間層を形成した以外は同様にして、有機EL素子203および204を作製した。
<< Production of Organic EL Elements 203 and 204 >>
In the production of the organic EL element 202, spin coating was performed at 5000 rpm for 60 seconds using a solution in which 40 mg and 20 mg of PE were dissolved in 10 ml of chlorobenzene, and the film was heated at 150 ° C. for 30 minutes under nitrogen. Organic EL elements 203 and 204 were produced in the same manner except that an intermediate layer of 20 nm and 10 nm was formed.
 《有機EL素子205の作製》
 有機EL素子201の作製において、正孔注入層を製膜する前に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中でI-1(20mg)を2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を形成した以外は同様にして、有機EL素子205を作製した。
<< Production of Organic EL Element 205 >>
In the production of the organic EL element 201, before forming the hole injection layer, the substrate is moved to a glove box under a nitrogen atmosphere, and I-1 (20 mg) is transferred to 2, 2, 3, 3 in the glove box. , 3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether was spin-coated under a condition of 5000 rpm for 60 seconds and heated at 150 ° C. for 30 minutes under nitrogen. Then, an organic EL element 205 was produced in the same manner except that an intermediate layer having a thickness of 10 nm was formed.
 《有機EL素子206の作製》
 有機EL素子202の作製において、PEの代わりに、ポリフッ化ビニリデン(PVDF)60mgを2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚30nmの中間層を形成した以外は同様にして、有機EL素子206を作製した。
<< Production of Organic EL Element 206 >>
In the production of the organic EL element 202, 60 mg of polyvinylidene fluoride (PVDF) was dissolved in 10 ml of 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether instead of PE. The organic EL element 206 was fabricated in the same manner except that the solution was spin-coated at 5000 rpm for 60 seconds and heated under nitrogen at 150 ° C. for 30 minutes to form a 30 nm thick intermediate layer. did.
 《有機EL素子207および208の作製》
 有機EL素子206の作製において、ポリフッ化ビニリデン(PVDF)をそれぞれ40mg、20mgを2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚20nm、10nmの中間層を形成した以外は同様にして、有機EL素子207および208を作製した。
<< Production of Organic EL Elements 207 and 208 >>
In the production of the organic EL element 206, 40 mg and 20 mg of polyvinylidene fluoride (PVDF) were dissolved in 10 ml of 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, respectively. The organic EL device 207 and the organic EL device 207 were prepared in the same manner as above except that an intermediate layer having a film thickness of 20 nm and 10 nm was formed by spin-coating using the prepared solution at 5000 rpm for 60 seconds and heating at 150 ° C. for 30 minutes under nitrogen. 208 was produced.
 《有機EL素子209の作製》
 有機EL素子206の作製において、ポリフッ化ビニリデン(PVDF)の代わりに、I-2(60mg)を2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚30nmの中間層を形成した以外は同様にして、有機EL素子209を作製した。
<< Production of Organic EL Element 209 >>
In the production of the organic EL element 206, I-2 (60 mg) was replaced with 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl instead of polyvinylidene fluoride (PVDF). Using a solution dissolved in 10 ml of ether, spin coating was performed at 5000 rpm for 60 seconds, and heating was performed at 150 ° C. for 30 minutes under nitrogen to form an intermediate layer having a thickness of 30 nm. An element 209 was manufactured.
 《有機EL素子210および211の作製》
 有機EL素子209の作製において、I-2をそれぞれ40mg、20mgを2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚20nm、10nmの中間層を形成した以外は同様にして、有機EL素子210および211を作製した。
<< Production of Organic EL Elements 210 and 211 >>
In the production of the organic EL element 209, a solution in which 40 mg and 20 mg of I-2 were dissolved in 10 ml of 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, respectively. The organic EL elements 210 and 211 were prepared in the same manner except that an intermediate layer having a thickness of 20 nm and 10 nm was formed by spin coating at 5000 rpm for 60 seconds and heating under nitrogen at 150 ° C. for 30 minutes. did.
 《有機EL素子212の作製》
 有機EL素子206の作製において、ポリフッ化ビニリデン(PVDF)の代わりに、I-1(60mg)を2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚30nmの中間層を形成した以外は同様にして、有機EL素子212を作製した。
<< Production of Organic EL Element 212 >>
In the production of the organic EL element 206, I-1 (60 mg) was replaced with 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl instead of polyvinylidene fluoride (PVDF). Using a solution dissolved in 10 ml of ether, spin coating was performed at 5000 rpm for 60 seconds, and heating was performed at 150 ° C. for 30 minutes under nitrogen to form an intermediate layer having a thickness of 30 nm. An element 212 was produced.
 《有機EL素子213および214の作製》
 有機EL素子212の作製において、I-1をそれぞれ40mg、20mgを2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚20nm、10nmの中間層を形成した以外は同様にして、有機EL素子213および214を作製した。
<< Production of Organic EL Elements 213 and 214 >>
In the production of the organic EL element 212, a solution in which I-1 was dissolved in 40 mg and 20 mg in 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether 10 ml, respectively. The organic EL elements 213 and 214 were prepared in the same manner except that an intermediate layer having a thickness of 20 nm and 10 nm was formed by spin coating at 5000 rpm for 60 seconds and heating at 150 ° C. for 30 minutes under nitrogen. did.
 《有機EL素子201~214の評価》
 得られた有機EL素子201~214の各々について、実施例1と同様にして、半減寿命及び半減輝度到達時電圧上昇の評価を行った。なお、半減寿命の値は有機EL素子201の測定値を100とした場合の相対値で示した。
<< Evaluation of organic EL elements 201 to 214 >>
Each of the obtained organic EL elements 201 to 214 was evaluated in the same manner as in Example 1 for the half life and voltage increase when the half brightness was reached. In addition, the value of the half life is shown as a relative value when the measured value of the organic EL element 201 is 100.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表3から、複数の有機機能層(例えば、正孔注入層、正孔輸送層、発光層、電子輸送層等)がウエットプロセスで作製された有機EL素子においても、フッ化ポリマーを含有する中間層を設けた本発明の有機EL素子は、そうではない比較の有機EL素子に比べて、半減寿命(%)が長く、且つ、半減輝度到達時の電圧上昇が抑制されていることが明らかである。 From Table 3, an organic EL device in which a plurality of organic functional layers (for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc.) are produced by a wet process is also an intermediate containing a fluorinated polymer. It is clear that the organic EL element of the present invention provided with a layer has a longer half-life (%) than that of a comparative organic EL element that is not so, and suppresses an increase in voltage when the half-luminance is reached. is there.
 実施例4
 《有機EL素子215の作製》
 有機EL素子214の作製において、正孔注入層(HIL)と正孔輸送層(HTL)との間に中間層を設けずに、正孔輸送層を製膜した後に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中で、該正孔輸送層(HTL)上に、I-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、発光層(EML)を形成した以外は同様にして、有機EL素子215を作製した。
Example 4
<< Production of Organic EL Element 215 >>
In the production of the organic EL element 214, after forming the hole transport layer without providing an intermediate layer between the hole injection layer (HIL) and the hole transport layer (HTL), the substrate was placed under a nitrogen atmosphere. Move to the glove box, spin on the hole transport layer (HTL) in the glove box using a solution of I-1 (20 mg) dissolved in 10 ml of chlorobenzene at 5000 rpm for 60 seconds. An organic EL element 215 was produced in the same manner as described above except that the coating was heated at 150 ° C. for 30 minutes under nitrogen to provide an intermediate layer having a thickness of 10 nm, and then the light emitting layer (EML) was formed.
 《有機EL素子216の作製》
 有機EL素子215の作製において、正孔輸送層(HTL)と発光層(EML)との間に中間層を設けずに、発光層を製膜した後に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中で、該発光層(EML)上に、I-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、電子輸送層(ETL)を形成した以外は同様にして、有機EL素子216を作製した。
<< Production of Organic EL Element 216 >>
In the production of the organic EL element 215, after forming the light emitting layer without providing an intermediate layer between the hole transport layer (HTL) and the light emitting layer (EML), the substrate is transferred to a glove box under a nitrogen atmosphere. In a glove box, spin-coat the solution on a light emitting layer (EML) on a light emitting layer (EML) using a solution of I-1 (20 mg) in 10 ml of chlorobenzene at 5000 rpm for 60 seconds, An organic EL element 216 was produced in the same manner except that it was heated under nitrogen for 30 minutes to provide an intermediate layer having a thickness of 10 nm, and then an electron transport layer (ETL) was formed.
 《有機EL素子217の作製》
 有機EL素子214の作製において、正孔輸送層を製膜した後に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中で、該正孔輸送層(HTL)上に、I-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、発光層(EML)を形成した以外は同様にして、有機EL素子217を作製した。
<< Production of Organic EL Element 217 >>
In the production of the organic EL element 214, after forming the hole transport layer, the substrate is moved to a glove box under a nitrogen atmosphere, and in the glove box, on the hole transport layer (HTL), I-1 (20 mg) was dissolved in 10 ml of chlorobenzene, spin-coated at 5000 rpm for 60 seconds, and heated at 150 ° C. for 30 minutes under nitrogen to provide an intermediate layer having a thickness of 10 nm. An organic EL element 217 was produced in the same manner except that (EML) was formed.
 《有機EL素子218の作製》
 有機EL素子217の作製において、正孔輸送層(HTL)と発光層(EML)との間に中間層を設けずに、発光層を製膜した後に、基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中で、該発光層(EML)上に、I-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、電子輸送層(ETL)を形成した以外は同様にして、有機EL素子218を作製した。
<< Production of Organic EL Element 218 >>
In the production of the organic EL element 217, after forming the light emitting layer without providing an intermediate layer between the hole transport layer (HTL) and the light emitting layer (EML), the substrate is transferred to a glove box under a nitrogen atmosphere. In a glove box, spin-coat the solution on a light emitting layer (EML) on a light emitting layer (EML) using a solution of I-1 (20 mg) in 10 ml of chlorobenzene at 5000 rpm for 60 seconds, An organic EL element 218 was produced in the same manner except that it was heated under nitrogen for 30 minutes to provide an intermediate layer having a thickness of 10 nm, and then an electron transport layer (ETL) was formed.
 《有機EL素子219の作製》
 有機EL素子215の作製において、発光層(EML)を製膜した後に基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中で、該発光層(EML)上に、I-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、電子輸送層(ETL)を形成した以外は同様にして、有機EL素子219を作製した。
<< Production of Organic EL Element 219 >>
In the production of the organic EL element 215, after forming a light emitting layer (EML), the substrate was moved to a glove box under a nitrogen atmosphere, and I-1 (20 mg) was placed on the light emitting layer (EML) in the glove box. ) In a solution of 10 ml of chlorobenzene, spin-coated at 5000 rpm for 60 seconds, heated at 150 ° C. for 30 minutes under nitrogen to provide an intermediate layer having a thickness of 10 nm, and then an electron transport layer ( An organic EL element 219 was produced in the same manner except that ETL) was formed.
 《有機EL素子220の作製》
 有機EL素子217の作製において、発光層(EML)を製膜した後に基板を窒素雰囲気下のグローブボックスへと移動し、グローブボックス中で、該発光層(EML)上に、I-1(20mg)をクロロベンゼン10mlに溶解させた溶液を用いて、5000rpm、60秒の条件下でスピンコートし、150℃、30分間窒素下で加熱し膜厚10nmの中間層を設け、次いで、電子輸送層(ETL)を形成した以外は同様にして、有機EL素子220を作製した。
<< Production of Organic EL Element 220 >>
In the production of the organic EL element 217, after forming the light emitting layer (EML), the substrate was moved to a glove box under a nitrogen atmosphere, and I-1 (20 mg) was placed on the light emitting layer (EML) in the glove box. ) In a solution of 10 ml of chlorobenzene, spin-coated at 5000 rpm for 60 seconds, heated at 150 ° C. for 30 minutes under nitrogen to provide an intermediate layer having a thickness of 10 nm, and then an electron transport layer ( An organic EL element 220 was produced in the same manner except that ETL) was formed.
 《有機EL素子215~220の評価》
 作製した有機EL素子215~220について、実施例1と同様にして、半減寿命及び半減輝度到達時電圧上昇の評価を行った。尚、半減寿命の値は有機EL素子201の測定値を100とした場合の相対値で示した。
<< Evaluation of organic EL elements 215 to 220 >>
The produced organic EL elements 215 to 220 were evaluated in the same manner as in Example 1 for the half life and voltage increase when the half luminance was reached. In addition, the value of the half life is shown as a relative value when the measured value of the organic EL element 201 is 100.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表4から、複数の有機機能層(例えば、正孔注入層、正孔輸送層、発光層、電子輸送層等)がウエットプロセスで作製された素子においても、正孔輸送層(HTL)と正孔注入層(HIL)との間以外に、中間層が挿入した場合でも本発明の効果が出ていることがわかる。 From Table 4, even in an element in which a plurality of organic functional layers (for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, etc.) are produced by a wet process, the positive hole transport layer (HTL) It can be seen that the effect of the present invention is obtained even when an intermediate layer is inserted other than between the hole injection layer (HIL).
 更に、より顕著に効果が出ている例が正孔注入層から発光層の間に中間層を設けたものであることもわかる。また、中間層が複数層ある構成においても効果が得られることが併せて明らかとなっている。 Furthermore, it can be seen that an example in which the effect is more remarkable is that an intermediate layer is provided between the hole injection layer and the light emitting layer. It has also been clarified that an effect can be obtained even in a configuration having a plurality of intermediate layers.
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤
DESCRIPTION OF SYMBOLS 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate with a transparent electrode 108 Nitrogen gas 109 Water catching agent

Claims (6)

  1.  基板上に、陽極、及び陰極と、両電極に挟まれた複数の有機機能層とを有する有機エレクトロルミネッセンス素子において、該複数の有機機能層は、少なくとも正孔注入層と、正孔輸送層および発光層を有し、かつ、該複数の有機機能層の任意の2つの有機機能層の間に少なくとも1層のフッ化ポリマーを含有する中間層を有することを特徴とする有機エレクトロルミネッセンス素子。 In an organic electroluminescence device having an anode and a cathode on a substrate, and a plurality of organic functional layers sandwiched between both electrodes, the plurality of organic functional layers include at least a hole injection layer, a hole transport layer, and An organic electroluminescence device comprising a light emitting layer and an intermediate layer containing at least one fluorinated polymer between any two organic functional layers of the plurality of organic functional layers.
  2.  前記中間層の膜厚が1nm~10nmであることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 2. The organic electroluminescence device according to claim 1, wherein the thickness of the intermediate layer is 1 nm to 10 nm.
  3.  前記中間層が下記一般式(a)で示される高分子材料を含有することを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001

     (式中、RおよびRは、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、芳香族炭化水素基、芳香族複素環基、複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、スルフィニル基、アルキルスルホニル基、アリールスルホニル基またはヘテロアリールスルホニル基、アミノ基、ハロゲン原子、フッ化炭化水素基、シアノ基、ニトロ基、ヒドロキシ基、チオール基、シリル基、ホスホノ基から選ばれる少なくとも1種であって、少なくとも一方は、酸素、窒素、硫黄のいずれかを1つ以上含む置換基を表す。n1は10~10000の整数を表す。)
    The organic electroluminescent element according to claim 1, wherein the intermediate layer contains a polymer material represented by the following general formula (a).
    Figure JPOXMLDOC01-appb-C000001

    Wherein R 1 and R 2 are an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group, a heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group , Alkylthio group, cycloalkylthio group, arylthio group, alkoxycarbonyl group, aryloxycarbonyl group, sulfamoyl group, acyl group, acyloxy group, amide group, carbamoyl group, ureido group, sulfinyl group, alkylsulfonyl group, arylsulfonyl group or hetero At least one selected from arylsulfonyl group, amino group, halogen atom, fluorinated hydrocarbon group, cyano group, nitro group, hydroxy group, thiol group, silyl group, phosphono group, at least one of oxygen, nitrogen , A place containing at least one of sulfur .n1 represents a group represents an integer from 10 to 10,000.)
  4.  前記中間層が下記一般式(b)で示される高分子材料を含有することを特徴とする請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002

     (式中、Xは少なくとも1つの酸素、窒素、硫黄のいずれかを1つ以上含む、環状エーテル、環状チオエーテル、環状アザエーテル、クラウンエーテル、チアクラウンエーテル、アザクラウンエーテルから選ばれる少なくとも1種の環状部分構造を表す。n2は10~10000の整数を表す。)
    4. The organic electroluminescence device according to claim 1, wherein the intermediate layer contains a polymer material represented by the following general formula (b).
    Figure JPOXMLDOC01-appb-C000002

    (Wherein X is at least one cyclic selected from cyclic ether, cyclic thioether, cyclic azaether, crown ether, thiacrown ether, and azacrown ether, which contains at least one of oxygen, nitrogen, and sulfur. Represents a partial structure, and n2 represents an integer of 10 to 10,000.)
  5.  前記中間層が、前記正孔注入層と前記発光層との間にあることを特徴とする請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 4, wherein the intermediate layer is located between the hole injection layer and the light emitting layer.
  6.  前記中間層が、前記正孔注入層と前記正孔輸送層の間にあることを特徴とする請求項1~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 5, wherein the intermediate layer is located between the hole injection layer and the hole transport layer.
PCT/JP2011/064377 2010-07-02 2011-06-23 Organic electroluminescent element WO2012002245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012522582A JP5835217B2 (en) 2010-07-02 2011-06-23 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010151745 2010-07-02
JP2010-151745 2010-07-02

Publications (1)

Publication Number Publication Date
WO2012002245A1 true WO2012002245A1 (en) 2012-01-05

Family

ID=45401963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064377 WO2012002245A1 (en) 2010-07-02 2011-06-23 Organic electroluminescent element

Country Status (2)

Country Link
JP (1) JP5835217B2 (en)
WO (1) WO2012002245A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204275A1 (en) * 2015-06-17 2016-12-22 国立大学法人山形大学 Organic charge transport layer, organic el device, organic semiconductor device, and organic photoelectric device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010073A1 (en) * 1990-11-30 1992-06-11 Idemitsu Kosan Company Limited Organic electroluminescence device
JPH0711247A (en) * 1993-06-28 1995-01-13 Idemitsu Kosan Co Ltd Method for sealing organic el element and light-emitting device obtained by the sealing method
JP2000323280A (en) * 1999-05-07 2000-11-24 Seiko Epson Corp Electroluminescent element and its manufacture
JP2004119303A (en) * 2002-09-27 2004-04-15 Sanyo Electric Co Ltd Organic electroluminescence element and method for manufacturing the same
JP2006222195A (en) * 2005-02-09 2006-08-24 Seiko Epson Corp Organic el apparatus, manufacturing method thereof, and electronic apparatus
WO2009096342A1 (en) * 2008-01-28 2009-08-06 Asahi Glass Company, Limited Curable composition, fluorine-containing cured product, optical material using the cured product, and light-emitting device
WO2010074038A1 (en) * 2008-12-24 2010-07-01 旭硝子株式会社 Light-emitting module and method for manufacturing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072930A (en) * 2000-08-28 2002-03-12 Toshiba Corp Display element and method of driving the same
JP2005310742A (en) * 2004-03-25 2005-11-04 Sanyo Electric Co Ltd Organic electroluminescent element
JP4466594B2 (en) * 2005-03-30 2010-05-26 セイコーエプソン株式会社 Organic EL device and method for manufacturing organic EL device
JP2008033284A (en) * 2006-07-04 2008-02-14 Semiconductor Energy Lab Co Ltd Manufacturing method of display device
US20080286566A1 (en) * 2007-05-18 2008-11-20 Shiva Prakash Process for forming an organic light-emitting diode and devices made by the process
JP2011510484A (en) * 2007-12-27 2011-03-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Buffer bilayer for electronic devices
JP4968333B2 (en) * 2008-02-27 2012-07-04 東レ株式会社 Light emitting device material and light emitting device
WO2009107548A1 (en) * 2008-02-29 2009-09-03 Semiconductor Energy Laboratory Co., Ltd. Deposition method and manufacturing method of light-emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010073A1 (en) * 1990-11-30 1992-06-11 Idemitsu Kosan Company Limited Organic electroluminescence device
JPH0711247A (en) * 1993-06-28 1995-01-13 Idemitsu Kosan Co Ltd Method for sealing organic el element and light-emitting device obtained by the sealing method
JP2000323280A (en) * 1999-05-07 2000-11-24 Seiko Epson Corp Electroluminescent element and its manufacture
JP2004119303A (en) * 2002-09-27 2004-04-15 Sanyo Electric Co Ltd Organic electroluminescence element and method for manufacturing the same
JP2006222195A (en) * 2005-02-09 2006-08-24 Seiko Epson Corp Organic el apparatus, manufacturing method thereof, and electronic apparatus
WO2009096342A1 (en) * 2008-01-28 2009-08-06 Asahi Glass Company, Limited Curable composition, fluorine-containing cured product, optical material using the cured product, and light-emitting device
WO2010074038A1 (en) * 2008-12-24 2010-07-01 旭硝子株式会社 Light-emitting module and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204275A1 (en) * 2015-06-17 2016-12-22 国立大学法人山形大学 Organic charge transport layer, organic el device, organic semiconductor device, and organic photoelectric device
JPWO2016204275A1 (en) * 2015-06-17 2018-04-05 国立大学法人山形大学 Organic charge transport layer, organic EL device, organic semiconductor device, and organic optoelectronic device
EP3312898A4 (en) * 2015-06-17 2018-12-26 National University Corporation Yamagata University Organic charge transport layer, organic el device, organic semiconductor device, and organic photoelectric device
US10381566B2 (en) 2015-06-17 2019-08-13 National University Corporation Yamagata University Organic charge transport layer, organic EL device, organic semiconductor device, and organic photoelectric device

Also Published As

Publication number Publication date
JPWO2012002245A1 (en) 2013-08-22
JP5835217B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5967057B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT AND ITS MANUFACTURING METHOD, LIGHTING DEVICE AND DISPLAY DEVICE
JP5493333B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, WHITE ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5697856B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, WHITE ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5499890B2 (en) Organic electroluminescence device and method for manufacturing the same
JP5076899B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ITS MANUFACTURING METHOD, DISPLAY DEVICE AND LIGHTING DEVICE HAVING THE ORGANIC ELECTROLUMINESCENT ELEMENT
JP5201054B2 (en) Organic electroluminescent material, organic electroluminescent element, blue phosphorescent light emitting element, display device and lighting device
JP5163642B2 (en) Organic electroluminescence device
WO2009084413A1 (en) Organic electroluminescent device and method for manufacturing organic electroluminescent device
JP2008207520A (en) Organic thin film, method for producing the same, electronic device, organic luminescence element, display device and lightening equipment
JP5417763B2 (en) Compound for organic electroluminescence device
JPWO2008090795A1 (en) Organic electroluminescence element, display device and lighting device
WO2011052250A1 (en) Organic electroluminescent element, organic electroluminescent element material, display device, and lighting device
WO2011046165A1 (en) Organic electroluminescent element, organic electroluminescent element emitting white light, display device and illumination device
JP6225915B2 (en) Organic electroluminescence device
JP2011009517A (en) Organic electroluminescent element
JP5218185B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
JP5636630B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5521753B2 (en) Organic electroluminescence device
JP2010040967A (en) Organic electroluminescence element, method of manufacturing polymerized film, white organic electroluminescence element, display, and illuminating apparatus
JP2009152435A (en) White organic electroluminescent device, manufacturing method thereof, display unit, and lighting apparatus
WO2012039241A1 (en) Organic electroluminescent element, and method for manufacturing organic electroluminescent element
JP5835217B2 (en) Organic electroluminescence device
WO2011114870A1 (en) Production method for organic electroluminescent element
JP6056909B2 (en) Organic electroluminescence device
JP5761388B2 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800710

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522582

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800710

Country of ref document: EP

Kind code of ref document: A1